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1. Derivation of renormalized Feynman rules in parametric space

We turn to the derivation of Feynman rules. In our Hopf algebra HΓ, we have
graphs Γ with labelled edges e ∈ Γ[1]. To a graph Γ, we will assign forms ΦΓ which
depend on the edge labels Ae, the squared masses m2

e, and the momenta q(v),
v ∈ Γ[0]. Physicists may wish to consider these external momenta q(v) as external
edges, with a splitting as in say q(v) = q1 + q2 corresponding to two external edges
at v, if so desired (for example to achieve homogeneity in the valence of vertices).

We assume that for a product of graphs Γ1Γ2, labels are not repeated. The
forms ΦΓ have the structure ΦΓ = fΓ({Ae})ΩΓ, with fΓ({Ae}) a function of all
the edge variables and ΩΓ a standard form, see below. With unrepeated labels,
ΦΓ1Γ2

= fΓ1
fΓ2

ΩΓ1∪Γ2
.

Renormalized Feynman rules make use of the Hopf algebra HΓ to construct a
linear combination of forms ΦR

Γ such that it can be integrated against positive real

projective P|Γ[1]|−1-space. We write ΦR(Γ) ∈ G = SpecFeyn(H) for the resulting
integral.
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1.1. Schwinger parametrization and the exponential integral. We first de-
fine the two graph polynomials ψ,ϕ. Both are configuration polynomials. We
define them here though using spanning trees and spanning forests. We have (for
a connected graph Γ)

(1) ψΓ :=
�

T

�

e�∈T

Ae,

for spanning trees T and edges e of Γ. Furthermore, we let q(v) be the external
momentum entering a vertex v ∈ Γ (it can be zero), and for a subset of vertices
X ⊂ Γ, we let Q(X) =

�
v∈X q(v). Then,

(2) ϕΓ :=
�

T1∪T2

Q(T1) ·Q(T2)
�

e�∈T1∪T2

Ae,

where T1∪T2 is a spanning two-forest. Note: Q(T1) = −Q(T2), Q(T1)
2 = Q(T2)

2 =
−Q(T1) ·Q(T2).

We extend these definitions to products of graphs as follows. For γ =
�

i γi,

(3) ψγ =
�

i

ψγi , ϕγ =
�

i


ϕγi

�

j �=i

ψγj


 .



RENORMALIZED PARAMETRIC FEYNMAN RULES (CONT’D., JAN.20 2021) 3

Define Qvw := q(v) · q(w), let S :=
�

v,w∈Γ(0) cvwQvw a real (cvw ∈ R) linear
combination of scalar products Qvw which vanishes only when all external momenta
q(v) vanish. We say that S is in general kinematic position. Let Θvw := Qvw/S
and Θe := m2

e/S.

(4) ϕΓ(Θ) :=
ϕΓ

S
, φΓ(S,Θ) := SφΓ(Θ), φΓ(Θ) := ϕΓ(Θ) + ψΓ

��

e

AeΘe

�
.

We usually write φΓ ≡ φΓ(S,Θ) in the decomposed form (and in slight abuse of
notation) as φΓ = SφΓ(Θ). Extension to products is defined as before.
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We have for any γ ⊂ Γ, with γ = ∪iγi, ψγ =
�

i ψγi
,

Proposition 1.

ψΓ = ψΓ/γψγ +RΓ
γ , |RΓ

γ |γ = |ψ(γ)|γ + 1,(5)

φΓ(Θ) = φΓ/γ(Θ)ψγ + R̄Γ
γ (Θ), |R̄Γ

γ (Θ)|γ ≥ |ψ(γ)|γ + 1,(6)

and |φΓ| = |ψΓ| + 1, and |U |V is the degree of U in the edge variables of V , and
|U | = |U |U .

Note that φΓ/γ(Θ) can be zero, for example when masses are zero and Q(Ti) = 0
for all two-forests of Γ/γ.

Proof. From the definitions via spanning trees and two-forests. �
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We now let ✷Γ be the hypercube R|Γ(1)|
+ , and consider the integrand obtained

from a Schwinger parametrization of a Feynman graph Γ,

(7) ΦΓ(S,Θ) :=
dA1 · · · dA|Γ(1)|e

+
SφΓ(Θ)

ψΓ

ψ2
Γ

.

This unrenormalized integrand cannot be integrated yet in the edge variables Ae

against ✷Γ. Its renormalized counterpart has the form (say for logarithmic diver-
gences, the general case is below and has the same structure)

ΦR
Γ (S, S0,Θ,Θ0) =

∅�

[f ]

(−1)|f |Φf (S0,Θ0)ΦΓ/f (S,Θ).(8)

=
�

Φ−1
Γ� (S0,Θ0)ΦΓ��(S,Θ),(9)

where we used Sweedler’s notation ΔG(Γ) =
�

Γ� ⊗ Γ�� in the second line. This is
the traditional forest formula1.

1Note that we use ψ∅ = 1, φ∅(Θ) = 0.



6 DIRK KREIMER

In the following, we will renormalize this integrand using kinetic renormalization
schemes. For that, we let 2sΓ ≡ 2sd(Γ) be the superficial degree of divergence of Γ
(in the example of a massive scalar field theory with quartic interactions):

(10) 2sΓ = 4|Γ|− 2|Γ[1]|.
Then, all vertex graphs Γ have sΓ = 0 together with |Γ[1]| = 2|Γ|, while for all
propagator graphs, sΓ = 1 with |Γ[1]| = 2|Γ|− 1.

Let us introduce new variables Ae → ae, Ae = tae, and dA1 · · · dA|Γ[1]| → dt∧ΩΓ,

with ΩΓ the usual (|Γ[1]|−1)-form A1dA2∧ · · ·∧dA|Γ[1]|−A2dA1 · · ·± · · · . We find

(11) ΦΓ :=
dt

t
∧ ΩΓe

t
SφΓ(Θ)

ψΓ

tsΓψ2
Γ

.
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We want to study the overall t-integration as a function of the superficial degree
of divergence sΓ first. Concretely, we are interested to define and find the limit in
the t-integration

(12) lim
c→0

� ∞

c

ΦΓ,

where c ∈ R+. We use renormalization conditions on ΦΓ ≡ ΦΓ(S,Θ).
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Kinetic renormalization conditions imply that we choose values S0,Θ0 for the
scale and for the angles, such that the renormalized amplitudes of a graph Γ,
together with their first sΓ derivatives in an expansion around that point, vanish.
For sΓ = 0, we can simply subtract at a chosen S0,Θ0:

(13) ΦΓ(S,Θ) → ΦΓ(S,Θ)− ΦΓ(S0,Θ0)

which takes care of the overall divergence in the graph Γ.
For sΓ = 1, we are dealing with a quadratically divergent propagator function.
We will subtract at q2 = m2. Note that there are no angles Θvw for a two-point
function, the Θe remain though. Kinetic renormalization conditions are determined
by the requirement that the renormalized amplitude vanishes at q2 = m2, together
with its first derivative ∂q2 , so that the pole in the propagator has a on-shell unit

residue2.

2For a massless propagator, vanishing of ΦR
Γ at q2 = 0 and of ΦR

Γ /q2 at q2 = µ2 are also

convenient renormalization conditions.
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1.2. sΓ = 0. Let us start with the case sΓ = 0. The limit is

(14) lim
c→0

� ∞

c

[ΦΓ(S,Θ)− ΦΓ(S0,Θ0)] =
ΩΓ ln

SφΓ(Θ)
S0φΓ(Θ0)

ψ2
Γ

,

using that for small c > 0,

(15)

� ∞

c

e−tXdt

t
= − ln c+ lnX + γE +O(c).

Here, γE is the Euler–Mascheroni constant. Note that we can decompose the loga-
rithm as

ln
S
S0

φΓ(Θ)

φΓ(Θ0)
= ln(S/S0) + ln(φΓ(Θ)/φΓ(Θ0)),

(we assume S/S0 > 0). We assume also that the angles Θ,Θ0 are chosen such that
we are off Landau singularities. Approaching such singularities means studying the
corresponding variation of the logarithm above.
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Let us now look at logarithmic sub-divergences. A typical term in the forest
formula provides an integrand of the form

(16)
e
+

SφΓ/f (Θ)

ψΓ/f

ψ2
Γ/f

e
+

S0φf (Θ0)

ψf

ψ2
f

− e
+

S0φΓ/f (Θ0)

ψΓ/f

ψ2
Γ/f

e
+

S0φf (Θ0)

ψf

ψ2
f

.
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Combining each of the two products of exponentials into a single exponential
and using the exponential integral as above delivers

(17) MΓ
f :=

ln
SφΓ/f (Θ)ψf+S0φf (Θ0)ψΓ/f

S0φΓ/f (Θ0)ψf+S0φf (Θ0)ψΓ/f

ψ2
Γ/fψ

2
f

ΩΓ.

Summing over all forests including the empty one delivers the renormalized inte-
grand as the homogeneous of degree zero form

(18) ΦR
Γ :=

∅�

f

(−1)|f |MΓ
f .

ΦR
Γ is an integrand which can, this is just a rewriting of the forest formula, be

integrated against P|Γ[1]|−1(R+). An explicit proof from scratch is given below
though, after we decomposed Feynman rules suitably.


