i) knowna toed parametric:

non-recursive Lianure uneris

ii) momentum spece via recursion

Basolinbou - Para sink

iii) coordinate spece Erstein Glasov

RENORMALIZED PARAMETRIC FEYNMAN RULES

(CONT'D., JAN.20 2021)

pat interpretation

DIRK KREIMER

1. DERIVATION OF RENORMALIZED FEYNMAN RULES IN PARAMETRIC SPACE

We turn to the derivation of Feynman rules. In our Hopf algebra H_{Γ} , we have graphs Γ with labelled edges $e \in \Gamma^{[1]}$. To a graph Γ , we will assign forms Φ_{Γ} which depend on the edge labels A_e , the squared masses m_e^2 , and the momenta q(v), $v \in \Gamma^{[0]}$. Physicists may wish to consider these external momenta q(v) as external edges, with a splitting as in say $q(v) = q_1 + q_2$ corresponding to two external edges at v, if so desired (for example to achieve homogeneity in the valence of vertices).

We assume that for a product of graphs $\Gamma_1\Gamma_2$, labels are not repeated. The forms Φ_{Γ} have the structure $\Phi_{\Gamma} = f_{\Gamma}(\{A_e\})\Omega_{\Gamma}$, with $f_{\Gamma}(\{A_e\})$ a function of all the edge variables and Ω_{Γ} a standard form, see below. With unrepeated labels, $\Phi_{\Gamma_1\Gamma_2} = f_{\Gamma_1}f_{\Gamma_2}\Omega_{\Gamma_1\cup\Gamma_2}$.

Renormalized Feynman rules make use of the Hopf algebra H_{Γ} to construct a linear combination of forms Φ_{Γ}^R such that it can be integrated against positive real projective $\mathbb{P}^{|\Gamma^{[1]}|-1}$ -space. We write $\Phi^R(\Gamma) \in G = \operatorname{Spec}_{\text{Feyn}}(H)$ for the resulting integral.

φ (h,h,) = φ (h,) = C

1.1. Schwinger parametrization and the exponential integral. We first define the two graph polynomials ψ, φ . Both are configuration polynomials. We define them here though using spanning trees and spanning forests. We have (for a connected graph Γ)

(1)
$$\psi_{\Gamma} := \sum_{T} \prod_{e \notin T} A_e, \quad \left(\right.$$

for spanning trees T and edges e of Γ . Furthermore, we let q(v) be the external momentum entering a vertex $v \in \Gamma$ (it can be zero), and for a subset of vertices $X \subset \Gamma$, we let $Q(X) = \sum_{v \in X} q(v)$. Then,

$$\varphi_{\Gamma} := \sum_{T_1 \cup T_2} Q(T_1) \cdot Q(T_2) \prod_{e \not \in T_1 \cup T_2} A_e,$$
 where $T_1 \cup T_2$ is a spanning two-forest. Note: $Q(T_1) = -Q(T_2), \, Q(T_1)^2 = Q(T_2)^2 = Q(T_1)^2$

 $-Q(T_1)\cdot Q(T_2).$

We extend these definitions to products of graphs as follows. For $\gamma = \prod_i \gamma_i$,

(3)
$$\psi_{\gamma} = \prod_{i} \psi_{\gamma_{i}}, \varphi_{\gamma} = \sum_{i} \left(\varphi_{\gamma_{i}} \prod_{j \neq i} \psi_{\gamma_{j}} \right).$$

$$\varphi \left(\underbrace{A_{3} \underbrace{A_{6}}}_{\downarrow \downarrow \downarrow} \right) = \varphi \left(\underbrace{A_{1}}_{\downarrow \downarrow \downarrow} \right) \psi \left(\underbrace{A_{1}}_{\downarrow \downarrow \downarrow} \right)$$

$$\varphi \left(\underbrace{A_{1}}_{\downarrow \downarrow \downarrow} \right) = \varphi \left(\underbrace{A_{1}}_{\downarrow \downarrow \downarrow} \right) \psi \left(\underbrace{A_{1}}_{\downarrow \downarrow \downarrow} \right)$$

$$\varphi \left(\underbrace{A_{1}}_{\downarrow \downarrow \downarrow} \right) = \varphi \left(\underbrace{A_{1}}_{\downarrow \downarrow \downarrow} \right) \psi \left(\underbrace{A_{1}}_{\downarrow \downarrow \downarrow} \right)$$

$$\varphi \left(\underbrace{A_{1}}_{\downarrow \downarrow \downarrow} \right) = \varphi \left(\underbrace{A_{1}}_{\downarrow \downarrow \downarrow} \right) \psi \left(\underbrace{A_{1}}_{\downarrow \downarrow \downarrow} \right)$$

Define $Q_{vw}:=q(v)\cdot q(w)$, let $S:=\sum_{v,w\in\Gamma^{(0)}}c_{vw}Q_{vw}$ a real $(c_{vw}\in\mathbb{R})$ linear combination of scalar products Q_{vw} which vanishes only when all external momenta q(v) vanish. We say that S is in general kinematic position. Let $\Theta_{vw}:=Q_{vw}/S$ and $\Theta_e:=m_e^2/S$.

$$(4) \qquad \varphi_{\Gamma}(\Theta) := \frac{\varphi_{\Gamma}}{S}, \ \phi_{\Gamma}(S, \Theta) := S\phi_{\Gamma}(\Theta), \ \phi_{\Gamma}(\Theta) := \varphi_{\Gamma}(\Theta) + \psi_{\Gamma}\left(\sum_{e} A_{e}\Theta_{e}\right).$$

We usually write $\phi_{\Gamma} \equiv \phi_{\Gamma}(S,\Theta)$ in the decomposed form (and in slight abuse of notation) as $\phi_{\Gamma} = S\phi_{\Gamma}(\Theta)$. Extension to products is defined as before.

We have for any $\gamma \subset \Gamma$, with $\gamma = \cup_i \gamma_i$, $\psi_{\gamma} = \prod_i \psi_{\gamma_i}$,

Proposition 1.

(5)
$$\psi_{\Gamma} = \psi_{\Gamma/\gamma}\psi_{\gamma} + R_{\gamma}^{\Gamma}, |R_{\gamma}^{\Gamma}|_{\gamma} = |\psi(\gamma)|_{\gamma} + 1,$$

(6)
$$\phi_{\Gamma}(\Theta) = \phi_{\Gamma/\gamma}(\Theta)\psi_{\gamma} + \bar{R}_{\gamma}^{\Gamma}(\Theta), |\bar{R}_{\gamma}^{\Gamma}(\Theta)|_{\gamma} \ge |\psi(\gamma)|_{\gamma} + 1,$$

(5) $\psi_{\Gamma} = \psi_{\Gamma/\gamma}\psi_{\gamma} + R_{\gamma}^{\Gamma}, |R_{\gamma}^{\Gamma}|_{\gamma} = |\psi(\gamma)|_{\gamma} + 1,$ (6) $\phi_{\Gamma}(\Theta) = \phi_{\Gamma/\gamma}(\Theta)\psi_{\gamma} + \bar{R}_{\gamma}^{\Gamma}(\Theta), |\bar{R}_{\gamma}^{\Gamma}(\Theta)|_{\gamma} \ge |\psi(\gamma)|_{\gamma} + 1,$ and $|\phi_{\Gamma}| = |\psi_{\Gamma}| + 1$, and $|U|_{V}$ is the degree of U in the edge variables of V, and $|U|=|U|_U.$

Note that $\phi_{\Gamma/\gamma}(\Theta)$ can be zero, for example when masses are zero and $Q(T_i)=0$ for all two-forests of Γ/γ .

Proof. From the definitions via spanning trees and two-forests.

(CONT'D., JAN.20 2021)

We now let \Box_{Γ} be the hypercube $\mathbb{R}_{+}^{|\Gamma^{(1)}|}$, and consider the integrand obtained from a Schwinger parametrization of a Feynman graph Γ ,

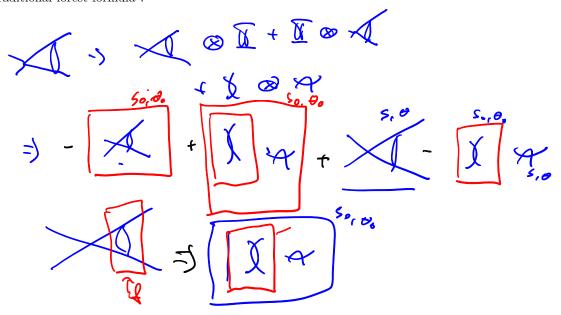
(7)
$$\Phi_{\Gamma}(S,\Theta) := \frac{dA_1 \cdots dA_{|\Gamma^{(1)}|} e^{+\frac{S\phi_{\Gamma}(\Theta)}{\psi_{\Gamma}}}}{\psi_{\Gamma}^2}.$$

This unrenormalized integrand cannot be integrated yet in the edge variables A_e against \Box_{Γ} . Its renormalized counterpart has the form (say for logarithmic divergences, the general case is below and has the same structure)

(8)
$$\Phi_{\Gamma}^{R}(S, S_0, \Theta, \Theta_0) = \sum_{[f]}^{\emptyset} (-1)^{|f|} \underline{\Phi_f(S_0, \Theta_0)} \underline{\Phi_{\Gamma/f}(S, \Theta)}.$$

$$= \sum \Phi_{\Gamma'}^{-1}(S_0, \Theta_0) \Phi_{\Gamma''}(S, \Theta),$$

(9) $= \sum_{\Gamma'} \Phi_{\Gamma'}^{-1}(S_0, \Theta_0) \Phi_{\Gamma''}(S, \Theta),$ where we used Sweedler's notation $\Delta_G(\Gamma) = \sum_{\Gamma'} \Gamma' \otimes \Gamma''$ in the second line. This is the traditional forest formula¹.



¹Note that we use $\psi_{\emptyset} = 1$, $\phi_{\emptyset}(\Theta) = 0$.

In the following, we will renormalize this integrand using kinetic renormalization schemes. For that, we let $2s_{\Gamma} \equiv 2sd(\Gamma)$ be the superficial degree of divergence of Γ (in the example of a massive scalar field theory with quartic interactions):

(10)
$$2s_{\Gamma} = 4|\Gamma| - 2|\Gamma^{[1]}|.$$

Then, all vertex graphs Γ have $s_{\Gamma}=0$ together with $|\Gamma^{[1]}|=2|\Gamma|$, while for all propagator graphs, $s_{\Gamma}=1$ with $|\Gamma^{[1]}|=2|\Gamma|-1$.

Let us introduce new variables $A_e \to a_e$, $A_e = ta_e$, and $dA_1 \cdots dA_{|\Gamma^{[1]}|} \to dt \wedge \Omega_{\Gamma}$, with Ω_{Γ} the usual $(|\Gamma^{[1]}| - 1)$ -form $A_1 dA_2 \wedge \cdots \wedge dA_{|\Gamma^{[1]}|} - A_2 dA_1 \cdots \pm \cdots$. We find

(11)
$$\Phi_{\Gamma} := \frac{dt}{t} \wedge \frac{\Omega_{\Gamma} e^{\frac{t^{2} - t^{2} - t^{2}}{2T}}}{dt} \qquad A_{1} > A_{2}$$

$$A_{1} > A_{2} > A_{1} > A_{2}$$

$$A_{1} \wedge A_{2} = A_{1} \wedge A_{2} \wedge A_{3} \wedge A_{4} \wedge A_{5} \wedge A_{$$

We want to study the overall t-integration as a function of the superficial degree of divergence s_{Γ} first. Concretely, we are interested to define and find the limit in the t-integration

(12)
$$\lim_{c \to 0} \int_{c}^{\infty} \Phi_{\Gamma},$$

where $c \in \mathbb{R}_+$. We use renormalization conditions on $\Phi_{\Gamma} \equiv \Phi_{\Gamma}(S, \Theta)$.

Kinetic renormalization conditions imply that we choose values S_0, Θ_0 for the scale and for the angles, such that the renormalized amplitudes of a graph Γ , together with their first s_{Γ} derivatives in an expansion around that point, vanish. For $s_{\Gamma} = 0$, we can simply subtract at a chosen S_0, Θ_0 :

(13)
$$\Phi_{\Gamma}(S,\Theta) \to \Phi_{\Gamma}(S,\Theta) - \Phi_{\Gamma}(S_0,\Theta_0)$$
 which takes care of the overall divergence in the graph Γ .

For $s_{\Gamma} = 1$, we are dealing with a quadratically divergent propagator function. We will subtract at $q^2 = m^2$. Note that there are no angles Θ_{vw} for a two-point function, the Θ_e remain though. Kinetic renormalization conditions are determined by the requirement that the renormalized amplitude vanishes at $q^2 = m^2$, together with its first derivative ∂_{a^2} , so that the pole in the propagator has a on-shell unit $residue^2$.

 $^{^2}$ For a massless propagator, vanishing of Φ^R_Γ at $q^2=0$ and of Φ^R_Γ/q^2 at $q^2=\mu^2$ are also convenient renormalization conditions.

1.2. $s_{\Gamma} = 0$. Let us start with the case $s_{\Gamma} = 0$. The limit is

(14)
$$\lim_{c \to 0} \int_{c}^{\infty} \left[\Phi_{\Gamma}(S, \Theta) - \Phi_{\Gamma}(S_{0}, \Theta_{0}) \right] = \frac{\Omega_{\Gamma} \ln \frac{S\phi_{\Gamma}(\Theta)}{S_{0}\phi_{\Gamma}(\Theta_{0})}}{\psi_{\Gamma}^{2}},$$

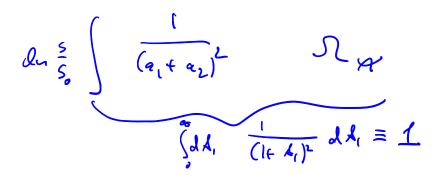
using that for small c > 0,

(15)
$$\int_c^\infty \frac{e^{-tX}dt}{t} = -\ln c + \ln X + \int_c + O(c).$$
 Here, γ_E is the Euler–Mascheroni constant. Note that we can decompose the loga-

rithm as

$$\ln \frac{\frac{S}{S_0}\phi_{\Gamma}(\Theta)}{\phi_{\Gamma}(\Theta_0)} = \underbrace{\ln(S/S_0) + \ln(\phi_{\Gamma}(\Theta)/\phi_{\Gamma}(\Theta_0))}_{},$$

(we assume $S/S_0 > 0$). We assume also that the angles Θ, Θ_0 are chosen such that we are off Landau singularities. Approaching such singularities means studying the corresponding variation of the logarithm above.



10

Let us now look at logarithmic sub-divergences. A typical term in the forest

formula provides an integrand of the form $e^{+\frac{S\phi_{\Gamma/f}(\Theta)}{\psi_{\Gamma}/f}}e^{+\frac{S_0\phi_f(\Theta_0)}{\psi_f}}$ (16) (16)

Ashe) (If Az) + Ashe)

RENORMALIZED PARAMETRIC FEYNMAN RULES (CONT'D., JAN.20 2021) 11

Combining each of the two products of exponentials into a single exponential and using the exponential integral as above delivers

(17)
$$M_f^{\Gamma} := \frac{\ln \frac{S\phi_{\Gamma/f}(\Theta)\psi_f + S_0\phi_f(\Theta_0)\psi_{\Gamma/f}}{S_0\phi_{\Gamma/f}(\Theta_0)\psi_f + S_0\phi_f(\Theta_0)\psi_{\Gamma/f}} \stackrel{\mathbf{t}}{}_{\Omega_{\Gamma}}}{\psi_{\Gamma/f}^2\psi_f^2} \Omega_{\Gamma}.$$

Summing over all forests including the empty one delivers the renormalized integrand as the homogeneous of degree zero form

(18) $\Phi_{\Gamma}^{R} := \sum_{f}^{\emptyset} (-1)^{|f|} M_{f}^{\Gamma}. \qquad \text{for any matter}$

 Φ_{Γ}^{R} is an integrand which can, this is just a rewriting of the forest formula, be integrated against $\mathbb{P}^{|\Gamma^{[1]}|-1}(\mathbb{R}_{+})$. An explicit proof from scratch is given below though, after we decomposed Feynman rules suitably.

Any dangerous sector
has a remainde fot which
vonish in that coctor
oud then can cels against
some corresponding tem from
the forest sommale.