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1 Introduction

Out of the development of quantum field theories during the last century emerged the
incredibly successful standard model of particle physics. The accuracy to which its theo-
retic predictions match the high precision measurements in particle colliders is amazing
and leaves no doubt of the usefulness and importance of quantum field theory.

Therefore it is most astounding that still today, the mathematical framework of this
family of theories is far from being well understood. Mathematicians have been working
incredibly hard to establish a consistent definition of quantum field theories allowing
for the desired physical properties, but have so far only succeeded in this business in
space-time dimensions different than four.

For this and other reasons quantum field theory remains a fascinating subject and
continues to pose extremely challenging problems to mathematics.

Recently, the intricate problem of renormalization (a procedure necessary for physical
quantum field theories) has been formulated in an illuminating manner by Dirk Kreimer
and collaborators – giving it a precise mathematical definition and prescription. It is the
aim of this work to provide a brief introduction into the algebraic structures employed
by this mechanism and to learn about its implications and the benefits of its use while
studying a particular example – the toy model.

In the following chapter, we develop the necessary algebra to formulate renormaliza-
tion and perturbative quantum field theory using Hopf algebras. Key concepts are the
convolution product, the algebraic Birkhoff decomposition and Hochschild cohomology.

Chapter 3 is mostly devoted to the investigation of Kreimer’s a toy model and traces
the path of defining a perturbative quantum field theory: Starting with the definition
of Feynman rules on a combinatoric Hopf algebra, requiring regularization, we study
renormalization using a subtraction scheme in section 3.3. The last step is to take the
physical limit to remedy the regulator introduced earlier.

At this stage we have well-defined renormalized Feynman rules at hand and discuss
how to obtain physically meaningful quantities, the correlation functions. In this setting
we will encounter Dyson-Schwinger equations and the renormalization group.

Finally, section 3.8 will exhibit how the just studied toy model is indeed realistic in
the sense that it occurs as a subset of certain physical quantum field theories.
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2 Hopf algebras

The fundamental mathematical structure behind perturbative renormalization is the
Hopf algebra as discovered in [11]. In the first section we will merely state the basic
definitions and properties of bialgebras and refer to [15, 17] for details and omitted
proofs.

Thereafter, we focus on the ingredients of particular relevance to us: the convolution
product, the concept of connected filtrations and finally the algebraic Birkhoff decom-
position, which effectively describes the recursive process of renormalization.

We will then introduce the Hopf algebra HR of rooted trees which provides a model
for nested and disjoint subdivergences of Feynman graphs (see section 3.8). It forms the
starting point of the toy model to be discussed in the following chapter.

Finally we define the Hochschild cohomology of bialgebras and apply it to HR and the
Hopf algebra K[x] of polynomials. We stress the universal property (2.4.9) of HR and
obtain a result on how it behaves under coboundaries (proposition 2.4.8).

2.1 Bialgebras
We consider algebras as well as co-, bi- and Hopf algebras over a field K, usually thinking
of Q or C (though for the algebraic properties it suffices that K enjoys characteristic
zero). All vector spaces and tensor products are to be understood over this field, as is
the functor Hom(·, ·) (which always denotes just the space of linear maps, no matter if
its arguments are algebras or other objects endowed with a more subtle structure).

We further identify any vector space V (canonically) with V ⊗K and correspondingly
linear maps f ∈ Hom(V,W ) with f ⊗ idK ∈ Hom(V ⊗ K,W ⊗ K) without saying so
explicitly. For example this happens in (2.1.2) and (2.1.6).

The linear span of a subset M ⊆ V of a vector space V will be denoted by linM .

Definition 2.1.1. An (associative) algebra (A,m) consists of a vector space A and a
product m ∈ Hom(A⊗A,A) fulfilling the associativity

m ◦ (id⊗m) = m ◦ (m⊗ id). (2.1.1)

Should there exist a function u ∈ Hom(K,A) such that

m ◦ (u⊗ id) = id = m ◦ (id⊗ u), (2.1.2)

we call u the unit map and (A,m, u) a unital algebra. A morphism of (unital) algebras
(A,mA) and (B,mB) is a map φ ∈ Hom(A,B) such that φ ◦mA = mB ◦ (φ⊗ φ) and (in
the unital case) φ ◦ uA = uB.
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2 Hopf algebras

By u(λ) = λu(1) (for λ ∈ K) the unit map can be identified with the unit 1 := u(1),
being the neutral element of the multiplication m ◦ ⊗ : A×A → A through (2.1.2):

∀a ∈ A : a · 1 := m(a⊗ 1) = a = m(1⊗ a) =: 1 · a.

The requirement φ ◦ uA = uB for a morphism of unital algebras is equivalent to
φ(1A) = 1B. In the following all algebras will be associative and unital unless stated
otherwise. We define the iterated products mn : A⊗n+1 → A by

∀n ∈ N0 : mn+1 := m ◦ (mn ⊗ id) =
(2.1.1)

m ◦ (id⊗mn) , (2.1.3)

which are independent of the order of multiplications (arbitrary placement of brackets).
The properties (2.1.1) and (2.1.2) are equivalent to the commutativity of the diagrams

A⊗A⊗A m⊗id //

id⊗m
��

A⊗A
m

��
A⊗A m // A

and
K⊗A u⊗id //

∼=
''OOOOOOOOOOOO A⊗A
m

��

A⊗Kid⊗uoo

∼=
wwoooooooooooo

A

, (2.1.4)

which readily suggest the definition of the dual object by reversal of arrows:

Definition 2.1.2. A (coassociative) coalgebra (C,∆) consists of a vector space C and
a coproduct ∆ ∈ Hom(C,C ⊗ C) fulfilling the coassociativity property

(id⊗∆) ◦∆ = (∆⊗ id) ◦∆. (2.1.5)

Should there exist a functional ε ∈ Hom(C,K) = C ′ such that

(ε⊗ id) ◦∆ = id = (id⊗ ε) ◦∆, (2.1.6)

we call ε the counit and (C,∆, ε) a counital coalgebra. A morphism of (counital) coal-
gebras (C,∆C) and (D,∆D) is a map φ ∈ Hom(C,D) such that ∆D ◦ φ = (φ⊗ φ) ◦∆C

and (in the counital case) also εD ◦ φ = εC hold.

As announced, (2.1.5) and (2.1.6) are nothing but the commutativity of

C
∆ //

∆
��

C ⊗ C
id⊗∆

��
C ⊗ C ∆⊗id // C ⊗ C ⊗ C

and
K⊗ C C ⊗ Cε⊗idoo id⊗ε // C ⊗K

C

∆

OO

∼=

ggOOOOOOOOOOOO
∼=

77oooooooooooo

, (2.1.7)

dual to (2.1.4). As in the case of algebras, the counit is unique if existent by

ε = ε ◦ id = ε ◦ (id⊗ ε′) ◦∆ = (ε⊗ ε′) ◦∆ = ε′ ◦ (ε⊗ id) ◦∆ = ε′ ◦ id = ε′

for any two counits ε and ε′ as a consequence of (2.1.6). We remark:
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2.1 Bialgebras

1. By (2.1.6), the coproduct of counital coalgebras is injective1.

2. An element g ∈ C \ {0} of a coalgebra is called grouplike iff ∆(g) = g⊗ g. The set
Grp(C) of grouplike elements is linearly independent and spans a subcoalgebra2

(see [17]).

3. Any grouplike g ∈ Grp(C) fulfils ε(g) = 1 by g = ε(g)g and g 6= 0, using (2.1.6).

4. Through (2.1.5), the iterated coproducts ∆n : C → C⊗(n+1) defined recursively by

∆0 := id and ∆n+1 :=
(
∆⊗ id⊗n

)
◦∆n for any n ∈ N0, (2.1.8)

do not depend on the order in which the coproducts are applied. Hence we have

∀n ∈ N0 : ∀0 ≤ k ≤ n : ∆n+1 =
(
id⊗k ⊗∆⊗ id⊗(n−k)

)
◦∆n.

5. Often we will denote ∆(x) by the Sweedler notation
∑
x x1 ⊗ x2, a shorthand for

a representation ∆(x) =
∑
i x

(i)
1 ⊗ x

(i)
2 .

Naturally we can define algebra and coalgebra structures on tensor products in

Definition 2.1.3. Let (A,mA, uA) and (B,mB, uB) be (unital) algebras, then A⊗ B is
a (unital) algebra with multiplication and unit defined by

mA⊗B := (mA ⊗mB) ◦ τ(2,3) and uA⊗B := uA ⊗ uB. (2.1.9)

Analogously, for (counital) coalgebras (C,∆C , εC) and (D,∆D, εD) the product C ⊗ D
becomes a (counital) coalgebra via

∆C⊗D := τ(2,3) ◦ (∆C ⊗∆D) and εC⊗D := εC ⊗ εD. (2.1.10)

Here we introduced for any permutation σ ∈ Sn and vector space V the induced map

τσ ∈ Aut
(
V ⊗n

)
, v1 ⊗ . . .⊗ vn 7→ vσ1 ⊗ . . .⊗ vσn . (2.1.11)

Beware that ∆ : C → C ⊗ C and m : A ⊗ A → A are in general not morphisms of
coalgebras and algebras! This is only guaranteed in the case of cocommutative C and
commutative A, respectively.

These are the structures occuring in points 1. and 2. of the following

Definition 2.1.4. A vector space H which is both an algebra (H,m) as well as a coal-
gebra (H,∆) is called Bialgebra (H,m,∆) iff any of the equivalent3 conditions hold:

1Note the duality to the surjectivity of the product for unital algebras!
2A subcoalgebra is a subspace V ⊆ C such that ∆(V ) ⊆ V ⊗ V .
3See proposition 3.1.1 in [17]. Note that ε(1) = 1 does not need to be requested separately, as by

∆(1) = 1 ⊗ 1 we have either 1 ∈ Grp(H) (resulting in ε(1) = 1) or otherwise 1 = 0 implying
H = {0}, which we exclude.
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2 Hopf algebras

1. m is a morphism of coalgebras: ∆◦m = (m⊗m)◦∆H⊗H = (m⊗m)◦τ(2,3)◦(∆⊗∆)

2. ∆ is a morphism of algebras: ∆◦m = mH⊗H ◦ (∆⊗∆) = (m⊗m)◦τ(2,3) ◦ (∆⊗∆)

3. The following diagram commutes:

H ⊗H ⊗H ⊗H
τ(2,3) // H ⊗H ⊗H ⊗H

m⊗m
��

H ⊗H

∆⊗∆

OO

m
// H ∆

// H ⊗H

(2.1.12)

If H is unital and counital we additionaly request for both of

1. u is a morphism of coalgebras, that is ∆ ◦ u = u⊗ u or equivalently ∆1 = 1⊗ 1.

2. ε is a morphism of algebras, that is ε⊗ ε = mK ◦ (ε⊗ ε) = ε ◦m.

These are equivalent to the commutativity of the diagrams

K
∼=

��

u // H

∆
��

K⊗K
u⊗u

// H ⊗H
and

H ⊗H m //

ε⊗ε
��

H

ε

��
K⊗K ∼=

// K

,

expressing that ∆ and m are to be morphisms of unital algebras and counital coalgebras,
respectively.

We will always assume bialgebras H 6= {0} to be unital and counital. Then note
1 ∈ Grp(H) and ε(1) = 1, so H decomposes naturally into

H = K · 1⊕ ker ε = im u⊕ ker ε. (2.1.13)

We denote the projection induced by (2.1.13) as P := id − u ◦ ε : H � ker ε and call
ker ε the augmentation ideal. It is an ideal of algebras and at the same time a coideal of
coalgebras, saying H · ker ε+ ker ε ·H ⊆ ker ε and ∆(ker ε) ⊆ ker ε⊗H +H ⊗ ker ε.

Definition 2.1.5. On a bialgebra H we define the reduced coproduct ∆̃ to be

∆̃ := ∆− 1⊗ id− id⊗ 1 : H → H ⊗H (2.1.14)

and the space Prim(H) of primitive elements by

Prim(H) := ker ∆̃ = {p ∈ H : ∆(p) = 1⊗ p+ p⊗ 1} . (2.1.15)

Note that Prim(H) is a Lie algebra with the Lie bracket induced by the commutator
of the associative algebra H! Similarly, the product of two grouplike elements is again
grouplike such that lin Grp(H) is a subbialgebra4.

4A subbialgebra is a subspace V ⊆ H that is a subcoalgebra and a unital subalgebra.
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2.1 Bialgebras

The reduced coproduct is itself coassociative and therefore allows for well defined
iterated reduced coproducts

∆̃0 := id and ∆̃n+1 :=
(
id⊗k ⊗ ∆̃⊗ id⊗(n−k)

)
◦ ∆̃n for any n ∈ N,

where the choice of 0 ≤ k ≤ n does not matter. Note that on ker ε, ∆̃n = P⊗n+1 ◦∆n, so
in particular ∆̃ maps ker ε into ker ε⊗ ker ε and turns (ker ε, ∆̃) into a coalgebra on its
own. In Sweedler’s notation we indicate the reduced coproduct by ∆̃(x) =

∑
x x
′ ⊗ x′′.

2.1.1 The convolution product
Definition 2.1.6. Let (C,∆) be a coalgebra and (A,m) an algebra, then define the
convolution product ? on Hom(C,A) by

? ∈ Hom (Hom(C,A)⊗Hom(C,A),Hom(C,A))
? := Hom(∆,m) ◦ ι, f ⊗ g 7→ m ◦ (f ⊗ g) ◦∆ (2.1.16)

using the canonical embedding ι : Hom(C,A)⊗ Hom(C,A) ↪→ Hom(C ⊗ C,A⊗ A). As
usual we also use ? to denote the multiplication map

? ◦ ⊗ : Hom(C,A)×Hom(C,A)→ Hom(C,A).

Lemma 2.1.7. Hom (C,A)? := (HomK(C,A), ?) is an associative algebra. If C is couni-
tal with counit ε and A unital with unit u, then Hom (C,A)? is unital with unit e := u◦ε.

Proof. For arbitrary f, g, h ∈ Hom (C,A)? observe

f ? (g ? h) = m ◦ [f ⊗ (m ◦ g ⊗ h ◦∆)] ◦∆ = m ◦ (id⊗m) ◦ (f ⊗ g ⊗ h) ◦ (id⊗∆) ◦∆
= m ◦ (m⊗ id) ◦ (f ⊗ g ⊗ h) ◦ (∆⊗ id) ◦∆ = m ◦ [(m ◦ f ⊗ g ◦∆)⊗ h] ◦∆
= (f ? g) ? h,

while the neutrality of e follows by

e ? f = m ◦ [(u ◦ ε)⊗ f ] ◦∆ = m ◦ (u⊗ id) ◦ (id⊗ f) ◦ (ε⊗ id) ◦∆
= m ◦ (u⊗ id) ◦ (id⊗ f) ◦ (1K ⊗ id) = m ◦ (1⊗ f) = f = . . . = f ? e.

Note that inverses in Hom (C,A)? (denoted by φ?−1) are uniquely determined (if
existent). Given a bialgebra H and introducing the group of units

End(H)×? := {φ ∈ End(H) : ∃ψ ∈ End(H) : φ ? ψ = ψ ? φ = e = ε ◦ u} , (2.1.17)

of the algebra End(H)? := Hom (H,H)?, considering the canonical element id ∈ End(H)?
leads to

Definition 2.1.8. A bialgebra H is called Hopf algebra iff id ∈ End(H)×? . This unique
inverse S := id?−1 of a Hopf algebra is called antipode.
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2 Hopf algebras

The antipode of a Hopf algebra enjoys a rich list of properties, a few of which being
mentioned here (details of the proofs may be found in [15]):

1. S ◦ u = u and ε ◦ S = ε, this says S(1) = 1 and implies S(ker ε) ⊆ ker ε.

2. S is an antimorphism of algebras and an antimorphism of coalgebras, explicitly
S ◦m = m ◦ τ ◦ (S ⊗ S) and ∆ ◦ S = τ ◦ (S ⊗ S) ◦∆ with τ := τ(1,2) from (2.1.11).

3. If H is commutative or cocommutative, then S2 = id.

4. Prim(H) ⊆ ker(S + id), hence S(p) = −p for any p ∈ Prim(H).

5. For any grouplike g ∈ Grp(H), note g · S(g) = S(g) · g = 1 = e(g). Hence
S multiplicatively inverts the grouplike elements. In particular a bialgebra can
admit an antipode only if Grp(H) ⊆ H× := {x ∈ H : ∃y ∈ H : y · x = x · y = 1}.

2.1.2 Filtrations, graduations and connectedness
Along with their combinatoric nature, the Hopf algebras considered here allow for in-
ductive proofs and constructions in various places. As always, those inductions need two
ingredients to work:

• A start of the induction; it will be trivial in the case of connected Hopf algebras
(see definition 2.1.11).

• A guarantee that each element (of the Hopf algebra) is reached after a finite number
of induction steps; this is assured by a filtration (or a graduation).

Definition 2.1.9. A family (Hn)n∈N0 of growing subspaces Hn ⊆ Hn+1 ∀n ∈ N0 of a
Hopf algebra (H,m, u,∆, ε, S) is called a filtration iff all of the conditions

1. H =
∑
n∈N0 H

n

2. ∀n ∈ N0 : ∆(Hn) ⊆
∑
i+j=nH

i ⊗Hj =
∑n
i=0H

i ⊗Hn−i

3. ∀n,m ∈ N0 : Hn ·Hm := m (Hn ⊗Hm) ⊆ Hn+m

4. ∀n ∈ N0 : S (Hn) ⊆ Hn

hold. Omitting condition 4 still yields a filtration of a bialgebra, whereas providing only
properties {1, 2} and {1, 3} defines filtrations of coalgebras and algebras, respectively.

Considering such a filtration, some remarks are in order:

1. H0 is a subalgebra / subcoalgebra / subbialgebra / Hopf subalgebra – whatever is
H (immediate from the definition).

2. All grouplike elements are necessarily contained in H0: Grp(H) ⊆ H0. For a proof
suppose g ∈ Grp(H) ∩ Hn \ Hn−1 for n ∈ N, write Hn = Hn−1 ⊕ K · g ⊕ V for
some complement V and consider g ⊗ g = ∆(g) ∈ Hn ⊗Hn−1 +Hn−1 ⊗Hn.
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2.1 Bialgebras

3. In general a Hopf algebra does not necessarily admit a non-trivial5 filtration!
Though there are Hopf subalgebras like K · 1 or more generally lin Grp(H) at
hand, these do not necessarily provide the start H0 of a filtration due to proposi-
tion 2.1.10.

4. Intuitively, a filtration reduces every element in a finite number of steps to H0

using the coproduct. Hence we will have to start inductions on H0.

5. In any coalgebra H, there is an associative product on the set of its vector sub-
spaces, namely the wedge product. For subspaces V,W ⊆ H it is defined as

V ∧W := ∆−1 (V ⊗H +H ⊗W ) .

By definition 2.1.9 it follows that given any filtration of a coalgebra H, the spaces

H̃n :=
(
H0
)∧(n+1)

= H0 ∧ . . . ∧H0︸ ︷︷ ︸
(n+ 1) times H0

= (∆n)−1
(

n∑
i=0

H⊗i ⊗H0 ⊗H⊗(n−i)
)

fulfil Hn ⊆ H̃n and define a filtration on their own (see [15]). In particular,
H =

∑
n∈N0 H̃

n is thus the largest filtration of H that begins with H̃0 = H0.

The last remark generalizes to bi- and also Hopf algebras (details in [15]), resulting in

Proposition 2.1.10. Let H be a co-/bi-/Hopf algebra and L a sub(co/bi/Hopf)algebra,
then there exists a filtration of H starting with H0 = L iff

H =
∑
n∈N0

L∧(n+1) ⇔ ∀x ∈ H : ∃n ∈ N0 : ∆n(x) ∈
n∑
i=0

H⊗i ⊗ L⊗H⊗(n−i).

As mentioned already, our inductions are going to exploit a filtration and need to start
on H0. This motivates the

Definition 2.1.11. A bialgebra H is connected iff there exists a filtration H =
∑
n∈N0 H

n

with H0 = K · 1. By theorem 2.1.10 this is equivalent to

H =
∑
n∈N

(K · 1)∧(n+1) = K · 1⊕
∑
n∈N

ker
(
∆̃n
)
. (2.1.18)

If H is connected, Hn := (K · 1)∧n+1 is called the coradical filtration.

Now we can prove6 the existence of a huge subgroup of the convolution algebra in

Theorem 2.1.12. Let H be a connected bialgebra and A an algebra. Then the subset

GHA := {φ ∈ Hom(H,A) : φ(1H) = 1A} ⊆ Hom (H,A)? (2.1.19)

of linear maps φ : H → A with φ(1H) = 1A forms a group under the convolution product.
5The only trivial filtration is given by Hn = H for all n ∈ N0.
6Note how in (2.2.6) we obtain an inductive proof as a special case of the Birkhoff decomposition.

13
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Proof. GHA is clearly closed under convolution, as for any grouplike g we have

φ ? ψ(g) = φ(g) · ψ(g).

Hence it only remains to show the existence of an inverse φ?−1 for any given φ ∈ GHA .
By (2.1.18) and (φ − e)(1) = 0, for any fixed x ∈ H we find some Nx ∈ N such that
(φ− e)⊗n ◦ ∆n−1(x) = 0 for all n ≥ Nx. Hence the formal von Neumann series

φ?−1 = [e− (e− φ)]?−1 :=
∑
n∈N0

(e− φ)?n (2.1.20)

is locally a finite sum and therefore well defines an element of GHA ! So the series (2.1.20)
converges pointwise in the discrete topology on A (eventually it becomes constant),
hence as the coproduct ∆(x) =

∑k
i=1 x

(i)
1 ⊗ x

(i)
2 is a finite linear combination we find

N ∈ N with

∀n ≥ N : ∀y ∈
{
x, x

(1)
2 , . . . , x

(k)
2

}
: (e− φ)?n(y) = 0.

This allows us to work with well defined finite sums and to check
[
φ ? φ?−1

]
(x) =

k∑
i=1

φ
(
x

(i)
1

)
φ?−1

(
x

(i)
2

)
=

k∑
i=1

φ
(
x

(i)
1

) N∑
n=0

(e− φ)?n
(
x

(i)
2

)

=
N∑
n=0

[φ ? (e− φ)?n] (x) =
{

N∑
n=0

(e− φ)?n − (e− φ) ?
N∑
n=0

(e− φ)?n
}

(x)

=
[
(e− φ)?0− (e− φ)?N+1

]
(x)︸ ︷︷ ︸

0

= e(x),

proving φ ? φ?−1 = e pointwise. Clearly φ?−1 ? φ = e follows analogously.

Corollary 2.1.13. Any connected bialgebra H is a Hopf algebra by id ∈ GHH .

After these general statements, we want to investigate how the convolution algebra
restricts to multiplicative maps like the Feynman rules we will encounter in the next
chapter.

Definition 2.1.14. Given a bialgebra H and an algebra A we define the set of characters

G̃HA :=
{
φ ∈ GHA : φ ◦mH = mA ◦ (φ⊗ φ)

}
(2.1.21)

to consist of the morphisms φ : H → A of unital algebras.

Lemma 2.1.15. If H is a Hopf algebra and A a commutative algebra, then G̃HA is a
group under convolution. Explicitly, with the antipode S of H we have

∀φ ∈ G̃HA : φ?−1 = φ ◦ S. (2.1.22)

14
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Proof. Let φ ∈ G̃HA , then observe

(φ ◦ S) ? φ = mA ◦ [(φ ◦ S)⊗ φ] ◦∆ = mA ◦ (φ⊗ φ) ◦ (S ⊗ id) ◦∆
= φ ◦mH(S ⊗ id) ◦∆ = φ ◦ (S ? id) = φ ◦ u ◦ ε = uA ◦ ε = e

and analogously φ ? (φ ◦ S) = e such that indeed φ is invertible in Hom (H,A)? and it
fulfils (2.1.22). Moreover, as S is an antimorphism we find φ?−1 ∈ G̃HA by

φ?−1 ◦m = φ ◦ S ◦m = φ ◦m ◦ τ ◦ (S ⊗ S) = mA ◦ (φ⊗ φ) ◦ τ ◦ (S ⊗ S)

= mA ◦ τ ◦ [(φ ◦ S)⊗ (φ ◦ S)] = mA ◦
(
φ?−1 ⊗ φ?−1

)
,

exploiting the commutativity of A and φ?−1(1) = φ ◦S(1) = φ(1) = 1A. Given any two
φ, ψ ∈ G̃HA we observe

(φ ? ψ) ◦m = mA ◦ (φ⊗ ψ) ◦∆ ◦m = mA ◦ (φ⊗ ψ) ◦ (m⊗m) ◦ τ(2,3) ◦ (∆⊗∆)
= mA ◦ [(φ ◦m)⊗ (ψ ◦m)] ◦ τ(2,3) ◦ (∆⊗∆)
= mA ◦ (mA ⊗mA) ◦ (φ⊗ φ⊗ ψ ⊗ ψ) ◦ τ(2,3) ◦ (∆⊗∆)
= mA ◦ (mA ⊗mA) ◦ τ(2,3) ◦ (φ⊗ ψ ⊗ φ⊗ ψ) ◦ (∆⊗∆)
= mA ◦ {[mA ◦ (φ⊗ ψ) ◦∆]⊗ [mA ◦ (φ⊗ ψ) ◦∆]}
= mA ◦ [(φ ? ψ)⊗ (φ ? ψ)] ,

again making use of A’s commutativity. Together with (φ?ψ)(1) = φ(1)ψ(1) = 1A this
shows φ ? ψ ∈ G̃HA and finishes the proof.

Graduations

By (2.3.4), the Hopf algebra HR of rooted trees we will introduce in section 2.3 comes
along with a graduation as described in

Definition 2.1.16. A graduation of a Hopf algebra H is a decomposition H =
⊕

n∈N0 Hn

such that the following conditions hold for any n,m ∈ N0 :

1. ∆(Hn) ⊆
⊕
i+j=nHi ⊗Hj =

⊕n
i=0Hi ⊗Hn−i

2. Hn ·Hm := m (Hn ⊗Hm) ⊆ Hn+m

3. S (Hn) ⊆ Hn

Apparently, a graduation is a structure more subtle than a filtration! In fact, any
graduation H =

⊕
n∈N0 Hn induces a filtration by Hn :=

⊕n
k=0Hk. Thus the results

derived for connected bialgebras in this section will in particular apply to HR.

15
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The Lie group of convolution

By defining the Lie algebra (which is in fact an ideal in the convolution algebra)

gHA := {φ ∈ Hom(H,A) : φ(1) = 0} (2.1.23)

with the lie bracket [v, w]? = v ? w − w ? v, the at first only formal definitions

exp? : gHA → GHA , φ 7→
∑
n∈N0

φ?n

n! (2.1.24)

log? : GHA → gHA , φ 7→
∑
n∈N

(−1)n+1

n
(φ− e)?n (2.1.25)

become locally (that is pointwise at each x ∈ H) finite sums if H is connected, just as in
the proof of theorem 2.1.12. After realizing this well-definedness, it is an easy exercise7

to check that they deliver bijections between GHA and gHA through log? ◦ exp? = id|gHA
and exp? ◦ log? = id|GHA . Similarly it is straightforward to derive

∀φ, ψ ∈ gHA : φ ? ψ = ψ ? φ⇒ exp?(φ+ ψ) = (exp? φ) ? (exp? ψ) and
∀φ, ψ ∈ GHA : φ ? ψ = ψ ? φ⇒ log?(φ ? ψ) = log? φ+ log? ψ.

This construction provides an infinite8 dimensional Lie group together with its Lie alge-
bra! It is easy to check that exp? indeed is the exponential map, saying that

∂

∂t
exp?(tv) = v ? exp?(tv) (2.1.26)

for any v ∈ gHA (the differentiation is to be understood pointwise at fixed x ∈ H). Also
we find that the Lie bracket on gHA is induced by the convolution product through

∀v, w ∈ gHA : [v, w]? = ∂2

∂s ∂t

∣∣∣∣∣
s=t=0

[exp?(tv) ? exp?(sw) ? exp?(−tv) ? exp?(−sw)] .

The bijectivity of the exponential map allows for the definition of fractional product

∀g ∈ GHA : ∀µ ∈ K : g?µ := exp? (µ log? g) (2.1.27)

in the group, coinciding with the usual iterated convolution product in the case of integer
µ ∈ Z! In particular any g ∈ GHA defines a one-parameter subgroup K 3 µ 7→ g?µ.

Apparently GHA is a very interesting structure to study and it turns out that a subgroup
of it (given by the characters) is the natural setting of the physicists renormalization
group. We will fruitfully employ these ideas in section 3.5 and recommend [7] for further
reading.

7Simply expand the series (2.1.25), (2.1.24) and use the relations among their coefficients known from
the real analogues exp and ln.

8unless H and A are finite dimensional
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2.2 Algebraic Birkhoff decomposition

2.2 Algebraic Birkhoff decomposition
As was discovered by Dirk Kreimer in [6], the recursive procedure of renormalization9

may be formulated in algebraic terms as the Birkhoff decomposition from

Definition 2.2.1. Let H be a bialgebra and A = A−⊕A+ an algebra, decomposed into
the direct sum of two vector spaces A±. Then a Birkhoff decomposition of some φ ∈ GHA
is a pair φ± ∈ GHA such that

φ = φ?−1
− ? φ+ and φ±(ker ε) ⊆ A±. (2.2.1)

For example, as we will see in section 3.8.1, dimensional regularization yields characters
φ : H → A mapping to meromorphic functions10 in a complex variable z, identified with
their Laurent series around z = 0 in A = K[z−1, z]]. We want to take the limit z → 0,
which in general is impossible due to the presence of singularities.

The minimal subtraction scheme is defined by splitting A as

A− := z−1K[z−1] and A+ := K[[z]], (2.2.2)

hence a Birkhoff decomposition will provide some φ+ mapping to functions A+ holo-
morphic at z = 0. The idea of renormalization is to take φ+ as the definition of the
renormalized φ, allowing for the physical limit φ+|z=0.

Our prior study of connectedness and filtrations now pays off in

Theorem 2.2.2. Let H be a connected bialgebra and A = A− ⊕ A+ a target algebra
splitted into subspaces A±. Then every φ ∈ GHA admits a unique Birkhoff decomposition.
For x ∈ ker ε it may be computed recursively by

φ−(x) = −R
[
φ̄(x)

]
and φ+(x) = (id−R)

[
φ̄(x)

]
, (2.2.3)

where R : A� A− denotes the projection induced by the splitting and

φ̄ := φ+m ◦ (φ− ⊗ φ) ◦ ∆̃, φ̄(x) = φ(x) +
∑
x

φ−(x′)φ(x′′) (2.2.4)

is the Bogoliubov map (also called R̄-map).

Proof. Given some Birkhoff decomposition φ± of φ, (2.2.3) is an immediate consequence
of φ̄ = φ + φ− ? φ − φ − φ− = φ+ − φ− as R2 = R and φ±(ker ε) ⊆ A±. Taking
any connected filtration of H, starting with φ−(1) = 1A we see inductively that φ− is
uniquely determined on each Hn through (2.2.3) and ∆̃(Hn+1) ⊆

∑n
k=1H

k ⊗Hn+1−k.
Having thus proven uniqueness of φ− and therefore of φ+ = φ− ? φ as well, we ob-

tain existence by defining φ− recursively on each Hn using (2.2.3). This construction
ensures φ−(ker ε) ⊆ A− = imR, but as we must set φ+ := φ− ? φ to obtain a Birkhoff
decomposition it remains to check φ+(ker ε) ⊆ A+ = kerR, which is immediate by

φ+|ker ε := [φ− ? φ]ker ε =
[
φ− + φ̄

]
ker ε

=
(2.2.3)

[
(id−R) ◦ φ̄

]
ker ε

.

9We refer to chapter 5 of [5], in particular section 3. Equations (5.3.6) and (5.3.7) therein essentially
are (2.2.3) below!

10without essential singularities at z → 0, hence series
∑

n≥N anz
n for some N ∈ Z
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In our example of minimal subtraction, the projection RMS just keeps the (finitely
many) pole terms

∑
n<0 anz

n. For primitive elements p ∈ Prim(H), (2.2.3) simplifies to

φ̄(p) = φ(p), φ−(p) = −R [φ(p)] and φ+(p) = (id−R) [φ(p)] .

Thus for primitives, the minimal subtraction scheme simply discards all poles from the
Laurent series of φ(p) to obtain φ+(p). Suppose φ(p) = s−zF (z) for F (z) =

∑∞
n=−1 cnz

n,
then RMS delivers the counterterm11 φ−(p) = c−1

z and the renormalized value

φ+(p) =
( ∞∑
n=0

cnz
n

)
s−z + c−1

∞∑
n=1

(− ln s)n

n! zn−1.

In this case, the physical limit z → 0 becomes

lim
z→0

φ+(p) = c0 − c−1 ln s. (2.2.5)

Inverses as Birkhoff decompositions

Consider a connected bialgebra H and as target algebra A := H itself, splitted as
H = H ⊕ {0} with A− := H and A+ := {0} (hence R = id). Then for any φ ∈ GHH ,
its Birkhoff decomposition fulfils φ+(1) = 1 and φ+(ker ε) ⊆ {0}. We conclude that
φ+ = e = u ◦ ε by (2.1.13).

Hence we obtain φ = φ?−1
− ?φ+ = φ?−1

− : The counterterm φ− in this scheme is nothing
but the convolution inverse of φ! In particular this gives another proof of theorem 2.1.12
delivering the recursive formula

∀x ∈ ker ε : φ?−1(x) = −φ(x)−
∑
x

φ?−1(x′)φ(x′′). (2.2.6)

For example, in this setting the antipode S is the counterterm S = φ− of φ = id, thus

∀x ∈ ker ε : S(x) = −x−
∑
x

S(x′)x′′. (2.2.7)

We also obtain φ?−1(x) = −φ(x)−
∑
x φ(x′)φ?−1(x′′) by considering a flipped decompo-

sition φ = φ+ ? φ?−1.

2.2.1 Decomposition of characters
As we are particularly interested into characters φ, we ask whether the Birkhoff decom-
position respects this special property in

Proposition 2.2.3. Let H be a connected bialgebra, φ ∈ G̃HA a morphism of (unital)
algebras with commutative A and A = A− ⊕ A+ a splitting into subalgebras12. Then
the Birkhoff decomposition parts φ− and φ+ are algebra morphisms themselves.
11This is the name for φ− common in physics.
12Note that A+ and A− do not need to be unital!
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Proof. We prove the multiplicativity of φ− inductively: Let φ−(xy) = φ−(x)φ−(y) be
true for any x, y ∈ Hn for some n ∈ N0, considering some filtration H =

∑
n∈N0 H

n with
H0 = K · 1 providing a trivial start of the induction. Then for any x, y ∈ Hn+1 ∩ ker ε,

φ−(xy) =
(2.2.3)
−R

[
φ(xy) +

∑
x·y

φ−
(
{xy}′

)
φ
(
{xy}′′

)]

= −R
[
φ(x)φ(y) +

∑
x

φ−(x′)φ(x′′)
∑
y

φ−(y′)φ(y′′) + φ−(x)φ(y) + φ(x)φ−(y)

+ {φ(x) + φ−(x)}
∑
y

φ−(y′)φ(y′′) + {φ(y) + φ−(y)}
∑
x

φ−(x′)φ(x′′)
]

= −R
[{
φ(x) +

∑
x

φ−(x′)φ(x′′)
}
·
{
φ(y) +

∑
y

φ−(y′)φ(y′′)
}

+φ−(x) ·
{
φ(y) +

∑
y

φ−(y′)φ(y′′)
}

+
{
φ(x) +

∑
x

φ−(x′)φ(x′′)
}
· φ−(y)

]

= R
[{
Rφ̄(x)

}
φ̄(y) + φ̄(x)

{
Rφ̄(y)

}
− φ̄(x)φ̄(y)

]
=

(2.2.8)

[
Rφ̄(x)

]
·
[
Rφ̄(y)

]
=

(2.2.3)
[−φ−(x)] · [−φ−(y)] = φ−(x) · φ−(y)

where we decomposed ∆̃(xy) = ∆(xy)−1⊗xy−xy⊗1 = ∆(x) ·∆(y)−1⊗xy−xy⊗1 =
(∆̃x+1⊗x+x⊗1) · (∆̃y+1⊗ y+ y⊗1)−1⊗xy−xy⊗1 and exploited the so-called
Rota-Baxter equation

R ◦mA +mA ◦ (R⊗R) = R ◦mA [R⊗ id + id⊗R] . (2.2.8)

This is equivalent to R(xy) + R(x)R(y) = R [(Rx)y + x(Ry)] for all x, y ∈ A and in
particular fulfilled for any projection R. This comes about as:

1. If x, y ∈ kerR, then also xy ∈ kerR (kerR = A+ is a subalgebra) such that both
sides of (2.2.8) vanish.

2. If x, y ∈ imR = A−, so is xy, hence by R|imR = id|imR both sides of (2.2.8) give
2R(xy) = 2xy.

3. Let x ∈ kerR and y ∈ imR, then (2.2.8) reduces to R(xy) = R[x(Ry)] which
follows from Ry = y. Analogously treat the case when x ∈ imR and y ∈ kerR.

More generally, we may use (2.2.3) to define φ± for arbitrary R ∈ EndA, without
restricting to projections R = R2. This generalized Birkhoff decomposition clearly fulfils
φ−(ker ε) ⊆ imR and φ+(ker ε) ⊆ kerR.

The above proof applies to this case as well, proving φ± ∈ G̃HA for φ ∈ G̃HA as long
as R fulfils (2.2.8). This motivates the investigation of Birkhoff decompositions and
renormalization in the context of Rota-Baxter algebras, an active and recent field of
research (see [8] and references therein).
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We close this section by considering multiplicative13 renormalization schemes in

Proposition 2.2.4. Let H be a connected bialgebra and A = A− ⊕A+ a commutative
algebra with renormalization scheme R = R2 : A � A− that is also a morphism of
unital algebras (hence in particular 1A ∈ A−). Then for any φ ∈ GHA the Birkhoff
decomposition reads

φ− = R ◦ φ?−1 and φ+ = (R ◦ φ?−1) ? φ. (2.2.9)

Proof. First note that trivially R ◦ φ?−1(ker ε) ⊆ imR = A− and R ◦ φ?−1(1) = 1A by
R(1A) = 1A. Therefore uniqueness of the Birkhoff decomposition implies that it suffices
to check

[
(R ◦ φ?−1) ? φ

]
(ker ε) ⊆ A+ = kerR, which follows from

R ◦
[(
R ◦ φ?−1

)
? φ
]

=
(
R2 ◦ φ?−1

)
? (R ◦ φ) = R ◦

(
φ?−1 ? φ

)
= R ◦ uA ◦ εH = e.

As an application of (2.1.22) we deduce in particular

Corollary 2.2.5. If H is a Hopf algebra and R = R2 ∈ G̃AA a renormalization scheme
on the commutative algebra A, then for any φ ∈ G̃HA the Birkhoff decomposition reads

φ− = R ◦ φ ◦ S = R ◦ φ?−1 and φ+ =
(
R ◦ φ?−1

)
? φ. (2.2.10)

Hence for multiplicative schemes, the renormalization happens entirely on the com-
binatorial side of the Hopf algebra! In contrast, the general case really forces inductive
calculation of φ− with lots of nested applications of R. The much simpler case of (2.2.9)
is present in physics in the momentum schemes we will encounter in the next chapter,
leading to superior algebraic properties in comparison to schemes like minimal subtrac-
tion, where RMS /∈ G̃AA:

RMS

(
z · 1

z2

)
= 1
z
6= 0 = RMS (z) ·RMS

( 1
z2

)
.

2.3 Rooted Trees

So far we did not give any examples of Hopf algebras! We only mention that the tensor
algebra T (V ) over a vector space V and the universal enveloping algebra U(L) of a Lie
algebra L carry Hopf algebra structures in a natural way and refer to [17] for details.
We will have a very brief look at symmetric algebras in section 2.6.

However, in this section we introduce the Hopf algebra of rooted trees as it describes
the combinatorics of renormalization of nested and disjoint subdivergences14 for a single
primitive divergence in quantum field theory, which is the content of the toy model to
be investigated in the following chapter.
13We call renormalization schemes R = R2 multiplicative iff they are morphisms of algebras.
14see section 3.8.2
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2.3 Rooted Trees

Definition 2.3.1. A graph theoretic tree T consists of sets V (T ) of nodes and E(T ) ⊂
{e ⊆ V (T ) : |e| = 2} of edges such that T is connected15 and simply connected.16

We define a labelled rooted tree as a pair (T, r) of a graph theoretic tree T and a
distinguished node r ∈ V (T ), called the root of (T, r).

An isomorphism φ : (T, r) → (T ′, r′) of labelled rooted trees is an isomorphism17 of
the graphs T and T ′ fixing the root φ(r) = r′. We are only interested in isomorphism
classes of trees as we do not care about the names of the nodes – only their connections
count. We finally state

Definition 2.3.2. A rooted tree is an isomorphism class of labelled rooted trees. Let

T =
{
, , , , , , , , . . .

}
(2.3.1)

denote the set of rooted trees. A rooted forest is a disjoint union of rooted trees,

F = {1} ∪̇ T ∪̇
{

, , , , , , , . . .

}
(2.3.2)

shall denote the set of rooted forests. Here, 1 := ∅ denotes the empty rooted forest (that
does not contain any nodes). Every rooted forest f is the union of a unique multiset of
rooted trees denoted by π0(f).

In the intuitive pictorial representation of rooted forests, as used in (2.3.1) and (2.3.2),
we will always draw the roots at the top. Note that there is no order among the children
of a node or the trees of a forest, such that

= = and = = = = = . (2.3.3)

These trees and forests are sometimes called non-planar, emphasizing that they do not
carry a distinguished planar embedding with them. However, to avoid confusion with
graph theory18 we prefer to call these unordered rooted trees and forests.

On the other hand, one can consider forests with a distinguished total order among
the children of any node and among the trees of a forest. Thus the drawings in (2.3.3)
all represent different ordered (planar) rooted trees forests.

Definition 2.3.3. The algebra HR of (unordered) rooted trees is the symmetric algebra
HR := S(lin T ) = K[T ] generated by rooted trees. As a vector space it has the natural
basis F , each forest representing a unique monomial in trees.

The grafting operator B+ ∈ End(HR) is defined by adding a new root (above all
existing roots) to a rooted forest, extended linearly. So for example,

B+ (α1 + β + γ ) = α + β + γ .

15For any v, w ∈ V (T ) there exists a path v = v0 → v1 → . . .→ vn = w of nodes such that {vi, vi+1} ∈
E(T ) for any 0 ≤ i < n.

16T does not contain any cycles of edges.
17A bijection φ : V (T )→ V (T ′) such that {v, w} ∈ E(T )⇔ {φ(v), φ(w)} ∈ E(T ′) for any v, w ∈ V (T ).
18where every tree is considered to be planar
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Note that HR =
⊕
n∈N0 HR,n carries a natural grading19 by node number through

∀n ∈ N0 : HR,n = linFn for Fn := {f ∈ F : |f | := |V (f)| = n} . (2.3.4)

Clearly, B+ is homogenous of degree one with respect to this grading. Also note imB+ =
lin T , in particular B+ : F → T delivers a bijection.

2.3.1 The coproduct
To turn HR into a bialgebra, we define the coproduct ∆ by requiring

∆ ◦B+ = B+ ⊗ 1 + (id⊗B+) ◦∆, (2.3.5)

as this determines ∆ uniquely as a morphism of unital algebras. For example,

∆( ) = ∆ ◦B+(1) = B+(1)⊗ 1 + (id⊗B+) ◦∆(1) = ⊗ 1 + 1⊗ (2.3.6)

∆ ( ) = ∆ ◦B+
(

2
)

= B+
(

2
)
⊗ 1 + (id⊗B+) ◦∆

(
2
)

= ⊗ 1 + (id⊗B+)
(
[∆( )]2

)
= ⊗ 1 + (id⊗B+) ( ⊗ 1 + 2 ⊗ + 1⊗ )

= ⊗ 1 + ⊗ + 2 ⊗ + 1⊗ . (2.3.7)

Proposition 2.3.4. The coproduct ∆: HR → HR⊗HR defined by (2.3.5) is coassocia-
tive.

Proof. As ∆ is multiplicative by construction, (∆⊗ id) ◦∆ = (id⊗∆) ◦∆ needs only to
be checked on trees. We employ induction over the number of nodes: Let the claim be
true for any tree of less than N nodes (hence also on FN−1). Now consider t ∈ TN :=
{t ∈ T : |t| = N}, then t = B+(f) for f ∈ FN−1 such that

(∆⊗ id) ◦∆(t) = (∆⊗ id) ◦ [t⊗ 1 + (id⊗B+) ◦∆(f)]
= ∆(t)⊗ 1 + (id⊗ id⊗B+) ◦ (∆⊗ id) ◦∆(f)
= t⊗ 1⊗ 1 + [(id⊗B+) ◦∆(f)]⊗ 1 + {id⊗ [(id⊗B+) ◦∆]} ◦∆(f)
= t⊗ 1⊗ 1 + {id⊗ [B+ ⊗ 1 + (id⊗B+) ◦∆]} ◦∆(f)
= (id⊗∆) ◦ [t⊗ 1 + (id⊗B+) ◦∆(f)] = (id⊗∆) ◦∆(t).

This coproduct can be understood combinatorially as follows: First note how a labelled
rooted tree t naturally induces a partial order on the set of its nodes by

∀v, w ∈ V (t) : v � w iff v lies on the path from w to the root r(t). (2.3.8)

Then set I(t) to contain exactly the independent subsets20 W ⊆ V (t) of nodes, meaning
those W such that for any v, w ∈W with v 6= w, neither v � w nor v � w.
19called weight or degree
20In the literature one considers instead certain subsets of edges, called admissible cuts. However, we

prefer the notion of independent sets as it in particular allows to state (2.3.9) for arbitrary forests.
This does not work using the notion of admissible cuts, as long as one does not introduce an artificial
complete cut for each tree of a forest.
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Proposition 2.3.5. For any forest f ∈ F we have

∆(f) =
∑

W∈I(t)
PW (f)⊗RW (f), (2.3.9)

where the pruned part PW (f) denotes the forest made out of the subtrees with roots in
W and RW (f) is the forest spanned by the remaining nodes.

Graphically, PW (f) just contains all trees that fall down if one cuts right above each
node in W . For example consider the tree t = , then∑

W∈I(t)
PW

(
b c

a
)
⊗RW

(
b c

a
)

= P ∅
(

b c

a
)
⊗R∅

(
b c

a
)

+ P {a}
(

b c

a
)
⊗R{a}

(
b c

a
)

+ P {b}
(

b c

a
)
⊗R{b}

(
b c

a
)

+ P {c}
(

b c

a
)
⊗R{c}

(
b c

a
)

+ P {b,c}
(

b c

a
)
⊗R{b,c}

(
b c

a
)

= 1⊗
b c

a

+
b c

a

⊗ 1 + b⊗
c

a

+ c ⊗
b

a

+ bc ⊗ a = ∆
(

b c

a
)
.

Clearly we have to pick a labelled representative for (2.3.9) to make sense. But as
we afterwards pass to isomorphism classes of labelled trees again, this choice does not
matter. The above example then delivers (2.3.7).

Proof. The right-hand side of (2.3.9) is clearly multiplicative: For any f, f ′ ∈ F , note

I(f · f ′) = I(f ∪̇ f ′) =
{
W ∪̇W ′ : W ∈ I(f) ∧ W ′ ∈ I(f ′)

}
,

PW ∪̇W
′(f · f ′) = PW (f) · PW ′(f ′) and RW ∪̇W ′(f · f ′) = RW (f) ·RW ′(f ′) as � does not

relate any nodes of f with those of f ′ in f ∪̇ f ′. Hence we can proceed inductively on
trees again. Given (2.3.9) to hold on FN−1, consider a tree of N nodes t = B+(f) with
f ∈ FN−1:

I(t) = I (B+(f)) = {r(t)} ∪̇ I(f)

is an immediate consequence of r(t) � v for any v ∈ V (t). Hence observe∑
W∈I(t)

PW (t)⊗RW (t) = P {r(t)} ⊗R{r(t)} +
∑

W∈I(f)
PW (t)⊗RW (t)

= t⊗ 1 +
∑

W∈I(f)
PW (f)⊗B+

(
RW (f)

)
= [B+ ⊗ 1 + (id⊗B+) ◦∆] (f) =

(2.3.5)
∆ ◦B+(f) = ∆(t).

We close the discussion of the coproduct with a few more examples:

∆ ( ) = 1⊗ + ⊗ + ⊗ 1 (2.3.10)

∆
( )

= 1⊗ + ⊗ + ⊗ + ⊗ 1 (2.3.11)

∆
( )

= 1⊗ + ⊗
(

+
)

+ ( + )⊗ + ⊗ + ⊗ 1 (2.3.12)
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2.3.2 The bialgebra
Definition 2.3.6. On HR we define the functional ε ∈ H ′R := Hom(HR,K) by

ε(1) := 1 and ε(f) := 0 for any forest f ∈ F \ {1}. (2.3.13)

Theorem 2.3.7. (HR, ∪̇,1,∆, ε) is a bialgebra.

Proof. We defined ∆ to be a morphism of unital algebras, hence it only remains to
check (2.1.6). For any forest f ∈ F , ε

(
PW (f)

)
= 0 unless W = ∅ by (2.3.13) proves

(ε⊗ id) ◦∆ = id as R∅(f) = f . Similarly ε
(
RW (f)

)
= 0 unless W = {r(t) : t ∈ π0(f)}

is the set of all roots, pruning the complete forest PW (f) = f while RW (f) = 1 such
that (id⊗ ε) ◦∆ = id.

Clearly ∆ respects the graduation of HR by ∆(HR,n) ⊆
⊕n
k=0HR,k ⊗ HR,n−k as it

partitions the nodes into PW (f) and RW (f).

Corollary 2.3.8. The number of nodes delivers a graduation of the bialgebra HR of
rooted trees. By HR,0 = K · 1 it is connected and hence a Hopf algebra through corollary
2.1.13.

The antipode of HR can be calculated recursively by S(f) = −f −
∑
f S(f ′)f ′′ =

−f−
∑
f f
′S(f ′′) for any non-empty forest f ∈ F as a consequence21 of e = S?id = id?S:

S ( ) = − (2.3.14)
S ( ) = − + (2.3.15)

S

( )
= − + 2 − (2.3.16)

S ( ) = − + 2 − (2.3.17)

S

( )
= − +

(
+

)
+ − 3 + (2.3.18)

2.3.3 Tree factorials
In the study of Feynman rules on HR in the next chapter we will encounter the tree
factorial22 defined in

Definition 2.3.9. We define the algebra morphism (·)! : HR → K by requesting

∀f ∈ F : [B+(f)]! = f ! · |B+(f)| . (2.3.19)

This tree factorial fulfils many interesting combinatorial relations like (3.5.6). Exam-
ples are given in (3.6.6) and section 3.6. Denoting the subtree rooted at a node v of a
forest f by fv, it is immediate to check

∀f ∈ F : f ! =
∏

v∈V (f)
|fv| . (2.3.20)

21alternatively recall (2.2.7)
22It can be considered as a canonical Feynman rule by itself according to (3.1.2).
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2.4 Hochschild cohomology

Dualizing the classical Hochschild homology of algebras gives a cohomology of coalgebras.
A special case of this cohomology, applied to bialgebras (like HR or the Hopf algebra
of Feynman graphs), turns out to capture the connection from single contributions of
individual trees (or graphs) in perturbation theory to full correlation functions with the
help of Dyson-Schwinger-equations. In section 3.6 we will have a very brief look on this
formalism.

The one-cocycles also play a fundamental role in the definition of Feynman rules
through the universal property (2.4.9). Their powerful algebraic properties are the key
to the general proofs of locality and finiteness of renormalization, like in section 3.4.2.

2.4.1 Cohomology of coalgebras

Definition 2.4.1. Let C be a coalgebra, then a left C-comodule M is a vector space
with a map ψL ∈ Hom(M,C ⊗M) such that

(idC ⊗ ψL) ◦ ψL = (∆⊗ idM ) ◦ ψL and (ε⊗ idM ) ◦ ψL = idM . (2.4.1)

These conditions correspond to the commutativity of the diagrams

M
ψL //

ψL
��

C ⊗M
idC ⊗ψL

��
C ⊗M ∆⊗idM

// C ⊗ C ⊗M

and
M

ψL //

∼= ##HH
HH

HH
HH

H C ⊗M
ε⊗ idM

��
K⊗M

. (2.4.2)

Analogously one defines right C-comodules carrying a map ψR ∈ Hom(M,M ⊗ C).
Finally a C-bicomodule is at the same time both a left- and a right-comodule such that
(idC ⊗ ψR) ◦ ψL = (ψL ⊗ idC) ◦ ψR.

Definition 2.4.2. Let C(∆, ε) be a coalgebra and M a C-bicomodule with left and right
comodule structures ψL and ψR. The Hochschild cochain complex (HC ·(M), ∂·) is de-
fined via the cochains

HCk(M) := Hom
(
M,C⊗k

)
∀k ∈ N0 (2.4.3)

and the coboundary maps ∂k : HCk(M)→ HCk+1(M) given by

∂k :=
k+1∑
i=0

(−1)idki , dki (L) :=


(id⊗ L) ◦ ψL if i = 0,[
id⊗i−1 ⊗∆⊗ id⊗(k−i)

]
◦ L if 1 ≤ i ≤ k,

(L⊗ id) ◦ ψR if i = k + 1.
(2.4.4)

Lemma 2.4.3. (HC ·(M), ∂·) is a cochain complex, that is ∂ ◦ ∂ = 0.
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Proof. For fixed k ∈ N0, L ∈ HCk(M) and any 1 ≤ i ≤ k, 1 ≤ j ≤ k + 1 we have

dk+1
j ◦ dki (L) =


[
id⊗j−1 ⊗∆⊗ id⊗i−1−j ⊗∆⊗ id⊗k−i

]
◦ L if j < i,[

id⊗i−1 ⊗∆2 ⊗ id⊗k−i
]
◦ L if j ∈ {i, i+ 1},[

id⊗i−1 ⊗∆⊗ id⊗j−i−2 ⊗∆⊗ id⊗k+1−j] ◦ L if j > i+ 1,

exploiting coassociativity in the cases j ∈ {i, i+ 1}. Thus dk+1
j ◦ dki = dk+1

i ◦ dkj−1
whenever 1 ≤ i < j ≤ k+ 1. We extend this relation to the case when j = k+ 2 through

dk+1
k+2 ◦ d

k
i (L) =

{[(
id⊗i−1 ⊗∆⊗ id⊗k−i

)
◦ L
]
⊗ id

}
◦ ψR

=
[
id⊗i−1 ⊗∆⊗ id⊗k+1−i

]
◦ (L⊗ id) ◦ ψR = dk+1

i ◦ dkk+1(L).

Analogously we can derive dk+1
j ◦ dk0 = dk+1

0 ◦ dkj−1 for j > 0. Finally,

dk+1
0 ◦ dkk+1(L) = {id⊗ [(L⊗ id) ◦ ψR]} ◦ ψL = (id⊗ L⊗ id) ◦ (id⊗ ψR) ◦ ψL

= (id⊗ L⊗ id) ◦ (ψL ⊗ id) ◦ ψR = {[(id⊗ L) ◦ ψL]⊗ id} ◦ ψR = dk+1
k+2 ◦ d

k
0(L),

proves dk+1
j ◦ dki = dk+1

i ◦ dkj−1 for all 0 ≤ i < j ≤ k + 2 such that

∂k+1 ◦ ∂k =
k+2∑
j=0

(−1)jdk+1
j ◦

k+1∑
i=0

(−1)idki

=
∑

0≤j≤i≤k+1
(−1)i+jdk+1

j ◦ dki +
∑

0≤i≤j−1≤k+1
(−1)i+j dk+1

j ◦ dki︸ ︷︷ ︸
dk+1
i ◦dkj−1

= 0

upon relabelling the indices j − 1 7→ i and i 7→ j in the second sum.

Hence we obtain cohomology groups HHk(M) := Hk (HC ·(M), ∂·) = ker ∂k/ im ∂k−1.
In particular we can consider the natural bicomodule structure ψL = ψR = ∆ on M = C.

2.4.2 Cohomology of bialgebras
On a bialgebra H, we may also take ψL = 1 ⊗ id and/or ψR = id ⊗ 1 as left and right
comodule structures23. All combinations of these indeed yield bicomodule structures on
H and define different cohomologies! As we will mainly be interested in Hochschild–1–
cocycles L ∈ HZ1(H) := HC1(H) ∩ ker ∂, we list the defining equations for 1-cocycles
in these different cases:

ψL = ∆ and ψR = ∆ ⇒ ∆ ◦ L = (id⊗ L+ L⊗ id) ◦∆ (2.4.5)
ψL = ∆ and ψR = id⊗ 1 ⇒ ∆ ◦ L = (id⊗ L) ◦∆ + L⊗ 1 (2.4.6)
ψL = 1⊗ id and ψR = ∆ ⇒ ∆ ◦ L = 1⊗ L+ (L⊗ id) ◦∆ (2.4.7)
ψL = 1⊗ id and ψR = id⊗ 1 ⇒ ∆ ◦ L = 1⊗ L+ L⊗ 1 (2.4.8)

23More generally, we can even consider ψL = g ⊗ id and/or ψR = id⊗ h for any g, h ∈ Grp(H).
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In the first case 1–cocycles are just coderivations, in the fourth case we get endomor-
phisms with imL ⊆ Prim(H). The asymmetric cases (2.4.6) and (2.4.7) are the most
interesting to us and in the following we will exclusively consider the bicomodule struc-
ture (2.4.6) (ψL = ∆ and ψR = id⊗1). To stress this we denote the Hochschild cochains,
cocycles, coboundaries and cohomologies by HCkε (H), HZkε (H), HBk

ε (H) and HHk
ε (H)

respectively.

Lemma 2.4.4. For a 1-cocycle L ∈ HZ1
ε (H) of a bialgebra H, we have imL ⊆ ker ε

and L(1) ∈ Prim(H). The evaluation map ev1 : HZ1
ε → Prim(H), L 7→ L(1) factorizes

to a well defined map ẽv1 : HH1
ε → Prim(H), [L] 7→ L(1).

Proof. First note

ε ◦ L = (ε⊗ ε) ◦∆ ◦ L = (ε⊗ ε) ◦ [(id⊗ L) ◦∆ + L⊗ 1]
= ε ◦

[
L ◦ (ε⊗ id) ◦∆︸ ︷︷ ︸

id

+L
]

= 2ε ◦ L,

delivering the first assertion. Further,

∆ ◦ L(1) = (id⊗ L)(1⊗ 1) + L(1)⊗ 1 = L(1)⊗ 1 + 1⊗ L(1)

implies the second and it only remains to check that for any α ∈ H ′

∂α(1) = (id⊗ α) ◦∆(1)− α(1)⊗ 1 = 1α(1)− 1α(1) = 0.

Corollary 2.4.5. In HR, the grafting operator B+ is a non-trivial Hochschild-1-cocycle
B+ ∈ HZ1

ε (HR) by (2.3.5) and 0 6= [B+] ∈ HH1
ε (HR) as ẽv1([B+]) = B+(1) = 6= 0.

2.4.3 The universal property of HR

The Hopf algebra HR of rooted trees fulfils a universal property described in

Theorem 2.4.6. Let A be any commutative unital algebra and L ∈ End(A). Then there
exists a unique morphism Lρ : HR → A of unital algebras such that

Lρ ◦B+ = L ◦ Lρ, equivalently

HR

Lρ //

B+
��

A
L

��
HR Lρ

// A

commutes. (2.4.9)

Moreover, if A is a bialgebra and L ∈ HZ1
ε (A), then Lρ is a morphism of coalgebras

(and thus bialgebras) as well. Should A further allow for an antipode, then Lρ is even a
morphism of Hopf algebras.
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Proof. Uniqueness follows inductively: Starting with Lρ(1) = 1A, suppose Lρ to be
uniquely defined on Fn for some n ∈ N0. Then (2.4.9) fixes Lρ(t) = L ◦ Lρ(f) for any
tree t = B+(f) with n+ 1 nodes (f ∈ Fn) and thus also for any general forest f ∈ Fn+1
by

Lρ(f) = Lρ

 ∏
t∈π0(f)

t

 =
∏

t∈π0(f)

Lρ(t). (∗)

Now given uniqueness of Lρ on F and by linearity also on HR as a whole, the above
procedure at the same time serves as an inductive definition proving existence.24

If L is a cocycle, by lemma 2.4.4 we have Lρ(lin T ) = Lρ(imB+) ⊆ L
(

im Lρ
)
⊆ ker εA.

Hence by multiplicativity of εA we find εA◦Lρ(f) = 0 = εHR(f) for any forest f ∈ F\{1}
using (∗). Together with εA ◦ Lρ(1) = εA(1A) = 1 = εHR(1), we obtain

εA ◦ Lρ = εHR .

To prove that Lρ is morphism of (counital) coalgebras it thus remains to show

∆A ◦ Lρ =
(
Lρ⊗ Lρ

)
◦∆HR , (])

which can be done inductively on trees again (as both sides of (]) are algebra morphisms)!
So suppose (]) holds for all forests f ∈ Fn (start of the induction is trivial at f = 1),
then it also holds on Fn+1 as for any tree t = B+(f) with f ∈ Fn we have

∆A ◦ Lρ(t) = ∆A ◦ Lρ ◦B+(f) =
(2.4.9)

∆A ◦ L ◦ Lρ(f) =
(2.4.6)

[(idA ⊗ L) ◦∆A + L⊗ 1A] ◦ Lρ(f)

= (idA ⊗ L) ◦∆A ◦ Lρ(f) +
[
L ◦ Lρ(f)

]
⊗ 1A

=
(])

[Lρ⊗ (L ◦ Lρ)
]
◦∆HR(f) +

[Lρ ◦B+(f)
]
⊗ Lρ(1)

=
(2.4.9)

(Lρ⊗ Lρ
)
◦ [(idHR ⊗B+) ◦∆HR +B+ ⊗ 1] (f)

=
(2.3.5)

(Lρ⊗ Lρ
)
◦∆HR ◦B+(f) =

(Lρ⊗ Lρ
)
◦∆HR(t).

For the Hopf algebra case we analogously prove SA ◦ Lρ = Lρ ◦ S inductively on trees,
again exploiting that both sides in this equation are algebra morphisms25. Suppose it is
true on Fn (trivial start at n = 0), then for any tree t = B+(f) with f ∈ Fn

SA ◦ Lρ(t) = SA ◦ Lρ ◦B+(f) =
(2.4.9)

SA ◦ L ◦ Lρ(f) =
(2.4.10)
−(SA ? L) ◦ Lρ(f)

=
(])
−(SA ◦ Lρ) ? (L ◦ Lρ)(f) =

(2.4.9)
−(Lρ ◦ S) ? (Lρ ◦B+)(f) =

(\)
−Lρ ◦ (S ? B+)(f)

=
(2.4.10)

Lρ ◦ S ◦B+(f) = Lρ ◦ S(t).

24Note that we need the commutativity of A here, otherwise the right-hand side of (∗) is not well defined!
25in general only antimorphisms, but A is commutative
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Here we employed that Lρ is an algebra morphism in (\) and used the induction hypoth-
esis SA ◦ Lρ = Lρ ◦ S in the step before, on the left-hand side of the convolution product
(note ∆(f) ∈ Fn ⊗Fn). The helpful equation

S ◦ L = −S ? L, (2.4.10)

valid for the antipode S of an arbitrary Hopf algebra and any 1-cocycle L ∈ HZ1
ε (H),

follows from lemma 2.4.4 by

u ◦ ε ◦ L︸ ︷︷ ︸
0

= (S ? id) ◦ L = m ◦ (S ⊗ id) ◦∆ ◦ L = m ◦ (S ⊗ id) ◦ [(id⊗ L) ◦∆ + L⊗ 1]

= m ◦ (S ⊗ L) ◦∆ + (S ◦ L) · 1 = S ? L+ S ◦ L.

This natural algebra morphism Lρ is easily understood as follows: Any element of HR

is a unique linear combination of forests, which are themselves expressible as iterations
of B+ and m, applied to 1, in a unique way. As an example consider

+ 3 − = B+
(
[B+(1)]2

)
+ 3B+ ◦B+(1)−B+(1).

Now Lρ : HR → A just replaces every B+ by L, m by mA and 1 by 1A! Hence we find

Lρ ( + 3 − ) = L
(
[L(1A)]2

)
+ 3L ◦ L(1A)− L(1A).

In this sense, HR is the free commutative algebra that is generated by a generic endo-
morphism (represented through B+)! One should think of B+ just as a placeholder for
a specific endomorphism L.

More precisely, consider a category whose objects are pairs (A, LA) of commutative
unital algebras A and endomorphisms LA ∈ End(A), whereas the morphisms from
(A, LA) to (B, LB) are given by morphisms ρ : A → B of unital algebras such that
ρ ◦ LA = LB ◦ ρ. Then the only elements of A that we can naturally construct from
(A, LA) are the linear combinations of

1A, L(1A), [L(1A)]2, L ◦ L(1A), . . . ,

the results of iterations of mA and LA applied to the distinguished element 1A. By
definition, in the case of the object (HR, B+) all those elements (each corresponding to a
forest) are linearly independent. In particular, theorem 2.4.6 just shows that (HR, B+)
is the initial object in the category just described! It further proves that it remains an
initial object for the subcategories where we restrict to bialgebras (Hopf algebras) A,
Hochschild cocycles LA and bialgebra (Hopf algebra) morphisms ρ.

Analogously, in the case of general unital algebras (not necessarily commutative ones)
the initial object is the Hopf algebra of planar (or ordered) rooted trees. The distin-
guished total order among the children of a node prescribes the order in which the
multiplication is to be performed.

These considerations are special instances of the much more general theory of operads,
for instance see [4].
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2.4.4 Automorphisms of HR

In particular we may apply the universal property to A := HR as target algebra itself,
but with a cocycle L 6= B+. Naturally we can modify B+ by coboundaries leading to

Definition 2.4.7. For any α ∈ H ′R, using theorem 2.4.6 we define

αχ := B++∂αρ : HR → HR (2.4.11)

to be the unique algebra endomorphism of HR such that αχ ◦B+ = [B+ + ∂α] ◦ αχ.

For instance, using the coproducts in section 2.3.1 and (2.4.4) to evaluate ∂α, check

αχ ( ) = αχ ◦B+(1) = B+(1) + (∂α)(1) = B+(1) = (2.4.12)
αχ ( ) = αχ ◦B+ ( ) = (B+ + ∂α) αχ ( ) = + ∂α ( ) = + α(1) (2.4.13)

αχ

( )
= αχ ◦B+ ( ) = (B+ + ∂α) [ + α(1) ] = + α(1) + ∂α ( ) + α(1)∂α ( )

= + 2α(1) +
{

[α(1)]2 + α ( )
}

(2.4.14)
αχ ( ) = αχ ◦B+ ( ) = (B+ + ∂α) [αχ( )αχ( )] = [B+ + ∂α] ( )

= + ∂α ( ) = + 2α ( ) + α(1) . (2.4.15)

Now arises the natural question of how the morphisms Lρ induced by (2.4.9) change
under a variation of the cocycle L by a coboundary. We give the answer in

Theorem 2.4.8. Let H be any commutative bialgebra, L ∈ HZ1
ε (H) a 1-cocycle and

further α ∈ H ′ a functional. Then for Lρ, L+∂αρ : HR → H given through theorem 2.4.6
and α◦Lρχ : HR → HR from definition 2.4.7, we have

L+∂αρ = Lρ ◦ [α ◦Lρ]χ, equivalently
HR

L+∂αρ //

α◦Lρχ
��

H

HR

Lρ

>>||||||||
commutes. (2.4.16)

Proof. As both sides of (2.4.16) are algebra morphisms, it is sufficient to prove it induc-
tively on trees: Let it be true for a forest f ∈ F (start the induction at f = 1), then it
holds as well for the tree B+(f) by

Lρ ◦ [α◦Lρ]χ ◦B+(f) =
(2.4.9)

Lρ ◦
[
B+ + ∂

(
α ◦ Lρ

)]
◦ [α◦Lρ]χ(f)

=
{
Lρ ◦B+︸ ︷︷ ︸
L◦Lρ

+ Lρ ◦
[
∂
(
α ◦ Lρ

)]
︸ ︷︷ ︸

(∂α)◦Lρ

}
◦ [α◦Lρ]χ(f)

= {L+ ∂α} ◦ Lρ ◦ [α◦Lρ]χ(f)︸ ︷︷ ︸
L+∂αρ(f)

=
(2.4.9)

L+∂αρ ◦B+(f).
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Here we used the identity

(∂α) ◦ φ = (idB ⊗ α) ◦∆B ◦ φ− 1B · α ◦ φ = (idB ⊗ α) ◦ (φ⊗ φ) ◦∆A − φ(1A) · α ◦ φ

= φ ◦
{

[idA ⊗ (α ◦ φ)] ◦∆A − 1A · α ◦ φ
}

= φ ◦ ∂ (α ◦ φ) ,

valid for arbitrary bialgebra morphisms φ : A→ B and α ∈ B′, applied to φ := Lρ.

Examples for this result are worked out in section 3.1.3. Generally, theorem 2.4.8 says
that the effect of twisting L by ∂α on the resulting morphism from theorem 2.4.6 can
completely be restored and understood on the side of HR alone, by the endomorphism
α◦Lρχ. This is in fact an automorphism of HR as shown in

Theorem 2.4.9. The map ·χ : H ′R → EndHopf(HR), taking values in the space of Hopf
algebra endomorphisms of HR, fulfils the following properties:

1. For α ∈ H ′R and any forest f ∈ F , αχ(f) differs from f only by lower order forests:

∀f ∈ F : αχ(f) ∈ f +H
|f |−1
R = f +

|f |−1⊕
n=0

HR,n. (2.4.17)

2. ·χ maps H ′R into AutHopf(HR), the group of Hopf algebra automorphisms.

3. The automorphisms of this form are closed under composition, saying that for any
α, β ∈ H ′R there exists a γ ∈ H ′R with αχ ◦ βχ = γχ. Concretely we can take

γ = α+ β ◦ αχ−1. (2.4.18)

4. The maps ∂0 : H ′R → HZ1
ε (HR) and ·χ : H ′R → AutHopf(HR) are injective.

5. Therefore the subgroup im ·χ = {αχ : α ∈ H ′R} ⊂ AutHopf(HR) induces a group
structure on H ′R with neutral element 0 and group law

α . β := ·χ−1
(
αχ ◦ βχ

)
= α+ β ◦ αχ−1, α.−1 = −α ◦ αχ. (2.4.19)

Proof. For examples to (2.4.17) see (2.4.12), (2.4.13) and (2.4.15). The general proof
is done inductively starting with αχ ( ) = . So suppose (2.4.17) holds for some forests
f, f ′ ∈ F , then it does so for f · f ′ too by

αχ(f · f ′) = αχ(f) · αχ(f ′) ∈
(
f +H

|f |−1
R

)
·
(
f ′ +H

|f ′|−1
R

)
⊆ f · f ′ +H

|f ·f ′|−1
R .

Using ∂α(Hn
R) ⊆ Hn

R, we further achieve (2.4.17) for the tree B+(f) by

αχ ◦B+(f) = [B+ + ∂α] ◦ αχ(f) ⊆ [B+ + ∂α]
(
f +H

|f |−1
R

)
⊆ B+(f) +H

|f |
R .
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2 Hopf algebras

This proves inductively (2.4.17) and also the surjectivity of αχ: Starting with H0
R =

K · 1 ⊆ im αχ, suppose that Hn
R ⊆ im αχ for some n ∈ N0. Then taking any forest

f ∈ Fn+1 we just proved
αχ(f) ∈ f +Hn

R, therefore f ∈ αχ(f) +Hn
R ⊆ im αχ.

For the injectivity of αχ suppose 0 6= x ∈ ker αχ with x =
⊕

n∈N0 xn using homogeneous
components xn ∈ HR,n. Take N ∈ N0 such that xn = 0 ∀n > N and xN 6= 0, then

0 = αχ(x) =
N∑
n=0

αχ(xn) ∈
(2.4.17)

N−1∑
n=0

αχ(xn)︸ ︷︷ ︸
⊆HN−1

R

+xN +HN−1
R

implies the contradiction xN ⊆ HN−1
R , thus we must have ker αχ = {0}. The bijectivity

of αχ and thus αχ ∈ AutHopf(HR) being proven, the inverse αχ−1 in (2.4.18) is well
defined and we can apply (2.4.16) to get (2.4.18) as

[α+β ◦αχ−1]χ = [B++∂α]+∂(β ◦αχ−1)ρ =
(2.4.16)

[B++∂α]ρ ◦
[
β ◦ αχ−1 ◦ (B++∂α)ρ

]
χ

= αχ ◦ [β ◦ αχ−1 ◦ αχ]χ = αχ ◦ βχ.

Now consider α, β ∈ H ′R with αχ = βχ, then

0 = (αχ− βχ) ◦B+ = (B+ + ∂α) ◦ αχ− (B+ + ∂β) ◦ βχ = (∂α− ∂β) ◦ αχ

implies ∂α = ∂β by the surjectivity of αχ. Hence the injectivity of ·χ reduces to that of
∂0 : H ′R → HZ1

ε (HR). In contrast to ·χ, this map is linear and we only need to consider
∂α = 0. First check how for any n ∈ N0, α ( n) = 0 follows from

∀n ∈ N0 : 0 = ∂α
(
n+1

)
=

n∑
i=0

(
n+ 1
i

)
α
(
i
)

n+1−i.

Given an arbitrary forest f ∈ F and n ∈ N, the expression

0 = ∂α ( nf) = f α ( n)︸ ︷︷ ︸
0

+
∑
f

n∑
i=0

(
n

i

)
if ′α

(
n−if ′′

)
+

n∑
i=1

(
n

i

)[
if α

(
n−i
)

︸ ︷︷ ︸
0

+ iα
(
f n−i

) ]

simplifies upon projection onto K to

α
(
f n−1

)
= − 1

n

∑
f

f ′=

α
( nf ′′) .

Iteration of this formula allows us to express α(f) as a linear combination of the values{
α
(
k
)
: 0 ≤ k ≤ |f |

}
. These all vanish, hence we proved α = 0 and therefore the

injectivity of ·χ : H ′R → AutHopf(HR).
Therefore we can pull the group structure from AutHopf(HR) back onto H ′R, resulting

in (2.4.19) as a consequence of (2.4.18).
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2.5 Decorated rooted trees

2.5 Decorated rooted trees
Though we will not need the Hopf algebra HR(D) of decorated26 rooted trees (with
decorations drawn from a set D) in the sequel, we still want to remark briefly that the
above results generalize (along with their proofs) immediately to the decorated setup:

• Let A be a commutative algebra and L· : D → End(A) a D-indexed set of endo-
morphisms. Then there exists a unique algebra morphism L·ρ : HR(D) → A such
that

∀d ∈ D : L·ρ ◦Bd
+ = Ld ◦ L·ρ, (2.5.1)

which turns out to be a morphism of bialgebras if A is a bialgebra and imL· ⊆
HZ1

ε (A) are 1-cocycles. Finally, if A is even a Hopf algebra, then L·ρ is a morphism
of Hopf algebras.

• Given a family α· : D → H ′R(D) of functionals on HR(D), one can consider the
family D 3 d 7→ Ld := Bd

+ + ∂ (αd) (shorthand notation L· := B·+ + ∂α·) of
cocycles and obtains an endomorphism α·χ := B·++∂α·ρ of HR(D) via (2.5.1). It
is an automorphism of Hopf algebras and it does not change the terms of leading
weight.

• The automorphisms of this kind are closed under composition and induce a group
structure on

⊕
d∈DH

′
R(D) by

[α· . β·]d = αd + βd ◦ α·ρ−1 = αd + βd ◦ [−α·◦α·ρ]ρ ∀d ∈ D.

• If H is a bialgebra, L· : D → HZ1
ε (H) a D-indexed set of cocycles and α· : D → H ′

a set of functionals, the effect of twisting the L· by the coboundaries ∂α· is captured
by an automorphism of HR(D) via

L·+∂α·ρ = L·ρ ◦ [α·◦L·ρ]χ,

just as in the case (2.4.16) without decorations.

2.6 The Hopf algebra of polynomials
In the next chapter, we will encounter polynomials as the target algebra of renormalized
Feynman rules. Hence it is worth to study

Definition 2.6.1. The symmetric algebra S(V ) =
⊕∞

n=0 S
n(V ) of a vector space V is

a graded Hopf algebra, defined by setting ∆(v) = v ⊗ 1 + 1⊗ v for any v ∈ V .

Corollary 2.6.2. S(V ) is connected, commutative and cocommutative. For any v ∈ V
and n ∈ N0 we have ∆ (vn) =

∑n
i=0

(n
i

)
vi ⊗ vn−i. Further note Prim (S(V )) = V .

26Simply speaking, we just add a label drawn from the set D to every node of a tree (or forest). In
particular, the grafting operator Bd+ now carries an index d ∈ D specifying this label for the new
root it attaches to a forest.
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2 Hopf algebras

By the Milnor-Moore-Theorem (see [16]) it turns out, that in fact every connected,
commutative and cocommutative Hopf algebra is isomorphic to the symmetric algebra
over its primitive elements.

Lemma 2.6.3. In one variable (dimV = 1), S(V ) ∼= K[x] comes along with a natural
Hochschild 1-cocycle∫

0
∈ HZ1

ε (K[x]), f 7→
∫

0
f :=

[
x 7→

∫ x

0
f(y) dy

]
. (2.6.1)

Proof. For any n ∈ N0 consider the monomial xn

n! ∈ K[x] and observe

∆
∫

0

(
xn

n!

)
= ∆

(
xn+1

(n+ 1)!

)
= 1

(n+ 1)!

n+1∑
k=0

(
n+ 1
k

)
xk ⊗ xn+1−k

=
n+1∑
k=0

xk

k! ⊗
xn+1−k

(n+ 1− k)! = xn+1

(n+ 1)! ⊗ 1 +
n∑
k=0

xk

k! ⊗
∫

0

(
xn−k

(n− k)!

)

=
∫

0

(
xn

n!

)
⊗ 1 +

(
id⊗

∫
0

)[ 1
n!

n∑
k=0

(
n

k

)
xk ⊗ xn−k︸ ︷︷ ︸

∆(xn)

]

=
[∫

0
⊗1 +

(
id⊗

∫
0

)
◦∆

](
xn

n!

)
.

As for B+ and HR, we easily check that
∫

0 is not a coboundary by
∫

0 1 = x 6= 0. In
fact,

∫
0 is essentially the only nontrivial cocycle through

Theorem 2.6.4. The space of Hochschild 1-cocycles in K[x] decomposes into

HZ1
ε (K[x]) = K ·

∫
0
⊕ ∂

(
K[x]′

)︸ ︷︷ ︸
HB1

ε (K[x])

. (2.6.2)

In particular this implies HH1
ε (K[x]) = K · [

∫
0] being one-dimensional.

Proof. First consider a cocycle L ∈ HZ1
ε (K[x]) with L(1) = 0. We prove inductively the

existence of a functional α ∈ K[x]′ with L(xn) = (∂α)(xn) for all n ≤ N . The start at
N = 0 is trivial as L(1) = 0 = (∂α) (1) for any α, which also implies

∆̃ ◦ L = (id⊗ L) ◦ ∆̃ and ∆̃(∂α) = [id⊗ (∂α)] ◦ ∆̃

by (2.4.6). Assuming the induction hypothesis for N ∈ N0,

∆̃ ◦ L
(
xN+1

)
=

N∑
i=1

(
N + 1
i

)
xN+1−i ⊗ L

(
xi
)

=
N∑
i=1

(
N + 1
i

)
xN+1−i ⊗ ∂α

(
xi
)

= ∆̃ ◦ ∂α
(
xN+1

)
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2.6 The Hopf algebra of polynomials

implies (L− ∂α)
(
xN+1

)
∈ Prim(K[x]) = K · x. Thus let λ ∈ K be the scalar such that

(L− ∂α)
(
xN+1

)
= λ · x and adjust the functional to

∀n ∈ N0 : α′ (xn) :=
{
α (xn) if n 6= N ,
α (xn) + λ

N+1 if n = N ,

resulting in L
(
xN+1

)
= ∂α′

(
xN+1

)
by construction. For all n ≤ N we further maintain

L(xn) = (∂α)(xn) = (∂α′)(xn) as (∂α′)(xn) only depends on the values α′(xr) for
r ≤ n < N , where α′(xr) = α(xr). Inductively we see how each value α(xn) is determined
uniquely.

This finishes the proof that any L ∈ HZ1
ε (K[x]) with L(1) = 0 lies in HB1

ε (K[x]).
Considering an arbitrary cocycle L, lemma 2.4.4 ensures L(1) ∈ Prim(K[x]) = K · x. So
L(1) = λ ·x = λ

∫
0 1 for some λ ∈ K and L = λ

∫
0⊕(L−λ

∫
0) with (L−λ

∫
0)(1) = 0.

2.6.1 Characters
As a character φ ∈ G̃K[x]

K is uniquely determined by its value φ(x), we immediately see

Lemma 2.6.5. The characters of the polynomial algebra K[x] are the evaluations

G̃
K[x]
K = {evλ : λ ∈ K} , (2.6.3)

sending a polynomial p(x) ∈ K[x] to evλ(p) := p(λ).

Given that K[x] is a connected Hopf algebra, by (2.1.15) these characters actually
form a group under the convolution product. Concretely we have

Lemma 2.6.6. The group structure on G̃
K[x]
K induced by convolution is

∀a, b ∈ K : eva ? evb = eva+b. (2.6.4)

Proof. Simply calculate for any a, b ∈ K and n ∈ N0

[eva ? evb] (xn) = [(eva ⊗ evb) ◦∆(x)]n = [eva(1) · evb(x) + eva(x) · evb(1)]n

= (b+ a)n = [eva+b(x)]n = eva+b (xn) .
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3 A detailed example: Kreimer’s toy model

The Hopf algebra HR of rooted trees, introduced in section 2.3, turns out to be sufficient
to formulate and understand renormalization problems in any quantum field theory. It
precisely models the structure of both nested and disjoint subdivergences occurring in
multidimensional integrals, while the famous remaining problem of overlapping diver-
gences is resolved into a linear combination of rooted forests (see [12]).

In his works, Dirk Kreimer employed several setups of Feynman rules defined on this
Hopf algebra to serve as illuminating examples. We investigate one of those in this
chapter to familiarize the reader with the concept of renormalization and its algebraic
properties.

First of all, we see how Feynman rules may be defined on HR in a natural way utilizing
the universal property (2.4.9) of HR. As a special case of this construction, we define
Kreimer’s toy model in section 3.2. Note that we will not consider Feynman rules
originating from iterated integrals, another setup occurring in some of his papers. The
physical origin of the toy model is lined out in section 3.8: a brief look at quantum field
theory exhibits it as the sub sector of iterated propagator insertions!1

As it is typical for quantum field theory, the naive toy model is ill-defined as such
and needs a regularization. We use analytic regularization, although in theorem 3.4.2 we
show how this choice of regulator is irrelevant for the (physical limit of the) renormalized
results in the employed scheme.

We renormalize the regularized toy model in section 3.3, as prescribed by the Birkhoff
decomposition using the momentum scheme. Our results from the previous chapter
allow for a complete combinatoric description of the full renormalized Feynman rules
in section 3.4.3, after taking the physical limit. Amazingly, they turn out to be of the
simplest kind we studied in section 3.1.3!

After exploiting this special structure to obtain the reduction of higher order to first
order contributions as in (3.5.8), we have a short look on the behaviour of the renormal-
ized correlation function of the toy model, arising from combinatoric Dyson-Schwinger
equations. These considerations culminate in the renormalization group in section 3.6.1
and non-perturbative approaches.

A final remark shall be made on a problem of the generalization of the steps performed
to quantum field theory, originating from higher degrees of divergence.

1The techniques presented here can be generalized to the full renormalization problem of quantum field
theory, see [19].
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3 A detailed example: Kreimer’s toy model

3.1 Construction of Feynman rules
We want to define Feynman rules, a synonym for morphisms φ : HR → A of unital
algebras to some commutative target algebra A. As HR is free commutative as an
algebra, the space of such Feynman rules is isomorphic to the space of maps T → A via
restriction. Thus the most general Feynman rules can take arbitrary values on trees.

However, physical Feynman rules are much less arbitrary and in fact of a very special
algebraic flavour. All examples we will study arise from (2.4.9), that is they obey

φ ◦B+ = L ◦ φ

for some L ∈ End(A). It is precisely this special form of Feynman rules that ensures
the physically relevant properties like finiteness and locality of renormalization, as will
be discussed in section 3.4.2.

The simplest rules of this kind originate from A := K, then L ∈ End(K) = K · id
multiplies by some constant a ∈ K and it is easy to check that for any forest

∀f ∈ F : a·idρ(f) = a|f |, (3.1.1)

essentially counting the nodes. Here, a·idρ is the morphism from theorem 2.4.6.

3.1.1 External parameters
In quantum field theory, the functions assigned to the combinatoric objects (trees or
graphs) typically depend on a finite number of external parameters like momenta of
the external particles of a Feynman graph. Therefore, A is in general some algebra of
functions of those parameters. As the simplest example for a single parameter consider

Lemma 3.1.1. Let A := K[x] and
∫

0 ∈ End(A) from (2.6.1) induce Feynman rules

ϕ :=
∫

0ρ : HR → K[x], ϕ ◦B+ =
∫

0
◦ ϕ

through the universal property (2.4.6). Then for any forest f ∈ F we have

ϕ(f) = x|f |

f ! . (3.1.2)

Proof. The inductive proof (start at f = 1) supposes (3.1.2) to be true for all f ∈ F≤n.
Then (3.1.2) also holds for any true forest f ∈ Fn+1 \ T (so |π0(f)| > 1) as

ϕ(f) =
∏

t∈π0(f)
ϕ(t) =

∏
t∈π0(f)

x|t|

t! = x
∑

t∈π0(f)|t|∏
t∈π0(f) t!

= x|f |

f ! ,

exploiting |t| ≤ n for any t ∈ π0(f) to use the induction hypothesis. It remains to
consider a tree t = B+(f) for some f ∈ Fn in

ϕ(t) = ϕ ◦B+(f) =
∫

0
◦ ϕ(f) =

∫ x

0

y|f |

f ! dy = x|f |+1

(|f |+ 1) · f ! = x|B+(f)|

(B+f)! = x|t|

t! .
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3.1 Construction of Feynman rules

Note that these Feynman rules are very special as they provide not only a morphism
of algebras, but rather a morphism of Hopf algebras (we took L =

∫
0 to be a cocycle).

Defining the evaluated characters

∀a ∈ K : ϕa := eva ◦ ϕ : HR → K, f 7→ ϕ(f)|a, (3.1.3)

which are not of the basic form (3.1.1) as for the additional factors 1
f ! , we obtain the

remarkable

Proposition 3.1.2.
∀a, b ∈ K : ϕa ? ϕb = ϕa+b. (3.1.4)

For example consider

ϕa ? ϕb ( ) =
(2.3.7)

ϕa ( ) + 2ϕa ( ) ϕb ( ) + ϕa ( ) ϕb ( ) + ϕb ( )

=
(3.1.2)

a3

3 + 2ab
2

2 + a2b+ b3

3 = (a+ b)3

3 =
(3.1.2)

ϕa+b ( ) ,

demonstrating an amazing compatibility of the Feynman rules with the combinatoric
structure of trees through the convolution product. Essentially, (3.1.4) is the renormal-
ization group equation in the momentum scheme (see sections 3.5 and 3.6.1).

Using (3.1.2) and (2.6.4), proposition 3.1.2 is an immediate corollary of

Lemma 3.1.3. Let φ : C → D be a morphism of coalgebras and A an algebra. Then

φ̃ : Hom (D,A)? → Hom (C,A)?, α 7→ α ◦ φ (3.1.5)

is a morphism of associative unital algebras:

∀α, β ∈ Hom (D,A)? : φ̃(α) ? φ̃(β) = φ̃(α ? β).

If C and D are bialgebras and φ a morphism of such, then φ̃ maps characters α ∈ G̃DA
to characters α◦φ ∈ G̃CA. In particular we obtain a homomorphism G̃DA → G̃CA of groups
for connected C, D and commutative A by lemma 2.1.12.

Proof. We only have to check that for any α, β ∈ Hom (D,A)?,

(α ◦ φ) ? (β ◦ φ) = mA ◦ [(α ◦ φ)⊗ (β ◦ φ)] ◦∆C = mA ◦ (α⊗ β) ◦ (φ⊗ φ) ◦∆C

= mA ◦ (α⊗ β) ◦∆D ◦ φ = (α ? β) ◦ φ.

3.1.2 On symmetry factors
It is interesting to note that among the vast pool of possible Feynman rules defined by

∀t ∈ T : ρ(t) = atx
|t|,

quantum field theory chooses those very special ones arising through (2.4.9). In the
above example, this special choice of at = 1

t! leads to the strong result (3.1.4) – clearly
this group law fails unless the coefficients at fulfill a plethora of combinatoric relations!

39



3 A detailed example: Kreimer’s toy model

The occurrence of purely combinatoric factors like 1
t! in (3.1.2) is a typical feature of

Feynman rules in quantum field theory, where every graph comes along with a peculiar
symmetry factor. Those are determined combinatorially for each Feynman graph of
perturbation theory. Though they can cause confusion to the beginner and might appear
as a nuisance in calculations, their correct treatment is of outmost importance!

On one hand we just observed how the precise combinatorics of coefficients is crucial
to achieve algebraic relations like (3.1.4). On the other hand, naive renormalization
calculations2 in quantum field theories produce counterterms (at intermediate steps) that
depend non-locally on external parameters. Amazingly all those non-local contributions
cancel in the overall counterterms obtained through the renormalization recursion to
be described in section 3.3. Clearly, this property of locality depends crucially on the
precise combinatorics and relations among the counterterms.

Phrased differently, the precise form of symmetry factors allows to identify the coun-
terterm Lagrangian based method of renormalization and the graph-by-graph proce-
dure3, which is described by the Birkhoff decomposition (see [6]) and can be proved to
provide locality as in [14].

As it will turn out in the sequel, it is precisely the fact that the Feynman rules φ fulfil
the universal property φ ◦B+ = ψ ◦ φ for some linear operator ψ ∈ End(A) that allows
for inductive proves of finiteness and locality. Luckily, the Feynman rules of physical
quantum field theories are precisely of this form, with ψ denoting a loop integral over
insertions of subdivergences into a primitive skeleton graph.

Finally note that in the Hopf algebraic approach to renormalization using the Birkhoff
decomposition, the symmetry factors are not included into the Feynman rules as ex-
plained in [6]. Their share of combinatorics is introduced afterwards through combina-
torial Dyson-Schwinger equations (see section 3.6).

3.1.3 Variation of lower order terms by coboundaries

Instead of considering the cocycle
∫

0 from above, one might instead twist it by some
coboundary as in

Definition 3.1.4. For any functional α ∈ K[x]′ consider the cocycle

∫
0

+∂α : xn 7→ xn+1

n+ 1 +
∑
k<n

(
n

k

)
α
(
xk
)
xn−k (3.1.6)

and call αϕ :=
∫

0 +∂αρ : HR → K[x] the Feynman rules induced by (2.4.9).

These Feynman rules differ from ϕ, but they still arise from a cocycle and hence enjoy
(3.1.4) upon evaluation at different parameter values as well!

2An example of this cancellation of non-local divergences is worked out in section 5.2 of [5].
3Section 5.6 of [5] gives an outline of the proof.
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3.2 Kreimer’s toy model of quantum field theory

To understand the effect of ∂α, set αn := α(xn) and consider the examples

αϕ ( ) =
[∫

0
+∂α

]
(1) =

∫
0

1 = x = ϕ ( ) (3.1.7)

αϕ ( ) =
[∫

0
+∂α

]
(x) = x2

2 + α0 · x = ϕ { + α(1) } (3.1.8)

αϕ

( )
=
[∫

0
+∂α

](
x2

2 + α0 · x
)

= x3

6 + α0 ·
x2

2 + α0 ·
x2

2 + α1 · x+ α2
0 · x

= ϕ

{
+ 2α0 +

[
α1 + α2

0

] }
(3.1.9)

αϕ ( ) =
[∫

0
+∂α

] (
x2
)

= x3

3 + α0 · x2 + 2α1 · x = ϕ { + α0 + 2α1 } (3.1.10)

Apparently the leading terms of αϕ and ϕ match, which follows from αϕ = ϕ ◦ (α ◦ ϕ)χ
by (2.4.16) together with (2.4.17) in full generality! In the examples (3.1.9) and (3.1.10),
using (2.4.14) and (2.4.15) we check

α ◦ ϕχ ( ) = + 2 [α ◦ ϕ ( )] + [α ◦ ϕ(1)] = + 2α1 + α0

α ◦ ϕχ

( )
= + 2 [α ◦ ϕ(1)] +

{
[α ◦ ϕ(1)]2 + [α ◦ ϕ ( )]

}
= + 2α0 +

[
α2

0 + α1
]

and thus indeed verify αϕ ( ) = ϕ ◦ (α ◦ ϕ)χ ( ) and αϕ

( )
= ϕ ◦ (α ◦ ϕ)χ

( )
explicitly.

Amazingly enough, it will turn out in section 3.4.3 that the physical limit of the
renormalized Feynman rules of Kreimer’s toy model are of this very simple kind if one
uses the momentum scheme!

3.2 Kreimer’s toy model of quantum field theory
So far we only focused on Feynman rules that suggest themselves naturally on a purely
algebraic level. However, those occurring in quantum field theory are in general of
a different kind: They map into a target algebra A = C∞

(
(0,∞)

)
of rather general

functions (in our case depending on a single external parameter, the scale s) and arise
through the universal property (2.4.9) by means of integrations like

φs ◦B+ =
∫ ∞

0

φζ
s+ ζ

dζ, explicitly φ ◦B+ =
[
s 7→

∫ ∞
0

φζ
s+ ζ

dζ
]
. (3.2.1)

The physicist will recognize the striking resemblance of
∫∞
0 dζ to an integration over

a loop momentum ζ and the similarity of the integral kernel 1
ζ+s to a propagator like4

4As will become clear in section 3.8, we should rather compare to massless propagators and consider
1

(p+k)2 or 1
/p+/k instead, where the external and internal momenta p and k correspond to s and ζ.
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3 A detailed example: Kreimer’s toy model

1
p2+m2 or 1

/p+m . Indeed, as we show in section 3.8, rules similar to (3.2.1) do actually
arise in quantum field theory! This motivates their study in the sequel.

However, as it stands (3.2.1) is not well defined as already the integral for φs( ) is
logarithmically divergent! This is a typical feature of quantum field theories and in fact
the reason why renormalization is necessary at all: The Feynman rules are naturally
given as divergent integrals over well-defined integrands. Making sense out of these is
precisely the subject of renormalization!

3.2.1 Analytic regularization

Hence we have to first find a way of quantifying the divergences and give (3.2.1) a precise
meaning. This process is called regularization and can be performed in many different
ways.

We focus on divergences of the integral originating solely from the unboundedness of
the integration domain5, that is, we exclude singularities in the integrand itself. Then
we can achieve a finite value for the integral in

Definition 3.2.1. The Feynman rule of the toy model is defined as the analytic regu-
larization of (3.2.1) through theorem 2.4.6 and

zφs ◦B+ =
∫ ∞

0

ζ−z

ζ + s
zφζ dζ =

∫ ∞
0

(sζ)−z

ζ + 1 zφsζ dζ. (3.2.2)

More generally, we allow to replace 1
ζ+1 in the integrand by another suitably regular

function f(ζ) ∈ O
(
ζ−1) for ζ →∞.6

So φ maps into an algebra of functions zφs of both s and z. Note that this is a general
phenomenon: any regularization procedure introduces a new (artificial) parameter7 (here
z).

Clearly these rules give finite values for <z > 0 and if f is analytic, they will even be
meromorphic in z around zero (however, check remark 3. below). In fact, by defining
the Mellin transform8

F (z) :=
∫ ∞

0
f(ζ)ζ−z dζ =

∞∑
n=−1

cnz
n, (3.2.3)

we obtain a meromorphic function F ∈ z−1K[[z]] with a pole of first order at z → 0 that
captures all analytic information in a combinatorial manner by

5This is ensured in quantum field theory: Employing Wick rotation, the theory is transformed into
Euclidean space, eliminating all propagator poles. We will not discuss infrared divergences here.

6Here we restrict ourselves to the case of logarithmically divergent integrands.
7This is not to be confused with the mass scale µ needed in dimensional regularization. In fact, we

need the same in analytic regularization if we treat s and ζ to be dimensional:
(
ζ
µ

)−z only makes
sense for a dimensionless base.

8In standard notation the Mellin transform is {Mf}(z) :=
∫∞

0 ζz−1f(ζ) dζ, thus F (z) := {Mf}(1−z).
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3.2 Kreimer’s toy model of quantum field theory

Proposition 3.2.2. For any forest t ∈ F we have9

zφs(t) = s−z|t|
∏

v∈V (t)
F (z |tv|) . (3.2.4)

Proof. As both sides of (3.2.4) are clearly multiplicative, it is enough to prove the claim
inductively for trees. Let it be valid for some forest x ∈ F , then for t = B+(x) observe

zφs ◦B+(x) =
∫ ∞

0
(sζ)−zf(ζ) zφsζ(x) dζ =

∫ ∞
0

(sζ)−zf(ζ)(sζ)−z|x|
∏

v∈V (x)
F (z |xv|) dζ

= s−z(1+|x|) ∏
v∈V (x)

F (z |xv|)
∫ ∞

0
f(ζ)ζ−z(1+|x|) dζ

= s−z|B+(x)|

 ∏
v∈V (x)

F (z |xv|)

F (z |B+(x)|) = s−z|t|
∏

v∈V (t)
F (z |tv|) .

This result allows us to calculate the Feynman rules algebraically (without having to
perform any integrations). As examples consider

zφs ( ) = s−zF (z) zφs ( ) = s−2zF (z)F (2z)

zφs

( )
= s−3zF (z)F (2z)F (3z) zφs ( ) = s−3z[F (z)]2F (3z).

For the original toy model f(ζ) = 1
1+ζ we obtain

F (z) =
∫ ∞

0

ζ−z

ζ + 1 dζ = B(z, 1− z) = Γ(z)Γ(1− z) = π

sin(πz) (3.2.5)

= 1
z

Γ(1 + z)Γ(1− z) = 1
z

exp

∑
n∈N

ζ(2n)
n

z2n

 , (3.2.6)

with Euler’s beta function

B(x, y) :=
∫ 1

0
tx−1(1− t)y−1 dt =

∫ ∞
0

dα αx−1
∫ ∞

0
dβ βy−1 δ(1− α− β) = Γ(x)Γ(y)

Γ(x+ y)

and his gamma function Γ(z) =
∫∞
0 xz−1e−x dx. A couple of remarks are in order:

1. Whereas the original integral (3.2.2) converges only for <z > 0, the analyticity of
F allows for an analytic continuation in z into some region where <z < 0. The
same happens in the popular dimensional regularization, see section 3.8.1.

2. Notice how due to the presence of a single scale only, the dependency on the
external parameter s is very simple and given through the plain power s−z|f |.

9Compare with (2.3.20) to see how this generalizes the tree factorial!
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3 A detailed example: Kreimer’s toy model

3. Denoting the radius of convergence of the Laurent series (3.2.3) by r, we obtain
r
|t| as the radius of convergence of the Laurent series of zφs(t) by considering the
contribution F (z · |t|) in (3.2.4) for a tree t ∈ T . In particular we can not find a
z 6= 0 such that zφs(f) converges as Laurent series for every f ∈ HR!

4. The highest order pole of zφs(f) comes from multiplying all the poles of F ’s, so

zφs(f) ∈ s−z|f |
∏

v∈V (f)

{
c−1
z |fv|

+ K[[z]]
}
⊂
(
1 + K[[z ln s]]

) ∏
v∈V (f)

c−1
z |fv|

+ z1−|f |K[[z]]


= 1
f !

(
c−1
z

)|f |
+ z1−|f |K[[z, z ln s]]. (3.2.7)

Hence the leading divergence of zφs(f) is independent of s and given by the tree
factorial (3.2.7).

3.3 Renormalization of the toy model
3.3.1 General concept of renormalization
As seen in the previous chapter, the mathematical concept of Birkhoff decomposition
allows for a decomposition of Feynman rules φ into renormalized rules φR := φ+ and
the so-called counterterms Z := φ−. Recall the Bogoliubov character (also R̄-operation)

φ̄(x) := φ(x) +
∑
x

φ−(x′)φ(x′′) = φ(x) + [φ− ? φ− φ− − φ](x) = φ+(x)− φ−(x)

we already encountered in (2.2.4). It defines the Birkhoff decomposition recursively by
(2.2.3) and essentially renormalizes the subdivergences as we shall see in theorem 3.4.1.

Obviously the result of renormalization depends crucially on how A = A+ ⊕A− is
splitted (specifying the projection R : A� A−). This is called the choice of a renormal-
ization scheme.

We already mentioned the minimal subtraction scheme (2.2.2), which is applicable to
the toy model as we regularized it to deliver meromorphic functions in z. However, we
will study the momentum scheme instead as it is far better behaved algebraically (see
chapter 4 for details).

3.3.2 Momentum scheme
For massive10 theories, the momentum scheme is a very convenient and (as it will turn
out) algebraically distinguished renormalization scheme. It is based upon the following
observation: Consider the rational function

f(ζ, s) := 1
ζ + s

10In massless theories, naive application of the momentum scheme typically introduces infrared diver-
gences (see section 3.6.4 in [5]).
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occurring in the integrand of (3.2.2). For fixed s we have f(ζ, s) ∈ Θ
(
ζ−1) and hence

the integral zφs( ) is log-divergent. However, for an arbitrary subtraction point µ,

f(ζ, s)− f(ζ, µ) = 1
ζ + s

− 1
ζ + µ

= µ− s
(ζ + s)(ζ + µ) (3.3.1)

lies in O
(
ζ−2) whence

∫∞
0 [f(ζ, s)− f(ζ, µ)] dζ is convergent! This generalizes to higher

degrees of divergence (section 3.7), though we will for now only be considering the log-
divergent case.

Definition 3.3.1. On the target algebra A of regularized Feynman rules depending on
a single external variable s, define the momentum scheme by evaluation at s = µ:

End(A) 3 Rµ := evµ =
(
A 3 f 7→ f |s=µ

)
. (3.3.2)

In particular, Rµ is a character of A and we thus may use (2.2.10)! We define the
counterterm Z := (zφ)− = Rµ ◦ zφ ◦ S = zφµ ◦ S and the renormalized Feynman rules
zφR := (zφ)+ via the Birkhoff decomposition induced by Rµ. Note that the counterterms
Z do not depend on s and we suppress the dependency on z in the notation.

This results in the following values for the first trees:

Z ( ) = Rµ ◦ zφ ◦ S ( ) = evµ ◦ zφ (− ) = −zφµ ( ) = −µ−zF (z)

zφR,s ( ) = zφs ( ) + Z ( ) =
(
s−z − µ−z

)
F (z) (3.3.3)

Z ( ) = zφµ ◦ S ( ) = zφµ (− + ) = −µ−2zF (z)F (2z) + µ−2zF 2(z)
= µ−2zF (z) [F (z)− F (2z)]

zφR,s ( ) = zφs ( ) + Z ( ) zφs ( ) + Z ( )

=
(
s−2z − µ−2z

)
F (z)F (2z)−

(
s−z − µ−z

)
µ−zF 2(z) (3.3.4)

3.4 The physical limit
In the step of regularization, we introduced the artificial (non-physical) parameter z into
the Feynman rules zφs. The goal of renormalization is to take the physical limit

0φ := lim
z→0 z

φR (3.4.1)

of the renormalized Feynman rules zφR, corresponding to the situation without a regu-
lator (the original theory). The notation 0φ is unambiguous as z = 0 only makes sense
for the renormalized Feynman rules. Expanding (3.3.3) and (3.3.4) in z we obtain

0φs ( ) = lim
z→0

[(
s−z − µ−z

)
F (z)

]
= lim

z→0

[(
−z ln s

µ +O
(
z2
))
·
(
c−1
z +O

(
z0
))]

= −c−1 ln s
µ and (3.4.2)

0φs ( ) = lim
z→0

{[
−2z ln s

µ + 2z2
(
ln2 s− ln2 µ

)
+O

(
z3
)]
·
[
c2
−1

2z2 + 3c0c−1
2z +O

(
z0
)]

−
[
−z ln s

µ + z2

2

(
ln2 s+ 2 ln s lnµ− 3 ln2 µ

)
+O

(
z3
)]
·
[
c2
−1
z2 + 2 c−1c0

z +O
(
z0
)]}
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3 A detailed example: Kreimer’s toy model

=
c2
−1
2 ln2 s

µ − c−1c0 ln s
µ . (3.4.3)

These calculations obviously become increasingly lengthy, we just state

0φs

( )
= −

c3
−1
6 ln3 s

µ + c2
−1c0 ln2 s

µ − c−1

(
c2

0 + c−1c1

)
ln s

µ (3.4.4)

0φs ( ) = −
c3
−1
3 ln3 s

µ + c2
−1c0 ln2 s

µ − 2c2
−1c1 ln s

µ (3.4.5)

and observe that 0φs takes values in K[ln s
µ ], mapping any forest f to a polynomial in

ln s
µ of degree |f |. Note that we have no constant parts, except for 0φ(1) = 1. So far we

did not prove the existence of the limit 0φ at all (the reader should check how in (3.4.3)
the contributions ∝ z−1 cancel inside the limit)! We will remedy this in the following
two sections resulting in proposition 3.4.2.

3.4.1 Renormalization of subdivergences

Theorem 3.4.1. Let H be a connected bialgebra, A a commutative algebra with an
endomorphism L ∈ End(A) and consider the Feynman rules φ := Lρ induced by (2.4.9).
Given a renormalization scheme R ∈ End(A) such that

L ◦mA ◦ (φ− ⊗ id) = mA ◦ (φ− ⊗ L), (3.4.6)

that is to say, L is linear over the counterterms, we have

φ̄R ◦B+ = L ◦ φ+. (3.4.7)

Proof. This is a straightforward consequence of the cocycle property:

φ̄R ◦B+ = (φ+ − φ−) ◦B+ = (φ− ? φ− φ−) ◦B+ = mA ◦ (φ− ⊗ φ) ◦∆ ◦B+ − φ− ◦B+

= mA ◦ (φ− ⊗ φ) ◦ [(id⊗B+) ◦∆ +B+ ⊗ 1]− φ− ◦B+

= mA ◦ [φ− ⊗ (φ ◦B+)] ◦∆ + (φ− ◦B+) · φ(1)− φ− ◦B+

= φ− ? (φ ◦B+) = φ− ? (L ◦ φ) = mA ◦ (id⊗ L) ◦ (φ− ⊗ φ) ◦∆
= L ◦mA ◦ (φ− ⊗ φ) ◦∆ = L ◦ (φ− ? φ) = L ◦ φ+.

First of all note that the condition (3.4.6) is fulfilled in our case: The counterterms Z
are independent of the parameter s such that they can be moved out of the integral in
(3.2.2)! This actually applies in general to renormalization of quantum field theories: It
is the nature of the counterterms to not depend on any of the external variables.

Even if the divergence of a Feynman graph does depend on external momenta (this
happens for the quadratically divergent scalar propagator in renormalizable quantum
field theories), the Hopf algebra H is defined in such a way that the counterterms are
evaluations on certain external structures, given by distributions. So in any case, φ−
maps to scalars independent of the external momenta.
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3.4 The physical limit

In fact it is the whole point of the Hopf algebra approach to renormalization to put
the momentum dependence into indices on contracted vertices living in the right-hand
side of the coproduct. For details of this concept we refer to [6].

The result (3.4.7) is most powerful and shows that the renormalized value of a tree
B+(f) can be gained out of the knowledge of the renormalized value zφR(f) only! In
particular it allows for inductive proofs of properties of zφR and also 0φ, without having
to consider the unrenormalized Feynman rules or their counterterms at all!

Though we will restrict ourselves to the toy model here, the method employed in
proposition 3.4.2 can be easily extended to prove finiteness and also locality of renor-
malization in a very general setting, see [14].

3.4.2 Finiteness and BPHZ
Proposition 3.4.2. The physical limit 0φs of the toy model exists and maps HR into
the polynomials K[ln s

µ ].

Proof. We prove the claim inductively, starting with the trivial case of the empty forest
0φs(1) = 1. As zφR is a character, so will be 0φ (if existent) and we may restrict to trees
t = B+(x). Assuming the claim to hold for x ∈ F , we can take the limit

0φs(t) =
(3.4.7)

lim
z→0

(id−Rµ)
[
s 7→

∫ ∞
0

f(ζ/s)
s

ζ−z zφR,ζ(x) dζ
]

= lim
z→0

∫ ∞
0

[
f(ζ/s)
s
− f(ζ/µ)

µ

]
ζ−z zφR,ζ(x) dζ

=
∫ ∞

0

[
f(ζ/s)
s
− f(ζ/µ)

µ

]
0φζ(x) dζ (3.4.8)

using dominated convergence: the term in square brackets lies in O
(
ζ−2) like (3.3.1) and

by assumption 0φζ(x) ∈ O
(
lnN ζ

)
for some N ∈ N, wherefore this integral is convergent!

Thus knowing the limit z → 0 of zφR,s(t) to exist, we proved that all pole terms in the
Laurent series of zφR,s(t) must cancel and identify 0φs(t) with the ∝ z0 term.

Inspection of (3.2.4) and the scheme Rµ reveals that this coefficient is a polynomial
in ln s and lnµ of order |t|, as these logarithms come with a factor z (expanding s−z)
which needs to cancel with a pole term c−1

z|tv | from some F (z |tv|) in order to contribute
to the constant (∝ z0) term – compare with (3.4.2) and (3.4.3)!

Finally, we observe that 0φs is only a function of s
µ . Starting with 0φs(1) = 1 this

follows inductively from (3.4.8), substituting ζ 7→ µζ such that∫ ∞
0

[
f(ζ/s)
s
− f(ζ/µ)

µ

]
0φζ(x) dζ =

∫ ∞
0

[
f(ζ µs )

s
µ

− f(ζ)
]

0φµζ(x) dζ.

Note that 0φµζ(f) is independent of µ by the induction hypothesis.

Using (3.4.8), the physical limit of the renormalized Feynman rules can be obtained
inductively by convergent integrations after performing the subtraction at s = µ on
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3 A detailed example: Kreimer’s toy model

the level of the integrand. This method is known under the name BPHZ11 scheme. In
particular note that it does not need any regulator at all!

As an important consequence, the physical limit of the toy model does not depend
on the chosen regulator, as long as one employs the momentum scheme (which leads
to the BPHZ method)! So should we instead of analytic regularization employ a cutoff
regulator Λ

φ(Λ) ◦B+ :=
[
s 7→

∫ Λ

0

1
s+ ζ

φ
(Λ)
ζ dζ

]
instead, the renormalized Feynman rules using the scheme Rµ again lead to (3.4.8) and
thus the same physical limit 0φ = limΛ→∞ φ

(Λ)!

3.4.3 Feynman rules induced by cocycles

Now we find ourselves in the familiar setup of section 3.1.3: the renormalized Feynman
rules 0φ map HR into the Hopf algebra K[x] of polynomials, such that evaluation at
x = ln s

µ delivers the value 0φs. Thus it is natural to ask whether 0φ arises through the
universal property of HR. This is actually the case as shown in

Theorem 3.4.3. Defining the functional η ∈ K[x]′ and the cocycle L ∈ HZ1
ε (K[x]) by

L := −c−1

∫
0

+∂η and η (xn) := n! (−1)ncn for any n ∈ N0, (3.4.9)

where the cn are the coefficients from (3.2.3), we have

0φ = Lρ (3.4.10)

for the Hopf algebra morphism Lρ from theorem 2.4.6.

Proof. First investigate how logarithms contributing to subdivergences evolve for µ = 1:

lim
z→0

(id−R1)
[
s 7→

∫ ∞
0

f(ζ)(sζ)−z lnn (sζ) dζ
]

=
(
− ∂

∂z

)n
z=0

(id−R1)
∫ ∞

0
f(ζ)(sζ)−z dζ

=
(
− ∂

∂z

)n
z=0

(
s−z − 1

) ∫ ∞
0

f(ζ)ζ−z dζ =
(
− ∂

∂z

)n
z=0

[{
s−z − 1

z

}{
zF (z)

}]

= (−1)n
n∑
k=0

(
n

k

){(
∂

∂z

)k
z=0

s−z − 1
z

}
·
{(

∂

∂z

)n−k
z=0

[
zF (z)

]}

= (−1)n
n∑
k=0

(
n

k

)
k! (− ln s)k+1

(k + 1)! (n− k)! cn−k−1 = evln s

[
n∑
k=0

n!xk+1

(k + 1)!(−1)n−k−1cn−k−1

]

= evln s

[
−c−1

xn+1

n+ 1 +
n∑
i=1

(
n

i

)
xi(−1)n−icn−i(n− i)!

]
= evln s ◦ L (xn) . (∗)

11named by Nikolay Nikolaevich Bogoliubov, Ostap Stepanovych Parasiuk, Klaus Hepp and Wolfhart
Zimmermann
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Here we expanded the holomorphic functions

s−z − 1
z

=
∞∑
n=0

(− ln s)n+1

(n+ 1)! zn and zF (z) =
∞∑
n=0

cn−1z
n

and exploited the renormalization scheme Rµ to only evaluate s and not to act on z, in
particular it commutes with ∂

∂z .
By linearity the above holds also if we replace lnn(sζ) in the integrand by any poly-

nomial in K[ln(sζ)]! This allows us to prove (3.4.10) inductively on trees as usual (both
sides of (3.4.10) are algebra morphisms): let it hold for a forest x ∈ F , then observe

0φs ◦B+(x) =
(3.4.8)

∫ ∞
0

[
f (ζ/s)
s

− f(ζ)
1

]
0φζ(x) dζ = lim

z→0

∫ ∞
0

[
f (ζ/s)
s

− f(ζ)
1

]
ζ−z 0φζ(x) dζ

= lim
z→0

(id−R1)
[
s 7→

∫ ∞
0

f(ζ)(sζ)−z 0φsζ(x) dζ
]

= evs ◦ L [0φ(x)] = evs ◦ L ◦ Lρ(x) = evs ◦ Lρ ◦B+(x).

We exploited the convergence of (3.4.8) and reintroduced ζ−z into the integrand in order
to apply (∗).

The above result translates the task of renormalization of the toy model into a very
simple combinatoric recursion, without any need for series expansions. To illustrate the
benefit we rederive the earlier examples (3.4.2) to (3.4.5), now using theorem 3.4.3:

0φ ( ) = Lρ ( ) = Lρ ◦B+(1) =
[
−c−1

∫
0

+∂η
]

(1) = −c−1

∫
0

1 = −c−1 x

0φ ( ) = Lρ ◦B+ ( ) = L ◦ Lρ ( ) =
[
−c−1

∫
0

+∂η
] (
−c−1x

)
= c2
−1
x2

2 − c−1c0 x

0φ

( )
=
[
−c−1

∫
0

+∂η
](

c2
−1
x2

2 − c−1c0 x

)
= −c3

−1
x3

6 + c2
−1c0

x2

2 + c2
−1η(x)x

+ η(1)
(
c2
−1
x2

2 − c−1c0 x

)
= −c3

−1
x3

6 + c2
−1c0 x

2 −
(
c−1c

2
0 + c2

−1c1

)
x

0φ ( ) = Lρ ◦B+ ( ) = L ◦ Lρ ( ) =
[
−c−1

∫
0

+∂η
] {(
−c−1 x

)2}
= −c3

−1
x3

3 + c2
−1

[
η(1)x2 + 2η(x)x

]
= −c3

−1
x3

3 + c2
−1c0 x

2 − 2c2
−1c1 x.

As L is a cocycle, by theorem 2.4.6 we note the

Corollary 3.4.4. The physical limit 0φ : HR → K[x] of the renormalized Feynman rules
(3.2.2) of the toy model is a morphism of Hopf algebras.

This result implies a range of important consequences – in particular the renormal-
ization group (3.6.13) – which we will briefly discuss in the upcoming sections. For now
let us remark:
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3 A detailed example: Kreimer’s toy model

1. Up to the lower order modifications ∂η, L is just −c−1
∫

0. Hence the highest order
term of 0φs – the leading log – is the same as for [−c−1

∫
0]ρ:

∀f ∈ F : 0φs(f) ∈

(
−c−1 ln s

µ

)|f |
f ! +O

(
ln|f |−1 s

µ

)
. (3.4.11)

Note how this leading log corresponds to the leading divergence (3.2.7)!

2. By theorem 2.4.8, the deviation of 0φ from −c−1
∫

0ρ is given by an automorphism
of HR that adds only lower order corrections:

0φ = [−c−1
∫

0]ρ ◦

[
η ◦ (−c−1

∫
0)ρ
]
χ.

3. Consider a change of f and thus its Mellin transform F to different functions f ′
and F ′, keeping c−1 fixed but probably altering the other coefficients cn of F . Then
again the difference in the resulting Feynman rules is captured by an automorphism
of HR as

0φ
′ = L′ρ = L+∂(δη)ρ = Lρ ◦ [δη ◦Lρ]χ = 0φ ◦ [δη ◦ 0φ]χ,

where δη := η′−η denotes the change in the cn for n ∈ N0. In other words, altering
F corresponds to addition of a coboundary!

3.5 The structure of higher orders
In (3.1.4) we discovered a one-parameter subgroup

K 3 a 7→ ϕa ∈ G̃HRK , ϕa ? ϕb = ϕa+b

of the convolution group of characters of HR, which imposes strong combinatorial con-
straints on ϕ. The (infinitesimal) generator of this subgroup is determined by the
equation ϕa = exp?(a log? ϕ1) =

(2.1.27)
ϕ?a1 and evaluates with (2.1.26) to

log? ϕ1 = ∂

∂a

∣∣∣∣
0
ϕa = ∂

∂a

∣∣∣∣
0
eva ◦ ϕ = ∂0 ◦ ϕ = Z , (3.5.1)

such that ϕa = ϕ?a1 = exp?(aZ ). Here we introduced the map

∂0 := ∂

∂x

∣∣∣∣
0
: K[x]→ K, xn 7→ δ1,n =

{
1 if n = 1,
0 else,

(3.5.2)

extracting the coefficient of x = x1 in a polynomial as well as the functional

Z ∈ H ′R by Z (f) = δf, (3.5.3)

for any forest f ∈ F , using Kronecker’s δ again. The last equality in (3.5.1) is immediate
as ϕ only produces a contribution proportional to x when applied to a forest of a single
node. Observation (3.5.1) generalizes to
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3.5 The structure of higher orders

Proposition 3.5.1. Let H be any connected bialgebra and φ : H → K[x] a morphism of
bialgebras.12 Then log? φ is simply given by the term proportional to x:

log? φ = x · ∂0 ◦ φ. (3.5.4)

Proof. As φ is a morphism of coalgebras, by proposition 3.1.3 and (2.6.3) we obtain a
one-parameter group K 3 a 7→ eva ◦ φ ∈ G̃HK in

(eva ◦ φ) ? (evb ◦ φ) = eva+b ◦ φ.

Hence as in (3.5.1) we immediately conclude13

a∂0 ◦ φ = a log? (ev1 ◦ φ) = log? (eva ◦ φ) =
(∗)

eva ◦ log? φ,

where (∗) is a consequence of the character property of eva and (2.1.25) by

(eva ◦ φ− e)?n = mn−1
K ◦ ev⊗na ◦ (φ− e)⊗n ◦∆n−1

H

= eva ◦mn−1
K[x] ◦ (φ− e)⊗n ◦∆n−1

H = eva ◦ (φ− e)?n.

In particular, such bialgebra morphisms are completely determined by the functional
in H ′ that extracts the coefficient of x! In the above example, log? ϕ = x · Z gives

ϕ = exp? (x · Z ) =
∞∑
n=0

xn

n! Z
?n. (3.5.5)

This entails a direct proof of a combinatoric relation14 among tree factorials in

Corollary 3.5.2. For any forest f ∈ F let f(f) ⊆ V (f) denote the set of leaves of f ,
being those nodes without children. Then we have the identity

|f |
f ! =

∑
v∈f(f)

1[
R{v}(f)

]
!
. (3.5.6)

Proof. By (3.1.2) and (3.5.5) we note 1
f ! = 1

|f |!Z
?|f |(f), hence

|f |
f ! = 1

(|f | − 1)!
∑
f

Z (f1)Z?|f |−1(f2) =
∑
f

f1=

1
|f2|!

Z
?|f2|(f2) =

(2.3.9)

∑
v∈f(f)

1
[Rv(f)]! .

12It is an easy exercise to prove inductively, using (2.2.7), that this already implies φ to be a morphism
of Hopf algebras.

13More generally note that (log? ψ) ◦ φ = log?(ψ ◦ φ) = ψ ◦ log? φ for any algebra morphism ψ and a
coalgebra morphism φ with φ(1) = 1. We in fact showed log? eva = a log? ev1 = a∂0 in (3.5.1).

14This is equation (124) of [13], where leaves are called feet.
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3 A detailed example: Kreimer’s toy model

These considerations may seem trivial for ϕ, but they also apply to the physical limit
0φ of the toy model through corollary 3.4.4! We introduce the functional

H ′R 3 γ := log? ev1 ◦ 0φ = ∂

∂a

∣∣∣∣
0
eva ◦ 0φ = ∂0 ◦ 0φ (3.5.7)

and obtain 0φ = exp?(x · γ). Note15 that γ is an infinitesimal character, that is to say
γ ◦m = γ ⊗ ε+ ε⊗ γ wherefore γ vanishes on any forest that is not a tree. From (3.4.2)
to (3.4.5) we read off

γ ( ) = −c−1 γ ( ) = −c−1c0 γ

( )
= −c−1c

2
0 − c2

−1c1 γ ( ) = −2c2
−1c1

and show how γ determines the higher powers of x in two examples:

0φ ( ) = exp?(x · γ) ( ) =
(2.1.24)

[
e+ xγ + x2γ ? γ

2

]
( )

= 0 + xγ ( ) + x2γ
2 ( )
2 = −c−1c0 x+ c2

−1
x2

2 ,

0φ ( ) = exp?(x · γ) ( ) =
(2.1.24)

[
e+ xγ + x2γ ? γ

2 + x3γ ? γ ? γ

6

]
( )

= 0 + xγ ( ) + x2γ ⊗ γ
2 (2 ⊗ + ⊗ ) + x3γ ⊗ γ ⊗ γ

6 (2 ⊗ ⊗ )

= γ3 ( ) x
3

3 + x2γ ( ) γ ( )− 2c2
−1c1 x = −c3

−1
x3

3 + c2
−1c0 x

2 − 2c2
−1c1 x.

A very similar phenomenon happens with the counterterms in a minimal subtraction
scheme: It turns out that the single poles ∝ z−1 determine the full counterterm already.
This is the content of the scattering formula proved in [7].

Our case is much simpler as the higher power contributions to 0φ are explicitly given
by merely taking convolution powers of γ, that is

0φ =
∞∑
n=1

xnγn for the functionals γn = γ?n

n! ∈ H
′
R. (3.5.8)

Note how in the above example, the fragment ⊗ of ∆ ( ) does not contribute to the
quadratic terms x2

2 γ ? γ, as γ vanishes on proper products. This is an important result
we shall exploit in (3.6.10), leading to the renormalization group equation (3.6.13)!

3.6 Correlation functions and Dyson-Schwinger equations
So far we considered the renormalized Feynman rules as a whole. Now quantum field
theory teaches that instead of individual contributions (of single trees or more generally
graphs), the quantities that bear physical meaning are the correlation functions. These
15A simple proof can be found as proposition II.4.2 in [15].

52



3.6 Correlation functions and Dyson-Schwinger equations

are determined as asymptotic expansions through the formal power series in the coupling
constant by summation of the renormalized contributions of all trees (Feynman graphs
in quantum field theory), like in (3.6.5).

This concept fits beautifully into the Hopf algebraic setting by the aid of fixed point
equations in Hochschild cohomology. For details about these combinatorial Dyson-
Schwinger equations in general we refer to [1]. Here we will only discuss the special
case of our toy model, where the Dyson-Schwinger equation reads16

X(α) = αB+

(
1

1−X(α)

)
:= αB+

∑
n∈N0

[X(α)]n
 (3.6.1)

for a formal power series X(α) ∈ HR[[α]] in a parameter α. More concretely, X(α) =∑
n∈N anα

n for homogeneous an ∈ HR,n determined in

Proposition 3.6.1. The unique solution of (3.6.1) is given by

∀n ∈ N : an =
∑
t∈Tn

σ(t) · t. (3.6.2)

Here, an sums all trees of n nodes and weights them with a factor σ(t) that counts the
number of ordered rooted trees that yield t upon forgetting the ordering. It fulfils the
recursion

σ(t) =
(
n1 + . . .+ nr
n1 · · · nr

)
σn1(t1) . . . σnr(tr),

if one writes t = B+ (tn1
1 . . . tnrr ) such that ti 6= tj whenever i 6= j.

Proof. The existence and uniqueness of an solving (3.6.1) follows immediately by count-
ing powers of α. We can directly read off the recursion

an+1 = B+

 n∑
k=0

∑
i1+...+ik=n

ai1 . . . aik

 . (3.6.3)

This proves (3.6.2) and the claim about σ, as each term of this sum corresponds to
a unique ordered rooted tree! For a much more general exposition see [9], especially
theorem 11 therein.

So σ ( ) = σ ( ) = σ

( )
= σ ( ) = σ

( )
= σ

( )
= σ ( ) = 1, whereas

σ

( )
=
∣∣∣∣{ ,

}∣∣∣∣ = 2 and σ

( )
=
∣∣∣∣{ , ,

}∣∣∣∣ = 3.

16At the end of section 3.8.2 we show why (3.6.1) suits the toy model.
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3 A detailed example: Kreimer’s toy model

Here we wrote the different ordered (planar) rooted trees corresponding to σ’s argument
inside the sets. The first terms of X are thus

a1 = a2 = a3 = + a4 = + + 2 +

a5 = + + 2 + + + 2 + 2 + 3 + .

(3.6.4)

Definition 3.6.2. The correlation function G(α) is the application of the Feynman rules
φ : HR → A to the solution X(α) of (3.6.1), producing the formal power series

G(α) := φ (X(α)) :=
∑
n∈N

φ(an)αn ∈ A[[α]]. (3.6.5)

Considering the Feynman rules ϕ from (3.1.2), using (3.6.4) check

ϕ(a1)
x

= 1
! = 1 ϕ(a2)

x2 = 1
! = 1

2
ϕ(a3)
x3 = 1

!
+ 1

! = 1
6 + 1

3 = 1
2

ϕ(a4)
x4 = 1

!
+ 1

!
+ 2

!
+ 1

! = 1
24 + 1

12 + 2
8 + 1

4 = 5
8

ϕ(a5)
x5 = 1

120 + 1
60 + 2

40 + 1
20 + 1

20 + 2
30 + 2

15 + 3
10 + 1

5 = 7
8

such that we obtain the first terms of the series

G(α, x) = αx+ 1
2(αx)2 + 1

2(αx)3 + 5
8(αx)4 + 7

8(αx)5 +O
(
(αx)6

)
. (3.6.6)

Proposition 3.6.3. For the Feynman rules ϕ form (3.1.2), the correlation function
(3.6.5) is absolutely convergent for |αx| < 1

2 and evaluates to

G(α, x) = 2αx
1 +
√

1− 2αx
= 1−

√
1− 2αx. (3.6.7)

Proof. We will first prove that using the Catalan numbers Cn, we have for any n ∈ N0

ϕ(an+1)
xn+1 = 2−nCn = 2−n

(
2n
n

)
1

n+ 1 = 2−n (2n)!
n!(n+ 1)! . (∗)

The well-known recursion Cn =
∑n
i=1Ci−1Cn−i allows for an inductive proof: suppose

(∗) holds for n ≤ N . Denoting the sets of ordered rooted trees and forests by T̃ and
F̃ , note that any t ∈ T̃N+1 contributing to aN+1 is of the form t = B+(t′f) for unique
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3.6 Correlation functions and Dyson-Schwinger equations

t′ ∈ T̃ and f ∈ F̃ . Therefore

ϕ (aN+2)
xN+2 =

∑
t∈TN+2

σ(t)
t! =

∑
t∈T̃N+2

1
t! =

∑
t′∈T̃≤N+1

∑
f∈F̃N+1−|t′|

1
[B+ (t′ · f)]!

= 1
N + 2

N+1∑
k=1

∑
t′∈T̃k

1
t′!

 ·
 ∑
f∈F̃N+1−k

N + 2− k
[B+(f)]!


= 1
N + 2

N+1∑
k=1

2−(k−1)Ck−1(N + 2− k)2−(N+1−k)CN+1−k

= 2−N

N + 2

N+1∑
k=1

(N + 2− k)Ck−1CN+1−k = 2−(N+1)

N + 2

N+1∑
k=1

(N + 2)Ck−1CN+1−k

= 2−(N+1)CN+1,

where we used
∑N+1
k=1 (N+2−k)Ck−1CN+1−k =

∑N+1
k=1 kCk−1CN+1−k by the substitution

k 7→ N + 2− k. Now recall the classical generating function

∑
n∈N0

Cnx
n = 1−

√
1− 4x

2x = 2
1 +
√

1− 4x
.

Corollary 3.6.4. By (3.4.11), the leading-log contribution17 to the toy model (3.2.2) is

G(α, x)leading-log = −
2c−1αx

1 +
√

1 + 2c−1αx
.

Note how in these cases, G(α, x) does only depend on the product α · x. This is a
consequence of the fact that ϕ respects the graduations, mapping homogeneous elements
to homogeneous polynomials of the same degree. For the toy model 0φ this is not the
case anymore (except for η 6= 0).

3.6.1 Differential equations and the renormalization group

We will now exploit the special structure of X(α). Consider

Definition 3.6.5. We denote by Plin : HR → HR the projection onto the linear span of
trees. Thus Plin(f) = 0 for any forest f ∈ F \ T and Plin(t) = t for trees t ∈ T .

Proposition 3.6.6. For the solution X(α) of (3.6.1), we find that

(Plin ⊗ id) ◦∆ (X(α)) = X(α)⊗ 1 +X(α)⊗ (2α∂α − 1)X(α). (3.6.8)

17Recall that to obtain the actual values, evaluate at x = ln s
µ

.
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3 A detailed example: Kreimer’s toy model

Proof. It is a remarkable fact that the coefficients an of X(α) =
∑∞
n=1 anα

n do generate a
Hopf subalgebra! This was first observed in [1] (theorem 3) studying a different Dyson-
Schwinger equation, for our case we refer to the general discussion in [9]. Explicitly,
proposition (15) therein gives

∆(X(α)) = X(α)⊗ 1 +
∞∑
n=1

[1−X(α)]1−2n ⊗ anαn,

which reduces by counting powers of α to

∆(an) = an ⊗ 1 +
n∑
k=1

 n∑
r=0

(
1− 2k
r

)
(−1)r

∑
i1+...+ir=n−k

ai1 . . . air

⊗ ak.
The reader is invited to prove this result inductively using the Hochschild-closedness of
B+ and (3.6.3). Now simply conclude

(Plin ⊗ id) ◦∆(anαn) = anα
n ⊗ 1 +

n−1∑
k=1

an−kα
n−k ⊗ (2k − 1)akαk.

Corollary 3.6.7. As Z and γ vanish on products, we obtain for any n ∈ N

Z?n+1 (X(α)) = Z (X(α)) (2α∂α − 1)Z?n (X(α)) and (3.6.9)
γ?n+1 (X(α)) = γ (X(α)) (2α∂α − 1)γ?n (X(α)) . (3.6.10)

As Z (X(α)) = α, we deduce Z?2 (X(α)) = α(2α∂α − 1)α = α2 and recursively

Z?n+1 (X(α)) = αn+1(2n− 1)(2n− 3) · · · (1) = αn+1 (2n)!
2nn! ,

proving ϕ(an+1) = 2−nCnxn+1 again. The equations (3.6.10) are the physicist’s renor-
malization group equations, relating the dependence of G(α, x) on α with that on x:

∂

∂x
G(α, x) =

(3.6.5)

∂

∂x
[0φ (X(α))] =

(3.5.8)

∂

∂x
[exp? (x · γ)] (X(α)) =

(2.1.26)
(γ ? 0φ) [X(α)]

=
(3.6.8)

γ (X(α)) + γ (X(α)) (2α∂α − 1)G(α, x). (3.6.11)

To relate this to the notation common in physics18, define G̃(α, ln s
µ) := G(α, ln s

µ)− 1
as well as γ̃(α) := γ

(
X(α)

)
and introduce the running coupling α(µ) as the solution of

µ
d

dµα(µ) = 2α(µ)γ̃
(
α(µ)

)
= β (α(µ)) (3.6.12)

for the β-function β(α) := 2αγ̃
(
α
)
. In these terms, (3.6.11) boils down to

µ
d

dµG̃
(
α(µ), ln s

µ

)
= γ̃

(
α(µ)

)
G̃
(
α(µ), ln s

µ

)
. (3.6.13)

18Compare (3.6.13) and (3.6.14) with (7.3.15) and (7.3.21) in [5]!
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3.6 Correlation functions and Dyson-Schwinger equations

After integration, this tells us explicitly that the correlation functions for different renor-
malization points µ differ merely by an overall factor, as long as one chooses the values
of α as determined by the running coupling:

G̃
(
α(µ2), ln s

µ2

)
= G̃

(
α(µ1), ln s

µ1

)
· exp

[∫ µ2

µ1
γ̃
(
α(µ)

)dµ
µ

]
=

(3.6.12)
G̃
(
α(µ1), ln s

µ1

)
·
√

α(µ2)
α(µ1) .

(3.6.14)
In particular, G̃

(
α(µ), ln s

µ

)
/
√
α(µ) is independent of µ. Setting µ = s yields

G̃
(
α(µ), ln s

µ

)
= −

√
α(µ)
α(s) . (3.6.15)

So in full generality, we obtain G̃
(
α, ln s

µ

)
= −

√
α
α(s) where α(s) is determined through

ln s

µ
=
∫ α(s)

α

dα′

β(α′) . (3.6.16)

Hence apparently, β(α) determines the asymptotic behaviour of G̃ and even more pro-
foundly, whether it is defined for all s > 0 at all!

3.6.2 Non-perturbative formulations
We finally exploit that the Feynman rules under consideration are defined through the
universal property of HR and as such obey a specific behaviour on B+. In the case of ϕ
from (3.1.2),

G(α, x) =
(3.6.5)

ϕ (X(α)) =
(3.6.1)

αϕ ◦B+

(
1

1−X(α)

)
=

(3.1.2)
α

∫ x

0

dx′

1−G(α, x′) (3.6.17)

yields the differential equation ∂zG(z) = 1
1−G(z) for z := αx which readily integrates

to (3.6.7), using the boundary conditions G|α=0 = 0. This example shows how we
can obtain the full correlation function as the solution to an integral equation (3.6.17),
without having to consider the perturbation series at all!

In fact, we cheated in the above derivation: ϕ (X(α)) =
∑∞
n=1 ϕ(an)αn is only a formal

power series. Let 1

1−X(α) =
∑∞
n=0 fnα

n for forests fn ∈ F , that is an = B+(fn−1), then

ϕ (X(α)) =
(3.1.2)

∞∑
n=0

αn+1
∫

0
ϕ(fn) =

(3.6.3)
α

∫
0

∞∑
k=0

∞∑
i1,...,ik=1

αi1+...+ikϕ (ai1) . . . ϕ (aik)

= α

∫
0

∞∑
k=0

[
ϕ
(
X(α)

)]k = α

∫
0

1
1− ϕ (X(α))

is only valid if the series in α is actually absolutely convergent! In (3.6.7) we saw this
to be the case, however this assumption is going to fail in quantum field theory and the
toy model – the perturbation series is really only an asymptotic one. Further note that
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3 A detailed example: Kreimer’s toy model

in the above, we extended the algebraic integral operator
∫

0 ∈ End(K[x]) to the analytic
integration of general functions: 1

1−ϕ
(
X(α)

) is not a polynomial in x anymore.

However, apparently the naive calculation (3.6.17) suggests itself as a natural way of
formulating a non-perturbative equation! That is, we take it as the definition of the
non-perturbative theory. In the case of the toy model, it leads to

G (α, x) = α[−c−1
∫

0 +L]ρ ◦B+

( 1
1−X(α)

)
= α

[
−c−1

∫
0

+(∂η)
]( 1

1−G(α, ·)

)
.

Here we need to define the action of ∂η on general functions (non-polynomials). By

(∂η) (xn) =
n−1∑
k=0

(
n

k

)
η
(
xk
)
xn−k =

n−1∑
k=0

(−1)kck
n!

(n− k)!x
n−k

=
n−1∑
k=0

(−1)kck∂kxxn = P ◦
[ ∞∑
k=0

(−1)kck∂kx

]
(xn)

we can identify ∂η with a differential operator, while P subtracts the constant terms
∝ x0 (coming from k = n) as P (f) := f − f |x=0. By a differentiation we turn this
integro-differential equation into the differential equation

∂xG (α, x) = −α
[
c−1 +

∞∑
k=0

(−1)k+1ck∂
k+1
x

]
1

1−G(α, x)

=
(3.2.3)
−α [zF (z)]z=−∂x

( 1
1−G(α, x)

)
.

At this point we stop and remark that we can combine this equation together with
(3.6.10) to obtain a single equation for the scalar function γ̃(α), that allows to compute
the coefficients γ̃(α) =

∑∞
n=1 dnα

n order by order as polynomials in the Mellin trans-
form coefficients ck of F (z). For details and in particular the application to quantum
electrodynamics, we refer to [19].

3.7 Higher degrees of divergence
So far we restricted ourselves to logarithmically divergent integrals only, whereas in
quantum field theory the divergences can acquire higher power19 behaviour. In the
realm of our toy model this situation is exemplified by∫ ∞

0
f(ζ, s) dζ for f(ζ, s) := ζ

ζ + s
,

which is linearly divergent as the integrand is in O
(
ζ0) for ζ →∞. The subtraction at

s = µ like in (3.3.1) yields the integrand

f(ζ, s)− f(ζ, µ) = (µ− s)ζ
(ζ + s)(ζ + µ) ,

19For example, a boson propagator is quadratically divergent in any renormalizable quantum field theory.
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3.7 Higher degrees of divergence

which lies in O
(
ζ−1) and thus still results in a divergent integral! Therefore the simple

subtraction scheme Rµ from (3.3.2) is not sufficient anymore. However, if we further
subtract the linear term of the Taylor expansion of f at µ,

f(ζ, s)− f(ζ, µ)− (s− µ) ∂
∂s

∣∣∣∣
µ
f(ζ, s) = (s− µ)2ζ

(ζ + s)(ζ + µ)2

is in O
(
ζ−2) and hence delivers a finite integral under

∫∞
0 dζ. This method works to

arbitrary orders and is the foundation of the general momentum scheme20.

Definition 3.7.1. On A := C∞(Kn), for s ∈ N0 the operator of Taylor expansion21 is

Ts ∈ End(A), Tsf :=

Kn 3 x 7→
∑
|β|≤s

xβ

β! ∂
β
0 f

 , (3.7.1)

using multiindices β = (β1, . . . , βn) ∈ Nn0 with the common notations β ≤ α iff βi ≤ αi
for all i, |β| := β1 + . . .+ βn as well as

xβ :=
∏

1≤k≤n
xβkk , β! :=

∏
1≤k≤n

βk! and ∂β0 :=
∏

1≤k≤n

∂βk

∂xβkk

∣∣∣∣∣
xk=0

.

We can now implement the general momentum scheme using these projections Tn, but
as seen above we have to pick the correct n to obtain a finite result. In quantum field
theory, we are given a grading sdd (called superficial degree of divergence, see section
3.8) that precisely gives the power behaviour of the divergence and prescribes the order
n of Taylor polynomial (in the external parameters) to subtract.

Therefore, given some graduation H =
⊕

nHn as an algebra, we define a Birkhoff
decomposition recursively through φ−(1) := 1A and

φ−(x) := −T|x|

[
φ(x) +

∑
x

φ−(x′)φ(x′′)
]

(3.7.2)

for homogeneous x ∈ ker ε of degree |x|. Note the analogue of the Rota-Baxter relation
(2.2.8) in

Theorem 3.7.2. The Taylor expansion operators fulfil for any s, t ∈ N0 and f, g ∈ A

(Tsf)(Ttg) = Ts+t [(Tsf)g + f(Ttg)− fg] . (3.7.3)

Proof. Using the Leibniz rule ∂ ◦mA = mA ◦ (∂ ⊗ id + id⊗ ∂) and

∂α0 Ts = ∂α0
∑
|β|≤s

x 7→ xβ

β! ∂β0 =
∑
|β|≤s

∂α0 (x 7→ xβ)
β! ∂β0 =

{
∂α0 if |α| ≤ s,
0 else,

(∗)

20If one subtracts already on the level of integrands themselves and omits a regulator, one calls this
again the BPHZ scheme.

21For simplicity we expand around zero, however the whole argument to come clearly stays valid for
arbitrary subtraction points µ 6= 0!
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3 A detailed example: Kreimer’s toy model

by (3.7.1) it suffices to check for any multiindex |α| ≤ s+ t that

∂α0 [(Ts f)g + f(Tt g)− fg] =
∑
β≤α

(
α

β

)
mA ◦

(
∂β0 ⊗ ∂

α−β
0

)
[(Ts f)g + f(Tt g)− fg]

=
∑
β≤α

(
α

β

)[{
∂β0 Ts f

}{
∂α−β0 g

}
+
{
∂β0 f

}{
∂α−β0 Tt g

}
−
{
∂β0 f

}{
∂α−β0 g

}]

=
∑
β≤α

(
α

β

){
∂β0 Ts f

}{
∂α−β0 Tt g

}
= ∂α0 [(Ts f) · (Tt g)] .

Here we used that in the middle line, by (∗) the contributions with |β| > s or |α− β| > t
give zero. For example, if |β| > s note |α− β| = |α| − |β| < t such that(
∂β0 Ts︸ ︷︷ ︸

0

f
)(
∂α−β0 g

)
+
(
∂β0 f

)(
∂α−β0 Tt︸ ︷︷ ︸
∂α−β0

g
)
−
(
∂β0 f

)(
∂α−β0 g

)
= 0 =

(
∂β0 Ts︸ ︷︷ ︸

0

f
)(
∂α−β0 Ttg

)
.

Hence only terms with |β| ≤ s and |α− β| ≤ t remain, but then we get(
∂β0 Ts︸ ︷︷ ︸
∂β0

f
)(
∂α−β0 g

)
+
(
∂β0 f

)(
∂α−β0 Tt︸ ︷︷ ︸
∂α−β0

g
)
−
(
∂β0 f

)(
∂α−β0 g

)
=
(
∂β0 f

)
︸ ︷︷ ︸
∂β0 Ts f

(
∂α−β0 g

)
︸ ︷︷ ︸
∂α−β0 Tt g

.

The above relations imply that also the generalized momentum scheme defined by
(3.7.2) respects characters in

Theorem 3.7.3. Let H be a connected bialgebra, graded as an algebra and φ ∈ G̃HA an
algebra morphism to some commutative algebra A. Further let T· : N0 → End(A) be an
indexed renormalization scheme, that is a family of endomorphisms such that

mA ◦ (Tn ⊗ Tm) = Tn+m ◦mA ◦ [Tn ⊗ id + id⊗ Tm − id⊗ id] (3.7.4)

for all n,m ∈ N0. Then the counterterms φ− defined by (3.7.2) (and thus φ+ := φ− ? φ
as well) are algebra morphisms.

Proof. The proof is the same as for (2.2.3), we only replace (2.2.8) by (3.7.3): For
homogeneous x, y ∈ ker ε,

φ−(x · y) =
(3.7.2)
−T|x·y|

[
φ(x · y) +

∑
x·y

φ−
(
{xy}′

)
φ
(
{xy}′′

)]

= T|x|+|y|
[{
T|x|φ̄(x)

}
φ̄(y) + φ̄(x)

{
T|y|φ̄(y)

}
− φ̄(x)φ̄(y)

]
=

(3.7.4)

[
T|x|φ̄(x)

]
·
[
T|y|φ̄(y)

]
=

(3.7.2)
φ−(x) · φ−(y).

Note how this embodies a vast generalization of our original definition 2.2.1 of renor-
malization!
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3.8 Massless Yukawa theory and the toy model

We conclude remarking that these results extend to the full algebra of all Feynman
graphs (as opposed to only the superficially divergent ones), when sdd takes values in
Z. For that purpose, as sdd(Γ) < 0 indicates no overall divergence set Tn = 0 whenever
n < 0. This still ensures (3.7.4) for all n,m ∈ Z (both sides vanish if n or m are negative)
and we will thus still arrive at counterterms and renormalized Feynman rules that are
algebra morphisms.

3.8 Massless Yukawa theory and the toy model

So far we looked at Feynman rules from a purely algebraic point of view. It is the
goal of this section to relate our results to physics, in particular through demonstrating
how Kreimer’s toy model actually arises out of quantum field theory. We assume basic
knowledge of quantum field theory and refer to the lecture notes [18], covering all the
material we are going to need.

For simplicity22 consider massless scalar Yukawa theory, a renormalizable quantum
field theory in six spacetime dimensions given by the Lagrangian density

L = (∂µψ∗)(∂µψ) + 1
2(∂µφ)(∂µφ)− gφψ∗ψ.

It describes a real scalar boson φ and a complex scalar boson ψ, interacting through a
cubic vertex of coupling g. In the Feynman graphs of perturbation theory, we will denote
the free propagators of φ and ψ particles by dashed and solid lines, respectively. The
fermion analogue ψ also carries a charge flow arrow along its edges. For an example of
these simple Feynman rules Φ, consider (working in Euclidean space, after Wick rotation)

Φ
(

k

p+k

p p

)
=
∫
R6

d6k

(2π)6
1
k2

1
(k + p)2 . (3.8.1)

We do not include the powers of g into Φ, as those will be restored in a later step using a
Dyson-Schwinger equation. Note that in Yukawa theory, all symmetry factors are one.23

We focus on the correlation function Gψ for the ψ propagator, given as asymptotic
series in g summing all amputated24 1PI Feynman graphs with two external ψ legs.

3.8.1 Analytic regularization and the one-loop master function

The naive Feynman rules deliver divergent integrals like (3.8.1) – hence as in section
3.2.1, we have to regularize these to obtain well defined functions to work with.
22In case of ordinary Yukawa theory in four dimensions, the fermion ψ is a spinor and we have to take

care of form factors. These are technicalities not influencing the basic structure of the argument to
come.

23All incidences at a vertex are of distinct type: φ edge, incoming ψ and outgoing ψ edge – thus there
are no non-trivial automorphisms of the Feynman graphs.

24This means the Feynman rules do not include a propagator term for the external edges.
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3 A detailed example: Kreimer’s toy model

We again employ analytic regularization, which in this setting is defined by furnishing
each loop integration

∫
d6k with an additional factor (k2)−z. To evaluate these Feynman

rules, generalize (3.8.1) by raising the propagators to arbitrary powers n,m:∫ dDk
(2π)D

1
[k2]n

1
[(k + p)2]m =:

(
p2
)D/2−n−m

L(n,m). (3.8.2)

This defines the one-loop master function L(n,m) which evaluates to25

L(n,m) = (4π)−D/2 Γ(n+m−D/2)Γ(D/2− n)Γ(D/2−m)
Γ(D − n−m)Γ(n)Γ(m) . (3.8.3)

and is well known also in the context of dimensional regularization, where D may take
arbitrary values in C (see chapter 4 of [5] for a definition of dimensional regularization).
However, in our case we fix D = 6. For instance, the regulated value for (3.8.1) becomes∫

R6

d6k

(2π)6
(k2)−z

k2
1

(k + p)2 = L(1 + z, 1)
(
p2
)1−z

=
(
p2
)1−z

(4π)−3 Γ(z − 1)Γ(2− z)
Γ(4− z)Γ(1 + z)

= (p2)1−z

(4π)3z(z − 1)(z − 2)(z − 3) ,

where the pole at z → 0 indicates the divergence. Note that as D = 6, (3.8.2) converges
only for <(n + m) > 3. Nevertheless we utilize the analytic continuation (3.8.3) as the
actual definition of the regularized integrals (dimensional regularization can be defined
analogously)! We also evaluate

Φ


p p

k

q

q

p+q

 =
∫ d6q

(2π)6
(q2)−z

(p+ q)2
1

[q2]2
∫ d6k

(2π)6
(k2)−z

k2
1

(k + q)2

= L(1 + z, 1)
∫ d6q

(2π)6
(q2)−z

(p+ q)2
1

[q2]4+z−3 = L(1 + z, 1)L(1 + 2z, 1)
(
p2
)1−2z

(3.8.4)

and more generally any graph that arises by iterated insertions of the one-loop propaga-
tor graphs into each other: simply replace one-loop subdivergences by the appropriate
L(n,m) and keep track of the overall exponent of the external momentum.

Note that the procedure given in (3.8.4) is ambiguous, as we might just as well allocate
the regularizing factor to (p+q) instead of q! This problem does not arise in dimensional
regularization, however we can surpass it in the toy model below: we simply define the
regulator (q2)−z to use the momentum of the fermion-like line (ψ-propagator).

3.8.2 The toy model of iterated insertions
Now consider the Hopf algebra HL generated by all superficially divergent 1PI Feynman
graphs of the scalar Yukawa theory L. For an account of this kind of Hopf algebras we
refer to [6] and [19]. The toy model is defined as the Hopf subalgebra H generated
by the graphs obtained from iterated insertions of into itself.
25For a derivation of (3.8.3) we refer to section 2.2 in [10]. See also chapter 5 therein for the two-loop

analogue.
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3.8 Massless Yukawa theory and the toy model

Definition 3.8.1. The insertion operator B+ ∈ End(HL) maps a graph γ of H to

B+ (γ) := 1
|π0(γ)|!

∑
σ∈S|π0(γ)|

δσ1
δσ2

δσn , (3.8.5)

where π0(γ) = {δi : 1 ≤ i ≤ n} with n := |π0(γ)| denotes the multiset of the connected
components of γ and σ ∈ Sn runs over all permutations of these.

It is easy to unmask B+ as a cocycle of H using the coproduct – however note
that this is not the case in the full Hopf algebra HL (section 3 in [19] gives details on
cocycles and insertion operators in general). Thus we can define a morphism

ρ :=
[
B+

]
ρ : HR → H , ρ ◦B+ = B+ ◦ ρ (3.8.6)

of Hopf algebras using the universal property (2.4.9). As examples observe

ρ ( ) = B+ (1) = ρ ( ) = B+ ( ) =

ρ

( )
= B+

(
∪̇

)
= 1

2 + 1
2 .

Clearly, the order (determined by the permutation σ) of the insertions in (3.8.5) is
irrelevant for the value assigned to the graph by the Feynman rules Φ, as the same
momentum runs through all components δi! Hence we find the recursion

Φ ◦B+

(
γ, p2

)
=
∫ d6k

(2π)6
1

(p+ k)2
(k2)−z

k2

∏
δ∈π0(γ)

Φ(δ, k2) 1
k2 , (3.8.7)

where the additional factors 1
k2 account for the ψ-propagators between adjacent compo-

nents δσi and δσi+1 in (3.8.5).
We obtain the momentum dependence of Φ(γ) through power counting: as the ex-

ternal momentum is the only scale around, we must have Φ
(
γ, p2) ∝ (p2)sdd(γ)/2. The

superficial degree of divergence sdd(γ) is increased by 6 − 2z for each loop (yielding an
integration

∫
d6k (k2)−z under Φ) and decreased by two for each internal edge (con-

tributing a boson propagator). Define the loop number |γ| of a graph γ as the dimension
of its first homology (the cardinality of a cycle basis of the graph) and denote the number
of internal edges, external edges and nodes by I(γ), E(γ) and V (γ), then

sdd(γ) = (6− 2z) |γ| − 2I(γ), E(γ) + 2I(γ) = 3V (γ), |γ| = I(γ) + |π0(γ)| − V (γ)

together with E(γ) = 2 |π0(γ)| (in H each connected graph δ has E(δ) = 2) leads to

sdd(γ) = 2 (|π0(γ)| − z |γ|) . (3.8.8)
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3 A detailed example: Kreimer’s toy model

We now separate the trivial powers of p2 in

Φ̃
(
γ, p2

)
:=
(
p2
)−|π0(γ)|

Φ
(
γ, p2

)
, (3.8.9)

which still defines a morphism of algebras as |·| is compatible with the multiplication
(saying that |γδ| = |γ ∪̇ δ| = |γ|+ |δ|). Finally we apply (3.8.8) to (3.8.7) in

Φ̃
(
B+ (γ), p2

)
= 1
p2

∫ d6k

(2π)6
1

(p+ k)2

[ 1
k2

]1+z+|π0(γ)|
Φ
(
γ, k2

)
= 1
p2

∫ d6k

(2π)6
1

(p+ k)2

[ 1
k2

]1+z+|π0(γ)|−sdd(γ)/2 (
k2
)− sdd(γ)/2

Φ
(
γ, k2

)
︸ ︷︷ ︸

independent of k2

= 1
p2

(
p2
)− sdd(γ)/2

Φ
(
γ, p2

) ∫ d6k

(2π)6
1

(p+ k)2

[ 1
k2

]1+z+z|γ|

=
(
p2
)−1−|π0(γ)|+z|γ|+3−1−1−z−z|γ|

Φ
(
γ, p2

)
L(1, 1 + z [1 + |γ|])

= Φ̃
(
γ, p2

) (
p2
)−z

L(1, 1 + z [1 + |γ|]).

Identifying the external parameter s := p2 and the function F (z) := L(1, 1 + z), this
coincides with (3.2.4) through

Φ̃ ◦ ρ ◦B+(f) = Φ̃ ◦ ρ(f)s−zF (|B+(f)| z), (3.8.10)

where we used that ρ respects the graduations: a forest f ∈ F of weight |f | is mapped
to a linear combination of |f |-loop graphs (each node of f corresponds to an application
of B+ , which adds another loop). So instead of considering H , we can equivalently
study HR with the Feynman rules defined by Φ̃p2 ◦ ρ =: zφs.

Hence we realize how for a special choice of F , we obtain the toy model of section
3.2 as the restriction of a quantum field theory to graphs obtained by iterated insertions
into a single primitive divergence! In particular, therefore all the results derived earlier
for the abstract toy model do apply here. For more information on the four dimensional
Yukawa toy model and in particular a non-perturbative result, study [2].

Finally we remark that the coefficients σ(t) in the solution (3.6.2) of the Dyson-
Schwinger equation (3.6.1) cancel with the factors 1

|π0(γ)| in (3.8.5), such that X(α) in
(3.6.1) indeed sums over all graphs of the toy model with a coefficient of unity. As a
simple example, check

ρ(a4) = ρ

( )
+ ρ

( )
+ 2ρ

( )
+ ρ ( )

= +

+ + + .
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3.8 Massless Yukawa theory and the toy model

Note how each graph contributing to ρ(an) corresponds uniquely to an ordered rooted
tree (whose ordering specifies the permutations σ in (3.8.5) at each node), which is why
proposition 3.6.1 proves that ρ(an) indeed is the sum over all graphs of the toy model
with n loops and a coefficient of one!
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4 Conclusion

While investigating the toy model, we saw how the Hopf algebra not only allows for
a precise definition of the renormalization process, but is also the key for clean in-
ductive proofs of properties like finiteness. Most importantly, we learned in corollary
(3.4.4) that the physical limit of the renormalized Feynman rules results in a morphism
0φ : HR → K[x] of Hopf algebras.

Section 3.5 revealed that it is precisely this compatibility with the coproduct that
allows for the reduction of 0φ to its linear terms γ in (3.5.8). This is a tremendous
achievement, eliminating the whole dependence on the external parameter (γ is just a
functional on HR)! Further, upon application to the correlation functions, these relations
take the well-known form of the renormalization group equations of physics, as we proved
in section 3.6.1.

All these results were derived in the momentum scheme (subtraction Rµ at a renor-
malization point s 7→ µ). We remark that the popular minimal subtraction scheme does
behave much worse from an algebraic viewpoint. In particular, by (2.2.5) it does not1

yield a Hopf algebra morphism in the physical limit! Also it is not possible to calculate
these values recursively as easily as in the case of the momentum scheme.

For further study it will be interesting to compare the above observations with the
similar relations occurring among counterterms in the minimal subtraction scheme as
reported in [7], or the differential equation for the physicial limit in this scheme derived in
[3]. Considering the correlation between (3.4.11) and (3.2.7) it seems worth investigating
the general relation connecting the counterterms and the renormalized results.

Finally, the equation given at the end of section 3.6.2 remains to be analyzed in
general. Its understanding would give insight into how the apparently most relevant
Mellin transform (3.2.3) determines the correlation functions, non-perturbatively.

I wish to thank my family for their support, Dirk Kreimer for his endless pool of
exciting ideas, my colleagues Marko Berghoff, Markus Hihn and Lutz Klaczynski for
illuminating discussions and great eats around and everyone else from our group for
making this place so friendly and welcoming!

Furthermore I am particularly indebted to Dzmitry Doryn, Henry Kißler and Oliver
Schnetz for their careful reading of this work, spotting and kindly pointing out to me
numerous errors all over the place.

1Otherwise it would have to map ker ε into polynomials without a constant term!
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