1. Derivation of renormalized Feynman rules in parametric space

We turn to the derivation of Feynman rules. In our Hopf algebra H_Γ, we have graphs Γ with labelled edges $e \in \Gamma^{[1]}$. To a graph Γ, we will assign forms Φ_{Γ} which depend on the edge labels A_e, the squared masses m_e^2, and the momenta $q(v)$, $v \in \Gamma^{[0]}$. Physicists may wish to consider these external momenta $q(v)$ as external edges, with a splitting as in say $q(v) = q_1 + q_2$ corresponding to two external edges at v, if so desired (for example to achieve homogeneity in the valence of vertices).

We assume that for a product of graphs $\Gamma_1 \Gamma_2$, labels are not repeated. The forms Φ_Γ have the structure $\Phi_\Gamma = f_\Gamma(\{A_e\})\Omega_\Gamma$, with $f_\Gamma(\{A_e\})$ a function of all the edge variables and Ω_Γ a standard form, see below. With unrepeated labels, $\Phi_{\Gamma_1 \Gamma_2} = f_{\Gamma_1} f_{\Gamma_2} \Omega_{\Gamma_1 \cup \Gamma_2}$.

Renormalized Feynman rules make use of the Hopf algebra H_Γ to construct a linear combination of forms Φ_R^Γ such that it can be integrated against positive real projective $\mathbb{P}^{[1]}-1$-space. We write $\Phi_R(\Gamma) \in G = \text{Spec}_{\text{Feyn}}(H)$ for the resulting integral.
1.1. Schwinger parametrization and the exponential integral. We first define the two graph polynomials ψ, φ. Both are configuration polynomials. We define them here though using spanning trees and spanning forests. We have (for a connected graph Γ)

\begin{equation}
\psi_\Gamma := \sum_T \prod_{e \in T} A_e,
\end{equation}

for spanning trees T and edges e of Γ. Furthermore, we let $q(v)$ be the external momentum entering a vertex $v \in \Gamma$ (it can be zero), and for a subset of vertices $X \subset \Gamma$, we let $Q(X) = \sum_{v \in X} q(v)$. Then,

\begin{equation}
\varphi_\Gamma := \sum_{T_1 \cup T_2} Q(T_1) \cdot Q(T_2) \prod_{e \in T_1 \cup T_2} A_e,
\end{equation}

where $T_1 \cup T_2$ is a spanning two-forest. Note: $Q(T_1) = -Q(T_2)$, $Q(T_1)^2 = Q(T_2)^2 = -Q(T_1) \cdot Q(T_2)$.

We extend these definitions to products of graphs as follows. For $\gamma = \prod_i \gamma_i$,

\begin{equation}
\psi_{\gamma} = \prod_i \psi_{\gamma_i}, \quad \varphi_{\gamma} = \sum_i \left(\varphi_{\gamma_i} \prod_{j \neq i} \psi_{\gamma_j} \right).
\end{equation}
Define \(Q_{vw} := q(v) \cdot q(w) \), let \(S := \sum_{v, w \in \Gamma^{(0)}} c_{vw} Q_{vw} \) a real \((c_{vw} \in \mathbb{R})\) linear combination of scalar products \(Q_{vw} \) which vanishes only when all external momenta \(q(v) \) vanish. We say that \(S \) is in general kinematic position. Let \(\Theta_{vw} := Q_{vw}/S \) and \(\Theta_e := m_e^2/S \).

\[
\phi_{\Gamma}(\Theta) := \frac{\varphi}{S}, \quad \phi_{\Gamma}(S, \Theta) := S\phi_{\Gamma}(\Theta), \quad \phi_{\Gamma}(\Theta) := \varphi_{\Gamma}(\Theta) + \psi_{\Gamma} \left(\sum_{e} A_e \Theta_e \right).
\]

We usually write \(\phi_{\Gamma} \equiv \phi_{\Gamma}(S, \Theta) \) in the decomposed form (and in slight abuse of notation) as \(\phi_{\Gamma} = S\phi_{\Gamma}(\Theta) \). Extension to products is defined as before.
We have for any $\gamma \subset \Gamma$, with $\gamma = \bigcup \gamma_i$, $\psi_\gamma = \prod_i \psi_{\gamma_i}$.

Proposition 1.

\[
\psi_{\Gamma} = \psi_{\Gamma/\gamma} + R_\gamma^\Gamma, |R_\gamma^\Gamma|_\gamma = |\psi(\gamma)|_\gamma + 1, \tag{5}
\]

\[
\phi_{\Gamma}(\Theta) = \phi_{\Gamma/\gamma}(\Theta) \psi_\gamma + \hat{R}_\gamma^\Gamma(\Theta), |\hat{R}_\gamma^\Gamma(\Theta)|_\gamma \geq |\psi(\gamma)|_\gamma + 1, \tag{6}
\]

and $|\phi_{\Gamma}| = |\psi_{\Gamma}| + 1$, and $|U|_V$ is the degree of U in the edge variables of V, and $|U| = |U|_U$.

Note that $\phi_{\Gamma/\gamma}(\Theta)$ can be zero, for example when masses are zero and $Q(T_i) = 0$ for all two-forests of Γ/γ.

Proof. From the definitions via spanning trees and two-forests. \qed
We now let \(\Box_{\Gamma} \) be the hypercube \(\mathbb{R}^{[\Gamma]} \), and consider the integrand obtained from a Schwinger parametrization of a Feynman graph \(\Gamma \),

\[
\Phi_{\Gamma}(S, \Theta) := \int dA_{\Box_{\Gamma}^{1}} \ldots dA_{\Box_{\Gamma}^{(1)}} e^{\frac{S \phi_{\Gamma}(\Theta)}{\lambda_{T}}} \psi_{\Gamma}^2.
\]

This unrenormalized integrand cannot be integrated yet in the edge variables \(A_{e} \) against \(\Box_{\Gamma} \). Its renormalized counterpart has the form (say for logarithmic divergences, the general case is below and has the same structure)

\[
\Phi_{R,\Gamma}(S, S_{0}, \Theta, \Theta_{0}) = \sum_{f} (-1)^{|f|} \Phi_{f}(S_{0}, \Theta_{0}) \Phi_{\Gamma/f}(S, \Theta).
\]

\[
\Phi_{R,\Gamma}(S, S_{0}, \Theta, \Theta_{0}) = \sum \Phi_{\Gamma'}^{-1}(S_{0}, \Theta_{0}) \Phi_{\Gamma''}(S, \Theta),
\]

where we used Sweedler’s notation \(\Delta_{G}(\Gamma) = \sum \Gamma' \otimes \Gamma'' \) in the second line. This is the traditional forest formula\(^1\).

\(^{1}\)Note that we use \(\psi_{\emptyset} = 1, \phi_{\emptyset}(\Theta) = 0. \)
In the following, we will renormalize this integrand using kinetic renormalization schemes. For that, we let $2s_G \equiv 2sd(\Gamma)$ be the superficial degree of divergence of Γ (in the example of a massive scalar field theory with quartic interactions):}

\begin{equation}
2s_G = 4|\Gamma| - 2|\Gamma^{[1]}|.
\end{equation}

Then, all vertex graphs Γ have $s_G = 0$ together with $|\Gamma^{[1]}| = 2|\Gamma|$, while for all propagator graphs, $s_G = 1$ with $|\Gamma^{[1]}| = 2|\Gamma| - 1$.

Let us introduce new variables $A_e \rightarrow a_e$, $A_e = ta_e$, and $dA_1 \cdots dA_{|\Gamma^{[1]}|} \rightarrow dt \wedge \Omega_{\Gamma}$, with Ω_{Γ} the usual $(|\Gamma^{[1]}| - 1)$-form $A_1dA_2 \wedge \cdots \wedge dA_{|\Gamma^{[1]}|} - A_2dA_1 \wedge \cdots$. We find

\begin{equation}
\Phi_{\Gamma} := \frac{dt}{t} \wedge \frac{\Omega_{\Gamma} e^{\frac{2s_G - 2s_G^{[1]}}{2s_G^{[1]}}}}{e^{s_G^{[1]}}}.
\end{equation}

\begin{align*}
\int \mathcal{L}(A_1, A_2) \mathcal{L} \mathcal{L} &
\frac{A_1 dA_2}{(A_1 + A_2)^2} \\
\Delta_1 &:= A_1 a_1 \\
\Delta_2 &:= A_1 a_2 e^{-\frac{A_1 a_2 a_2}{(1 + a_2)}}
\end{align*}

\begin{align*}
\mathcal{A}_1 &:= \int dA_1 a_1 \frac{a_1 a_2 a_2}{(a_1 + a_2)^2} \\
\mathcal{A}_2 &:= \int dA_2 a_2 \frac{a_1 a_2 a_2}{(a_1 + a_2)^2}
\end{align*}
We want to study the overall t-integration as a function of the superficial degree of divergence s^Γ first. Concretely, we are interested to define and find the limit in the t-integration

$$\lim_{c \to 0} \int_c^\infty \Phi_G, \tag{12}$$

where $c \in \mathbb{R}_+$. We use renormalization conditions on $\Phi_G \equiv \Phi_G(S, \Theta)$.

$$\int_c^\infty \Phi_G \quad \text{exists} \quad \forall \ c > 0$$
Kinetic renormalization conditions imply that we choose values \(S_0, \Theta_0 \) for the scale and for the angles, such that the renormalized amplitudes of a graph \(\Gamma \), together with their first \(s_F \) derivatives in an expansion around that point, vanish. For \(s_F = 0 \), we can simply subtract at a chosen \(S_0, \Theta_0 \):

\[
\Phi_{\Gamma}(S, \Theta) \rightarrow \Phi_{\Gamma}(S, \Theta) - \Phi_{\Gamma}(S_0, \Theta_0)
\]

which takes care of the overall divergence in the graph \(\Gamma \). For \(s_F = 1 \), we are dealing with a quadratically divergent propagator function. We will subtract at \(q^2 = m^2 \). Note that there are no angles \(\Theta_{vw} \) for a two-point function, the \(\Theta_e \) remain though. Kinetic renormalization conditions are determined by the requirement that the renormalized amplitude vanishes at \(q^2 = m^2 \), together with its first derivative \(\partial_{q^2} \), so that the pole in the propagator has a on-shell unit residue.\(^2\)

\(^2\)For a massless propagator, vanishing of \(\Phi_R^{\mu} \) at \(q^2 = 0 \) and of \(\Phi_R^{\mu}/q^2 \) at \(q^2 = \mu^2 \) are also convenient renormalization conditions.
1.2. $s_T = 0$. Let us start with the case $s_T = 0$. The limit is

$$\lim_{c \to 0} \int_c^\infty \frac{e^{-tX}}{t} dt = -\ln c + \ln X + \gamma_E + O(c).$$

Here, γ_E is the Euler–Mascheroni constant. Note that we can decompose the logarithm as

$$\ln \frac{S}{S_0} \frac{\phi_T(\Theta)}{\phi_T(\Theta_0)} = \ln\left(\frac{S}{S_0}\right) + \ln\left(\frac{\phi_T(\Theta)}{\phi_T(\Theta_0)}\right),$$

(we assume $S/S_0 > 0$). We assume also that the angles Θ, Θ_0 are chosen such that we are off Landau singularities. Approaching such singularities means studying the corresponding variation of the logarithm above.
Let us now look at logarithmic sub-divergences. A typical term in the forest formula provides an integrand of the form

\begin{equation}
\begin{aligned}
e^{\frac{S_0}{f}(\theta_0)} & e^{\frac{S_0}{f}(\theta_0)} - e^{\frac{S_0}{f}(\theta_0)} e^{\frac{S_0}{f}(\theta_0)} + e^{\frac{S_0}{f}(\theta_0)} e^{\frac{S_0}{f}(\theta_0)} \\
\psi^2 & \psi^2 \\
\psi^2 & \psi^2
\end{aligned}
\end{equation}
Combining each of the two products of exponentials into a single exponential and using the exponential integral as above delivers

\[M_f^\Gamma := \ln \frac{S\delta \Gamma f(\Theta) \psi_f + S_0\delta \Gamma(\Theta_0) \psi_f}{\psi_f^2}. \]

Summing over all forests including the empty one delivers the renormalized integrand as the homogeneous of degree zero form

\[\Phi^\Gamma := \sum_f (-1)^{|f|} M_f^\Gamma. \]

\(\Phi^\Gamma \) is an integrand which can, this is just a rewriting of the forest formula, be integrated against \(P^{[\Gamma]} \). An explicit proof from scratch is given below though, after we decomposed Feynman rules suitably.