Today: Cutkosky rules vs renormalization (actual research) "co-interacting Bialgebras".

Next week: training week for the stalls.

Feb 22: Outlook on Summer course.
this leads to a coaction

\[\begin{pmatrix}
1 & 0 & 0 \\
0 & \alpha & 0 \\
0 & 0 & 0
\end{pmatrix} \]

\[\downarrow \]

\[\begin{pmatrix}
1 & 0 & 0 \\
0 & \alpha & 0 \\
0 & 0 & 0
\end{pmatrix} \]

\[\uparrow \]

\[\text{It is true amplitudes (husteds) Hodge} \]

\[\mathcal{I}(\mathcal{A}) = \mathcal{A} \otimes \mathcal{A} + \alpha \otimes \mathcal{A} \]

\[\uparrow \text{the co-action for the analytic structure of graphs} \]

\[\Rightarrow \text{one input.} \]

The other input:

\[\text{core Hodge algebra} \]
\[\Delta (\triangledown) = (\ast) \otimes (\ast) \]

\[+ \left(\ast \right) \otimes \ast \]

\Delta, S are both co-algebras on an algebra, given by polynomial algebras on the space of loops in your graph.

Are these two co-algebras compatible in which sense?