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Abstract

This thesis is concerned with the computation of the Laurent expansion of scalar Feynman
integrals within the framework of dimensional regularization.
For a large class of integrals the computation of their Laurent expansion is well understood
within the iterated structure of hyperlogarithms. Beyond hyperlogarithms one enters
mostly unknown territory and there are only two known examples of iterated all order
solutions in terms of elliptic polylogarithms, the sunrise and the kite [107,124].
I discuss our all order solution of the kite family in terms of elliptic polylogarithms [124].
Since understanding the sunrise enabled us to obtain this result, I review the iterated
solution in [107]. Hereby the emphasis will be on the structure rather than on the explicit
solution and crucial technical details are added.
The iterated solutions were computed in the Euclidian regime only. But due to a study
of their structure we were able to obtain a simple analytic continuation to the complete
kinematic regime [109]. This analytic continuation and the numerical results are reviewed.
The numerical results are extended by an explicit comparison of the solution of the
sunrise integral with one massive propagator in terms of hyperlogarithms and elliptic
polylogarithms. This allows us to study the influence of the finite q-series expansion on
the error of the approximation. One finds that already at low orders in the q-expansion
the relative error away from the thresholds is < 10−16.
For a good understanding of these generalized all order solutions, a knowledge of currently
well established approaches and the structures arising therein is important. Therefore
the method of IBP-reductions and differential equations as well as the iterated all order
solutions of Feynman integrals within the class of hyperlogarithms are reviewed on detailed
examples with an emphasis on the structure of the results.
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Chapter 1

Motivation

This master thesis is concerned with the computation of Feynman integrals. Feynman
integrals arise as contributions to scattering amplitudes in the treatment of quantum
field theories within the framework of perturbation theory. The computation of these
scattering amplitudes is the foundation of theoretical predictions on the outcome of
high-energy scattering experiments as measured e.g. at LHC. The increasing precision
of the experimental tests of the Standard Model of particle physics gives rise to new
requirements on the accuracy of the theoretical prediction. This leads to the necessity to
compute increasingly numerous and complicated Feynman integrals. These computations
soon reach a high mathematical complexity such that the existing methods have to be
constantly improved and new approaches need to be developed to allow a successful
evaluation of this mathematically challenging task.

Currently a wide class of Feynman integrals can be computed within a class of special
functions, known as hyperlogarithms. By improving on the established methods of
parametric integration and differential equations [45, 46] these computations could be
greatly simplified and systematized [35,43,73,76].
Beyond this well established class of functions, little is known and the results are obtained
in a case to case study. In a recent computation of the equal mass 2-loop 3-denominator
sunrise topology [26, 93, 95–113] a first iterated all order result of a Feynman integral
beyond hyperlogarithms could be obtained in the Euclidian regime [107]. This solution
required a generalization of the class of functions towards the elliptic case which was
already established in the computation of Feynman integrals [107,110].

Originating from this result and its beautiful structure are two questions:

• Can a similar class of functions be used to compute other Feynman integrals to all
orders in their Laurent expansion?

• Can the results be continued into the whole physical regime?

The answer to both questions is yes.
In a joint work with Luise Adams, Christian Bogner and Stefan Weinzierl we obtained the
all order result of the kite, a more involved 5-denominator topology, in terms of elliptic
polylogarithms [124].
The analytic continuation of the integrals of the kite and all its sub-topologies has been
computed in a recent joint work with Christian Bogner and Stefan Weinzierl [109].
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The main goal of this thesis is to establish the methods and structures of the iterated
solutions of all order results of Feynman integrals in a comprehensive way, such that the
non-standard and non-trivial generalizations necessary to understand our results can be
lucidly presented. To achieve this goal I structured the thesis in three parts as followed:

Part I: Short introductions into commonly used tools and concepts in the computation
of scalar Feynman integrals with emphasis on their application. The introduced
subjects include the necessity of a regularization scheme in chap. 2, the consideration
of complete families of Feynman integrals (called topologies) in chap. 3, the method
of integration-by-parts in chap. 4 and the parametric representation of Feynman
integrals in chap. 5.

Part II This part introduces in chapter 6 the computation of Feynman integrals to all orders
in terms of hyperlogarithms. In this part I will emphasize the iterated structure of the
results and introduce the class of special functions in which it becomes manifest, the
hyperlogarihms. This will be done by investigation of the parametric representation.
Furthermore I review the method of differential equations and introduce the concept
of a canonical basis. The canonical basis will be introduced by constructing certain
dLog-forms in the parametric representation. The canonical basis necessary for the
computation of the kite integral will be explicitly derived.

Part III In this part consisting of chapter 7 the iterated structure of Feynman integrals
beyond hyperlogarithms is discussed. The result of the all order solution of the equal
mass sunrise as obtained by Adams et al will be reviewed in some detail and the
elliptic polylogarithms will be introduced. The second part of this chapter presents
the results of the master integrals of the kite topology, their analytic continuation
and numerical evaluation. Thereby the emphasis will be on the structure rather
than the explicit results. The non-trivial technical details of these computations are
covered in detail in appendix B.
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Chapter 2

Fundamentals and Basic Techniques

Feynman diagrams are the basic objects for visualization as well as computation in
quantum field theories within the framework of perturbation theory, meaning a series
expansion of the path integral around small coupling constants.
These computations are a crucial part in the understanding of the fundamental interactions
between particles described in the standard model and studied in scattering experiments
at particle colliders like the LHC. For testing the validity of the standard model and its
limits there have to be high precision predictions on the observables accessible by collider
experiments.
One of these observables, typically measured by scattering experiments, is the cross section
σ. The cross section is related to the probability P that a scattering of incoming particles
A will result in outgoing particles B. The relation between the theoretical computation
and the measured cross section for a given scattering process is roughly described by

σ (A→ B) ∝ |P (A→ B) |2 ∝ |
∑

all possible feynman diagrams|2 . (2.0.1)

Hereby a Feynman diagram is a pictorial representation of the underlying fundamental
particle interactions which can be “translated” into mathematical expressions by the so
called Feynman rules.

2.1 Fundamentals
A Feynman diagram (here: 2 → 2) describes, shortly and superficially speaking, the

I

out1

out2

in2

in2

. (2.1.1)

physical process of: some particles come in, they interact (I), some other come out. The
incoming and outgoing particles are referred to as legs carrying external momenta. The
interaction of these external particles is graphical depicted by a connection with internal

3



q

k

k − q

q

out

out

in

in

, (2.1.2)

lines called edges carrying internal momenta. All possible ways of connecting the external
particles are completely determined by the order of expansion in the coupling and by the
allowed vertices (dots in the diagram above), which originate from the underlying field
theory. The four momentum is conserved at every vertex such that the incoming and
outgoing momenta add to zero.
In higher order perturbation theory the internal momenta are not completely determined
by momentum conservation. In that case the internal momenta are referred to as loop
momenta (k in the graph above). One has to integrate over the undetermined loop
momenta since they can take any value. Diagrams containing loops are called loop
integrals. If a diagram has n loops and m external legs it is referred to as n-loop m-point
function. Diagrams with completely determined internal momenta are called tree-level
diagrams.
The Feynman rules associated to the diagrams of different sorts of quantum fields can be
summarized as followed

• ∝
T ν1ν2...
µ1µ2...

k2 −m2 + iε
:

is called propagator an describes the propagation of an particle

• : is called vertex and is proportional to the couplings of the fields

• the momentum is conserved at every vertex

•
∫

d4k integrate over loop momenta .

One recognizes in the rules above, that momentum integrals occur for every Feynman
diagram beyond the tree-level and that they might posses a tensor structure resulting
from the underlying quantum fields. In general, the analytical evaluation of these types
of integrals is far from trivial and they require a continuous improvement of existing
mathematical methods, algorithms and in some cases a development of completely new
strategies and mathematical functions.
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2.2 Basics for Scalar Feynman Integrals
The main subject of this thesis is the investigation and computation of massive scalar
2-loop diagrams. These diagrams do not arise from an interacting theory directly, since
there is only one scalar particle described within the standard model, the Higgs-boson.
However, tensor integrals which occur in the computation of scattering processes beyond the
tree-level can be reduced to scalar integrals. A first systematic reduction of one-loop tensor
integrals was developed by Passarino and Veltman in the context of the computation of
the e+e− → µ+µ− scattering process [1]. Reductions of multi-loop integrals are possible as
well [2–4], such that the evaluation of the initial Feynman diagram, given by the scattering
process under investigation, reduces to the computation of a certain combination of scalar
multi-loop integrals.
Therefore, the knowledge of the solution of scalar Feynman integrals is an essential step
within the prediction of actual scattering processes observed in collider experiments.

2.2.1 First Example and the Necessity of Regularization Schemes
The investigation of a rather simple massless scalar one-loop integral (2.2.1) reveals some
of the difficulties connected to the evaluation of Feynman diagrams already.

I1 =
p = 0

k

−k

p = 0
=
∫
R1,3

d4k

(2π)4
1

k2(−k)2 (2.2.1)

The first problem lies in the measure of the integral. Since the momenta are elements
of the Minkowski space k ∈ R1,3 it is not intuitively obvious how to perform the integration.
However, one can show that a suitable change of the k0 integration contour, the so called
Wick-rotation 1, yields “momenta” K in the Euclidean R4, whereas after the substituting

k0 = iK0, (2.2.2)
kj = Kj for j = {1, 2, 3} (2.2.3)

the scalar product becomes

k2 = kµk
µ = k2

0 − k2
j = −K2

0 −K2
j = −K2 (2.2.4)

and the measure changes according to

d4k = idK0d3K = id4K . (2.2.5)

1For a detailed review of the Wick-rotation see e.g. [5].
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This change of variables leaves us with “ordinary” scalar products in R4 and makes the
iε-prescription in the propagator superfluous. Throughout this thesis, momenta in the
Euclidean space R4 are denoted by capital letters (K) and momenta in the Minkowski
space R1,3 by small ones (k). Furthermore we work in a mostly minus convention, such
that kµkµ < 0 for space-like momenta k.
How to perform the integral I1 depicted in (2.2.1) becomes obvious after applying a
Wick-rotation (W.R.) and a change to 4d-spherical coordinates (S.C.)

I1 =
∫

R1,3

d4k

(2π)4
1
k4

W.R.= i

∫
R4

d4K

(2π)4
1
K4

S.C.= i

∞∫
0

dKE
−iK3

E

K4
E

∫
∂S4

dΩ
(2π)4 (2.2.6)

=
∞∫

0

dKE

(4π)2
1
KE

(
“∝ log(KE)

∣∣∞
0 ”
)

(2.2.7)

and the second mayor issue becomes obvious. I1 diverges logarithmically in the limit
KE → 0 as well as KE →∞.
These divergences do not stem from some improper integral transformation (W.R. or
S.C.) but became only more apparent through them. They are not restricted to the
integral I1 but will arise for certain classes of Feynman integrals beyond tree-level and
their physical interpretation is beyond the scope of this thesis (but is given in every proper
QFT textbook).
However, it is quite evident, that every physical observable given by means of divergent
integrals is in itself ill defined. Therefore one has to find ways to regularize these divergences
for a further treatment within the framework renormalization.

For a further discussion of divergences arising in Feynman integrals, we classify them
as followed:
The divergences in the limit k → 0 and thus in the limit 1/k ∝ λ → ∞ of long
wavelengths λ are called infrared (IR) divergences, whereas the divergences associated
with large momenta k →∞ (short wavelengths) are called ultraviolet (UV ) divergences.

By studying the analytical structure of the scalar propagators

P (K2) ∝ 1
K2 +m2

m→0→ 1
K2 (2.2.8)

it becomes apparent that IR-divergences do arise for massless propagators (e.g. stemming
from photons) only. Therefore they are somewhat special, since IR divergent Feynman
diagrams have to be completely massless or contain at least a completely massless
subdiagram.

UV divergent diagrams on the other hand, do not depend on special properties like
massless propagators. They do arise for every Feynman diagram (massless or massive) for
which the so called superficial degree of UV divergence G = DL− 2P becomes greater or
equal zero for itself or one of its sub-graphs. Hereby D denotes the dimension of space
time, L the number of loops and P the number of internal edges (∝ propagators).
The diagram shown in (2.2.1) is both IR and UV divergent in D = 4 spacetime dimension
and its superficial degree of divergence reads G = 4 · 1− 2 · 2 = 0 which manifests itself in
the logarithmic UV divergence of the integral.
For the treatment of divergences in Feynman diagrams, several regularization schemes
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have been developed. These schemes either modify the propagator [6, 7] or the dimension
of the integral measure [8–11].

Dimensional Regularization

During this thesis we will work within the framework of dimension regularization2. Within
this scheme we consider the momentum integrals in arbitrary D dimensions instead of the
original physically motivated D = 4. Here, D becomes an additional free parameter of the
problem, which does not have to be an integer or even real. After computing the integral
we will get a function of the kinematical invariants, the masses and the parameter D. By
considering the limit D → 4, we can investigate the divergent behavior of the integral
and are able to make it manifest within a suitable chosen expansion parameter.

From now on we will consider the D-dimensional version ID1

ID1 =
∫

R1,D−1

dDk
(2π)D

1
k4 (2.2.9)

of the integral I1 (2.2.1) and point out some general aspects regarding divergent Feynman
integrals within dimensional regularization.
To get a more handy version of the integral (2.2.9) we can apply Wick-rotation once again.
Furthermore it is convenient to work in D-dimensional spherical coordinates whereas
the measure transforms according to dKD → d KEK

D−1
E dΩD. The integration of the

generalized solid angle dΩD yields an D dependent closed form such that it suffices to
consider the KE dependent part of the integral for an investigation of the divergences
only.
Therefore the interesting part of the integral (2.2.9) is

ID =
∞∫

0

dKE
KD−1
E

K4
E

. (2.2.10)

For the analysis of the IR-divergence only, we consider an upper bound on the
integration, the so called cut-off Λ. This cut-off is taken to be large but finite. Even
though it plays a central role in certain regularization schemes (see e.g. [6]), it is only
used to make the integral UV-finite here. After introducing the cut-off, we are left with
the integral

IDIR =
Λ∫

0

dKE
KD−1

K4
E

. (2.2.11)

From the integral (2.2.11) it becomes obvious that we have to consider initially IR-divergent
integrals in generalized D-dimensions with Re(D) > 4 to ensure IR-convergence.

2Notice that it has been stated in [12] and the references therein (see footnote [1] in [12]), that this
regularization scheme and the connected MS-scheme within renormalization is erroneous on the level of
the path integral. But we will take a “practical” approach here, since dim. reg. is quite convenient and
has not failed in practical applications yet (at least to my knowledge).
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To obtain an analogous condition on D for initially UV-divergent integrals, we consider
the slightly modified integral

IDUV =
∞∫

0

dKE
KD−1
E

(K2 +m2)2 , (2.2.12)

where we introduced an additional parameter, which corresponds to a mass. The integral
(2.2.12) yields the initial integral ID(2.2.10) in the limit m→ 0 and it convergences for
KE →∞ only if Re(D) < 4.

Although we considered a special example only, the obtained conditions on D are more
general. Integrals with UV-divergences yield well defined results if they are considered
in arbitrary dimensions D with Re(D) < 4 (or even Re(D) < 2), whereas initially IR-
divergent integrals are convergent in D dimensions iff Re(D) > 4. In D = 4 dimensions
the integrals have poles [5].

At first sight, these two conditions seem to contradict each other and one would expect,
that there is no dimensional regularization scheme, in which the simultaneous regularization
of both UV- and IR-divergences is possible. That it is possible to dimensionally regularize
both IR- and UV-divergent after all is not trivially seen, such that we will solely outline
the main ideas on how to achieve it 3.

Given a both IR- and UV-divergent integral, regularize the IR-divergence with a
suitable (non dimensional) regularization scheme by for example introducing massive
propagators as in the case of ID → IDUV .
Once the IR-divergence is regularized the integration in the domain Re(D) < 4 yields
a well defined function of D which will be analytic and can be continued on the whole
complex D-plain. The regulators initially introduced for the IR-finiteness of the integral
can now be removed in the domain Re(D) > 4 by considering the analytically continued
result of the first integration in that region, such that IR- as well as UV-divergences
are regularized dimensionally. The poles associated to the divergences in dimensional
regularization will enter the result with opposite signs. Therefore it is possible to set
integrals without an external scale, meaning no dependence on the external momenta and
massless propagators (see e.g. (2.2.9)), to zero 4.

The poles associated to UV-divergences in D → 4 dimensions are treated within the
framework of renormalization of the underlying QFT.
The poles originating from IR-divergences cancel, under the assumption of a finite reso-
lution of detectors used in the actual experiments, with IR-divergences of phase-space
integrals (Kinoshita-Lee-Nauenberg-Theorem [14, 15]). That means, roughly speaking,
that the standard model is IR-finite if detectors can not resolve particles below a certain
energy-threshold respectively separate them below a certain distance limit.
A detailed treatment of renormalization or the resolution and canceling of IR-divergences
is far beyond the scope of this master thesis, since both are current fields of research
in their own right with a high degree of complexity involving different mathematical
formalisms respectively approaches.

At this point, I will summarize the main aspects of the preceding paragraphs and
emphasize on the results mandatory for understanding the upcoming discussions, since

3For a more explicit and complete discussion of the here outlined ideas see e.g. [5].
4More properties of dimensional regularized Feynman integrals are listed e.g. in [13] (p. 9 ff.).
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they may seem rather technical at some points.
If we attempt high precision predictions on observables measured in scattering experiments,
we have to compute associated Feynman diagrams, which are a pictorial representation
prescribed by the interactions of underlying quantum fields. These diagrams are translated
to formulas by using Feynman rules and they yield complicated integrals over loop momenta
for higher orders within a perturbative treatment of QFT. These integrals over the loop
momenta are mostly tensor integrals, but they are reducible to combinations of scalar
integrals. The attempt to compute certain types of Feynman integrals leads to ill defined,
divergent expression in D = 4 dimensions. It is possible to treat this divergences within the
framework of dimensional regularization such that the integration over the loop momenta
is performed in arbitrary D dimensions. It is possible to change between momenta k
defined as elements of the Minkowski space R1,D−1 and Euclidean “momenta” defined as
elements in RD. Throughout this thesis capital letters are used for Euclidean momenta
and we will work in a mostly minus metric for the Minkowski-space.
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Chapter 3

A More General Viewpoint

In the previous chapter we discussed some crucial properties of Feynman integrals associ-
ated to scattering processes of elementary particles. Up to now we have not solved any
integrals, neither in D = 4 nor in arbitrary D-dimensions. That is owed to the fact that
the methods of the computation of Feynman integrals are, except fo some special cases,
highly non trivial. Therefore it is desirable to find methods to relate similar integrals
and to evaluate as little integrals as possible explicitly via integration. To specify what
similarities to expect and how to use them for the purpose of reductions, we will look at
Feynman integrals from a slightly more general viewpoint.

3.1 Topologies
After a successful tensor reduction of the initial integral, we are left with a linear combi-
nation of scalar Feynman integrals with g legs, l loops and d internal edges in the generic
form

∫
dkD1 dkD2 . . . dkDl

Nsp∏
i=1

Snii

d∏
j=1

Dj

(3.1.1)

where we suppressed constant factors resulting from the Fourier-transform and the di-
mensional regularization procedure. The Dj in the denominator in (3.1.1) denote the
quadrics

Dj = q2
j −m2

j (3.1.2)

associated to the internal edges of the Feynman diagram. From now on we will refer to
the Dj as propagators since they fully characterize the scalar propagator ∝ 1/Dj.
The Si in (3.1.1) are scalar products between either external and internal momenta or
between two of the l internal momenta, whereas the ni ∈ N are related exponents. The
product of the Si is over all possible Nsp combinations of the l internal and g − 1 external
momenta, such that Nsp = Nlg +Nll.
The number Nlg of possible scalar products between external and internal momenta is

Nlg = l(g − 1) . (3.1.3)
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Hereby one has to take the momentum conservation of the whole diagram into consideration,
such that one of the external momenta is always expressible through the g − 1 remaining
ones. The number Nll of scalar products between the loop-momenta is given by

Nll = l(l + 1)
2 (3.1.4)

and it follows that there are

Nsp = l(g − 1) + l(l + 1)
2 (3.1.5)

possible scalar products. If only t of the d propagators Dj in (3.1.1) are different, we can
denote the integral as

∫
dkD1 dkD2 . . . dkDl

Nsp∏
i=1

Snii

t∏
j=1

D
mj
j

(3.1.6)

with mj, ni ∈ N. Furthermore there are t of the Nsp scalar products expressible through
the propagators such that only q = Nsp − t of the scalar products are irreducible. We are
left with a so called topology

Tµ1,...,µt;ν1,...,ν1 =
∫

dkD1 dkD2 . . . dkDl
1

t∏
j=1

D
µj
j

q∏
i=1

D−νit+i

(3.1.7)

with µ, ν ≥ 0, where we introduced q additional propagators to denote the irreducible
scalar products. Topologies can be drawn and analyzed by the same Feynman rules as
the initial Feynman diagrams.

3.1.1 Example: A Feynman Diagram And Its Topology
In the following we are going to emphasize the relations between Feynman diagrams and
their associated topologies. This will be done in analogy to an example in [16].

Consider the massive, scalar Feynman digram given by

p p
k2

p− k1

k1 − k2

k1k1

=
∫
dDk1d

Dk2

5∏
i=1

Snii

5∏
j=1

Dj

(3.1.8)

with d = 5 internal edges, g = 2 legs, l = 2 loop momenta and Nsp = 2 + 3 = 5 possible
scalar products.

12



The relations between possible scalar products Si and a choice of propagators respecting
momentum conservation are listed in table (3.1). It is obvious that there exist relations
such that only one scalar product, e.g. the arbitrarily chosen S5 = p · k2, is irreducible.
Analogously to (3.1.7) one could define an irreducible propagator

Dirr = (p− k2)2 (3.1.9)

encoding the scalar product S5.

Table 3.1: Relations between scalar products and propagators of the Feynman diagram
(3.1.8).

scalar product Si corresponding propagator relation
S1 = k2

1 D1 = k2
1 −m2 S1 = D1 +m2

D5 = k2
1 −m2 = D1

S2 = k2
2 D2 = k2

2 −m2 S2 = D2 +m2

S3 = k1k2 D3 = (k1 − k2)2 −m2 S3 = 1
2(D1 +D2 −D3 +m2)

S4 = pk1 D4 = (p− k1)2 −m2 S4 = 1
2(D1 −D4 + p2)

S5 = pk2 (irred.) Dirr = (p− k2)2 (z.B.) S5 = 1
2(D2 −Dirr + p2)

Furthermore, as listed in table 3.1, two of the propagators can be chosen identically,
such that the Feynman diagram eq. (3.1.8) can be written as an element of a simpler
family∫

dDk1dDk2
(D1 +m2)n1(D2 +m2)n2(1

2(D1 +D2 −D3 +m2))n3(1
2(D1 −D4 + p2))n4Sn5

5

D2
1D2D3D4

(3.1.10)

with only four propagators and one irreducible scalar product.
Therefore every integral in (3.1.8) is completely governed by the 4-denominator topology

p p
k2

p− k1

k1 − k2k1

= Bµ1,µ2,µ3,µ4;ν1 =
∫

dDk1dDk2
1

Dµ1
1 D

µ2
2 D

µ3
3 D

µ4
4 D

−ν1
irr

.

(3.1.11)

Consider for example, that we are left with an integral of the type (3.1.8) with
n1 = n2 = 1 and ni>2 = 0 after the tensor reduction. Inserting the relation from tab. 3.1
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yields

I =
∫
dDk1d

Dk2
k2

1k
2
2

D2
1D2D3D4

(3.1.12)

=
∫
dDk1d

Dk2
(D1 +m2)(D2 +m2)

D2
1D2D3D4

(3.1.13)

=
∫
dDk1d

Dk2
1

D1D3D4
+ m2

D2
1D3D4

+ m2

D1D2D3D4
+ m4

D2
1D2D3D4

(3.1.14)

= B1,0,1,1;0 +m2B2,0,1,1;0 +m2B1,1,1,1;0 +m4B2,1,1,1;0 (3.1.15)
and we see that this integral contains elements of 4-denominator topology only. The
rewriting of scalar Feynman integrals by expressing reducible scalar products in terms of
the propagators is called trivial tensor reduction [16].
In (3.1.15) the trivial tensor reduction canceled the propagator D2 in the first two terms
completely. These two terms can be associated to a simpler 3-denominator sub-topology,
whereby the complete cancellation of a propagator is called contraction. These contractions
have a pictorial counterpart by means of a shrinking of the associated propagator, such
that the contraction of D2 in (3.1.15) is depicted as

Bµ1,µ2,µ3,µ4;ν1 =
p p

D2

D4

D3D1

cont(D2)−−−−−→ p

D̃2

D̃1

p

D̃3

= Jσ1,σ2,σ3;λ1,λ2 .

(3.1.16)
The elements of the “new” 3-denominator sub-topology can be translated into integrals
by applying Feynman rules directly since the “old” and the “new” propagators are
related by translations only, under which dimensionally regularized Feynman integrals are
invariant [11].
For the initial integral (3.1.15) we find by using the topology B as well as the sub-topology
J

I = J1,1,1;0,0 +m2J2,1,1;0,0 +m2B1,1,1,1;0 +m4B2,1,1,1;0 , (3.1.17)
whereas the integral representation can be obtained by applying the Feynman rules
directly.

In the upcoming section, the advantage of the topology notation becomes apparent
and we will therefore summarize its main points.
In the topology notation we denote Feynman integrals as a linear combination of integrals
with minimal set of propagators and only irreducible scalar products. A topology is
completely characterized by its propagators and irreducible scalar products. A specific set
of indices yields a Feynman integral of the topology. If this Feynman integral does not have
the complete set of propagators, it can be associated to a simpler sub-topology, whereas
contractions of a propagators correspond to the shrinking of the associated internal edges.

14



Chapter 4

IBP-Reduction to Master Integrals

In the following, the advantage of the compact notation of families of Feynman integrals
as topology becomes apparent, since, as we will see soon, the elements of a given topology
are related by so called integration-by-part-identities [17]. Therefore the computation of
topologies with arbitrary indices is reducible to the evaluation of so called master integrals
(MI’s) 1. The main point behind the IBP-reduction is the vanishing of an integral of a
total divergence, such that the identity∫

dDk1...dDkl
∂

∂kσi

[
vσTµ1,...,µt;ν1,...,νq

]
= 0 (4.0.1)

holds and can be used to derive relations between different integrals Tµ1,...,µt;ν1,...,νq and
Tµ1+a1,...,µt+at;ν1+at+1,...,νq+at+q with ai ∈ {−1, 0, 1} of a given topology. The ki in (4.0.1)
denote loop momenta and the v can be either a loop or an external momentum.

4.1 Examples of IBP-Reduction

One of the easiest examples for IBP-reductions is given by the tadpole topology

Iµ =
pp

D1

=
∫ dDk

(k2 −m2)µ
, (4.1.1)

since there exists only one IBP-relation∫
dDk ∂

∂kν
kν

Dµ
1

= 0 . (4.1.2)

1For more complete overviews see e.g. [18] or [19]. The choice of examples is following [19].
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This IBP-relation yields∫ ((
∂

∂kν
kν
)

1
Dµ

1
+ kν

(
∂

∂kν
1

(kσkσ −m2)µ

))
dDk (4.1.3)

=
∫  D

Dµ
1
− 2µ k2

Dµ+1
1︸ ︷︷ ︸

k2=D1+m2

 dDk =
∫ (

D − 2µ
Dµ

1
− 2µm2

Dµ+1
1

)
dDk (4.1.4)

= (D − 2µ)Iµ − 2µm2Iµ+1 (4.1.5)
= 0 . (4.1.6)

and after relabeling µ→ µ− 1 we are left with the recurrence relation

Iµ = D − 2µ+ 2
2(µ− 1)m2Iµ−1 . (4.1.7)

In (4.1.7) it becomes obvious that there is only one MI, e.g. I1, for the whole tadpole
topology and that every integral Iµ>1 is reducible to it.

A second slightly more involved but still rather simple example of an IBP-reduction is
given by the integrals associated with the massive one loop two denominator topology

Jµ1,µ2 =
p

D2

D1

p
=
∫

dDk1
1

Dµ1
1 D

µ2
2

(4.1.8)

=
∫

dDk1
1

(k2
1 −m2)µ1((p− k1)2 −m2)µ2

. (4.1.9)

For this topology there are already two IBP-identities, namely∫
dDk ∂

∂kν
pν

(k2
1 −m2)µ1((p− k1)2 −m2)µ2

= 0 (4.1.10)∫
dDk ∂

∂kν
kν

(k2
1 −m2)µ1((p− k1)2 −m2)µ2

= 0 (4.1.11)

to consider. After performing the trivial tensor reduction as usual, these identities can be
rewritten as the following relations on the level of the topology:

(4.1.10)⇔ 0 = (−µ1 + µ2 − p2µ11
+ + p2µ22

+ − µ22
+1− + µ11

+2−)Jµ1,µ2 (4.1.12)
(4.1.11)⇔ 0 =

(
D − 2µ1 − µ2 − 2m2µ11

+ − 2m2µ22
+ + p2µ22

+ − µ22
+1−

)
Jµ1,µ2 ,

(4.1.13)

where we introduced the ladder operators 1±Jµ1,µ2 = Jµ1±1,µ2 and 2±Jµ1,µ2 = Jµ1,µ2±1
which act on the exponents of the propagators by lowering (resp. raising) its value by ±1.
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By performing the shifts in (4.1.13), (4.1.12) and after relabeling µi + 1→ µi we arrive at
the following recursion relations

Jµ1,µ2 =(p2(−D + µ1 + 2µ2 − 1) + 2m2(µ1 − µ2 − 1))
(µ1 − 1)p2 (p2 − 4m2) Jµ1−1,µ2

+ 2m2µ2

(µ1 − 1)p2 (p2 − 4m2)Jµ1−2,µ2+1+ (p2 − 2m2)
p2(p2 − 4m2)Jµ1,µ2−1 (4.1.14)

Jµ1,µ2 =(p2(−D + µ2 + 2µ1 − 1) + 2m2(µ2 − µ1 − 1))
(µ2 − 1)p2 (p2 − 4m2) Jµ1,µ2−1

+ 2m2µ1

(µ2 − 1)p2 (p2 − 4m2)Jµ1+1,µ2−2+ (p2 − 2m2)
p2(p2 − 4m2)Jµ1−1,µ2 , (4.1.15)

where the sum of the exponents on the r.h.s. is always lesser than on the l.h.s..
Moreover the relations (4.1.14) and (4.1.15) are symmetric under the interchange of the
indices µ1 ↔ µ2. This symmetry of the IBP-relations reflects the symmetry Jµ1,µ2 = Jµ2,µ1

of the diagram (4.1.9) in the equal mass case.
Furthermore we can read off the MI’s of the J -topology from the recursion relations
directly.
Therefore we notice, that we have a singularity at (µ1 = 1, µ2) in the r.h.s of (4.1.14) and
at (µ1, µ2 = 1) in (4.1.15) respectively. Hence, a further reduction is not possible and we
can use for example (4.1.14) to reduce until µ1 − 1 = 1. The symmetry of the problem
(or equivalently (4.1.15)) can then be used to reduce until µ2 − 1 = 1 from which follows,
that one of the MI’s of the J -topology will be J1,1.
To see the second MI which is mandatory to express every integral in the J -topology
we have to look at the underlined part of (4.1.14) and (4.1.15). These terms will yield
integrals of the form Jσ,0 with σ ∈ N>0 for (µ1− 1, µ2− 1) = (1, 1). But, as already shown
in (4.1.7), integrals of this type are completely reducible to the MI I1.

From the considerations above it follows that every integral of the one loop two
denominator equal mass topology (4.1.9) is expressible via

Jµ1,µ2 = C1(µ1, µ2, D, p
2,m2)J1,1 + C2(µ1, µ2, D, p

2,m2)I1 (4.1.16)

in terms of the only two MI’s J1,1, I1 and rational prefactor functions Ci depend on the
indices µi, the scales and the dimension D.
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4.2 The Main Idea behind Laportas Algorithm
In the last preceding section we looked at two quite simple IBP-reductions whereas we
did not even bother to compute the second one explicitly. Since for topologies with
l loops and g legs there are l(g − 1 + l)-IBP-relations the concrete calculations, even
though the main idea and the way to tackle the reduction problem seems quite clear,
tend to be rather tedious and grow fast beyond human manageability. Furthermore, for
actual computations in particle physics one is mainly interested in expressing certain
integrals of a topology in terms of MI’s and not in universal recursion relations like (4.1.7)
and (4.1.16) which are valid for every element of the topology. Therefore one started to
consider IBP-relations as a set of equations between integrals of a topology with a fixed
set of indices (µ1, . . . , µt, ν1, . . . , νq) as variables. The observation [20] that the number
of relations between the integrals grows faster than the number of additional, unknown
integrals 2 transfers the problem of an IBP-reduction of a specific integral into the solution
of an overdetermined system of linear equations. The solution of such an overdetermined
system of linear equations is far from being a trivial computational task and it defines
relations between integrals, in which the MI’s are arbitrary.
Laportas algorithm introduces an alternative approach to the solution of IBP-relations by
assigning a global ordering in terms of suitable chosen criteria to the integrals [25, 26].
By means of this ordering different integrals differ in their degree of complexity and the
system of IBP-relations is solved by systematically expressing complicated integrals in
terms of easier integrals, starting with the most complicated one.
The degree of complexity of an integral is e.g. defined by the following experience based
conjectural criteria3 (similar to [25] but shortened):

1. Integrals with less propagators are easier to solve, that means:

Tµ1,...,µt,ν1,...,νq � T ′σ1,...,σt−a,λ1,...,λq̃ with a > 0 . (4.2.1)

2. Integrals with an equal number of propagators for which
t∑

n=1

(µn) <
t∑

n=1

(σn) (4.2.2)

is fulfilled are ordered by

T ′σ1,...,σt,λ1,...,λq̃ � Tµ1,...,µt,ν1,...,νq (4.2.3)

such that integrals for which the sum of the exponents of the propagators is higher
are said to be more complicated.

2 In [21] it had been proven, that the number of MI’s in standard topologies is limited and therefore the
observation, that the number of relations grows faster than the number of additional, unknown integrals
is valid. Furthermore, it was shown in [22], that it is possible to count the number of MI’s in a given
topology without explicitly performing IBP-reductions by the analysis of its critical properties only. This
counting method is implemented in the Mathematica package Mint and is part of the most recent version
of the IBP-reduction program LiteRed [23,24].

3We will see, that these criteria might not be optimal later in this thesis.
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In general these two criteria will not suffice to order the system completely and in actual
implementations a variety of subcriteria are added to ensure a complete ordering (see
e.g. [25,27,28]). Hereby a variation of the criteria will in general result in a different set
of MI’s.

For example, if we want to express the integrals Fk in terms of MI’s we have to generate
the associated i = l(g − 1 + l) IBP-relations for every of the k integrals. These relations
are solved with respect to the most complicated integral Sj,k specified by the introduced
ordering. Afterwards we determine, if every of the integrals Vj in the defining equations
of Sj,k can be expressed in terms of simpler integrals. If that is not the case we would
increase the indices and generate new IBP-relations. At some point, the algorithm will
stabilize and every new set of relations will yield integrals which are expressible in terms
of simpler ones (the systems becomes overdetermined) 4 . At that point the algorithm
terminates, the system is ordered completely and the integrals for which no expression in
terms of simpler integrals exists, the simplest independent set M ∈ V , are declared to be
MI’s. Since the system is ordered completely now and every integral (except fo the MI’s)
depends on simpler integrals only, the IBP-relations are substituted in reversed order,
starting with the simplest ones until every of the Fk is expressed as a linear combination
of the determined MI’s [25].

The main takeaway of this chapter is, that instead of looking at individual Feynman
diagrams one should consider a basis of MI in which every of the integrals of the complete
family can be expressed. These MI can be derived in an algorithmic way by introducing
an ordering to the elements of the family. There are numerous programs for IBP-reduction
(see e.g. [24,29–31] for the more recent ones) which are partly based on Laporta’s algorithm
whereby Reduze 2 [28, 30] has been used for the reductions during the course of this
thesis.

4This stabilization usually occurs at a high index numbers, such that systems of many thousands of
relations have to be ordered and solved [19] which seems to be the bottleneck of current computational
approaches.
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Chapter 5

Parametric Representation of
Feynman Integrals

In the preceding chapters some basic properties of Feynman integrals as well as the
topology notation and IBP-reduction were introduced. We outlined, that in order to
compute whole families of Feynman integrals only a limited number of representatives, the
so-called MI’s, have to be computed. We are able to express every integral of the associated
topology by simply resubstituting the MI’s in the previously derived IBP-relations. The
method of IBP-reduction is a powerful tool for simplifications only, if we are able to
compute the MI’s. Therefore, the next step is to present methods which are suitable for
practical computations. But beforehand, I will take a short detour and introduce another
representation of Feynman integrals, the parametric representation 1.
Even though it is not the main focus of the thesis, this representation will often be used
for explicit examples and by using it some integral points of the following approaches
become more transparent.

The typical form of Feynman integrals without irreducible scalar products is given by
D-dimensional loop integrals of the form

I ∝
∫ 1∏

iD
νi
i

dDk1 . . . dDkl , (5.0.1)

where the Di are some quadrics taken to the νi-th power. We already mentioned in section
2.2, that it is possible to try a “direct” integration by introducing D-dimensional spherical
coordinates after performing a Wick-rotation. This approach, however, becomes rather
complicated quickly and there are only some simple integrals where it can be applied
successfully.
Therefore, already in the 50s, alternative approaches which yield integrals of rational
functions over parameter spaces had been developed 2. These tricks are based on rewriting

1For a more extensive overview see e.g. [32] or [19] and [33] respectively.
2These parameter representations were mainly developed by Feynmann, Schwinger, Symanzik and

Nambu. Recently another representation in terms of a single graph polynomial has been introduced
in [22].
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denominators as integrals over parameters and are called Schwinger trick3

1∏d
i=1A

ni
i

=
d∏
i=1

1
Γ(ni)

∞∫
0

dxixni−1
i e−xiAi with A,Re(ni) > 0 (5.0.2)

and Feynman trick4

1∏d
i=1A

ni
i

= Γ(
∑d

i=1 ni)∏d
i=1 Γ(ni)

∫ 1

0
dx1 · · ·

∫ 1

0
dxn

δ(1−
∑d

i=1 xi)
∏d

i=1 x
ni−1
i(∑d

k=1 xkAk

)∑d
k=1 nk

. (5.0.3)

These tricks are useful in their own right but their main feature is, that they can be used
as a starting point to derive formulas which allow us to write down a suitable parametric
representation from the associated Feynman diagram G directly.
Therefore one can e.g. use (5.0.3) to express the loop momenta dependent numerator
in (5.0.1) where the Ai are now quadrics of the form Ai = q2

i − m2
i with some linear

combination of external and loop momenta qi and masses mi. Since Feynman integrals
are translational invariant, we can shift the loop momenta ki to complete the square, such
that the numerator depends on k2

i only. Now, the integration about the loop momenta
can be performed and we are left with an integration over the parameters 5 given by

I =
∫ 1∏d

i=1D
νi
i

dDk1 . . . dDkl (5.0.4)

= (−1)n
(iπD

2 )lΓ(n− lD2 )∏d
i=1 Γ(ni)

∞∫
0

dx1 · · ·
∞∫

0

dxdδ(1−
d∑
i=1

xi)
(

d∏
i=1

xni−1
i

)
Un−(l+1)D2

Fn−lD2
.

(5.0.5)

In (5.0.5) n denotes the sum over all exponents of the propagators, d the number of
internal edges, U and F are the so-called first and second Symanzik polynomial which are
homogeneous and of degree l and l + 1 respectively. These polynomials can be derived in
several ways 6 but we will restrict ourself to only give a recipe of their direct construction
from the graph here.

Therefore we need the notion of a spanning tree and a spanning 2-tree7. A spanning
tree T of a graph G is any connected subgraph of G without loops containing all vertices

3Notice that this trick follows immediately from the integral representation Γ(n) =
∫∞

0 zn−1e−z dx
with z = xA.

4The derivation of the Feynman trick is not as easy as the Schwinger trick and can be found e.g.
in [34] p. 190.

5For a complete derivation by using the here outlined steps see [33] chap. 7 and notice the slightly
differently defined V (compared to F) in eq. (7-72) therein. For an alternative derivation starting by
using the Schwinger trick see [19]. Furthermore notice, that because of the δ-function the integration
domain can be further restricted, such that (5.0.5) is commonly written with an integration domain over
the cube [0, 1]d or as an projective integral ( see e.g. [35] eq. (2.1.35)). The fact, that it is a projective
integral allows to replace δ(

∑
i xi− 1) in (5.0.5) by δ(xj − 1) where xj is an arbitrary Feynman parameter

and the integration of the remaining integrals has to be performed from zero to infinity. This fact is
commonly known among physicists as the Cheng-Wu theorem [36].

6see e.g. the review [32]
7For an extensive introduction to graph theory with emphasis on Feynman diagrams see [33].

22



of G.
If we consider for example the graph

G =
3

1

2

(5.0.6)

we immediately see its three spanning trees

p

1

p , p

2

p p 3 p . (5.0.7)

Similarly, a spanning 2-tree S = T1 ∪ T2 is defined as any subgraph of G, consisting of
two connected components which are trees such that S contains all vertices of G. For the
graph defined in (5.0.6) there is only one spanning 2-tree

pp p (5.0.8)

and it is obvious, that we get a spanning 2-tree by deleting one additional internal edge
from a spanning tree.
By using the lingo of graph theory, the first Symanzik polynomial is defined by

U =
∑

Ti∈T⊂G

∏
e/∈T

xe , (5.0.9)

where the sums is over all spanning trees Ti of G and the product is over all internal edges
e of G, which are not in the spanning tree Ti. For the example graph G (5.0.6) we have
to consider the spanning trees in (5.0.7) to arrive at

U = x2x3 + x1x3 + x1x2 . (5.0.10)

The second Symanzik polynomial is defined as

F = U
∑
e∈Eint

m2
exe −

∑
(T1,T2)∈S

∏
e/∈S

xe(qS)2

︸ ︷︷ ︸
F0

(5.0.11)

where the summation in the massive part is over all internal edges of G. In the massless
part F0 of the second Symanzik polynomial, the summation is over all spanning 2-trees,
the product is over all internal edges of G, which are not in S and qS denotes the total
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momentum8 entering T1 (resp. T2).
The second Symanzik polynomial of the fully massive graph G in (5.0.6) is hence given
by considering the only spanning 2-tree (5.0.8) and (5.0.11) yields

F = (x2x3 + x1x3 + x1x2)(m1x1 +m2x2 +m3x3)− x1x2x3p
2︸ ︷︷ ︸

F0

. (5.0.12)

8in Minkowski metric
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Chapter 6

Computing Feynman Integrals in
Terms of Hyperlogarithms

In the preceding chapter we gave a brief introduction into the parametric representation
of Feynman integrals. The main focus thereby lay to present a detailed enough recipe, to
write down the graph polynomials.
In the following, we use this parametric representation to study examples of the iterated
structures arising in the computations of Feynman integrals [35,37–44]. As we will see,
the parametric representation is, in a way, a natural entry point into these subjects,
since many relations can be seen directly on the integral level. Nonetheless, the main
focus of the following chapter will be on methods necessary to understand the further
calculations during this thesis. In the second part I will introduce the methods of differential
equations [45,46] and attempt to motivate some of its recent developments [47–55]. .

6.1 Normalization of Feynman Integrals
But before we start, there are some slight adjustments to be taken in the notation,
since from now on and till the end of this thesis we are mainly concerned with actual
computations. In the remaining part of this thesis Feynman integrals will be normalized
as

Iν1,...,νN = (−1)ν(µ2)ν−lD2
∫ dDk1

iπ
D
2
. . .

dDkl
iπ

D
2

1
Dν1

1 · · ·D
νN
N

with ν =
N∑
i=1

νi (6.1.1)

whereby µ is an arbitrary mass scale with mass dimension 1. The normalization is
motivated by following aspects:
• Wick rotating the integrals will result in Euclidian momenta whereas we have to

replace the squared momenta according to k2 → −K2 and the measure dk0 by idK0
(see sec. 2.2.1). Therefore it is advantageous to normalize the integrals by (−1)ν
and the measure by i to compensate for the replacement (q2 −m2) → (Q2 + m2)
and the change dk0 → idK0.

• The πD/2 takes into consideration, that the momentum integrals are obtained by
a Fourier transform of correlation functions defined in the position space were we
have chosen a symmetrical convention for the Fourier transform.
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• The prefactor (µ2)n−lD2 ensures (mass) dimensionless integrals and function argu-
ments. It furthermore introduces an additional scale which becomes necessary within
the framework of renormalization.

• Last but not least, by choosing this specific normalization, the defining equation of
the associated parameter representation (5.0.5) simplifies.
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6.2 Iterated Structures Arising in Computations of
Feynman Integrals

In the previous section we showed, that it is always possible to rewrite a momentum space
Feynman integral with d internal edges as a parametric integral with d − 1 non trivial
integrations and the question of how to perform these still remains open.
To introduce the class of functions in which a large class of Feynman integrals can be com-
puted, I will compute an easy explicit example and point out general features afterwards.

6.2.1 An Illustrative Example
In the following computation we are, as it was mostly done during this thesis, mainly
concerned with the illustration of some general points supported by explicit calculations.
Therefore we consider the rather simple integral

I =
p

1

2

p = (µ2)2−D2

∫ dkD

iπ
D
2

1
(k2 −m2)(k − p)2

D=4−2ε= Γ(ε)
(
µ2)ε 1∫

0

dx1

1∫
0

dx2
δ(1− x1 − x2)(x1 + x2)−2+2ε

((x1 + x2)m2x1 − tx1x2)ε

a= t
m2= Γ(ε)

( µ
m

)2ε

︸ ︷︷ ︸
C(ε,µ,m)=:C

1∫
0

dx((1− x)(1− ax))−ε

(6.2.1)

where the dashed line denotes a massless propagator and the infinitesimal parameter ε
had been introduced to describe the deviation from the physical D = 4 dimensions. Since,
at the end of the day, we are interested in the limit D → 4 (ε→ 0 respectively), our goal
is, to obtain an series expansion in ε where the divergences become manifest in the pole
structure of the result.
The first attempt to achieve an ε-expansion is to integrate the parametric form (6.2.1)
directly, which can be done easily by using Mathematica [56] and immediately, for
0 < a < 1, yields the result

I =
Γ(ε)

(
µ
m

)2ε

2a

(√
π(a− 1)(−4)ε(1− a)−2εaεΓ(1− ε)

Γ
(3

2 − ε
) −

2
(

a
a−1

)ε
2F1

(
1− ε, ε; 2− ε; 1

1−a

)
ε− 1

)
(6.2.2)

where 2F1 denotes Gauss hypergeometric function. Hypergeometric functions and their
multivariate generalizations will often appear as soon as we attempt to solve slightly more
involved integrals with their full D (respectively ε) dependence. The main obstacle in
this approach is the ε-expansion of these functions, even though it can be done for that
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specific example without further effort by using expansion programs like [57] or [58], we
will pursue another approach here.

Therefore we expand (6.2.1) on the level of integrand already and obtain

I = C

∫ 1

0
dx

 1︸︷︷︸
I(0)

− log((1− x)(1− ax))︸ ︷︷ ︸
−I(1)

ε+ 1
2 log2((1− x)(1− ax))︸ ︷︷ ︸

2I(2)

ε2 +O(ε3)


(6.2.3)

where we attempt to solve the integrals order per order in ε 1.
Before we solve the bubble integral (6.2.3) we anticipate that we will have to deal with

integrals of powers of logarithms. Therefore it is helpful to compute the recursion relation

∫
logn(1− ax)dx x→ax= 1

a

(
x logn(1− x)−

∫
xd logn(1− x)

)
(6.2.4)

= 1
a

x logn(1− x)− n
∫

x

x− 1 logn−1(1− x)dx︸ ︷︷ ︸
partial fraction decomposition

 (6.2.5)

= 1
a

(
(x− 1) logn(1− x)− n

∫
logn−1(1− x)dx

)
(6.2.6)

from which we can read off 2

1∫
0

logn(1− x) = (−1)nn! (6.2.7)

directly. With this short preparation we can tackle the bubble expansion (6.2.3) by
computing

−I(1) =
1∫

0

(log(1− x) + log(1− ax)) dx = −1
a

2a+ (1− a)
a∫

0

dx
x− 1

 (6.2.8)

1Notice that this approach requires convergent integrals at every intermediate integration in every
order in ε. This will in general not be the case, in particular if a diagram contains sub-divergences
originating from divergent sub-diagrams. In that instance one can convert them to finite integrals by
applying partial integration [59]. If one deals with UV divergent integrals only, a renormalization on
level of the integrand [60] is possible, such that the parameter integrals become finite. Alternatively it
is possible to choose an quasi finite basis of integrals [61,62] in which propagators are raised to higher
powers and the dimensions are shifted, but the ε expansion becomes trivial.

2since lim
x→0

x logn(x) = 0
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and

2I(2) =
1∫

0

2 log(1− x) log(1− ax)︸ ︷︷ ︸
part. int. and part. frac. decomp.

+ log2(1− ax)︸ ︷︷ ︸
(6.2.6)

+ log2(1− x)︸ ︷︷ ︸
(6.2.7)

 dx (6.2.9)

= 21
a

(
2a− (a− 1)

∫ a

0

dx
x− 1 + (a− 1)

∫ a

0

dx
x− 1

∫ x

0

dy
y − a

)
(6.2.10)

+2
a

(
a− (a− 1)

∫ a

0

dx
x− 1 + (a− 1)

∫ a

0

dx
x− 1

∫ x

0

dy
y − 1

)
+ 2 (6.2.11)

= 2
a

(
4a− 2(a− 1)

∫ a

0

dx
x− 1 + (a− 1)

∫ a

0

dx
x− 1

∫ x

0

dy
y − 1 (6.2.12)

+(a− 1)
∫ a

0

dx
x− 1

∫ x

0

dy
y − a. . . . . . . . . . . . . . . . . . . .

 (6.2.13)

in the kinematic regime of a < 1 3.
The expansion of the ε depended prefactor in (6.2.1) yields

C = 1
ε︸︷︷︸

C(−1)ε−1

+ (L− γE)︸ ︷︷ ︸
C(0)

+ 1
12
(
6L2 − 12γEL+ 6γ2

E + π2) ε︸ ︷︷ ︸
C(1)ε

+O
(
ε2) (6.2.14)

where γE denotes the Euler-Mascheroni constant, L = log(µ2/m2) and the final result of
the ε-expansion4 of the bubble integral to O(ε) reads

I = C
(−1)I(0)

ε
+ (C(0)I(0) + C(−1)I(1)) + (C(0)I(1) + C(1)I(0) + C(−1)I(2))ε+O

(
ε2) .
(6.2.15)

6.2.2 Upshot on Iterated Integrals and the Method of Hyper-
logarithms

In the computation of the expansion of the bubble integral in (6.2.8) and (6.2.13) we
used partial fraction decomposition and partial integration to rewrite the problem. We
obtained a result in which every iterated integral [63] except for the last marked by the
dotted underline, evaluates to a power of the classical logarithm given by a n-fold iterated

3The result can be continued in the “physical” regime a > 1 by means of an analytical continuation.
4One reason for the necessity of expansions beyond O(ε0) will become clear in the next section.
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integral with the one-form ω1 = dx/(x− 1) of the form

logn(1− x)
n! =

∫ x

0

(∫ tn

0
. . .

(∫ t2

0

1
t1 − 1dt1

)
. . .

1
tn−1 − 1dtn−1

)
1

tn − 1dtn

=
∫

0≤t1≤...≤tn≤x

1
t1 − 1dt1 . . .

1
tn−1 − 1dtn−1

1
tn − 1dtn

=
∫
γ

ω1 . . . ω1︸ ︷︷ ︸
n-times

,

(6.2.16)

where γ denotes a path on C\{1} with γ(0) = 0 and γ(1) = x.
The first natural generalization of the logarithm are so-called classical polylogarithms5,
which are given by iterated integrals of the form

Lin≥1(z) =
z∫

0

Lin−1(t)dt
t

; Li0 = z

1− z (6.2.17)

and therefore by an iterated integration of the one forms

Apoly = {ω0 = dt
t
, ω1 = dt

1− t} (6.2.18)

and the short notation

Lin(z) =
∫
γ

ω1 ω0 . . . ω0︸ ︷︷ ︸
n−times

(6.2.19)

and γ being a piecewise smooth path from 0 to z in C\{0, 1}.
In particle physics classical polylogarithms became insufficient soon, such that iterated

integrals of additional one-forms in arbitrary order [37] and multivariate extensions [38–40]
of the classical polylogarithms (6.2.19) were introduced. They are called harmonic [46],
two-dimensional harmonic [38, 39] and cyclotomic harmonic polylogarithms [40] 6 and
form a subclass of the most general setup of iterated integrals currently established in
computations in particle physics, the hyperlogarithms.
Hyperlogarithms [44] are defined by the iterated integral

G(z1, ~z; y) :=
y∫

0

dt
t− z1

G(~z; t) ; G(0, . . . , 0︸ ︷︷ ︸
n

; z) := logn(z)
n! (6.2.20)

with zi ∈ C and we denote

Gn1,...,nl(z1, . . . , zl; y) = G(0, . . . , 0︸ ︷︷ ︸
n1−1

, z1, . . . , zl−1 0, . . . , 0︸ ︷︷ ︸
nl−1

, zl; y) (6.2.21)

5See e.g. [64] for an extensive discussion of their properties.
6To express cyclotomic harmonic polylogarithms by hyperlogarithms (and polynomials) partial fraction

decomposition and partial integration have to be used.
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with zj 6= 0, ∀j ∈ {1, . . . , l}.
In the notation analogously to (6.2.19) we write

G(z1, . . . , zl; y) =
∫
γ

ωzl . . . ωz1 (6.2.22)

with γ : [0, 1]→ C\{z1, . . . , zl} together with γ(0) = 0 and γ(1) = y.
The one-form ωzi (or the zi respectively) are referred to as letters, the set of all letters is
called an alphabet and w = ωz1 . . . ωzl denotes a word. Furthermore one defines the weight
of a hyperlogarithm to be the number of iterated integrations or the length of the vector
~z respectively. The alphabet of harmonic polylogarithms is Ahpl = {−1, 0, 1} whereas the
letters of the alphabet of cyclotomic harmonic polylogarithms might be expressed as a set
of letters with zi being a root of unity or zero.
Since it is often the case, that we have to integrate from (to) a point which is not in
C\{z1, . . . , zl} the integrals in (6.2.22) need to be regularized. Therefore one uses, that
the singularities of the integrals at y → τ ∈ {z1, . . . , zl} ∪ {∞} are at most logarithmic
and can be expanded as

G(z1, . . . , zl; y) =
l∑

i=0

α(i)
τ (y)

{
logi(y) τ =∞
logi(y − τ), τ 6=∞

. (6.2.23)

The regularized value is defined by formally setting log(y − τ) for y → τ to zero and
taking the limit afterwards such that

Reg
y→τ

G(~z; y) := α(0)
τ (τ) , (6.2.24)

where a detailed description of the whole regularization scheme can be found e.g. in
chapter 6 in [42] or in [35].

The iterated integrals (6.2.20) can further be expressed as nested sums in terms of
multiple polylogarithms [41, 65]

Lin1,...,nl(z1, . . . , zl) =
∑

0<k1<...<kl

zk1
1
kn1

1
· · · z

kl
l

knll
(6.2.25)

by the relation

Lin1,...,nl(z1, . . . , zl) = (−1)lGn1,...,nl

(
1
z1
,

1
z1z2

, . . . ,
1∏l
i=1 zi

; 1
)

. (6.2.26)

Furthermore hyperlogarithms form a shuffle- and the multiple polylogarithms a stuffle-
algebra 7. Hyperlogarithms and an alternative class of iterated integrals with the same
universality as the hyperlogarithm are discussed in great detail in [42]. Programs suited
for numerical evaluation of harmonic [66–68], harmonic cyclotomic [69] and multiple
polylogarithms [70] as well as analytical computations [66,67,71,72] are already publicly
available.

7See e.g. [5] for an easy to understand introduction.
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In the explicitly computed example (6.2.3) of an ε-expansion, all the iterated integrals
are easily expressed in the class of hyperlogarithms. But in the general case, where we
have to perform more than one parameter integration, the naive try to express the full
integrand such that we can read off an iterated structure, will most certainly fail, since
we are concerned with integrals: 8

I = (µ2)n−lD2
Γ(n− lD2 )∏d
i=1 Γ(ni)

∞∫
0

dx1 · · ·
∞∫

0

dxdδ(1− xj)
(

d∏
i=1

xni−1
i

)
Un−(l+1)D2

Fn−lD2

= (µ2)n−lD2
Γ(n− lD2 )∏d
i=1 Γ(ni)

∞∫
0

dx1 · · ·
∞∫

0

dxd

[
δ(1− xj)

(
d∏
i=1

xni−1
i

)
F2l−nUn−2(l+1)

·
(

1− (l log(F)− (l + 1) log(U))ε+ 1
2(l log(F)− (l + 1) log(U))2ε2 +O(ε3)

)]
(6.2.27)

where d denotes the number of internal edges, n the sum over all exponents of the propa-
gators, xj an arbitrary Feynman parameter and we work D = 4− 2ε dimensions.
In the above equation we notice the following “problems”: Even though ε-expansion natu-
rally yields logarithms of the Symanzik polynomials with rational functions as prefactor,
the graph polynomials are (up to some special cases) not factorizable and depend on
multiple parameters. Therefore it is ad hoc not clear, in which order we should attempt
to integrate them. Furthermore, the integration domain is from zero to infinity and it is
not clear at first, how to arrive at an iterated representation.

An algorithm for performing a certain class of integrals of the type (6.2.27) was first
explained in [73,74], further refined in [35] and implemented in [71,72].
Suppose now, some polynomial f (e.g. U or F) is linear in one of its variables, say xi,
such that

f = a(x1, . . . , xi−1, xi+1, . . . , xd)︸ ︷︷ ︸
a�xi

xi + b(x1, . . . , xi−1, xi+1, . . . , xd)︸ ︷︷ ︸
b�xi

. (6.2.28)

For such a polynomial, the typical logarithmic terms in (6.2.27) can then, after partial
fraction decomposition, be written as

∝ ã�xi ·

(
1 + xi + . . .+ xki + 1

(xi − b̃�xi )k̃
+ . . .+ 1

(xi − b̃�xi )

)
log(xi − c̃�xi ) , (6.2.29)

where k, k̃ ∈ N. If the integrand of (6.2.27) can be brought in a similar form (allowing
hyperlogarithms instead of only logarithms), then we can, by using partial integration if
necessary, find a primitive for every term, which will be in the class of hyperlogarithms as
well. In short, for one integration step∫ ∞

0
. . .

∫ ∞
0

fkdxk+1 . . . dxd =
∫ ∞

0
. . .

∫ ∞
0

fk−1dxkdxk+1 . . . dxd ,

8See footnote 5 and notice, that this formula only holds for graphs without divergent subgraphs. For
graphs with divergent subgraphs the form of the integrand will differ (see footnote 1 ) but the outlined
algorithm remains applicable without the need of further adjustments.
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we need perform the following three steps

1. Convert fk−1(xk), such that it involves hyperlogarithms in xk only

2. Find its primitive Fk−1(xk)

3. Evaluate the limits fk = limxk→∞ Fk−1(xk)−limxk→0 Fk−1(xk) = Regxk→∞Fk−1 since
Regxk→0G(~z, xk) = 0 for some zi 6= 0 9

at every parameter integration and it becomes already apparent, that one has to find a
sequence of integrations, such that the integrand is linear in one of the parameters at
every intermediate integration. Graphs for which such an sequence can be found are called
linearly reducible [35,73–75] and there are known examples, in which linear reducibility
is not apparent in the Feynman parametrization but can be constructed by a suitable
change of variables [59].

9This follows from analyticity near zero (see e.g. [35], Lemma 3.3.14 for a proof).
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6.3 The Method Of Differential Equations
In the previous section the solution of Feynman integrals was computed by a direct
integration of their parametric representation within the method of hyperlogarithms. Even
though this direct, systematic approach became more accessible through its implementation
in [35,72], within the course of this thesis I omitted many crucial and intriguing details
since it served merely as a first introduction to the iterated structure and the associated
class of functions arising in the Laurent expansion of Feynman integrals.
An indirect approach for computing Feynman integrals, introduced by Kotikov [45] in the
90’s, is the so-calledmethod of differential equations10. It is initially based on differentiating
MI’s of a given topology and its relevant subtopologies with respect to their internal
masses followed by an IBP-reduction which results in a linear, coupled system of first
order differential equations (deq’s), whose solution are the corresponding MI’s. In [46]
Remiddi suggested a generalization of the method by considering deq’s obtained by a
differentiation with respect to the kinematic invariants formed by the external momenta,
such that massless integrals became accessible as well. In [76] Henn pointed out, that
the solution of these coupled systems of differential equations can become a trivial task,
if a suitable, so-called canonical basis of MI’s can be found. This observation led to an
high amount of interest in a further development of the method of differential equations
towards a more systematic and general approach [47–55,77], such that it is currently the
most powerful and versatile method for the analytical computation of Feynman integrals.
Since a coverage of all these recent developments and their interplay11 is beyond the scope
of this thesis, I will only try to summarize its main points of [47], while neglecting others
completely.

6.3.1 The General Setup for the Laurent Expansion around
D=4

In the following we work in D = 4− 2ε dimensions, denote s as the set of all kinematic
invariants corresponding to the external momenta pi and m as the set of all internal
masses in a given topology.
While the differentiation with respect to the masses m2

i is done easily, since it just raises
the exponent of the corresponding propagators by one, taking the derivative with respect
to the kinematic invariants pipj involves the solution of the system∑

α

(
pj,µ

∂sa
∂pk,µ

)
∂I(s,m, ε)

∂sα
= pj,µ

∂I(s,m, ε)
∂pk,µ

(6.3.1)

with respect to ∂I(s,m,ε)
∂sα

in terms of pj,µ ∂I(s,m,ε)
∂pk,µ

[16]. The sum over α denotes the sum over
all (independent) kinematic invariants pipj. Since we are only concerned with two-point
functions in this thesis, the only relevant differentiation reads

∂

∂s
I(s = pµp

µ,m, ε) = 1
2spµ

∂

∂pµ
I(s = pµp

µ,m, ε) (6.3.2)

10For reviews see [16,19].
11It is fair to say, that a complete understanding from a generalized viewpoint, which relates them is

still missing.
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where the r.h.s yields higher powers of propagators by simply applying the chain rule.
As already seen in chapter 4, the IBP-reduction of the r.h.s of the deq will in general involve
integrals associated to subtopologies and an additional differentiation of the MI’s of all
relevant (sub)topologies yields an inhomogeneous, linear system of first order differential
equations

∂~I(s,m, ε)
∂sα

= A(s,m, ε)~I(s,m, ε) (6.3.3)

where ~I = (I1, I2, . . . , IN)T denotes the vector of all relevant MI’s of the topology and its
sub-toplogies. The boundary condition of such a differential equation can be obtained
by looking at singular points of the differential equations, which are non-singular for the
integral itself. By requiring finiteness of the result at these pseudo-thresholds, it is often
possible to fix the constants of integration, if the solution of the integral at a certain
kinematical point is unknown12.
In the following we assume for the sake of simplicity, that we normalized every integral
with a suitable power of ε, such that its Laurent expansion reads

Ik(s,m, ε) =
∞∑
j=0

εjI(j)
k (s,m) (6.3.4)

and the elements of the matrix A can be written as

Ai,j(s,m, ε) =
∞∑
k=0

εkA(k)
i,j (s,m) . (6.3.5)

The Laurent expansion of the deq (6.3.3) with N different MI’s to order for an certain MI
Il translates directly in the deq for its Laurent coefficients I(k)

l
13 and yields

∂

∂sα
I(k)
l (s,m) = A(0)

l,l (s,m)I(k)
l (s,m)

+
∑

{i,j∈N|j<k,i+j=k}

A(i)
l,l (s,m)I(j)

l (s,m)

+
∑

{i,j∈N|i+j=k}

 ∑
{o|1≤o≤N,o6=l}

A(i)
l,o(s,m)I(j)

o (s,m)

 .

(6.3.6)

Since under the redefinition of the MI’s ~̃I = M(s,m, ε)~I the system (6.3.3) transforms
according to

∂~̃I(s,m, ε)
∂sα

=

∂M(s,m, ε)
∂sα

+M(s,m, ε)A(s,m, ε)︸ ︷︷ ︸
∂sα

~I=A~I

M−1(s,m, ε)~̃I(s,m, ε) , (6.3.7)

12See e.g. [78] for a more detailed presentation.
13By a simple comparison of the rhs and the lhs at order O(εk).
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a normalization of the l-th MI with its homogeneous solution at order ε0

Ĩl = 1
I0
l,homo

Il (6.3.8)

yields the differential equation

∂

∂sα
Ĩ(k)
l (s,m) =

∑
{i,j∈N|j<k,i+j=k}

A(i)
l,l (s,m)Ĩ(j)

l (s,m)

+ 1
e
∫

dsαA(0)
l,l (s,m)

∑
{i,j∈N|i+j=k}

 ∑
{o|1≤o≤N,o6=l}

A(i)
l,o(s,m)I(j)

o (s,m)

 (6.3.9)

and it becomes obvious, that an iterated structure is associated with an iterated integration
over the homogeneous solution of lesser order Laurent coefficients of Ĩl and other MI’s of
the topology14. Before we proceed in the discussion of the solution of these systems of
deq’s, which of course depends strongly on the particular form of the matrix A, we will
compute the bubble integral with one massive propagator (6.2.1) in the regime pµpµ < m2

which served already as an example in section 6.2.1.

An Illustrative Example of Solving Differential Equations

The bubble topology with one massive propagator, as seen already in chapter 4, has two
associated MI’s from which one is the simple tadpole vacuum diagram called I1,0 therein.
The system of differential equations obtained by differentiation with respect to the square
of the external momentum normalized by the mass square y = pµpµ

m2 reads

d
dy


ε ·

ε ·



=
(

0 0(
µ
m

)2
(

1
y−1 −

1
y

+ ε
(

1
y
− 1

y−1

))
ε
(

1
y
− 2

y−1

)
+ 1

y−1 −
1
y

)
ε ·

ε ·


(6.3.10)

and becomes(
I1,0
I1,1

)
=
(

0 0(
µ
m

)2
(

ε
(y−1)2 − 1

(y−1)2

)
ε
(

1
y
− 2

y−1

) )(I1,0
I1,1

)
(6.3.11)

14Notice that we will e.g. need the l-th coefficient of the Laurent expansion of an integral of a sub-
topology to compute the (l-k)-th coefficient of the integral we are interested in. Therefore all order
expansions are desirable.
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after normalization of the bubble integral with its homogeneous solution I(0),homo
1,1 = 1−y

y

at order ε0. As expected, there is no differential equation for the tadpole, since it is a
vacuum integral. A solution of the tadpole can easily be computed (see A.0.1) and is
given by

I1,0 = −ε
(( µ

m

)2
)−ε

Γ(ε− 1) . (6.3.12)

From the normalization with the homogeneous solution it is clear, that a suitable point
for the boundary condition of the integral I1,1 is y = 0, since it and therefore all of its
Laurent coefficients I(n)

1,1 are zero there.
From (6.3.11) the deq for the Laurent coefficients can be directly read off to

d

dy
I(n)

1,1 (y) =
(

1
y
− 2
y − 1

)
I(n−1)

1,1 + 1
(y − 1)2

( µ
m

)2 (
I(n−1)

1,0 − I(n)
1,0

)
︸ ︷︷ ︸

=:C(n)

(6.3.13)

where the Laurent coefficients of the tadpole are accessible by the series expansion of
(6.3.12).
The solution of (6.3.13) at order O(ε0) yields

I(0)
1,1 (y) = − C

(0)

y − 1 + const
I(0)

1,1(0)=0
= −C(0) y

y − 1 . (6.3.14)

After inserting this solution into the deq for the Laurent coefficient at order O(ε1) we get

d

dy
I(1)

1,1 (y) =
(
2C(0) + C(1)) 1

(y − 1)2 + C(0) 1
y − 1 (6.3.15)

which integrates to

I(1)
1,1 = −

(
2C(0) + C(1)) y

(y − 1) + C(0)G(1, y) . (6.3.16)

For the order O(ε2) coefficient we have to solve the deq

d

dy
I(2)

1,1 (y) =
2
(
2C(0) + C(1))+ C(2)

(y − 1)2 + 2C(0) + C(1)

y − 1 + C(0)
(

1
y
− 2
y − 1

)
G(1, y) (6.3.17)

where the first term, after fixing the boundary conditions, yields something ∝ y/(y − 1),
the second term will integrate ∝ G(1, y) and the last term yields the hyperlogarithms
G(0, 1, y) and G(1, 1, y) of weight two.
In the above integration algorithm we notice, that for the Laurent coefficients of higher
order we need to integrate over kernels which correspond to the alphabet of harmonic
polylogarithms. Therefore we get hyperlogarithms of higher weight for every additional
order in the Laurent expansion. Additional to these HPL-kernels we have a term ∝
1/(y − 1)2 in the deq’s, which yields the rational function in the result. This term,
originating from the prefactor in tadpole inhomogeneity and the homogeneous solution
of (6.3.10), is responsible for the mixed weight of the hyperlogarithms in the Laurent
coefficient at a given order.
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6.4 The Form of the Systems of DEQ’s and the Canon-
ical Basis

The previous example is probably the simplest deq possible for Feynman integrals, since
it only contains two MI’s from which the tadpole is trivial and the exploited approach is
only that easy, if there is only one MI for every involved (sub-)topology, since the deq
becomes

∂~I(s,m, ε)
∂sα

=


× 0
× ×
... · · · . . .
× · · · · · · ×

 ~I(s,m, ε) (6.4.1)

for an ordering of the topologies according to their number of propagators. In more
realistic cases, there is more than one MI for a given topology, such that the system
becomes coupled which results in matrices of lower triangular block form, e.g.

∂~I(s,m, ε)
∂sα

=


× × 0
× ×
... · · · . . .
× · · · · · · ×

 ~I(s,m, ε) . (6.4.2)

In this case, a decoupling of the differential equation at order ε can be obtained often, by
choosing a suitable so-called canonical basis, as was pointed out in [76].

6.4.1 An Introduction through dLog-Forms

For the following discussion we should keep in mind, that the IBP-identities define an
equivalence relation in the space of all integrals in the topology under consideration and
that the MI form basis in the quotient space. This basis, as obtained with Laporta’s
algorithm, depends solely on experience based ordering prescriptions, as explained in
section 4.2 and it is in a way natural to ask: Which basis choice is the best?
To answer this question we start by considering the already treated example 6.3.1, since
it can be used as a nice starting point for more general considerations.
In the result for the chosen MI I1,1, we noticed that the integral has an iterated structure,
which is in a sense not pure, since we obtained a not purely ascending weight in the
harmonic polylogarithms for higher orders in its expansion. We recall the parametric
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representation of the bubble integral (6.2.1), but now with arbitrary powers n1, n2

In1,n2 =
(
µ2

m2

)n1+n2− 4−2ε
2 Γ(n1 + n2 − 4−2ε

2 )
Γ(n1)Γ(n2)︸ ︷︷ ︸

Cn1,n2

·
∞∫

0

dx1dx2
δ(1− (x1 + x2))xn1−1

1 xn2−1
2 (x1 + x2)n1+n2−4+2ε(x1 + x2)x1 −
t

m2︸︷︷︸
a−1

x1x2


n1+n2− 4−2ε

2

= Cn1,n2

(
−1
a

)2−(n1+n2)

aε
1∫

0

dx2
(1− x2)1−n2 xn2−1

2
(x2 − a)n1+n2−2︸ ︷︷ ︸

gn1,n2 (x2)

((a− x2)(1− x2))−ε

︸ ︷︷ ︸
In1,n2

(6.4.3)

where t denotes the external momentum squared. If we now consider I(k)
n1,n2 , the k-th

coefficient of the Laurent expansion of the integral In1,n2 ,

I(k)
n1,n2 =

1∫
0

dx gn1,n2(x) (log(1− x) + log(a− x))k

=
1∫

0

dx gn1,n2(x)
k∑
i=0

(
k

i

)
Gk−i(1;x) (G(a;x) + log(a))i

=
1∫

0

dx gn1,n2(x)
k∑
i=0

i∑
j=0

(
k

i

)(
i

j

)
Gk−i(1;x)Gj(a;x) logi−j(a)

=
1∫

0

dx gn1,n2(x)
k∑
i=0

i∑
j=0

(
k

i

)(
i

j

)
(k − i)!j!G( 1, . . . , 1︸ ︷︷ ︸

(k−i)-times

;x)G(a, . . . , a︸ ︷︷ ︸
j-times

;x)

::::::::::::::::::::::::::::

logi−j(a)

(6.4.4)

we see by using the shuffle relations on the underlined term in the last line 15, that we
will deal with integrals of the form

1∫
0

dx(1− x)1−n2 xn2−1

(x− a)n1+n2−2 logi−j(a)G (a permutation of (k − i) 1’s and j a’s;x) . (6.4.5)

15Namely
∫
γ
ω
∫
γ
ω′ =

∫
γ
(ωxω′) where (ωxω′) denotes the set of all permutations of the union of the

words ω and ω′, that preserves the (relative) orderings within ω and ω′.
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This form is of course suggestive with respect to a suitable choice of the propagator powers
n1 and n2, since we immediately notice that for n1 = 2 and n2 = 1 these integrals

logi−j(a)
1∫

0

dx 1
(x− a)G (a permutation of (k − i) 1’s and j a’s;x) (6.4.6)

evaluate directly to expressions of the form

I(k)
2,1 =

k∑
i=0

ci ·G(a; . . .word of length (i− 1) . . . ; 1) · logk−i(a) (6.4.7)

for some constants ci ∈ Q.
To make this first observation a bit more tangible, let us evaluate the first three Laurent
coefficients by using (6.4.4) with n1 = 2 and n2 = 1. We get

I(0)
2,1 =

1∫
0

dx 1
x− a

= G(a; 1) (6.4.8)

I(1)
2,1 =

1∫
0

dx 1
x− a

(G(1;x) + log(a) +G(a;x))

= G(a, 1;x) +G(a; 1) log(a) +G(a, a; 1)

(6.4.9)

and

I(2)
2,1 =

1∫
0

dx 1
x− a

(
2(G(1, 1;x) +G(a, a;x)) +G(1, a; z) +G(a, 1; z)︸ ︷︷ ︸

=G(1;z)G(a;z)

+ (G(1;x) +G(a;x)) log(a) + log2(a)
)

= 2(G(a, 1, 1; 1) +G(a, a, a; 1)) +G(a, 1, a; 1) +G(a, a, 1; 1)
+ (G(a, 1; 1) +G(a, a; 1)) log(a) +G(a; 1) log2(a) .

(6.4.10)

Until now, it may not be obvious how the bubble integral with the chosen propagator
powers helps simplifying the differential equations, since we need the differentiation with
respect to a variable on which the letters are depending as well. This differentiation is
treated in Lemma 3.3.30. in [35] and reads (shortened and adapted to the here used
notation):
The total differential of any hyperlogarithm can be written in the form:

dG(σ1, . . . , σn; z) = G(��σ1 , . . . ; z)d log(z − σ1)−G(. . . ,��σn ; z)d log(σn)

+
n−1∑
k=1

(G(. . . ,���σk+1 , . . . ; z)−G(. . . ,��σk , . . . ; z)) d log(σk − σk+1)

(6.4.11)
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where . . .��σk . . . denotes the word after deleting the k-th letter σk and summands with
σk = σk+1 do not contribute (d log(0) := 0)16.

We are now able to determine some crucial properties of the differential equation
satisfied by the Laurent coefficients of the integral I2,1 and MI’s with a similar structure.
Our example had the structure

I2,1 = −C2,1 · a · (aεI2,1) (6.4.12)

= −C2,1 ·a·︸︷︷︸
normaliz.

(
I(0)

2,1 + ε
(
I(0)

2,1 log(a) + I(1)
2,1

)
(6.4.13)

+ε2
(

1
2I

(0)
2,1 log2(a) + I(1)

2,1 log(a) + I(2)
2,1

)
+O

(
ε3)) (6.4.14)

where the overall factor a corresponds to the normalization of the integral with the
homogeneous solution, as used by going from I → I/I(0)

homo. in (6.3.6) to (6.3.9). We
will comment on C2,1 a bit later, but at this moment one can think of it as an overall
normalization of all involved MI’s. The last and the structurewise most important term is
the underlined term. From the above discussion of the Laurent coefficients I(k)

2,1 we see
now, that every summand in this bracket has the form

εk log(a)k−iG(a, σ2, . . . , σi; 1) . (6.4.15)

where σ1<k is either 1 or a. Before taking the derivative of these summands with respect
to a notice, that due to the special form of the word, where the first letter is always a and
furthermore z = 1, only the last letter determines the complete derivative. To see this,
consider

∂aG(a, . . . , a, 1, . . . , 1, a, . . . , σn; 1)

=
((((

((((
((((

(((
((((

((

G(�a , . . . , a, 1, . . . , 1, a, . . . , a, σn; 1) 1
a− 1

+
(hhhhhhhhhhhhhhhhhhG(a, . . . , a, �1, . . . , 1, a, . . . , a, σn; 1) −

(((
((((

(((
((((

((((

G(a, . . . ,�a , 1, . . . , 1, a, . . . , a, σn; 1)
)

1
a− 1

+
(
G(a, . . . , a, 1, . . . , 1,�a , . . . , a, σn; 1)
:::::::::::::::::::::::::::::::::::

−
hhhhhhhhhhhhhhhhhh
G(a, . . . , a, 1, . . . , �1, a, . . . , a, σn; 1)

)
1

a− 1

+


(
G(a, . . . , a, 1, . . . , 1, a, . . . , a,����σn = 1; 1)−G(a, . . . , a, 1, . . . , 1, a, . . . ,�a , σn = 1; 1)

:::::::::::::::::::::::::::::::::::::::

)
1

a−1

−G(a, . . . , a, 1, . . . , 1, a, . . . ,����σn = a ; 1) 1
a

=G(a, . . . ,��σn )
a− 1 − G(a, . . . ,��σn )

a
∂aσn

(6.4.16)

where dots denote the same letter and equally marked terms always cancel against each
other. We see, that due to this cancellation only the last letter determines the derivative

16See the remarks on the regularization in section 6.2.2.
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consisting at most of two terms. With this preparation it is clear, that

εk∂a
(
log(a)k−iG(a, σ2, . . . , σi; 1)

)
= εk

(
(k − i) log(a)k−i−1

a
G(a, σ2, . . . , σi; 1)

+ log(a)k−i
(
G(a, σ2, . . . ,��σi ; 1)

a− 1 + G(a, σ2, . . . ,��σi ; 1)
a

∂aσi

))
.

(6.4.17)

In this derivative it is explicit, that, by a proper normalization, the differential equation
for the MI I2,1 will have only first order poles as singular points and is therefore completely
solvable within the class of hyperlogarithms without additional rational terms as in the
solution of I1,1 in subsection 6.3.1. Furthermore, by the computation within the parametric
representation we obtained the normalization which ensures, that the differential equation
for the k-th Laurent coefficient of the MI Ĩ2,1 = t

m2
1

C2,1
I2,1 will only depend on the (k−1)-th

one. Indeed we find:

∂y Ĩ2,1 = ε

(
1
y
− 2
y − 1

)
Ĩ2,1 + 1

y − 1 (6.4.18)

It is important to point out, that such an MI will in general not be considered as a “good”
MI by standard Laporta reduction algorithms, since it has a squared propagator (see
chapter 4) and that any MI which possesses a representation of the discussed form with
linear letters in the hyperlogarithm, will have a differential equation with poles of order
one in the kinematic invariant (due to the dLog-form in (6.4.11)).

6.4.2 The DEQ in a Canonical Basis and Its Solution
A similar but more general observation has first been made explicitly in [76], whereas a
more detailed review can be found in [47] and the results may be summarized as followed:

1. For integrals which evaluate within the class of hyperlogarithms, it is often possible
to find a basis in which the differential equation takes the particular simple form

d~I(ε, s1, . . . , sn) = ε

(∑
i

Aid log(fi(s1, . . . , sn))
)
~I(ε, s1, . . . , sn) , (6.4.19)

where the si denote the kinematic invariants, the Ai are matrices without ε or si
dependence and the fi are functions, which determine the alphabet. In this basis,
the dependence on the dimension factorizes completely and it is therefore often
referred to as ε- or canonical form.

2. A good basis is formed by integrals of uniform (“transcendental”) weight.

3. The basis can be obtained by manipulation of the initial system of differential
equations as obtained by standard IBP-approaches (pursued in [47,48,53–55,79])
or by an a priori investigation of the relevant topologies (further discussed in
[47,50,77,80]).
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A comment on the second point is in order, since it needs some further explanation of
what is meant by uniform (“transcendental”) weight. In the explicitly computed example
we found, that the solution of the integral Ĩ2,1 at order εk has the form of an logarithm
of power k − i times an hyperlogarithm of weight i (see (6.4.15)). This product could
be transformed into a sum of hyperlogarithms of weight k due to the shuffle relations.
Furthermore, any multiplication of i hyperlogarithms of weight ki will result in principle
in a sum of hyperlogarithms of weight

∑
i ki.

The idea is, to assign to ε the (“transcendental”) weight −1, such that expressions of
the form (6.4.15) have all uniform weight zero in analogy to the weight addition of
hyperlogarithms. This implies differential equations similar to ∂zI(k) = 1/(a− z)I(k−1)

with the boundary I(0) = 0. This boundary condition of course, does not hold for general
Feynman integrals. Therefore a “transcendental” weight is assigned to every special
number like e.g the weight γE or π is one. Furthermore one assigns to ζk the weight k,
which seems problematic, since there is little known about their transcendentality yet.
Therefore we will not use this terminology and only refer to a weight whenever needed.

Before discussing the solution of a general deq in a canonical basis, let us first consider
the special case of (6.4.19) for only one integration variable. In that case we have to solve
the differential equation

d
dx
~I(x, ε) = εA(x)~I(x) , (6.4.20)

which is equivalent to the integral equation

~I(t)− ~I0 = ε

x∫
x0

dxA(x)~I(x) (6.4.21)

with I0 = I(x0). The approximative solution of either the differential or the integral
equation is well known to physicists, since it is usually encountered by considering the
time dependent Schrödinger equation

d
dt

Ψ(t, t0) = i

~
H(t)Ψ(t, t0) (6.4.22)

with an explicit time dependent Hamiltonian. This problem is well formulated in terms of
the Dyson series and the differential equation (6.4.19) admits the same method but with
simpler objects involved, since we are dealing with matrices instead of operators acting on
a Hilbert space.
The solution of (6.4.20) by the Dyson series approach therefore reads

~I(t, ε) = T (x, x0)~I0 (6.4.23)

=

1 + ε

x∫
x0

A(s)ds+ ε2
x∫

x0

A(s)
s∫

x0

A(s′)ds′ds . . .

 ~I0 (6.4.24)

=
(

1 +
∑
n>1

εn
∫
x0≤s1...≤sn≤x

A(sn)A(sn−1) . . . A(s1)ds1 . . . dsn

)
~I0 (6.4.25)

= Peε
∫ x
x0
A(s)ds~I0 (6.4.26)
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(s1, s2)

s1

s2

γ1

γ2

γ

Figure 6.1: The contour deformation γ ' γ1 ? γ2 in the complex space of the kinematic
invariants yields a factorization of a Chen iterated integrals into hyperlogarithms.

where P denotes the path ordering 17 operator and the matrix T (x0, x) the transport of
(6.4.20). The convergence is granted because of the infinitesimal ε and we furthermore
notice, that the iterated integration will naturally result in the already introduced hyper-
logarithms.
For the general case (6.4.19) with multiple kinematic variables, the iterative solution in
terms of a path ordered exponential ~I(t, ε) = Peε

∫
γ dA~I0 still holds, but the integration is

now performed along γ, a path in the space of the kinematic invariants, connecting the
boundary point (s1,0, . . . , sn,0) and the point (s1, . . . , sn) while avoiding the singularities.
The path ordered exponential yields a solution in terms of Chen iterated integrals. For
a representation in terms of hyperlogarithms, the homotopy invariance of Chen iterated
integrals can be used to deform the path continuously such that the integration along
γ becomes γ ' (. . . ((γ1 ? γ2) ? γ3) . . . ? γn), on which the integration on the k-th path is
performed along one variable sk while the others stay constant. Here, ? denotes the con-
catenation of two paths, whereas a possible path deformation for two kinematic invariants
is depicted 6.1. The resulting integral will be a sum of products of hyperlogarithms18.

6.4.3 Example I: Solving the Bubble with One Massive Propa-
gator by Using a Canonical Basis

In section 6.4.1 we established, that the integral

Ĩ2,1 = ε
t

m2 · (6.4.27)

is a suitable element of a canonical basis, since it is a pure function of weight zero. The
second topology involved in the deq of the bubble is the tadpole

Iν = (−1)ν
(
µ2)ν−D2 ∫ dkD

iπ
D
2

1
(k2 −m2)ν

A.0.1==
(
µ2

m2

)ν−D2 Γ(ν − D
2 )

Γ(ν) (6.4.28)

17Known as time ordering operator in QM.
18By using

∫
γ1?γ2

ω =
∑n
i=0
∫
γ1
ω1 . . . ωi ·

∫
γ2
ωi+1 . . . ωn. See e.g. [35] section 3.2.3. for more details.
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which can be expanded around D = 4− 2ε by using e.g. Mathematica. We find

εeεγEI2 = 1 + ε log
(
µ2

m2

)
+ 1

12ε
2
(

6 log2
(
µ2

m2

)
+ π2

)
+O

(
ε3) (6.4.29)

to be uniform of weight zero whereby the prefactor eεγE had been included to cancel the
terms ∝ γE in the expansion of the Γ function. The system of differential equations for
the canonical basis reads

d
dy


εeεγE ·

εeεγEy ·

 = ε

(
1
y
A0 + 1

y − 1A1

)
εeεγE ·

εeεγEy·

 (6.4.30)

with y = pµp
µ/m2 and

A0 =
(

0 0
0 1

)
and A1 =

(
0 0

−( µ
m

)2 −2

)
. (6.4.31)

The solution of this system in terms of the Dyson series is

~I(y) =
(

1 + ε

y∫
y0

(
A0

s
+ A1

s− 1

)
ds

+ ε2

y∫
y0

s2∫
y0

(
A0A0

s2s1
+ A0A1

s2(s1 − 1) + A1A0

(s2 − 1)s1
+ A1A1

(s2 − 1)(s1 − 1)

)
ds1ds2

)
~I(y0)

(6.4.32)

and a suitable boundary point is y → 0, since the MI chosen for the bubble topology goes
to zero proportional to y. Therefore, every term where the rightmost matrix A0 is zero,
since the associated hyperlogarithms diverge at most logarithmic. With this observation
we get

~I(y) =
(

1 + ε

y∫
0

(
A1

s− 1

)
ds+ ε2

y∫
0

s2∫
0

(
A0A1

s2(s1 − 1) + A1A1

(s2 − 1)(s1 − 1)

)
ds1ds2

)
~I(0)

=
(

1 + εA1G(1; y) + ε2 (G(0, 1; y)A0A1 +G(1, 1; y)A1A1)
)
~I(0)

=

 1 + log
(
µ2

m2

)
ε+ 1

12

(
6 log2

(
µ2

m2

)
+ π2

)
ε2 +O (ε3)

− µ2

m2G(1, y)ε+ µ2

m2

(
−G(0, 1, y) + 2G(1, 1, y)−G(1, y) log

(
µ2

m2

))
ε2 +O (ε3)

 ,

(6.4.33)

where the only thing to do was an expansion of the boundary tadpole, which is trivial.
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6.4.4 Example II: Solving the Sunrise with One Massive Prop-
agator by Using a Canonical Basis

The next slightly more involved example is the sunrise topology with one massive propa-
gator given by the integrals

Iν1,ν2,ν3(m, t = pµp
µ) = (−1)ν

(
µ2)ν−D ∫ dDk

iπ
D
2

dDl
iπ

D
2

1
(k2 −m2)ν1 (l2)ν2 ((l + k − p)2)ν3

= (−1)ν1
(
µ2)ν1−D2 (−1)ν2+ν3

(
µ2)ν2+ν3−D2

·
∫ ( 1

(k2 −m2)ν1

∫ dDl
iπ

D
2

1
(l2)ν2 ((l + k − p)2)ν3

)
dDk
iπ

D
2

= .

(6.4.34)
For this family, there are two master integrals and a choice according to the conditions
in chapter 4 will result in a coupled system of differential equations. Such a coupled
system, as depicted in (6.4.2) can not be decoupled at O(ε) by normalizing every MI
separately by its homogeneous solution as presented in section 6.3.1. We therefore seek a
canonical basis of this family of integrals, since the general form of the canonical basis
6.4.19 automatically comes with a decoupling at O(ε).
In the topology depicted in (6.4.34), the red part corresponds to massless bubble with the
“external” momentum q = p − k and we may perform the integration over l in (6.4.34)
directly. The computation of the massless bubble can be found in appendix A and inserting
it into (6.4.34) yields

Iν1,ν2,ν3(m, t = pµp
µ) = (−1)ν1

(
µ2)ν1−D2 Cν2,ν3

∫ dDk
iπ

D
2

1
(k2 −m2)ν1

1
((k − p)2)λ (6.4.35)

with λ = ν2 + ν3 − D
2 and

Cν2,ν3 =
(
−µ2)ν2+ν3−D2 Γ

(
ν2 + ν3 − D

2

)
Γ (ν2) Γ(ν3)

Γ
(
D
2 − ν2

)
Γ
(
D
2 − ν3

)
Γ(D − (ν2 + ν3)) . (6.4.36)

This integral is of course nothing else than the already in great detail studied semi-
massive bubble with a slightly generalized propagator λ. We write down its parametric
representation analogous to (6.4.3) in D = 4− 2ε dimension

Iν1,ν2,ν3 = Cν1,ν2,ν3a
ν1+ν2+ν3−4

1∫
0

(1− ξ)3−(ν2+ν3)ξν2+ν3−3

(a− ξ)ν1+ν2+ν3−4

(
ξ

((1− ξ)(a− ξ))2

)ε
dξ

(6.4.37)
with a = m2/t and

Cν1,ν2,ν3 = a2ε
(
µ2

m2

)(ν1+ν2+ν3−4+2ε) Γ(2− ε− ν2)Γ(2− ε− ν3)Γ(ν1 + ν2 + ν3 − 4 + 2ε)
Γ(ν1)Γ(ν2)Γ(ν3)Γ(4− 2ε− ν2 − ν3) .

(6.4.38)
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Let us now, analogously to the bubble, consider the integrand

Iν1,ν2,ν3 = aν1+ν2+ν3−4

1∫
0

(1− ξ)3−(ν2+ν3)ξν2+ν3−3

(a− ξ)ν1+ν2+ν3−4

(
ξ

((1− ξ)(a− ξ))2

)ε
dξ (6.4.39)

only. As in the bubble case we want to choose the propagator powers such that the
denominator has power one and corresponds to a derivative of a logarithm. Therefore we
have the condition

∑
i νi − 4 = 1 with two possible, distinct choices, namely ν1 = ν2 = 2

and ν3 = 1 as well as ν1 = 1 and ν2 = ν3 = 2

The First MI of the Sunrise Topology With One Massive Propagator

The ε-expansion for the first case ν1 = ν2 = 2 and ν3 = 1 reads

Ĩ2,2,1 = a

1∫
0

(
ξ

((1− ξ)(a− ξ))2

)ε dξ
(a− ξ)

= a

1∫
0

(1 + (−2 log(a− ξ)− 2 log(1− ξ) + log(ξ))ε) dξ
(a− ξ) +O(ε2)

(6.4.40)

and we observe from the structure, that there will be no terms of mixed weight. Fur-
thermore, we have to check, that the prefactor C2,2,1 has uniform weight and indeed, we
find

C2,2,1 = µ2

m2

[(
−2 log(a)− 1

ε
− 2 log

(
µ2

m2

)
+ 2γE

)
+ ε

(
2
(
− log(a)− log

(
µ2

m2

)
+ 2γE

)(
log(a) + log

(
µ2

m2

))
− 2γ2

E −
π2

6

)]
+O(ε2)

(6.4.41)

that it is of weight one. The integral is therefore a good choice for an element of the
canonical basis. Notice, that we basically recycled the knowledge about the bubble with
one massive propagator.

The Second MI of the Sunrise Topology With One Massive Propagator

The second natural choice, ν2 = ν3 = 2 and ν1 = 1 is the sunrise integral, with the
massless propagators dotted (raised to the power two), reads

Ĩ1,2,2 = a2

(1− a)

1∫
0

(
ξ

((1− ξ)(a− ξ))2

)ε dξ
(a− ξ)︸ ︷︷ ︸

a
1−a Ĩ2,2,1

− a

(1− a)

1∫
0

(
ξ

((1− ξ)(a− ξ))2

)ε dξ
(1− ξ)︸ ︷︷ ︸

ĨII

.

(6.4.42)

The first part can be identified as the already checked uniform weight function in the
first MI, while in the second part ĨII , the series expansion an integration can not be
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interchanged, since the integral is not convergent at one. The integration with its full
ε-dependence yields

ĨII = (−a)−2εΓ(−2ε)Γ(ε+ 1) 2F̃1

(
2ε, ε+ 1; 1− ε; 1

a

)
, (6.4.43)

where 2F̃1 (a, b; c; z) = 2F1 (a, b; c; z) /Γ(z) is the regularized Gauß hypergeometric function.
This expression can be expanded with the help of the HypExp 2 package [58] and its first
to orders read

ĨII = − 1
2ε +

(
log
(

1− 1
a

)
+ log(−a)

)
+ ε

(
−2Li2

(
1
a

)
− 2 log2

(
1− 1

a

)
− log2(−a)− 2 log(−a) log

(
1− 1

a

)
− π2

6

)
+O

(
ε2)

(6.4.44)

which is clearly a weight one function. The prefactor C1,2,2 is two times C2,2,1 and therefore
as well of uniform weight.

The DEQ of the Sunrise with One Massive Propagator

From the explicit construction of the uniform weight integrals we read off a canonical
basis as ~I = (I1, I2)T = (ε2yI2,2,1, ε

2 (2I2,2,1 − (y − 1)I2,2,1))T where y = 1/a = t/m2 and
we took into account that C1,2,2 = 2C2,2,1 such that I1 ∝ I2,2,1 and I2 ∝ ĨII . Furthermore
we introduced the overall prefactor ε2 ensuring, that the first non-vanishing Laurent
coefficient is at order O(εj) with j ≥ 1. The differential equation reads

d
dy
~I = ε

(
1
y

(
1 0
−4 0

)
+ 1
y − 1

(
−2 1

4 −2

))
~I (6.4.45)

and we see, that every term in the Laurent expansion can be integrated within the class
of harmonic polylogarithms.

After this to explicit examples, let us summarize the three main takeaways of this
chapter.
Firstly, a general class of functions, the hyperlogarithms, were introduced. These functions
are defined as iterated integrals over certain one-forms but can be translated into nested
sums, the multiple polylogarithms, which are suitable for numerical evaluations.
Secondly, by investigating the structure of Feynman integrals in the parametric represen-
tation we motivated that many of them can be computed within this class of functions.
Thirdly, this observation in addition to the method of differential equation led to the
concept of a canonical basis of master integrals in which the solutions were manifest in
the class of hyperlogarithms. The canonical basis could be found by investigating the
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parameter representation of the integrals19. Once it was done and the alphabet identified,
the solution of the MI’s can be obtained to every order without further ado20.

19Note that it is a special feature of banana-graphs which made the propagator power choice so
suggestive. For them, the degree of the graph polynomial F is the same as the number of integrations.
For more complicated graphs the methods described in [47–55, 81] have to be employed, whereby the
investigation of the cuts seems to give the most obvious link to the properties of the diagram under
consideration.

20Thereby, even solutions in terms of iterated integrals over dLog-forms of non-rational letters can be
used. See e.g. [82, 83].
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Chapter 7

Computing Feynman Integrals
Beyond Hyperlogarithms

The previous chapter dealt with the computation of Feynman integrals, for which the
system of differential equations could be decoupled at order ε. If we consider such a
system of coupled differential equation for a given topology, there are some criteria from
which it seems plausible to deduce that its Laurent coefficients can not be expressed in
term of hyperlogarithms and therefore there does not exist a canonical basis of the MI’s.
A detailed review of the way this can be done is beyond the scope of this thesis since
these are subject of current research. I will only outline the general ideas.

7.1 On Determining If Hyperlogarithms Will Not Be
Enough

For many motivations in this thesis the parametric representation of Feynman integrals
has been used. This is mainly due to the fact, that it seems in a way more directly related
to the properties of the integrals than stating the “state of the art” algorithms, in which
of course at the end these properties are manifest as well.

In that spirit, I will shortly comment on how observing that we leave the class of
hyperlogarithms could might be motivated by the properties of the graph polynomials.
By only investigating the linear reducibility of a given diagram, we could in principle
deduce, if the method of hyperlogarithms will fail. But this method depends on the
parametrization an we can not exclude, that there is a re-parametrization in which it
becomes linearly reducible. The second viewpoint is far more general, but probably not
feasible for practical, non-trivial considerations. It is based on the fact, that the coefficients
in the Laurent expansion of Feynman integrals can be related to special numbers, called
periods [84–86]. These numbers are defined as integrals over rational function (∼ graph
polynomials) over certain domains in Rn which are defined by polynomial in-equalities.
By considering the periods associated to the polynomials, one could therefore deduce
which class of functions is needed to compute the whole integral.
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7.1.1 Outline On The Connection Between Cuts and Differen-
tial Equations

Another more recent way, which is easier and currently better understood for many
examples (see e.g. [52, 77, 80, 87]) is based on the investigation of the maximal cut and its
connection to the differential equation.
The physical interpretation of cutting an internal edge of a Feynman diagram is, broadly
speaking, to force the corresponding particle in the diagram to be on-shell. These cuts
can be used to study the discontinuity of Feynman integrals with respect to the kinematic
invariants and to reconstruct the original integral from its imaginary part [88–91]. Thereby,
a cut is treated within the framework of multivariate residues [92] and for propagators
raised to power one, the cut propagator can simply be replaced by a δ-function1.

In [52] it has been observed and illustrated, that the maximal cut (putting all propa-
gators of a diagram on-shell) fulfils the same differential equation as the homogeneous
solution of the integral under consideration. The main argument for that is the special
form of the differential equation

∂xIi = Ai,j(x, ε)Ij +
(∑

l

kl(x, ε)Il ∈ (sub-topologies)
)

, (7.1.1)

where Ai,j are the coefficients of the homogeneous system. By applying the maximal
cut to the rhs of the deq, all integrals of the sub-topologies vanish, since they have less
propagators and therefore no support on the maximal cut of Ii2 Therefore, one is left with
the homogeneous system of differential equations

∂x

Cut(I1)
...

Cut(Ik)

 = A(x, ε)

Cut(I1)
...

Cut(Ik)

 (7.1.2)

where Cut denotes the maximal cut of the integral3 where every integral Ij contains the
full set of propagators. The main question is, if this homogeneous system can be decoupled
at every order in ε.

The difficulty of computing the Laurent coefficients of a maximal cut is very much less
than the computation of the full integrals and the obtained information can be related
directly to the homogeneous system of differential equations. If the Laurent expansion of
the maximal cut of every MI of the (sub)-topology evaluates into elementary functions
or hyperlogarithms, there can likely be found a canonical basis for which the differential
equation decouples 4.

If instead the Laurent coefficients of the maximal cut already evaluate to special
functions5 which fulfil a higher order differential equation6, the system of first order

1For a prescription of higher propagator powers see e.g. [52, 92]
2They are holomorphic at the propagators they do not contain and therefore the residue vanishes.
3The cuts used do not have a restriction to positive energies and are therefore different to Cutkovsky-

cuts.
4A similar observation can be found [47] where it was proposed to use the properties of general cuts

(not only the maximal one) as an starting point for a construction of a canonical basis. See also [77,80]
for applications of cuts in Baikov-representation.

5Or integrals over special function (see e.g. [87])
6E.g. elliptic integrals or hypergeometric functions or more complicated objects

52



differential equations can not be decoupled at order ε and the integrals do not evaluate
within the class of hyperlogarithms. Instead the system decouples as a n-th order system
of differential equations.
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7.2 A Reminder On Solving Linear Higher Order Dif-
ferential Equations

For Feynman integrals beyond hyperlogarithms the system of first order differential equa-
tions can not be decoupled by a canonical basis. Instead, there will exist an inhomogeneous
higher order differential equation7 for the k-th Laurent coefficient. This differential equa-
tion can be transformed to a first order system by the usual replacement x1(t) := I(k)(t),
x2(t) := d

dtI
(k)(t), . . ., xn = dn−1

dtn−1I(k)(t). We therefore deal with the first order system
d
dt~x = A(t)~x+~b(k)(t) (7.2.1)

with the boundary condition

~x(t0) = ~ξ (7.2.2)

and the corresponding homogeneous system
d
dt~x

h = A(t)~xh . (7.2.3)

The solutions ~xhi are said to form a fundamental system X(t0, t), if det
[
~xh1(t), . . . , ~xhn(t)

]
=

det(X(t0, t)) 6= 0 for all t and it can be solved by the usual variation of constants

~x(t) = X(t0, t)~ξ +
t∫

t0

X(t0, s)~b(k)(s)ds . (7.2.4)

It is important to highlight the fact that the fundamental system will be the same for
every Laurent coefficient and only the inhomogeneous part changes. The solution of the
k-th Laurent coefficient can therefore be written as a k-fold iterated integral and in this
representation, the similarities to the approach with the canonical basis are manifest.
In [87] it was shown for the 3-loop banana, that a basis transformation with specific
elements of the fundamental system Xi(t0, t) for every of the three MIs I1, I2 and I3
obtained by Laportas algorithm can be used to decouple the first order system of this MI
choice at order ε.

If one chooses a fixed basis of MI’s, the analogous discussion for the n-th order
differential equation of the k-th Laurent coefficient reads

dn

dtnI
(k)(t) + an−1(t) d

n−1

dtn−1I
(k)(t) + . . .+ a0(t)I(k)(t) + b(k)(t) = 0 (7.2.5)

where the fundamental system is spanned by the n solutions yh of the homogeneous deq (
yh to emphasize their independence on the order of expansion). Here, analogously, the
fundamental system is a fundamental system, if the Wronskian determinant

W
(
yh1 , y

h
2 , . . . , y

h
n

)
:= det


yh1 (t) . . . yhn(t)

d
dty

h
1 (t) . . . d

dty
h
n(t)

. . . . . . . . .
dn−1

dtn−1y
h
1 (t) . . . dn−1

dtn−1y
h
n(t)

 6= 0 (7.2.6)

7Recent examples in that direction seem to hint, that the order of the system corresponds to the
number of MI’s which can not be decoupled at the first order differential equation [30,80,87,93,94]
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for all t. The variation of the constant now yields the particular solution

I(k)
part(t) =

n∑
j=1

(−1)n+jyhj (t)
t∫

t0

W
(
yh1 , . . . , y

h
j−1, y

h
j+1, . . . , y

h
n

)
(s)

W
(
yh1 , . . . , y

h
n

)
(s)

b(k)(s)ds (7.2.7)

where W (yh1 , . . . , yhj−1, y
h
j+1, . . . , y

h
n) denotes the Wronskian determinant with the j-th

column and the n-th row removed. The general solution for the Laurent coefficient at
order k is then the superposition of the homogeneous solutions and the particular solution,
where the initial condition is obtained by the physical constraints.

Both the representations are of course equivalent and it is important to notice, that
there is always the homogeneous solution in the kernel of integration and that the
inhomogeneity will involve lower Laurent coefficients and their derivatives.
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Iν1,ν2,ν3 = (7.3.1)

Figure 7.1: The equal mass sunrise topology.

7.3 The Equal Mass Sunrise Integral
The simplest example of a Feynman integral which does not evaluate within the class
of hyperlogarithms is the equal mass sunrise integral depicted in fig. 7.1. It therefore
received much interest and has been extensively studied in the literature [26, 93, 95–113].

7.3.1 Multivalued Functions and Elliptic Curves - An Informal
Overview

But before I give a review on the solution of the sunrise with the methods used in [107,110] I
will give a superficial, informal overview on elliptic curves and their periods. This addresses
readers with small or no knowledge on these subjects, such that there is some intuition
for the approaches of the following sections after this detour. We will achieve this by
putting aside much of the mathematical rigour usually required to really understanding
the subjects, since they are well covered in many mathematical textbooks.

On Multivalued Functions

Consider the complex valued function

z
1
n = |r| 1n e

iϕ
n (7.3.2)

in polar coordinates with n ∈ Z. Obviously, after traversing a closed path in counterclock-
wise direction around the origin8 ϕ→ ϕ+ 2π we have that

z
1
n → z

1
n e

2πi
n = |r| 1n e

iϕ
n e

2πi
n 6= |r| 1n e

iϕ
n . (7.3.3)

That means by traversing a closed second loop we will get another value and so on, until
we traversed n-loops and start at the beginning. Our function z 1

n can take n-different
values in C and is therefore multivalued. We may ask ourself, what happens if we make a
closed loop around another point a in C, with |a| < |r|. We therefore consider

|r|
1
n e

iϕ
n (a(1− eiθ)). (7.3.4)

8Traversing the path γ ∈ C from a to b is done by starting with the holomorphic function f = fa
defined in a disk Da centered at a, such that the Taylor series of f is convergent at a. If γ can be covered
by domains Di, such that the function fi and fi+1 agree in the intersection of Di and Di+1, we have an
analytic continuation of f from a to b along γ.
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(0,0)

(0,0)

(a) (b)

Figure 7.2: (a) Depiction of the two Riemann sheets of the root differing by a sign.
Crossing the branch cut changes the sheet. Paths on one sheet are depicted as continuous
lines, paths on the other sheet as dashed lines. (b) In between stage of the gluing process
of the two sheets of the root. Gluing together the upper and lower cuts yields the Riemann
surface of the square root shown in fig. 7.3.

and obviously, nothing changes after traversing the closed path with θ = 0 → θ = 2π.
Until now, the only special point is the origin. Lastly, we have to understand what
happens at the point ∞. Therefore we consider the variable change z → 1

ξ
, such that a

closed loop around z at infinity corresponds to a closed loop of ξ around 0. The discussion
of closed loops around ∞ is therefore the same as in (7.3.2) with n→ −n. The points 0
and ∞ are called branch-points of the function z 1

n and if we want a single-valued in C, we
can not allow closed loops around either ∞ or zero.
This is “not allowing closed loops” is implemented by introducing a branch-cut which
connects the point ∞ and zero. This can be done by any arbitrary straight, or waved but
not self-intersecting line in C, while the common choice is on the negative real axis. The
function z1/n has now a single-valued determination on C minus the cut.
We know consider, what happens if we do cross a branch cut. Clearly, from the discussion
above we know, that we pick up a term e2πi/n. So we have to consider n-copies of the slit
complex plane. On every of the this copies, the n-th root is single-valued and on the k-th
copy defined as |r|1/neiϕ/ne2iπk/n. For n = ±2, the two copies are depicted in fig. 7.2(a).
They are referred to as Riemann sheets. Here, the solid line corresponds to the path on
the Riemann sheet, while the dashed line presents the a path on the other. By crossing
the branch-cut, we go from one sheet to the other and by going once counterclockwise over
it and then clockwise back again, we did not pick up anything. By tracking a continuous
path which crosses the branch cuts we avoided multivaluedness at the of defining multiple
sheets on which we have single valued determinations. By gluing the boundaries of the
sheets we obtain the Riemann surface (M ) on which we have the single valued function
f̃ : M → C. The in-between stage of the gluing process is depicted in fig. 7.2(b) where the
blue line corresponds to the lifted path γ̃. By gluing together the remaining upper and
lower cuts we obtain the Riemann surface of the root shown in fig. 7.3, which corresponds
to C\0.
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Figure 7.3: Representation of the Riemann surface of the root function. The picture was
created by usage of the presented Mathematica code in [114].

On Elliptic Curves

In the previous paragraph we sketched the notion of Riemann sheets and Riemann surfaces
as possible options to define a single valued determination of multivalued functions in C.
The object of interest for the solution of the sunrise integral will be an elliptic curve 9. An
elliptic curve can be presented as a non-singular cubic10 in P2(C), which can be reduced
to the form

Y 2Z = 4X3 − g2XZ
2 − g3Z

3 . (7.3.5)

Indeed, every non-singular cubic in P2(C) can be reduced to that form.11 A dehomoge-
nization to the chart Z = 1 yields the so-called Weierstraß form of the elliptic curve

y2 = 4x3 − g2x− g3 (7.3.6)

in the affine space. Factoring the polynomial yields

y2 = (x− e1)(x− e2)(x− e3) (7.3.7)

in which the roots are manifest and furthermore e1 + e2 + e3 = 0. By considering the
Möbius transformation Mij : x→ xij = (x− ei)/(ej − ei), which sends the root ei to zero,
the root ej to one and ek to λijk = (ek − ei)/(ej − ei) we get the Legendre form of the
elliptic curve

y2
ij = xij (xij − 1) (xij − λijk) (7.3.8)

9See e.g. [115] for an extensive overview on the here sketched subjects.
10three distinct roots
11One can use e.g. SageMath’s [116] WeierstrassForm which brings any cubic in P2(C) into Weierstraß

form and gives the transformation into the weighted projective space P2[2, 3, 1].
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δ1 δ2

0 λ 1

(a) two sheets

δ2
δ1

(b) glued together

δ1

δ2

(c) add ∞

<(z)

=(z)

Ψ1

Ψ2

(d) period lattice

Figure 7.4: The gluing process of the function y2 = (x− e1)(x− e2)(x− e3). Represented
in (a), the two sheets with a branch-cut choice. The gluing of the branch-cut yields (b),
where same colored boarders are identified by adding ∞. Gluing identified edges yields
the torus depicted in (c). (d) shows a lattice of which identifying same colored periods
yield a torus.

where yij = y (aj − ai)−3/2. Starting from the Weierstraß form, there are six possible
Legendre forms which can be obtained by different mappings of the roots.12 The associated
λ’s are not independent13 and one finds

λjik = 1− λijk λikj = 1
λijk

λjki = 1
1−λijk

λkij = λijk−1
λijk

λkji = λijk
λijk−1 . (7.3.9)

A third representation of elliptic curves is referred to as Jacobi form

η2
ij = (1− ξij)(1− λijkξ2

ij) . (7.3.10)

This representation can be obtained e.g. from the Legendre form (7.3.8) by the transfor-
mation xij = ξ−2

ij and ηij = yijξ
−3
ij .

12This is just the action of the permutation group S3 on ei, ej and ek.
13That can be helpful if one wants to work e.g. with 0 < λ < 1 and a branch-cut choice depicted in 7.4.

59



To study the Riemann surface associated to the elliptic curve in e.g. Legendre form
(7.3.8) we have to consider the function

y =
√
x (x− 1) (x− λ) . (7.3.11)

This function is multivalued in C and, in analogy to the square root in the previous
paragraph, we have to consider a two sheeted cover minus some cuts.14 The branching
points are 0, λ, 1 and ∞. A possible branch-cut choice is given by the line segments
connecting 0, λ and 1, ∞ as depicted in fig. 7.4a, where the determination of y on the
sheets differs by a sign. By opening the cuts, identifying the lips in which the root goes
from one sheet to the other without a sign change and gluing them together we arrive at
fig. 7.4b.15 If the sheets of y are considered to be C ∪ {∞} ' P1(C)16, the same coloured
boundaries have to be glued together. The resulting Riemann surface is the torus depicted
in 7.4c minus four points associated to the roots ei and ∞.

We may ask, if there is a map f : C→ P2(C) with f(z) = (F1(z), F2(z), 1) which can
be used to determine the parametrization of the cubic in P2(C) such that the image of
that map is a torus (our Riemann surface). Such a map exists and to visualize how it
works, we consider the lattice depicted in fig. 7.4d. This lattice has two periods Ψ1 and
Ψ2. If the function f is periodic with respect to the lattice, that means we identify all
points z+ n1Ψ1 + n2Ψ2 with ni ∈ Z, we obtain a torus. The function is then called double
periodic. If it is furthermore meromorphic it is called elliptic.
The mapping can be visualized by considering the fundamental parallelogram in fig. 7.4d.
By identifying the blue coloured edges Ψ2 and gluing them together one obtains a tube.
Gluing together the boundary of the tube associated to the red coloured Ψ1 yields a
torus depicted in fig. 7.4c, where now δ1 and δ2 are “replaced” by Ψ1 and Ψ2. Another
representation of the elliptic curve E is therefore E = C/(Ψ1Z + Ψ2Z) ' C/(τZ + Z) with
τ = Ψ2/Ψ1 ∈ H, where H denotes the upper half-plane.

One possible elliptic function with f : C→ P2(C) is the Weierstraß ℘-function

℘(z; Λ) = 1
z2 +

∑
w 6=0

(
1

(z − w)2 −
1
w2

)
, (7.3.12)

where the sum is over all non-zero lattice points in Λ = {n1Ψ1 + n2Ψ2|n1, n2 ∈ Z}. With
respect to the fundamental parallelogram Ψ̃1 = 1 and Ψ̃2 = τ one has ℘(z; Ψ1,Ψ2) =
℘( z

Ψ1
; Ψ2
Ψ1

=τ)
Ψ2

1
. The parametrization of the elliptic curve in terms of the ℘-function is then

(℘′)2 = 4℘2 − g2℘− g3 (7.3.13)
14For some notes on global, single-valued, continuous representatives of this particular case see para-

graph 2 in [109].
15Notice that one of the sheets has to be rotated around the real axis to make the gluing from fig. 7.4a

to fig. 7.4b without apparent “intersections” in three dimension.
16Consider for (7.3.5) the projection p : P2(C)\{(0, 1, 0)} → P1(C), (X,Y, Z) 7→ (x, z). Then for

X − eiZ 6= 0, we have two solutions (points) in P2(C) mapped to one point in P(C). For ∞ = (1, 0) there
is only one solution of X3 = 0 in P2(C) namely (0, 1, 0) and for Z 6= 0 and Z/X = ei we have the one
solution (X/Z = ei, 0, 1). If from P1(C) the points ei and ∞ are excluded then all points in P1(C) have
to preimages in P2(C). By considering the affine chart Z = 1 first, we have a projection of (7.3.5) on
P1(C) with (x, y) 7→ x. In that sense, the figure 7.4b is to be understood as the two preimages of the
curve (7.3.5) in P1(C) lifted to P2(C).
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with

℘′(z; Λ) = −2
∑
w

1
(z − w)3 (7.3.14)

by setting x = ℘(z) and y = ℘′(z) for a suitable lattice. The sum in ℘′ is over all lattice
points and it clearly is double-periodic as well. The map from the torus (R̃iemann surface)
f : C/Λ→ P2(C) can be defined as ( see e.g. [115] p. 37)

z 7→

{
(℘(z), ℘′(z), 1) z 6= 0
(z3℘(z), z3℘′(z), z3) = (0, 1, 0) z = 0 .

(7.3.15)

The periods of the elliptic curve, which span the fundamental parallelogram depicted
in 7.4d are the integrals of the holomorphic one-form η = dx/y along the contours δi
depicted in fig. 7.4 and one finds

Ψi =
∫
δi

η . (7.3.16)

These contour integrals can be transformed into integrals proportional to complete elliptic
integrals K(k) and K(k′) with

K(k2) =
1∫

0

dt√
1− t2

√
1− k2t2

(7.3.17)

and k′2 = 1− k2 with

iK(k′2) =
k−1∫
1

dt√
1− t2

√
1− k2t2

= 1
i

k−1∫
1

dt√
1− t2

√
1− k′2t2

. (7.3.18)

For the period Ψ2 the mapping can be done directly by going from the Weierstraß-
(7.3.6) to the Legendre- (7.3.8)17 to the Jacobi-form (7.3.10) and identifying the resulting
integral ∝ K(k′) with k′2 = 1 − λ. For the period Ψ1 the first transformation is from
Weierstraß- to Legendre-from. Then one can use, that the (e.g. clockwise) oriented integral
along a contour encircling 0 and λ is the same as the (e.g. counter-clockwise) oriented
integral encircling 1 and ∞18. Following with the translation19 to line integrals and a
transformation in the Jacobi-form (7.3.10) yields an integral ∝ K(k) with k2 = λ. The
advantage of working with K(k) and K(k′) instead of the integrals along the contours δi
is their implementation and fast numerical evaluation in established computer programs.

Given the periods Ψi obtained by evaluating the contour integrals, there is another
representation of elliptic curves called the Jacobi uniformization. Here one considers

17Here, e.g. λ = λ132 can be used for an root ordering with e1 < e2 < e3.
18That is e.g. done by working in sheets P1(C) ' S1 and deforming the contour “behind” the sphere

with a continuously defined one-form ∝ dx/(
√
x
√
x− λ

√
x− 1) as e.g. defined in [109] and noticing, that

it picks up an additional minus sign for x > λ.
19Notice that the one-form differs by a sign above and below the cuts (and on the different sheets for

δ2) and therefore
∫
γ
η = 2

∫ aj
ai
dx/y where ai and aj are branch-points.
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the exponential map z 7→ eiπz = w with C → C − {0} = C∗. The lattice Λ = Z + Zτ
in C is mapped to q2Z in C∗, where the variable q = eiπτ is called the nome and since
τ = Ψ2/Ψ1 ∈ H one has |q| < 1. Hence one has the isomorphism Eτ = C/Λτ → C∗/q2Z.
The functions associated to this representation are the so-called four Jacobi ϑ-functions.20

To conclude this paragraph let us summarize its main takeaways:

• Defining a single valued determination of a complex valued function can be done by
introducing branch-cuts or its Riemann-surface.

• An elliptic curve can be presented as a non-singular cubic y2 = ax3 + bx + c. Its
Riemann surface is a torus.

• Therefore one can represent an elliptic curve as C/Λ or C∗/q2Z

• The the periods of the elliptic curve Ψi =
∫
δi
dx/y are associated to the lattice Λ.

Associated to its Jacobi uniformization is the nome q = eiπΨ1/Ψ2 .

7.3.2 The Solution of the Equal Mass Sunrise in Terms of Ellip-
tic Polylogarithms in D = 2− 2ε

The results of the previous section will be important for the sunrise topology (see fig. 7.1),
which has two master integrals. For these two MI the first order system of differential
equations of the Laurent coefficients can not be decoupled at order O(εk). Instead, there
is a second order differential equation for the MI I1,1,1. This second order differential
equation has been obtained in [118] firstly by using the properties of the Feynman integral
and reads in D = 2− 2ε and the Euclidean regime pµpµ < 0

Lhomo
t I(k)

1,1,1 = L
(1)
t I

(k−1)
1,1,1 + L

(2)
t I

(k−2)
1,1,1 + Ltad

t I
(k−2)
1,1,0︸ ︷︷ ︸

inhomogeneous part

(7.3.19)

with t = pµp
µ/m2 and

Lhomo
t = d2

dt2 +
(

1
t

+ 1
t− 1 + 1

t− 9

)
d
dt +

(
− 1

3t + 1
4(t− 1) + 1

12(t− 9)

)
(7.3.20)

L
(1)
t =

(
− 2
t− 1 + 1

t
− 2
t− 9

)
d
dt +

(
− 1

4(t− 1) + 5
9t −

11
36(t− 9)

)
(7.3.21)

L
(2)
t =

(
1

2(t− 1) −
2
9t −

5
18(t− 9)

)
(7.3.22)

Ltad
t = µ2

m2

(
− 3

4(t− 1) + 2
3t + 1

12(t− 9)

)
. (7.3.23)

The equal mass sunrise is UV-finite in D = 2− 2ε and its expansion starts at order ε0.
The “squared” tadpole I1,1,0 in D = 2− 2ε is ∝ Γ(ε)2 (see appendix (A.0.1)) and therefore

20For a review of these functions see e.g. [117] chap. 10.
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starts at order O(ε−2). A suitable boundary value for the special solution is e.g. t = 0,
since the result for the Laurent expansion of the vacuum sunrise I1,1,1(0) can be found in
the literature [104,119–121]21.

The Related Family of Elliptic Curves

An analytic solution of the differential equation (7.3.19) has been obtained already in [26]
by relating the homogeneous deq to a known differential of special functions (elliptic
integrals). By using a variation of the constant (7.2.7), the obtained solution is in terms
of integrals over elliptic integrals.
Two more (similar) analytic solutions have been computed to order ε0 in [110] and to
“all-orders”22 in [107]. Here, some key points of the solution in [107] are recalled.
The parametric representation of the sunrise integral in D = 2− 2ε-dimensions is

I1,1,1 = Γ(1 + 2ε)( µ
2

m2 )1+2ε
∫ ∞

0
δ(1− (x1 + x2 + x3)) U

3ε

F1+2εdx1dx2dx3 (7.3.24)

with

U = (x1x2 + x1x3 + x2x3) , (7.3.25)
F = (x1x2 + x1x3 + x2x3) (x1 + x2 + x3)− tx1x2x3 (7.3.26)

and t = pµp
µ/m2. Rewriting this integral as a projective integral23 yields

I1,1,1 = Γ(1 + 2ε)( µ
2

m2 )1+2ε
∫
σ

U3ε

F1+2εω (7.3.27)

with

ω = x1dx2 ∧ dx3 + x2dx3 ∧ dx1 + x3dx1 ∧ dx2 (7.3.28)

and the integration domain

σ =
{

[x1 : x2 : x3] ∈ P2|xi > 0, i = 1, 2, 3
}
. (7.3.29)

We notice, that the graph polynomial F is a cubic in P2(C), so that it’s zero locus for a
given t0 defines an elliptic curve.24

The Weierstraß equation of the family of elliptic curves which varies with t is defined
by F = 0 and given as

y2 = 4x3 − g2(t)x− g3(t)
= 4 (x− e1(t)) (x− e2(t)) (x− e3(t))

(7.3.30)

21The computation of this boundary is related to a connection between a massless one-loop three-point
function and two-loop vacuum functions [119]. The results for the three point function can be found
in [120,121] and the explicit change of variables to the case at hand in [104].

22An algorithm for the analytic computation of an arbitrary Laurent coefficient has been obtained and
the first three coefficients are explicitly given in the appendix therein.

23See comment 5 and references therein and eq’s (7)-(10) in [107] for that particular case.
24A motivation for considering the zero locus of F can be found in [93] and [85].
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with

g2(t) = m8

12µ8 (3− t)
(
3− 3t+ 9t2 − t3

)
, (7.3.31)

g3(t) = m12

216µ12

(
3 + 6t− t2

) (
9− 36t+ 30t2 − 12t3 + t4

)
. (7.3.32)

and

e1(t) = m4

24µ4

(
−t2 + 6t+ 3 + 3 (1− t)

3
2 (9− t)

1
2

)
, (7.3.33)

e2(t) = m4

24µ4

(
−t2 + 6t+ 3− 3 (1− t)

3
2 (9− t)

1
2

)
, (7.3.34)

e3(t) = m4

24µ4

(
2t2 − 12t− 6

)
. (7.3.35)

The transformation of the non-singular cubic to the Weierstraß form can be either found
in appendix A in [105] or by the usage of SageMath [116]. Hereby the roots are real and
ordered as e2 < e3 < e1 in the Euclidean region.
The periods associated to the family of elliptic curves are given by

Ψ1 =
∫
δ1

dx
y

= 2
e3∫
e2

dx
y

= 4µ2

m2(1− t) 3
4 (9− t) 1

4
K(k2) (7.3.36)

and

Ψ2 =
∫
δ2

dx
y

= 2
e3∫
e1

dx
y

= 4iµ2

m2(1− t) 3
4 (9− t) 1

4
K(k′2) (7.3.37)

where y = −2
√
x− e1(t)

√
x− e2(t)

√
x− e3(t) and

k2 = λ213 = e3(t)− e2(t)
e1(t)− e2(t) , k′2 = 1− k2 = e1(t)− e3(t)

e1(t)− e2(t) (7.3.38)

denote the parameter and the complementary parameter of the elliptic integral K of the
first kind (7.3.17),(7.3.18). The integration cycle δi are chosen such that δ1 encircles e2
and e3 counterclockwise and δ2 goes around e3 and e1 in clockwise direction.

The two periods Ψi satisfy the differential equation[
d2

dt2 +
(

1
t

+ 1
t− 1 + 1

t− 9

)
d
dt +

(
− 1

3t + 1
4(t− 1) + 1

12(t− 9)

)]
Ψi = Lhomo

t Ψi = 0

(7.3.39)

and are therefore the two homogeneous solutions of the second order differential equation
of the equal mass sunrise.25 The same holds as well for the unequal mass case, as been
used in [104].

25The periods of this particular family of elliptic curves have already been considered in the mathematical
literature (see e.g. [122] [123]) and already known to mathematicians. In particular see [123] table 13,
N = 6 (with t → t − 9) for the Picard-Fuchs equation, table 9 with N = 6 for t as a modular form
function of q and table 12, N = 6 for a homogeneous solution in terms of 2F1.
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By using (7.2.7) we may write the solution of the sunrise in the general form

I
(k)
1,1,1(t) = c1Ψ1(t) + c2Ψ2(t) +

t∫
t0

Ψ1(s)Ψ2(t)−Ψ1(t)Ψ2(s)
W (Ψ1(s),Ψ2(s)) b(k)(s)ds (7.3.40)

where the constants c1, c2 might be obtained by the comparison with the vacuum sunrise
at t0 = 0 and b(k)(s) is the r.h.s. from (7.3.19) for the k-th Laurent coefficient.

The Wronskian of the fundamental system can be easily obtained as 26

W (Ψ1(t),Ψ2(t)) = Ψ1(t) ddtΨ2(t)−Ψ2(t) ddtΨ1(t) = −12iπµ4

m4
1

t(t− 1)(t− 9) . (7.3.43)

In the representation of the solution of the sunrise in (7.3.40) it is obvious, that a solution
might be written as iterated integral over elliptic integrals of the first kind, since the
integrand involves the homogeneous solutions Ψi.

7.3.3 Upshot of the Integration Algorithm by Adams, Bogner,
Weinzierl

The approach by Adams, Bogner and Weinzierl [107] however has three mayor points,
which simplify the solution drastically. They can be summarized as follows:27

1. There exists a basis transformation, such that the inhomogeneity L
(1)
t I

(k−1)
1,1,1 in

(7.3.19) can be removed without changing the homogeneous part.

2. The integration should not be performed with respect to the kinematic invariant
t, but with respect to the nome q of the elliptic curve associated to the sunrise by
F = 0.

3. There exists a certain type of q-series in which a complete solution of the sunrise at
arbitrary order can be expressed.

The Basis Transformation

The basis transformation used in [107] in D = 2− 2ε reads

I1,1,1(t, ε) = Γ(ε+ 1)2
(
µ2

m2

)ε( 3√y
(y − 1)(y − 9)

)ε
Ĩ1,1,1(t, ε) . (7.3.44)

26 By using

d
dtK(λ(t)) = λ′(t)(E(λ(t))− (1− λ(t))K(λ(t)))

2(1− λ(t))λ(t) (7.3.41)

and the Legendre relation

K(1− λ)E(λ) +K(λ)E(1− λ)−K(λ)K(1− λ) = π

2 (7.3.42)

where E denotes the complete elliptic integral of the second kind and λ the parameter.
27The point 2.) and 3.) have been treated similarly already in [110].
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The second order differential equation fulfilled by Ĩ1,1,1
28 is

Lhomo
t Ĩ1,1,1(t, ε) = ε2L̃

(2)
t Ĩ1,1,1(t, ε) + b̃tad

t,ε (7.3.45)

where Lhomo
t is given in (7.3.20),

L̃
(2)
t = −

(
m2

µ2

)4 (t+ 3)4

576π2 W 2 (Ψ1(t),Ψ2(t)) (7.3.46)

b̃tad
t,ε = i

2π
m2

µ2

(
m2

µ2
3
√
t

(t− 9)(t− 1)

)−ε
W (Ψ1(t),Ψ2(t)) (7.3.47)

and W (Ψ1(t),Ψ2(t)) denotes the Wronskian (7.3.43), which remains the same, since the
fundamental system has not changed. Furthermore, in (7.3.45) the explicit result of the
tadpole squared (A.0.1)

I1,1,0 = Γ(ε)2
(
µ2

m2

)2ε

(7.3.48)

has been inserted.
The differential equation for the k-th Laurent coefficient is

Lhomo
t Ĩ(k)

1,1,1 = L̃
(2)
t

(∑
i=1,2

Ψi(t)E(k−2)
i (t)

)
+ i

2π
m2

µ2 W (Ψ1(t),Ψ2(t))
logk

(
µ2

m2
(t−9)(t−1)

3
√
t

)
k!

(7.3.49)

where we used, that the periods are prefactors in the lower order coefficients due to
(7.3.40). The general solution might be written as

Ĩ(k)
1,1,1 = c̃1Ψ1(t) + c̃2Ψ2(t) +

∑
i=1,2

(−1)i+1Ψi(t)

 t∫
t0

Ψk 6=i(s)
W (Ψ1(s),Ψ2(s)) L̃

(2)
s

(∑
j=1,2

Ψj(s)E(k−2)
j (s)

)
ds

+ i

2π
m2

µ2

t∫
t0

Ψk 6=i(s)
W (Ψ1(s),Ψ2(s))W (Ψ1(s),Ψ2(s))

logk
(
µ2

m2
(s−9)(s−1)

3
√
s

)
k! ds


= c̃1Ψ1(t) + c̃2Ψ2(t)

−
∑
i=1,2

(−1)i+1Ψi(t)

(m2

µ2

)4 t∫
t0

Ψk 6=i(s)(s+ 3)4

576π2 W (Ψ1(s),Ψ2(s))
(∑
j=1,2

Ψj(s)E(k−2)
j (s)

)
ds

− i

2π
m2

µ2

t∫
t0

Ψk 6=i(s)
logk

(
µ2

m2
(s−9)(s−1)

3
√
s

)
k! ds

 .

(7.3.50)
28Notice that Ĩ1,1,1 has a logarithmic singularity at the boundary point t = 0. Since we will not compute

it here however, for the treatment of this singularity and the boundary conditions is referred to [107].
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The Class of Functions - Elliptic Generalization of Polylogarithms

In (7.3.50) the solution is given in terms of the kinematic invariant. With respect to the
family of the elliptic curve, this is the parameter in which it varies. By solving the integral
with respect to this parameter the variation will still be manifest but we neglect in a way
the additional knowledge about the structure of the result. The solution should inherit
directly the properties of the elliptic curve describing its homogeneous part. Therefore it is
natural to ask, if the result can be formulated in terms of the period ratio τ = Ψ2/Ψ1 ∈ H
associated to the representation Et = C/λt or in terms of the nome q = eiπτ associated to
the Jacobi uniformization Et = C∗/q2Z

t . Hereby the advantage of a formulation in terms
of the nome is that it gives rise to a formulation in terms of power series, since |q| < 1.
That approach has first been pursued in [110], where the first order of the massive sunrise
in D = 2 − 2ε has been solved in terms of elliptic dilogarithms, a generalization of the
dilogarithm associated to the power series representation (6.2.25) in section 6.2.2. In the
work [104–107, 124] this approach has been generalized and was used to compute the
sunrise with arbitrary masses, the equal mass sunrise and the kite integral (the latter two
to all orders). In the following the two points of interest are:

1. What is a suitable class of functions?

2. Can every integration of the sunrise be performed in this class of functions?

The Building Block ELin;m (x; y; q) and Its Properties

Adams et al defined the following series

ELin;m (x; y; q) =
∞∑
j=1

∞∑
k=1

xj

jn
yk

jk
qjk with n,m ∈ Z; x, y, q ∈ C; |q| < 1 . (7.3.51)

Recalling the classical polylogarithm

Lin(x) =
∞∑
j=1

xj

jn
, (7.3.52)

we see, that the ELi-series corresponds to a product of classical polylogarithms “coupled”
by a third variable which will later be associated to the nome q of an elliptic curve. This
series has the property that the integral

q∫
0

ELin;m (x; y; q′) dq
′

q′
= ELin+1;m+1 (x; y; q) (7.3.53)

will stay in this class of functions, analogously to the iterated integration of the classical
polylogarithm with the one form dx/x. By investigation of the sum one furthermore
finds [105] the reflection formula

ELin;m (x; y;−q) =
1
2 (ELin;m (x; y; q) + ELin;m (x;−y; q) + ELin;m (−x; y; q)− ELin;m (−x;−y; q)) .

(7.3.54)
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The Generalization ELi~n;~m;2~o (~x; ~y; q) and Its Properties

The generalization of this series is based on the consideration of the integral
q∫

0

ELin1;m1 (x1; y1; q′)ELin2;m2 (x2; y2; q′) dq
′

q′
=

q∫
0

∑
j1,j2,k1,k2>0

xj11
jn1

1

xj22
jn2

2

yk1
1
km1

1

yk2
2
km2

2
q′j1k1+j2k2

dq′
q′

=
∑

j1,j2,k1,k2>0

xj11
jn1

1

xj22
jn2

2

yk1
1
km1

1

yk2
2
km2

2

qj1k1+j2k2

(j1k1 + j2k2)
(7.3.55)

which is not in the class of ELin,m-series.
Therefore one defines functions of (2l + 1) variables x1, . . . , xl, y1, . . . , yl, q as follows:
For l = 1 one has:

ELin;m (x; y; q) =
∞∑
j=1

∞∑
k=1

xj

jn
yk

km
qjk. (7.3.56)

For l > 1 one defines:

ELin1,...,nl;m1,...,ml;2o1,...,2ol−1 (x1, . . . , xl; y1, . . . , yl; q) =

=
∞∑
j1=1

. . .
∞∑
jl=1

∞∑
k1=1

. . .
∞∑
kl=1

xj11
jn1

1
. . .

xjll
jnll

yk1
1
km1

1
. . .

ykll
kmll

qj1k1+...+jlkl

l−1∏
i=1

(
l∑
i

jiki

)oi . (7.3.57)

The multiplication is then given as

ELin1;m1 (x1; y1; q)ELin2,...,nl;m2,...,ml;2o2,...,2ol−1 (x2, . . . , xl; y2, . . . , yl; q) =
ELin1,n2,...,nl;m1,m2,...,ml;0,2o2,...,2ol−1 (x1, x2, . . . , xl; y1, y2, . . . , yl; q)

(7.3.58)

and the integration becomes
q∫

0

dq′

q′
ELin1,...,nl;m1,...,ml;2o1,2o2,...,2ol−1 (x1, . . . , xl; y1, . . . , yl; q′) =

ELin1,...,nl;m1,...,ml;2(o1+1),2o2,...,2ol−1 (x1, . . . , xl; y1, . . . , yl; q) .

(7.3.59)

Therefore one can multiply arbitrary ELi-functions by using partial integration.
All results computed in terms of this q-series can be expressed using a alternative
representation [124]. Therefore one defines a prefactor cn and a sign sn, both depending
on an index n by

cn =
{

1, n even,
i, n odd, sn =

{
1, n even,
−1, n odd. (7.3.60)

and at depth 1 linear combinations

En;m (x; y; q) = cn+m

i

[
ELin;m (x; y; q)− sn+mELin;m

(
x−1; y−1; q

)]
. (7.3.61)
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More explicitly, one has

En;m (x; y; q) =


1
i

[ELin;m (x; y; q)− ELin;m (x−1; y−1; q)] , n+m even,

ELin;m (x; y; q) + ELin;m (x−1; y−1; q) , n+m odd.
(7.3.62)

At higher depth the functions

En1,...,nl;m1,...,ml;2o1,...,2ol−1 (x1, . . . , xl; y1, . . . , yl; q) (7.3.63)

are defined in analogy to the ELi-function as follows:
For o1 = 0 we set

En1,...,nl;m1,...,ml;0,2o2,...,2ol−1 (x1, . . . , xl; y1, . . . , yl; q) =
En1;m1 (x1; y1; q)En2,...,nl;m2,...,ml;2o2,...,2ol−1 (x2, . . . , xl; y2, . . . , yl; q) .

(7.3.64)

For o1 > 0 one has

En1,...,nl;m1,...,ml;2(o1+1),2o2,...,2ol−1 (x1, . . . , xl; y1, . . . , yl; q) =
q∫

0

dq′

q′
En1,...,nl;m1,...,ml;2o1,2o2,...,2ol−1 (x1, . . . , xl; y1, . . . , yl; q′) .

(7.3.65)

The eq. (7.3.64) corresponds to (7.3.58) such that the multiplication of E at any depth can
be obtained by partial integration. (7.3.65) corresponds to (7.3.59) and the sign reflection
formula (7.3.54) holds for E as well.
The E-functions are linear combinations of their building blocks, the ELi-functions, with
the same indices. One can show [124] that an E-function of depth l can be expressed as a
linear combination of 2l ELi-functions by using

En1,...,nl;m1,...,ml;2o1,...,2ol−1 (x1, ..., xl; y1, ..., yl; q) =
1∑

t1=0

...
1∑

tl=0

[
l∏

j=1

cnj+mj
i

(
−snj+mj

)tj]ELin1,...,nl;m1,...,ml;2o1,...,2ol−1

(
x
st1
1 , ..., x

stl
l ; yst11 , ..., y

stl
l ; q

)
.

(7.3.66)

This class of functions has now the properties, that they are closed under multiplication,
differentiation with respect to qd/dq and integration with the one form dq/q. They are
therefore suited to describe iterated solution of certain Feynman integrals.

The Iterated Structure of the Sunrise

The E-functions will be the suitable class of generalized functions to express the sunrise
to all orders and the nome of the underlying elliptic curve is a suitable variable. The
transformation of the kinematic invariant to the nome, however, is rather technical. The
same holds for the derivation of the integration kernels of (7.3.50) in terms of E. Since
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they are crucial for the results of this thesis and not well covered in the literature I
devoted the appendix B to their detailed, ab initio derivation. Every relation stated in
the following will be explicitly computed therein, such that these approaches may be of
use for future computations.

Taking the special solution of (7.3.50) we observe, that the whole solution at every
order boils down to solving the two integrals

I
(k)
1 =

∑
i=1,2

t∫
t0

Ψk 6=i(s)
logk

(
(s−9)(s−1)

s

)
k! ds , (7.3.67)

I
(k)
2 =

∑
i=1,2

t∫
t0

Ψk 6=i(s)(s+ 3)4W (Ψ1(s),Ψ2(s))
(∑
j=1,2

Ψj(s)E(k−2)
j (s)

)
ds (7.3.68)

since they are the non-trivial part of the special solution. Thereby we have I(0)
2 = I

(1)
2 = 0,

since there is no 1/ε coefficient in D = 2− 2ε and the integral I(0)
1 is just an integral over

the periods.
For a transformation to the nome, we need that the measure changes according to (see
app. B.1.1)

dt = 1
iπ

Ψ2
1,q

Wq(Ψ1,Ψ2)
dq
q
. (7.3.69)

Notice that further integrations will be performed with dq/q, the one-form associated
with iterated integration of E-functions. From now on the subscript q will denote, that
the function should be considered as a function of q rather than the kinematic invariant.
The second important detail is, that by expressing the periods as q-series (see app. B.1.3)
one gets the relation

Ψ2,q ∝ log(q)Ψ1,q (7.3.70)

which is inherited from a known transformation of the complete elliptic integrals. This
singularity corresponds to a singularity of Ψ2,t at t = 0. Since we are only interested in
the structure of the result we can assume that we perform a partial integration to remove
the logarithm whenever needed, such that we only consider Ψ1,q =: Ψq in the following.29

We therefore have to show, that the integrals

Ĩ
(k)
1 (q) =

q∫
q0

Ψ3
q′

Wq′(Ψ1,Ψ2)
logk

(
(sq′−9)(sq′−1)

sq′

)
k!

dq′
q′

(7.3.71)

Ĩ
(k)
2 (q) =

q∫
q0

Ψ4
q′(sq′ + 3)4E

(k−2)
j (q′)dq

′

q′
(7.3.72)

29The same approach holds for actual computations as well, but one has to consider e.g. boundary
terms (see [105]) which, however, often do not matter since limq→0 log(q)E~n,~m,2~o(~x, ~y, q) = 0 because
every E series starts at order q.
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always stay in the class of E-functions. The first step to show this, is to obtain a q-series
representation tq for the kinematic invariant t. One finds (see appendix B.1.2 for a
derivation)

tq = −9q ((q3;−q3)∞) 4 ((q6; q6)∞) 4

((q;−q)∞) 4 ((q2; q2)∞) 4 (7.3.73)

where

(a; q)∞ =
∞∏
k=0

(1− aqk) (7.3.74)

denotes the q-Pochammer symbol. This representation holds for the complete Euclidian
regime, where the periods are defined. One can write tq in terms of Dedekind-η functions
by using

η(τ) = e
iπτ
12

∞∏
n=1

(
1− e2iπnτ) = q

1
12

∞∏
n=1

(
1− q2n) = q

1
12
(
q2; q2)

∞ . (7.3.75)

to obtain the expression given in [107]. Starting from this expression one can derive all
q-series representations of the integration kernels of the integrals (7.3.71) and (7.3.72).
At order ε0 one has to integrate

Ĩ
(0)
1 (q) =

q∫
q0

Ψ3
q′

Wq′(Ψ1,Ψ2)
dq′
q′

. (7.3.76)

Therefore one has to express the kernel in terms of E-functions. The result (for a derivation
see appendix B.1.4) is given by

Ψ3
1

W (Ψ1,Ψ2) = −6iπ2 µ
2

m2E−2,0(−1, r3,−q) , (7.3.77)

where r3 denotes the third root of unity. The integration of this kernel will yield an
E-function as well.
At order ε and every higher order we have to integrate the logarithms log(tq), log(1− tq)
and log(9− tq) in terms of E-functions. We find (for a derivation see appendix B.1.7)

log(tq) = −4E1;0 (r3;−1;−q) + log(−9q) (7.3.78)
log(1− tq) = 3(E1;0 (−1; 1;−q)− E1;0 (r6; 1;−q)) (7.3.79)

log
(

1− tq
9

)
= 3E1;0 (−1; 1;−q) + E1;0 (r6; 1;−q)− 4E1;0 (r3; 1;−q) (7.3.80)

where r6 denotes the sixth root of unity. The logarithmic singularity on the r.h.s. of
(7.3.78) corresponds to the point t = q = 0. Since every of the logarithms can be expressed
in terms of E-functions every product of them is as well an E-function. From that it
follows, that the complete integration (7.3.71) can be performed in terms of E-functions
at every order in ε.
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The second integral involves the lower order coefficients of the sunrise. The first enters
the inhomogeneity at order ε2. But from the discussion of the integral Ĩ1(q) we know
that E(0)

q will be in the class of E-functions30. The only thing to show is, that the kernel
Ψq(tq + 3) is an E-function. That this is the case is derived in appendix B.1.5 and one
finds

Ψq(tq + 3) = 6πµ2

m2

(
1√
3

+ 2E0,0 (1, r3,−q)
)
. (7.3.81)

From that fact it follows, that E(2)
q will be in the class of E-functions an therefore E(k)

q as
well.
In the end, the k-th Laurent coefficient of the sunrise in D = 2− 2ε will have the form

S
(k)
111 ∝ Ψ1 ×

(
E− functions

)
, (7.3.82)

since it is finite at t = 0 and the period Ψ2 is not. The explicit result may be taken
from [107].

To summarize the results of this section we conclude firstly, that the sunrise is not
expressible in terms of hyperlogarithms. Secondly it was demonstrated, that the “right”
variable to consider for a solution of the sunrise is the nome q associated with the family
of elliptic curves Et defined by F = 0 in Jacobi uniformization and not the kinematic
invariant. The third important result is, that the equal mass sunrise integral can be
computed to all orders in elliptic generalizations of polylogarithms, depending on the
variable q.

30Keep in mind, that we factored the periods out.
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7.4 The Iterated Solution of the Kite Integral in
D = 4− 2ε

I1 ∈ Iν1,0,ν3,0,0

ν1

ν3

I2 ∈ Iν1,0,ν3,ν4,0

ν1

ν4

ν3

I3, I4 ∈ I0,ν2,ν3,ν4,0

ν2

ν3

ν4

I5 ∈ Iν1,ν2,0,ν4,ν5

ν1

ν4

ν2

ν5

I6, I7 ∈ Iν1,0,ν3,0,ν5

ν1

ν3

ν5

I8 ∈ Iν1,ν2,ν3,ν4,ν5

ν1

ν4

ν3

ν2

ν5

Figure 7.5: The topologies contributing to the differential equation of the kite integral.
The topologies in the upper row can be computed in a canonical basis, the ones in the
lower row can not.

The class of elliptic generalizations of polylogarithms defined in the previous section
were enough to compute the sunrise integral where one has otherwise a solution in terms
of iterated integrals over elliptic integrals. The natural question is now, if the same class
of functions and the same kind of variable change can be applied to other integrals as well.
We addressed this question in a joint work with Luise Adams, Christian Bogner and
Stefan Weinzierl [124] by computing the kite integral for which an analytical solution in
terms of integrals over complete elliptic integrals was previously known due to [113]. This
integral is closely related31 to the two-loop contribution to the electron self-energy and
has been studied in already [45,95,96,125–127].

Instead of presenting the complete solution obtained in [124] I will focus on its main
points, which reveal the structure of the result at every order in ε.

The kite topology in D dimensions, with the mass m and the external momentum p is
given by all integrals

Iν1ν2ν3ν4ν5

(
D, p2,m2, µ2) = (−1)ν12345

(
µ2)ν12345−D

∫ dDk1

iπ
D
2

dDk2

iπ
D
2

1
Dν1

1 D
ν2
2 D

ν3
3 D

ν4
4 D

ν5
5
,

(7.4.1)

31Up to a prefactor involving the kinematic invariant.
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with the propagators

D1 = k2
1 −m2, D2 = k2

2, D3 = (k1 − k2)2 −m2, D4 = (k1 − p)2, D5 = (k2 − p)2 −m2

(7.4.2)

and ν12345 =
∑5

i=1 νi. Furthermore we will work with the dimensionless kinematic invariant
t = p2/m2 and suppress the dependence of D and t in the following.

The kite topology and the sub-topologies which contribute to the differential equation
of its MI I8 are depicted in fig. 7.5. Since there is only one MI where all propagator
powers are non-zero we see that the elliptic contributions enter only through the sunrise
sub-topology Iν1,0,ν3,0,ν5 with its two MI’s I6 and I7. In the upper row we have topologies
for which a canonical basis can be found. Therefore, from these sub-topologies we will
as well have no elliptic contributions. That means the elliptic part of the kite will be
governed by the elliptic properties of the sunrise.

7.4.1 The Solution of the Canonical 5 × 5-Subsystem in Terms
of E-Functions

In the section 6.4 on solving differential equations by using a canonical basis we considered
two detailed examples, the bubble and the tadpole in section 6.4.3 as well as the sunrise
with one massive propagator in section 6.4.4. Looking at the first row of fig. 7.5 we see
the leftmost topology is just the tadpole squared and we therefore take

I1(D) = (D − 4)2I2,0,2,0,0 (7.4.3)

as an element of the canonical basis since we know that the tadpole with a squared
propagator is of uniform weight. The second to left topology is just the bubble with one
massive propagator times the tadpole. We therefore take

I2(D, t) = (D − 4)2m
2

µ2 tI2,0,2,1,0 (7.4.4)

since we know from the discussion in section 6.4.3 a canonical basis element of the bubble-
topology. For the two MI’s of the sunrise topology with one massive propagator we derived
a canonical basis in section 6.4.4 and we can take the results directly from there. We have

I3 = (D − 4)2m
2

µ2 tI0,2,2,1,0 , (7.4.5)

I4 = (D − 4)2m
2

µ2 [2I0,2,2,1,0 − (t− 1)I0,2,1,2,0] . (7.4.6)

The last MI of the canonical system is just the bubble “squared” and using the results
from section 6.4.3 we have

I5(D, t) = (D − 4)2
(
m2

µ2

)2

t2I2,1,0,1,2 . (7.4.7)
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Taking the derivative with respect to t yields in D = 4− 2ε the differential equation in
canonical form

d
dt
~Isub = ε

(
1
t
A0 + 1

t− 1A1

)
~Isub (7.4.8)

where

A0 =


0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 −4 0 0
0 0 0 0 2

 , A1 =


0 0 0 0 0
−1 −2 0 0 0

0 0 −2 1 0
0 0 4 −2 0
0 −2 0 0 −4

 , (7.4.9)

and ~Isub = (I1, I2, I3, I4, I5)T .
To obtain the boundary values of this subsystem we use the point t = 0 since we have

I2(0) = I3(0) = I5(0) = 0 (7.4.10)

due to the normalization. The non-vanishing boundaries are therefore given only by I1
and I4 and read [124]

I1(0) = 4
(
m2

µ2

)−2ε

Γ(1 + ε)2 , (7.4.11)

I4(0) = 4
(
m2

µ2

)−2ε

Γ(1 + ε)Γ(1 + 2ε)Γ(1− ε) . (7.4.12)

Before writing down the iterated solution we notice that the first and the fourth column of
A0 are zero-columns. That means terms where A0 is on the rightmost side of the matrix
multiplication are identically zero since the hyperlogarithms are at most logarithmically
singular at t→ 0 but the integrals I2, I3 and I5 go to zero (at least) linear in t. Therefore
the solution of the system32 up to O(ε3) reads

~Isub(t) =
(

1 + ε

t∫
0

A1

s− 1ds+ ε2
t∫

0

s2∫
0

[
A0A1

s2(s1 − 1) + A1A1

(s2 − 1)(s1 − 1)

]
ds1ds2

+ ε3
t∫

0

s3∫
0

s2∫
0

[
A0A0A1

s3s2(s1 − 1) + A1A0A1

(s3 − 1)s2(s1 − 1) + A0A1A1

s3(s2 − 1)(s1 − 1)

+ A1A1A1

(s3 − 1)(s2 − 1)(s1 − 1)

]
ds1ds2ds3

)
~Isub(0)

=
(

1 + εA1G(1; t) + ε2 [A0A1G(0, 1; t) + A1A1G(1, 1; t)]

+ ε3 [A0A0A1G(0, 0, 1; t) + A1A0A1G(1, 0, 1; t) + A0A1A1G(0, 1, 1; t)

+A1A1A1G(1, 1, 1; t)]
)
~Isub(0) .

(7.4.13)

32The explicit result can be taken from [124].
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Since the kite integral involves the sunrise as a sub-topology we have to express both
letters in terms of the nome q associated to the elliptic curve of the sunrise integral. We
therefore consider the two one-forms

dt
t

= d log(t) = d log(tq)
dq dq

=
d
(
log(−9q)− 4E1;0 (r3;−1;−q)

)
dq dq

=
(
1− 4E0;−1 (r3;−1;−q)

) dq
q

(7.4.14)

and

dt
t− 1 = d log(1− t) = d log(1− tq)

dq dq

=
d
(
3(E1;0 (−1; 1;−q)− E1;0 (r6; 1;−q))

)
dq dq

= 3
(
E0;−1 (−1; 1;−q)− E0;−1 (r6; 1;−q)

) dq
q

(7.4.15)

where we used the results already derived for the sunrise (see appendix B.1.7) and
r3 = exp(2iπ/3), r6 = exp(2iπ/6) denote the third and sixth root of unity. Alternatively
one can use the direct change of the measure (B.1.11) and find the E representation with
the methods described in appendix B.
We conclude that hyperlogarithms with the letters (dt/t, dt/(t− 1)) and therefore every
integral I1 . . . I5 can be computed in terms of E-functions, since they are closed under
multiplication and integration with dq/q.

7.4.2 The Master Integrals I6, I7, I8 and the Solution of the Kite

The lower row of fig. 7.5 shows the topologies which can not be computed in terms of
hyperlogarithms. From a practical point of view, we want a basis for these topologies,
which has the following properties33:

1. It should simplify the differential equation for basis integral I8 of the kite topology.

2. The sunrise basis integrals I6 and I7 in D = 4− 2ε should be easily relatable to the
case in D = 2− 2ε since the solution there is known [107].

33An algorithmic way of making such simplifications has been presented in [55] some month after the
here discussed publication.
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We choose the basis

I6 = 3 (D − 4) (D − 5) t
(t− 1) (t− 9) [(3− t) I20200

+ (3D − 8) (D − 3) I10101 + 2 (D − 3) (t+ 3) I20101] ,
(7.4.16)

I7 = 2 (D − 4) t
(t− 1)2 (t− 9)2[

(D − 4) t3 − (17D − 71) t2 + 3 (9D − 46) t− 27 (D − 5) I20200

+ (D − 3) (3D − 8) µ
2

m2

(
(D − 3) t2 − 10t− 9 (D − 5)

)
I10101

− (D − 3)
(
(D − 4) t3 − 6 (6D − 23) t2 + 15 (3D − 8) t+ 54 (D − 5)

)
I20101

]
,

(7.4.17)

I8 = (D − 4) (D − 5) m
2

µ2 tI02210 + (D − 3) (D − 4)2 (D − 5) m
2

µ2 tI11111. (7.4.18)

This basis has two advantages. Firstly, the basis integral I7 does not appear in the
differential equation for I8. Secondly we have

I6(D, t) = (D − 4)(D − 5)m
2

µ2 tI1,0,1,0,1(D − 2, t) , (7.4.19)

I7(D, t) = 2(D − 4)m
4

µ4 tI2,0,1,0,1(D − 2, t) , (7.4.20)

which means that the differential equation for I8 in D = 4 − 2ε will only involve the
sunrise integral I1,0,1,0,1 in D = 2− 2ε dimensions. From a practical point of view these
are great simplifications.

The differential equation of the basis integral I8 in D = 4− 2ε reads [124]

dI8

dt = ε

(
I8 − 2I5

t
+ I1 − 2I3 − 2I8

t− 1

)
+
(

8
3(t− 1) −

3
t

)
εI6 + 1

t− 1

(
I1

2 − I3

)
− I5

t
,

(7.4.21)

where a suitable boundary point is I8(t = 0) = 0. We know from the previous section
and [107], that the k-th Laurent coefficient of the sunrise integral in D = 2− 2ε can be
written as S(k)

111(2− 2ε) = Ψ1/πẼ
(k) where Ẽ(k) is given in terms of E-functions.34 Using

the definition of the basis integral

I6(4− 2ε) = 2ε(1 + 2ε)m
2

µ2 tI1,0,1,0,1(2− 2ε) (7.4.22)

we have for its k-th Laurent coefficient

I
(k)
6 (D = 4) = 2m

2

µ2 t
(
I

(k−1)
1,0,1,0,1(D = 2) + 2I(k−2)

1,0,1,0,1(D = 2)
)

= 2m
2

µ2 t
Ψ1

π

(
Ẽ(k−1) + 2Ẽ(k−2)) . (7.4.23)

34Notice, there is a slight difference in the notation with respect to [124] mainly due to the overall
factor e−2γEε used there for a more compact Laurent expansion.
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The differential equation for the k-th Laurent coefficient of the basis integral I8 can be
read off directly from (7.4.21) to

dI(k)
8
dt =

(
I

(k−1)
8 − 2I(k−1)

5
t

+ I
(k−1)
1 − 2I(k−1)

3 − 2I(k−1)
8

t− 1

)
+ 1
t− 1

(
I

(k)
1
2 − I

(k)
3

)
− I

(k)
5
t

+
(

8
3(t− 1) −

3
t

)
I

(k−1)
6

=
(
I

(k−1)
8 − 2I(k−1)

5
t

+ I
(k−1)
1 − 2I(k−1)

3 − 2I(k−1)
8

t− 1

)
+ 1
t− 1

(
I

(k)
1
2 − I

(k)
3

)
− I

(k)
5
t

+ 2
3
m2

µ2

(
8

t− 1 − 1
)

Ψ1

π

(
Ẽ(k−2) + 2Ẽ(k−3))

(7.4.24)

where we inserted the solution of I(k)
6 (7.4.23). Let us comment on this differential equation

before we transform it further. The first thing to notice is, that due to our basis choice,
the first non-vanishing Laurent coefficient of every of the integrals I1, . . . , I8 is at εj with
j ≥ 0. Indeed, by solving the canonical system (7.4.13) one finds immediately that I1
and I4 start at order ε0, I2 and I3 at order ε1 and I5 at order ε2. For the sunrise in two
dimension we know that its first non-vanishing Laurent coefficient ∝ Ẽ(k) is at order ε0

from the discussion of the sunrise in section 7.3. Therefore we can deduce the structure of
the solution of the basis integral I8. At order ε it will have a non-vanishing contribution
∝ G(1; t) due to the term ∝ I

(0)
1 /(t− 1) in the differential equation (7.4.24). At order ε2

there is also a contribution from I3 such that the result will consist of hyperlogarithms of
weight one and two. At order ε2 the elliptic contributions of the sunrise will enter the
differential equation. But if we are interested in the integral I1,1,1,1,1 we have to consider
already the first three orders of I8 for the ε0 coefficient (see (7.4.18)). Therefore the MI
I1,1,1,1,1 of the kite topology will involve elliptic generalizations already at order ε0. We
conclude, that we have to re-write the deq in a suitable variable, the nome q associated to
the sunrise, and a suitable class of functions, the E-functions.

That means, our differential equation is given by

dI(k)
8,q

dq =
(
−2I(n−1)

5,q − I(n)
5,q + I

(n−1)
8,q

)( 1
tq

dtq
dq

)
(7.4.25)

+
(
I

(n−1)
1,q + 1

2I
(n)
1 − 2I(n−1)

3,q − 2I(n−1)
8,q − I(n)

3,q

)(
1

tq − 1
dtq
dq

)
(7.4.26)

+ 2
3
m2

µ2

(
8
(

Ψ1,q

π(tq − 1)
dtq
dq

)
−
(

Ψ1,q

π

dtq
dq

))(
Ẽ(k−2) + 2Ẽ(k−3)) , (7.4.27)

which is integrable in terms of E if every of its terms is. We used the subscript q to
indicate, that the corresponding q-series representation should be considered.
For the first and the second line we recall that every integral of the canonical subsystem
as well as the letters (dtq/tq, dtq/(tq − 1)) can be written in terms of E-functions (see
sec. 7.4.1 and eq. (7.4.14),(7.4.15)).
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In the last line we have to transform(
Ψ1,q

π

dtq
dq

)
B.1.1== 1

iπ2

Ψ3
1,q

Wq(Ψ1,Ψ2)
1
q

B.1.4=== −6 µ
2

m2E−2,0(−1, r3,−q)
1
q
,

(7.4.28)

where r3 = exp(2iπ/3) denotes the third root of unity. Here we used, that this particular
expression already appeared in the computation of the contribution Ĩ(k)

1 (q) to the equal-
mass sunrise in section 7.3.3. The expression is derived in appendix B.1.4.
The E representation of the second term in front of the sunrise is given by(

Ψ1,q

π(tq − 1)
dtq
dq

)
B.1.1== 1

iπ2

Ψ3
1,q

(tq − 1)Wq(Ψ1,Ψ2)
1
q

B.1.4== −6
8
µ2

m2

(
9E−2;0 (1; r3;−q) + E−2;0 (−1; r3;−q)

) 1
q
.

(7.4.29)

This expression is derived in appendix B.1.6 and it follows that the factor in front of the
Ẽ-functions simplifies to

2
3
m2

µ2

(
8
(

Ψ1,q

π(tq − 1)
dtq
dq

)
−
(

Ψ1,q

π

dtq
dq

))
= −36E−2;0 (1; r3;−q) 1

q
. (7.4.30)

Inserting the kernels into (7.4.27) yields

q
d

dq
I

(j)
8,q =

[
1− 4E0;−1 (r3;−1;−q)

] (
−2I(j−1)

5,q − I(j)
5,q + I

(j−1)
8,q

)
+ 3

[
E0;−1 (−1; 1;−q)− E0;−1 (r6; 1;−q)

](
I

(j−1)
1,q + 1

2I
(j)
1,q − 2I(j−1)

3,q − I(j)
3,q − 2I(j−1)

8,q

)
− 36E0;−2 (r3; 1;−q)

(
Ẽ(k−2) + 2Ẽ(k−3)) .

(7.4.31)

To summarize this section let me emphasize on the resulting differential equation
(7.4.31). With it we have, since all integrals I1, . . . , I6 and all our kernels have a represen-
tation in E-functions depending solely on the nome q associated to the sunrise topology,
the possibility to compute the basis integral I8,q and therefore I1,1,1,1,1(q(t)) to all orders
in ε. Even though the obtained explicit expressions (see [124]) become longish quickly,
from are purely structural point of view that is a strikingly simple result.
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7.5 The Analytic Continuation of the Equal Mass
Sunrise and the Kite

Until now we discussed the sunrise and the kite integral in the Euclidian region, where the
periods Ψi and therefore the nome were defined. In the end however, we are interested in
evaluating the obtained solutions in the whole kinematic regime. For the case of multiple
polylogarithms the analytical continuation and the monodromy is well understood.35 For
the Feynman integrals involving complete elliptic integrals one can use special function
identities36 to define well defined functions in all kinematic regimes. Demanding matching
expansions in a vicinity around the thresholds will yield an analytic continuation37. This
approach has been used e.g. in [87, 112, 113] to obtain the analytic continuation of the
results of the sunrise, the kite and the 3-loop banana as integrals over complete elliptic
integrals.

In a recent joint work with Christian Bogner and Stefan Weinzierl [109] we chose
another approach which makes use of the fact that the results are obtained depending
on the nome q only. The properties of the underlying elliptic curve however, are a well
understood and widely covered subject in the mathematical literature. In the following, I
will cover the main points of [109].

Before we start let us discuss a simpler example of a multivalued function, namely
the square root. In section 7.3.1 we discussed the two branch-points of the square root at
0, ∞ and we concluded, that in order to get a single valued determination, we have to
connect these points by a branch-cut such that closed loops around branch-points do cross
it. In practice one uses some program for the evaluation of the results and two technical
aspects become important. Firstly, where does the branch cut lie and secondly, how is
the function f(z) evaluated there?. While its position should be documented, the value
taken on the branch-cut is by convention such that a function is continuous when coming
around the finite endpoint of the cut in counterclockwise direction [129] on the principal
sheet.
For the root it is common to place the branch-cut on the negative real axis. That means
by convention the root is evaluated for t ∈ R according to

√
−t =

{
i
√
|t| , z > 0√
|t| , z ≤ 0 .

(7.5.1)

On the other hand, for evaluation of Feynman integrals, we have the Feynman +i0-
prescription for the kinematic invariant t. This prescription, stemming from the definition
of the propagator, tells us to evaluate the real kinematic invariant according to t→ t+ i0,
where +i0 denotes an infinitesimal, positive imaginary part. For the physical kinematic
invariant t we therefore have

√
−t =

{
−i
√
|t| , z > 0√

|t| , z ≤ 0
(7.5.2)

35See e.g. [128] and [35] for more recent treatments on this subject.
36Known from the analytic continuation of elliptic integrals, which are well understood.
37Note that this approach is used in appendix B.1.2 to determine that the q-series representation of t

holds in the whole Euclidian regime.
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overriding the standard conventions by taking the limit +i0 to zero. In the following we
denote t+ i0 by t, but the small added imaginary part should always be assumed.

7.5.1 The Family of Elliptic Curves Et and Its Variation With t

In the following we work with t = pµp
µ in accordance to [109] and we recall from

section 7.3.2, that the elliptic curve associated to the zero set of the second Symanzik
polynomial F is given by

y2 = 4 (x− e1) (x− e2) (x− e3) (7.5.3)

with

e1 = 1
24µ4

(
−t2 + 6m2t+ 3m4 + 3

(
m2 − t

) 3
2
(
9m2 − t

) 1
2
)
,

e2 = 1
24µ4

(
−t2 + 6m2t+ 3m4 − 3

(
m2 − t

) 3
2
(
9m2 − t

) 1
2
)
,

e3 = 1
24µ4

(
2t2 − 12m2t− 6m4) .

(7.5.4)

In the Euclidian region t < 0 the periods of this family coming from an evaluation of the
contour integrals depicted in fig. 7.4a are computed to

Ψ1 = 2
e3∫
e2

dx

y
= 4µ2

(m2 − t)
3
4 (9m2 − t)

1
4
K
(
k2) , (7.5.5)

Ψ2 = 2
e3∫
e1

dx

y
= 4iµ2

(m2 − t)
3
4 (9m2 − t)

1
4
K
(
k′2
)
, (7.5.6)

where

y = −2
√
x− e1

√
x− e2

√
x− e3 (7.5.7)

and

k2 = e3 − e2

e1 − e2
, k′2 = 1− k2 = e1 − e3

e1 − e2
. (7.5.8)

The result of all sub-topologies of the kite integral is given in terms of E(x, y,−q) with
|x| = |y| = 1 and

∑
i ni + mi > 0 which are convergent since |q| < 1 in the Euclidian

regime38. But since the underlying structure is a family of elliptic curves, |q| will stay
smaller than 1 except for points, where the family degenerates. These points are given by
values of t for which two of the roots ei coincide and the elliptic curve degenerates to the
nodal curve

y2 = (x− ei)2(x− ej) = x̃2(x̃+ ei − ej) = ˜̃x2(˜̃x− 1) . (7.5.9)
38In [130] an analytic continuation for special cases of ELi-functions is discussed.
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For the integration contours δi in fig. 7.4a encircling two roots this results in the shrinking
of one contour to a point. The Riemann surface of the family of elliptic curves fig. 7.4c
will degenerate to a pinched torus. This degeneration happens for the family associated to
the sunrise at the (pseudo) thresholds t = 0, where e2 = e3, at t = m2 and t = 9m2, where
e1 = e2 and at t = ±∞ where e1 and e3 coincide. These are the branch-points of the
elliptic curve as discussed in section 7.3.1 which we had to exclude from the two-sheeted
cover and the torus to get a well defined expression.

To summarize the main ideas: When we vary t in the complex plain the roots and
therefore periods and the nome will vary. However, up to the singular points, the ratio of
the periods τ = Ψ2/Ψ1 will be in the upper half plain and therefore |q| < 1. But as in the
discussion of the simple root in section 7.3.1 the periods are multivalued functions due to
the one-form dx/y and therefore depend on whether the path did or did not cross the
branch-cut. So, instead of asking for the analytic continuation of the E-function, we have
to determine whether or not the periods pick-up monodromy due to the path they are
continued on if we vary t from the Euclidian to the physical regime.

Re(t)

Im(t)

m2 9m2

I II III IVC0 C1 C9

Figure 7.6: Representation of the variation of t in the complex plain taking into account
Feynman’s +i0 prescription. Figure taken from [109].

The path we have to consider for the variable t with respect to Feynman’s +i0
prescription is depicted in fig. 7.6. The path is divided in into seven concatenated
sub-paths where the straight line segments govern the regions:

Region I : −∞ < Re(t) < 0 ,
Region II : 0 < Re(t) < m2 ,
Region III : m2 < Re(t) < 9m2 ,
Region IV : 9m2 < Re(t) < ∞ .

(7.5.10)

The three semicircles Ci around the (pseudo)-thresholds determine the variation of the
roots, which do not coincide anymore.

Instead of tracking the variation of the roots ei in Weierstraß form it is easier to
consider the Legendre- or Jacobi-form (see 7.3.1), since there only λ = k2 ( k′2 = 1− k′2
respectively) will vary. Since the complete elliptic integrals39 are used for the evaluation,
we consider the variation of the (complementary) modulus ((1− k2)) k2.

The variation of the parameter k2 is shown in fig. 7.7. In the regions I, II, IV the path
is an infinitesimal distance below the real axis. That means we evaluate the elliptic integral
according to the standard conventions, since we approach the cut from counterclockwise
direction from its finite endpoint in region IV. In the region III we have Re(k2) = 1/2. The

39Corresponding to the Jacobi-representation of the elliptic curve.
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Re(k2)

Im(k2)

III

III

IVC0

C1

C9

Figure 7.7: The path of the parameter k2 while t varies along the path depicted in 7.6.
k2 crosses the branch cut [1,∞[ while t goes in the semicircle C1 around t = m2. Figure
taken from [109].
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Re(k′2)

Im(k′2)

I II

III

IV C0

C1

C9

Figure 7.8: The path of the complementary parameter k′2 = 1− k2 while t varies along
the path depicted in 7.6. k′2 does not cross the branch cut [1,∞[. Figure taken from [109].
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paths corresponding to the semicircles C0 and C9 show, that an evaluation for real t in
the transition from one region to another might jump (C9

40), but both paths do not cross
the branch-cut. On the other hand we see, that the path corresponding to the variation
of t along the path C1 around t = m2 does cross the branch-cut [1,∞[ of the complete
elliptic integral. That means in the regions III and IV we have to consider (with respect
to the period Ψ1 in (7.5.5)) the additional part from stemming from the monodromy.41

The path of the complementary modulus is depicted in fig. 7.8. This path does not
cross the branch-cut and therefore the definition of Ψ2 (7.5.6) holds for all t along the
path shown in fig. 7.6. Since in the end we will be interested in the evaluation for t ∈ R
we point out, that in the region II the branch-cut is approached from above. Therefore
one has to override the standard conventions by considering the limit +i0 to zero42 and
compensate for the difference by hand. Alternatively one can use the identity [131]

K (k ± i0) = 1
k

[
K

(
1
k

)
± iK

(√
1− 1

k2

)]
(7.5.13)

to map the evaluation in a region without ambiguities.

7.5.2 Computing the Monodromy

Re(k2)

Im(k2)

C1

Re(k2)

Im(k2)

Re(k2)

Im(k2)

Figure 7.9: Deformation of the path in the k2 space corresponding to the variation
of t along C1 shown in 7.6. The path is deformed into a quarter circle and a full
counterclockwise oriented circle around the branch-point 1. Figure taken from [109].

In section 7.3.1 we studied the monodromy of the simple root by dragging it in a full
circle around its branch-points. To make the connection to the variation of k2 along the

40Due to a root in the modulus which picks up monodromy.
41Note that the prefactor in front of the elliptic integral as well as the (complementary) parameter has

monodromy as well. But that is trivially given by considering the Feynman prescription directly for the
evaluation of the roots.

42E.g. Mathematica uses

1.) lim
η→0−

K(x+ iη) = K(x) with x, η ∈ R and x > 1 (7.5.11)

2.) lim
η→0+

K(x+ iη) = K(x) + 2iK(1− x) with x, η ∈ R and x > 1. (7.5.12)
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path depicted in fig. 7.7 we consider the deformation of the three quarter circle into a
quarter circle and a full counterclockwise orientated circle. This deformation is depicted
in 7.9. Our discussion follows closely chapter one in [132] since for the simple case at
hand, the whole procedure can be depicted nicely. We note that the Picard-Lefschetz
theorem as discussed in great detail in [133] could be used directly but it would require
an introduction of new concepts not necessarily needed here.

We recall from section 7.3.2 that we can describe the elliptic curve in Legendre form

Eλ : y2 = x(x− λ)(x− 1) (7.5.14)

as well as in Jacobi form and may use the representation

K(k2 = λ) = 1
2

λ∫
0

1
√
x
√
x− λ

√
x− 1

dx (7.5.15)

of the complete elliptic integral of the first kind. We now have to study what happens if
λ moves around 1 in a full circle.
That task can be simplified by first studying the variation of the elliptic curve

Eϕ : y2 = x(x− e1(ϕ))(x− e2(ϕ)) (7.5.16)

with the roots

e1(ϕ) = 1− reiϕ, e2(ϕ) = 1 + reiϕ (7.5.17)

where 0 < r < 1 and ϕ ∈ [0, 2π]. This family can be thought of as the Legendre form
where we go locally in a “center-of-mass system” such that we have two roots ei which
encircle 1 as ϕ varies.43 The periods associated to the family Eϕ are given by

P1(ϕ) =
∫
δ1

dx
y
, P2(ϕ) =

∫
δ2

dx
y
, (7.5.18)

with

y = −
√
x
√
x− e1(ϕ)

√
x− e2(ϕ) . (7.5.19)

The orientation of the cycles δi is chosen as depicted in fig. 7.10 such that we have for
ϕ = 0

P1(0) = 2
e1(0)∫
0

dx

y
= −2

∞∫
e2(0)

dx

y
, P2(0) = 2

e1(0)∫
e2(0)

dx

y
(7.5.20)

where the line integral is taken with an infinitesimal small negative imaginary part for x.
43 Alternatively one can think of the Legendre form y2 = x(x− (1− 2reiϕ))(x− 1) with λ = (1− 2reiϕ)

and sufficiently small and constant r < 1/2. Now we shift x→ x̃− reiϕ and have y2 = (x̃− reiϕ)(x̃−
(1− reiϕ))(x̃− (1 + reiϕ)). That is a Weierstraß form where two roots encircle each other while the third
just makes a small circle as ϕ varies. But that small circle does not matter and we might take r so small,
that x̃ − reiϕ ≈ x̃. That means for the study of what happens as λ makes a small circle around 1 we
have Eλ ∼ Eϕ.
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e1(0) e2(0) ∞ 0

δ2(0)
δ1(0)

(a) ϕ = 0

e2(0) e1(0) ∞ 0

δ2(π)
δ1(π)

(b) ϕ = π

Figure 7.10: Representation of the cycles δ1,δ2 for ϕ = 0 and ϕ = π. The cycle δ1 is
dragged along with the rotation. The dashed line represents the part of δ1 lying on the
other Riemann sheet. Figure taken from [109].

To study what happens to the periods while we vary ϕ we first note that the cubic
describing Eϕ is the same for ϕ = 0, ϕ = π and ϕ = 2π since we have

e1(0) = e2(π) = e1(2π) e2(0) = e1(π) = e2(2π) . (7.5.21)

While we vary from ϕ = 0 to ϕ = π the two roots e1 and e2 interchange their position.
The deformation of the cycles is depicted in fig. 7.10 were δ1 is dragged along during the
rotation. We see that under a half turn δ2(0)→ δ2(π) = δ2(0) but δ1(0)→ δ1(π) 6= δ1(0).
To express δ1(π) in terms of δi(0) we consider the deformation depicted in 7.11. By going
from fig. 7.11c to fig. 7.11d we use, that by changing the Riemann sheet we have to change
orientation of a cycle since the one-form has the opposite global sign. Comparing the last
picture 7.11e with the cycles at ϕ = 0 depicted in fig. 7.10a we see that we have

δ1(π) = δ1(0)− δ2(0) . (7.5.22)

That means we can associate the matrix

Tπ =
(

1 −1
0 1

)
(7.5.23)

with a rotation of π and with respect to the basis {δ1(0), δ2(0)}. A complete rotation to
ϕ = 2π will therefore transform our periods according to(

Ψ1(2π)
Ψ2(2π)

)
= TπTπ

(
Ψ1(0)
Ψ2(0)

)
(7.5.24)

and the monodromy matrix is given by

M = TπTπ =
(

1 −2
0 1

)
. (7.5.25)

One could do the same analysis by considering the full turn in e.g. Legendre form without
introducing the family Eϕ locally (see footnote 43), but the “unravelling” of the cycle
δ1(2π) in analogy to fig. 7.11 would become a more tedious and sophisticated task.
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e2(0) e1(0) ∞ 0

δ1(π)

(a)

(a)

e2(0) e1(0) ∞ 0

(b)

(b)

e2(0) e1(0) ∞ 0

(c)

(c)

e2(0) e1(0) ∞ 0

(d)

(d)

e2(0) e1(0) ∞ 0

(e)

(e)

Figure 7.11: Deformation of the cycle δ1(π) into the linear combination δ1(π) = δ1(0)−
δ2(0). Figure taken from [109].
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To make the connection to the MI of the kite and its sub-topologies we can now use
the derived monodromy matrix to analytically continue the results beyond t = m2. We
have the period vector(

Ψ1(t)
Ψ2(t)

)
= lim

η↓0+

4µ2

(m2 − t− iη) 3
4 (9m2 − t− iη) 1

4
Mt

(
K (k2(t+ iη))
K (k′2(t+ iη))

)
(7.5.26)

with t ∈ R and the monodromy matrix

Mt =



(
1 0
0 1

)
t < m2 ,

(
1 −2
0 1

)
t < m2 .

(7.5.27)

The limit implements Feynman’s +i0 prescription and tells us which values we should
assign to the roots in the prefactors and how to approach the branch-cut of the elliptic
integrals.

To summarize let us state the main result of this section. We computed the monodromy
matrix of the periods Ψi by taking into account the variation of t according to Feynmans
+i0 prescription. But due to the properties of the E-functions as well as the variable
choice this one monodromy matrix will be everything needed to evaluate the kite and all
its sub-topologies in the complete kinematic regime.

89



7.6 Numerical Results
In this section I will consider the numerical evaluation of selected integrals from the kite
and its sub-topologies. Some of the results are already published in [109].
For the numerical evaluation the E-functions are expanded to order O(q100) with a
Mathematica [56] implementation of the algorithm described in appendix B.4 and evaluated
with a 50-digit precision. For the numerical evaluation of the hyperlogarithms the HPL-
Mathematica package by Maitre [66, 67] is used. The computation of the Feynman
integrals by the method of sector decomposition [134–136] is done by using the program
SecDec 3 [137–140]. In the following we will work with µ = m = 1.

7.6.1 The Numerical Results for I02210

The integral I02210 is one of the MI’s of the sunrise topology where one massive and
one massless propagator are raised to the power two. It can be obtained from the basis
integral I3 of the canonical 5× 5-subsystem of the kite topology. The solution of I3 can be
obtained by expanding the boundary vector ~Isub(0) in (7.4.13). One finds in D = 2− 2ε

I02210 =
∞∑

i=−1

εiI(i)
02210 = 1

4tε2 I3(4− 2ε, t) , (7.6.1)

with the first three Laurent coefficients

I(−1)
02210(t) = G(1; t)

t
(7.6.2)

I(0)
02210(t) = −2γEG(1; t)−G(0, 1; t) + 4G(1, 1; t)

t
(7.6.3)

I(1)
02210(t) = − 1

2t
[
−
(
4γ2

E + π2)G(1; t) + 2(−G(0, 0, 1; t)− 2γE(−G(0, 1; t) + 4G(1, 1; t))

+ 6G(1, 0, 1; t) + 4G(0, 1, 1; t)− 16G(1, 1, 1; t))] .
(7.6.4)

But as discussed in section 7.4.1, we can express every of the hyperlogarithms (har-
monic polylogarithms) in terms of E-functions. The explicit expressions can be found in
appendix B.5.

In fig. 7.12 the results of the numerical evaluation of the imaginary and real part of
the first three Laurent-coefficients in terms of E-functions in comparison with the results
obtained by SecDec are shown. The plots show a perfect agreement in all kinematic
regimes including the threshold.
To estimate the goodness of the approximation by a finite expansion order in q, the relative
error with respect to an evaluation in terms of hyperlogarithms is shown in fig. 7.13 for
an expansion order of q50 and q100. In this figure same coloured plots correspond to the
same expressions. Continuous lines are evaluations with order q100 while dashed lines
correspond to order q50. In this plot we see three important points.
The first and most important point is, that the error is due to a finite expansion in q only
since it decreases by more than four orders of magnitude even in the worst regime near
t ≈ 9m2 when the expansion order in q is increased from 50 to 100. Furthermore we see,
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Figure 7.12: Comparison of the numerical evaluation of the real and the imaginary part
of first three Laurent coefficients of I02210 in terms of E-functions with the SecDec results.
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Figure 7.13: The relative error between an evaluation in terms of hyperlogarithms and
E-functions for the real and imaginary part of the first three Laurent-coefficients of I02210.
Same coloured lines represent the same expressions while dashed lines correspond to an
expansion of the E-functions to O (q50) and continuous lines to O (q100).
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t/m2 ∈ [9,∞[
t/m2 ∈ [1 : 9]
t/m2 ∈ [0 : 1]

t/m2 ∈]−∞,0]

path in q

Re(q)

Im
(q
)

10.50−0.5−1

1

0.5

0

−0.5

−1

Figure 7.14: The path of the nome q in the complex plain while t varies along the path
in fig. 7.6. At t = 0 we have q = 0, t = m2 corresponds to q = −1 and t = 9m2 to
q = r∗6 = e−2iπ/6. In the limit t→ −∞ we have q → 1. Figure taken from [109].

that the relative error for real and imaginary parts is in the same order of magnitude and
we have mostly errors < 10−16 at an expansion order of q100, which shows a really good
agreement.
The second trend is, that the error increases for higher coefficients in the Laurent expansion.
This can probably be explained by the rapidly growing number of higher depth E-
functions necessary to express higher weight harmonic polylogarithms (explicitly listed
in appendix B.5). Since we expect an error for every finite q-expansion of an E-function
a possibly adding up of the errors would explain the overall increasing error for higher
Laurent-coefficients.
The last thing all the real and imaginary parts of the Laurent-coefficients have in common
is, that the error increases in the vicinity around t = 9m2 drastically. This can be
explained by the path on which q-varies as t increases as shown in fig. 7.14. There we see
near the degeneration points t = m2 and t = 9m2 that the absolute values of q comes, as
expected, close to the convergence radius. The same effect but far less pronounced can
be seen in the vicinity around t = m2. The reason why it is so much less pronounced
near t = m2 becomes clear by studying the absolute value of the nome in a close vicinity
around m2 and 9m2 as tabulated in table 7.1. We see, that we have to go extremely close
(≈ m2 ± 10−9) to m2 to obtain a similar absolute value of the nome as in a relative large
distance (t = 9m2 ± 10−1) around t = 9m2.
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Table 7.1: The absolute value of the nome in a vicinity of m2 and 9m2.

∆ |q(m2 −∆)| |q(m2 + ∆)| |q(9m2 −∆)| |q(9m2 + ∆)|
10−1 0.22 0.37 0.72 0.74
10−5 0.61 0.63 0.87 0.87
10−9 0.75 0.75 0.92 0.92
10−13 0.81 0.82 0.94 0.94

7.6.2 The Numerical Result for the Sunrise and the Kite
The first two terms of the sunrise in D = 2− 2ε with m = µ = 1 are [107]

S111 = Ψ1

π

[
E

(0)
111(q) + ε

(
E

(1)
111(q)− 2γEE(0)

111

)]
(7.6.5)

with

E
(0)
111 = 3E2;0(r3;−1;−q) (7.6.6)

E
(1)
111 = 3E3;1(r3;−1;−q) + 18E0,1;−2,0;4(r3,−1;−1, 1;−q) + 3E0,1;−2,0;4(r3, r3;−1,−1;−q)

− 9E0,1;−2,0;4(r3, r3;−1, 1;−q)− 3
2i
[
2 (Li2,1 (r∗3, 1)− Li2,1(r3, 1)) + 2 (Li3 (r∗3)− Li3(r3))

+ 6 log(2) (Li2 (r∗3)− Li2(r3))
]

+ L1;0E
(0)
111

(7.6.7)
L1;0 = −E1;0(r3;−1;−q) + 3E1;0(r3; 1;−q)− 6E1;0(−1; 1;−q) . (7.6.8)

Hereby the E-functions introduced in [107] can be expressed by E-functions with the
relation [124]

En1,...,nl−1,nl;m1,...,ml−1,ml;2o1,...,2ol−2,2ol−1 (x1, ..., xl−1, xl; y1, ..., yl−1, yl; q) =
En1,...,nl−1,nl;m1,...,ml−1,ml;2o1,...,2ol−2,2ol−1 (x1, ..., xl−1, xl; y1, ..., yl−1, yl; q)

+ cnl+ml
2i

[
Linl (xl)− snl+mlLinl

(
x−1
l

)]
×

{
En1,...,nl−2,nl−1+ol−1;m1,...,ml−2,ml−1+ol−1;2o1,...,2ol−2 (x1, ..., xl−1; y1, ..., yl−1; q) l > 1
1 l = 1

(7.6.9)

where c and s are as in the definition of the E-functions (7.3.62). The explicit expressions
of the here needed E-functions in terms of E-functions are listed in appendix B.5.

By evaluating the sunrise we are, due to the prefactor, explicitly sensitive of the
analytic continuation of the period Ψ1, since there is no exponential as in the nome. In
fig. 7.15 the results in terms of E-functions are compared with SecDec. We see a perfect
agreement in all kinematic regimes as well as close to the threshold.

Lastly we turn to the kite integral. The kite integral I11111 depends on the basis
integral I8 defined in section 7.4 by

I11111 = I02210

2ε − I8

4ε2t
+O(ε) . (7.6.10)
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Figure 7.15: Comparison of the numerical evaluation of the real and the imaginary part of
first two Laurent coefficients of the sunrise integral in D = 2− 2ε in terms of E-functions
with the SecDec results.

We therefore need the first three orders of I8 which can be taken from [124] and the first
three orders of the integral I02210 listed above. The ε−2 and ε−1 contribution cancel and
one finds the simple expression

I(0)
11111 = 1

6t

(
81i (Li2 (r∗3)− Li2(r3))E1;−1(r3; 1;−q) + 162E0,2;−2,0;2(r3, r3; 1,−1;−q)

+ π2G(1; t)− 6G(1, 0, 1; t) + 12G(0, 1, 1; t)
)
.

(7.6.11)

for its first Laurent coefficient.
The numerical evaluation of the first Laurent coefficient and its comparison with

SecDec is shown in fig. 7.16. We find good agreement in all kinematic regimes as well as
on the thresholds. Since the kite develops an additional small imaginary part for t = 9m2

which vanishes as t approaches 9m2 from above which might not be seen in fig. 7.16, we
also compared numerically with the result from Remiddi and Tancredi [113]. We find that
this additional imaginary part is well described by our analytical continuation, since we
were able to obtain a smaller deviation from their result in terms of integrals over elliptic
integrals than the change due to this additional small imaginary part. In our results this
additional imaginary part can be seen in the discontinuity of the (complementary) parame-
ter in the transition from region III to region IV shown in fig. (7.8) 7.7 (see also footnote 40).

I conclude this section by summarizing the results. Firstly we find, that all results
obtained in [107, 109, 124] show already at low expansion orders in q very good agreement
with the results obtained independently by SecDec and HPL obtained. We furthermore
only have deviations which are explainable solely by the finite order of the expansion. By
our analytic continuation of the periods, we completely governed all kinematic regimes
and reproduce the correct monodromy of the hyperlogarithms in the letters {dt

t
, dt
t−1}.
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Figure 7.16: Comparison of the numerical evaluation of the real and the imaginary part of
the first Laurent coefficient of the kite integral I11111 in D = 4− 2ε in terms of E-functions
with the SecDec results.
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Chapter 8

Conclusions and Outlook

In this chapter I will attempt to summarize the covered subjects of this thesis and to pin
point their function therein. One can structure the content roughly into three main parts.

The first part includes the chapters 2, 3, 4 and 5 and can be seen as an introductory
part. Its function is to establish some notions and recipes necessary during the later
stages of this thesis. In these four chapters is outlined why we work in D = 4− 2ε, what
is meant by “families” or “topologies” and their master integrals and how to write down
the parametric representation of Feynman integrals. Every of these sketched subjects
is common in the computations of Feynman integrals but they are nonetheless objects
of recent research and every of them would be worth a thesis in their own right since
they are by no means exhausted. To give an example: During the later stage of this
thesis another program for IBP-reductions has been introduced [31] and the here used
one, Reduze 2 [28,30], got a new update including many additional features.

The second main part is chapter 6. This part consists of two different approaches for
a systematic computation of the Laurent-coefficients of Feynman integrals.
The main purpose of the introduction of parametric representation is threefold1. Firstly
it should emphasize that already rather simple Feynman integrals give rise to a class of
special functions, the hyperlogarithms, which are usually not encountered in the standard
master studies in physics. Secondly it should introduce their properties as iterated integrals
needed in the further proceeding of the thesis. Its third main purpose was to outline
that by understanding the class of functions, their properties and application to Feynman
integrals many at first different looking problems can be computed within the same
framework.
The second presented approach was the method of differential equations. Here, the
previously introduced hyperlogarithms were used to establish the concept of a canonical
basis. I decided to introduce it by looking at the parametric representation for two
reasons. The first one is, that there are currently only two approaches which make
a direct connection to the properties of the Feynman integral. One is the parametric
representation and one is the study of generalized unitary cuts [47]. While the latter
one seems to be more universal it was at the time I started this thesis not as detailed
covered2 and the direct connection to the differential equations has been made explicitly

1I will refer here once again to the thesis of Panzer [35] since it is in my opinion the most complete
and most detailed account on hyperlogarithms, their properties and application to Feynman integrals.

2That has changed recently due to e.g. [52, 77,80,87].
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only recently [50]. The second one is, that by introducing the canonical basis within the
parametric representation I could easily derive the basis of the canonical 5× 5-subsystem
needed in the computation of the kite [124]. Since the canonical basis approach turns the
method of differential equations into the most powerful tool available for the computation
of complete families of Feynman integrals its algorithmic construction has been gotten
much attention in the last year [48,53–55,81].

The third part of this thesis is chapter 7. It can be seen as its main achievement, for
which the other chapters lay out the foundations. To understand the approaches therein,
one has to have a clear notion of which class of functions are currently used and how
they contribute to the iterated structure of all order expansions of Feynman integrals. By
understanding this it becomes clear, that one is interested in a similar approach for what
can be described as mostly unknown territory currently. I decided to review the result of
the equal mass sunrise [107] with an emphasis on its iterated structure since it is the first
example of an expanded all order result of a Feynman integral beyond hyperlogarithms3.
To obtain it a variable change to the nome associated with the family of elliptic curves
defined by the zero locus of the second Symanzik polynomial has to be made. Furthermore
a new class of functions, an elliptic generalization of polylogarithms, has to be introduced.
Since both, the variable transform and the formulation of the integration kernels in terms
of E-functions are highly non-trivial I devoted the appendix B to their derivation.
Understanding the equal mass sunrise and its iterated solution enabled us to compute the
iterated all order result of the kite integral obtained in a joint work with Luise Adams,
Christian Bogner and Stefan Weinzierl [124]. The kite integral is currently only the second
Feynman integral beyond hyperlogarithms whose Laurent coefficients can be computed to
all orders. I decided to present the result with emphasis on the structure rather than its
explicit solution.
Lastly I discussed the analytic continuation into the physical regime as well as the numerical
evaluation of the kite and all its sub-topologies. This results has been obtained in a joint
work with Christian Bogner and Stefan Weinzierl [109]. The analytic continuation has its
own striking beauty. Because rather than being a difficult computational task, as might
be expected, it is simply a matter of understanding the underlying structure of the results
and applying Feynman’s +i0-prescription rigorously to it. From an aesthetic point of
view that is quite satisfying. The numerical evaluation of our results and a comparison
with the purely numerical evaluation by SecDec show perfect agreement in all kinematic
regimes as well as close to the thresholds.

To me, the subjects covered in chapter 7 give rise to a number of new, but related
questions. I will summarize some of them and attempt to give a short description of their
origin.
The first known iterated all order solutions beyond hyperlogarithms for the sunrise was
found by investigating the zero locus of the second Symanzik polynomial which is a nons-
singular cubic in P2. But the sunrise only involves the trivial tadpole as an sub-topology.
On the other hand we have the kite which has a far more complicated second Symanzik
polynomial in P4. Furthermore, its differential equation involves non-trivial sub-topologies.
We could compute it since we knew that the singular points of the differential equation of
the kite are the same as the (pseudo-) thresholds of the sunrise. Therefore a transformation

3In a recent work it has been shown that it can as well be written as an iterated integral over modular
forms [108].
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into a differential equation in terms of the nome q of the sunrise could be obtained. That
is a completely different approach compared to the study of an algebraic variety as in the
sunrise case and, as shown in appendix B, expressing the singular points relies heavily on
comparisons with OEIS . Resulting from that are two relevant questions.
Are Feynman integrals which involve the sunrise as the only elliptic sub-topology but
for which the differential equation has different singular points computable in terms of
E-functions only?
Assuming they are computable in terms of E-functions, what is their argument? The
answer to these two questions will determine if we can compute e.g. the fully massive kite
and its four-propagator sub-topology.
The second main question is related to the sunrise being the only elliptic integral having a
second Symanzik polynomial in P2. With the knowledge from that polynomial the elliptic
curve and its periods could be determined. The periods are hereby integrals along the
cycles which generate the first homology group of the associated Riemann surface, the
torus. The one-form in the period integrals is one element of the two dimensional first
cohomology group.4 We furthermore know that the periods fulfil the homogeneous part
of the second order differential equation of the sunrise. On the other hand we know due
to [52], that the maximal cut of a Feynman integral fulfils the homogeneous part of the
differential equation as well. Furthermore, in Baikov-representation, the maximal cut can
be directly computed as a contour integral determined by the vanishing of the Baikov
polynomial and the cut Baikov variables [77, 80]. Lastly, we have the connection between
the dimension of the (co-) homology group and the number of master integrals made
in [22]. Putting all these different approaches together hints at the questions:
Can we use the maximal cut to reconstruct the elliptic curve associated to our elliptic
Feynman integral? If the connection between the contour-integrals obtained by the
maximal-cut and the periods (integrals along the homology cycles) can be made, the
parametrization of the Weierstraß-form of the associated elliptic curve can be reconstructed
by using the Weierstraß ℘-function. The main advantage would be, that one would not
have to use the zero locus of the second Symanzik polynomial, which will be in general a
complicated high dimensional projective algebraic variety.

If one of the here formulated questions will have an positive answer will certainly
determine the applicability of the discussed approach for the iterated all order solutions
of Feynman integrals beyond hyperlogarithms.

4I did not use this terminology during the thesis since it would involve introducing new concepts.

99



100



Appendix A

Computation of the tadpole and the
massless bubble

In the following, the tadpole-topology Iν is computed in Minkowskian-metric.

In = (−1)ν
(
µ2)ν−D2 ∫ dkD

iπ
D
2

1
(k2 −m2)ν

Wick-r.==
(
µ2)ν−D2 (µ2)ν−D2 ∫ dKD

π
D
2

1
(K2 +m2)ν

sph. coor.==
(
µ2)ν−D2 ∞∫

0

KD−1
e

(K2
e +m2)ν

dKe

π
D
2
·
∫

dΩD =
(
µ2)ν−D2 2

Γ(D2 )(m2)ν

∞∫
0

KD−1
e

(K2
e

m2 + 1)ν
dKe

s=K2
e/m2

== =
(
µ2

m2

)ν−D2 1
Γ(D2 )

∞∫
0

ds s
D−2

2

(s+ 1)ν
(A.0.2)==

(
µ2

m2

)ν−D2 Γ(ν − D
2 )

Γ(ν)

(A.0.1)

where we used the definition of the Beta-function (see e.g. [141], S. 258)

B(z, w) =
∞∫

0

dt tz−1

(t+ 1)z+w = Γ(z)Γ(w)
Γ(z + w) (<(z) > 0,<(w) > 0) (A.0.2)

with z = D/2 und w = n−D/2 whereby Γ(z) cancels the Gamma-function obtained by
the integration of the D-sphere.

The result for the massless bubble can be easily computed from its parametric repre-
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sentation:

Iν1,ν2 =
(
µ2)ν−D2 Γ

(
ν − D

2

)
Γ (ν1) Γ(ν2)

∞∫
0

∞∫
0

dx1dx2δ(1− (x1 + x2))xν1
1 x

ν2
2

(x1 + x2)ν−D

(−tx1x2)ν−D2

=
(
−µ

2

t

)ν−D2 Γ
(
ν − D

2

)
Γ (ν1) Γ(ν2)

∞∫
0

dxx
ν2−1(1 + x)ν−D

xν−
D
2

=
(
−µ

2

t

)ν−D2 Γ
(
ν − D

2

)
Γ (ν1) Γ(ν2)

∞∫
0

dx xν1−1+D
2

(1 + x)ν−D

(A.0.2)==
(
−µ

2

t

)ν−D2 Γ
(
ν − D

2

)
Γ (ν1) Γ(ν2)

Γ
(
D
2 − ν1

)
Γ
(
D
2 − ν2

)
Γ(D − ν1 − ν2) ,

(A.0.3)

where t denotes the momentum squared, ν = ν1 + ν2 and the result is to be understood
by means of an anlytic continuation of the Γ functions for higher propagator powers than
νi = 2.
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Appendix B

Variable Transformations, Identities
and Algorithms for E-Functions

B.1 Changing the Kinematic Invariant to the Nome
- The Sunrise and the Kite

The investigation of the iterated structure of the sunrise integral in section 7.3.2 makes
intensive use of the change from the kinematic invariant t = pµp

µ/m2 to the nome of the
elliptic curve, associated with a representation of the elliptic curve in Jacobi uniformization.
In this appendix some of the results presented e.g. in [105], which are used in section 7.1.1
will be derived1 in a more explicit way.

Therefore we recall the two periods of the sunrise

Ψ1 = 4µ2

m2(1− t) 3
4 (9− t) 1

4
K(m)

Ψ2 = 4iµ2

m2(1− t) 3
4 (9− t) 1

4
K(m′)

(B.1.1)

in terms of complete elliptic integrals of the first kind, where (m′) m denotes the (comple-
mentary) parameter given as

m = e3(t)− e2(t)
e1(t)− e2(t) , m′ = e1(t)− e3(t)

e1(t)− e2(t) (B.1.2)

with

e1(t) = m4

24µ4

(
−t2 + 6t+ 3 + 3 (1− t)

3
2 (9− t)

1
2

)
,

e2(t) = m4

24µ4

(
−t2 + 6t+ 3− 3 (1− t)

3
2 (9− t)

1
2

)
, (B.1.3)

e3(t) = m4

24µ4

(
2t2 − 12t− 6

)
. (B.1.4)

1Sometimes with different looking intermediate results which can all be transformed into the expression
given in the literature.
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The Wronskian of these to periods is given as

W (Ψ1(t),Ψ2(t)) = Ψ1(t) ddtΨ2(t)−Ψ2(t) ddtΨ1(t) = −12iπµ4

m4
1

t(t− 1)(t− 9) . (B.1.5)

The nome is defined as

q = eiπτ (B.1.6)

where

τ = Ψ2

Ψ1
. (B.1.7)

B.1.1 Transformation of the Measure
The iterated integration obtained by varying the constant of the differential equation
7.3.49 is over the the kinematic invariant. The transformation of the measure reads

dt = dt
dτ

dτ
dq dq (B.1.8)

=
(

d
dt

(
Ψ2

Ψ1

))−1 1
iπ
d log(q)
dq dq (B.1.9)

= 1
iπ

Ψ′2Ψ1 −Ψ′1Ψ2

Ψ2
1︸ ︷︷ ︸

W (Ψ1,Ψ2)/Ψ2
1


−1

dq
q

(B.1.10)

= 1
iπ

Ψ2
1

W (Ψ1,Ψ2)
dq
q

(B.1.11)

where W (Ψ1,Ψ2) denotes the Wronskian of the fundamental system.

B.1.2 Expressing the Kinematic Invariant in Terms of q-Series
To change the kinematic invariant to the nome we consider the known q-series for the
(complementary) parameter given by

m =
(
ϑ2(q)
ϑ3(q)

)4

m′ =
(
ϑ4(q)
ϑ3(q)

)4

(B.1.12)

with

ϑ2(q) =
∞∑

n=−∞

qn−
1
2

ϑ3(q) =
∞∑

n=−∞

qn
2

ϑ4(q) =
∞∑

n=−∞

(−1)nqn2
.

(B.1.13)
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By using (B.1.2) and (B.1.12) we get the relation

y = − 16t
(t− 9)(t− 1)3︸ ︷︷ ︸

yt

=
(
ϑ2(q)ϑ4(q)
(ϑ3(q))2

)4

︸ ︷︷ ︸
yq

. (B.1.14)

To get an expression for t in term of a q-series in the whole Euclidian regime the first
thing to notice is, that the absolute value of (B.1.14) is smaller than one and that |q| < 1
(since τ ∈ H) for all t < 0. The strategy to obtain the q-series is:

1. Expand yt = − 16t
(t−9)(t−1)3 (l.h.s of (B.1.14)) around t = 0 and invert it to the power

series t =
∑

i>1 biy
i. The resulting power series is a germ of the analytic continuation

of t(yt)

2. Invert yt analytically and choose the branch whose expansion around y = 0 coincides
with the series obtained by the inversion of the power series y =

∑
i ait

i around
t = 0.

3. Replace yt by yq and expand t(yq) = t(q) (substitute r.h.s. of (B.1.14)) in q and
compare with the The On-Line Encyclopedia of Integer Sequences R© (OEIS R©)2 if
the coefficient sequence is a known q-series.

The first step can be easily done by a Taylor expansion of yt = − 16t
(t−9)(t−1)3 in a vicinity

of t = 03 and inverting it to the unique power series t̃(y)4. The first few terms of the
result are

t̃(y) = −9y
16 −

63y2

64 −
4743y3

2048 −
102609y4

16384 − 19261161y5

1048576 +O
(
y6) . (B.1.15)

This series defines the germ of the (multivalued) function y−1 = t we are interested in. By
solving

y = − 16t
(t− 9)(t− 1)3 (B.1.16)

with respect to t(y) one finds four possible solutions (corresponding to the preim-
ages/branches). We choose y−1 on the branch such that it has the same expansion
around5 y = 0 as t̃. It is given by

t(y) = 3−

√
22/3

y2/3 + 2 3
√

2
3
√
y

+ 4 + 1
2

√√√√ 16− 64y√
22/3

y2/3 + 2 3√2
3√y + 4y

− 4 22/3

y2/3 −
8 3
√

2
3
√
y

+ 32 . (B.1.17)

The next step is to replace in (B.1.17) y by its product of ϑ-functions (B.1.14) and expand
in q. The first few terms of the resulting series are

t(q) = −9q − 36q2 − 90q3 − 180q4 − 351q5 − 684q6 +O
(
q7) . (B.1.18)

2http://oeis.org/
3The convergence radius of this expansion is one.
4This can be done easily by using Mathematica’s InverseSeries[] since limt→0 y = 0.
5This power series has convergence radius 1/4, corresponding to y(t0|y′(t0)=0) = 1/4.
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Normalizing with −9 and comparing with OEIS yields three (almost) matching sequences
(A164617, A128640, A128641) of known q-expansions. The one used in the following6

is related to A128640 and reads

t(q) = −9q
(
Ψ (−q3)
Ψ(−q)

)4

= −9q ((q3;−q3)∞) 4 ((q6; q6)∞) 4

((q;−q)∞) 4 ((q2; q2)∞) 4 , (B.1.19)

where

Ψ(q) = (−q; q)∞
(
q2; q2)

∞ (B.1.20)

denotes Ramanujan’s Ψ function 7 and the q-Pochammer symbol has the product repre-
sentation

(a; q)∞ =
∞∏
k=0

(1− aqk) . (B.1.21)

We may express t(q) in terms Dedekind-η functions by using

η(τ) = e
iπτ
12

∞∏
n=1

(
1− e2iπnτ) = q

1
12

∞∏
n=1

(
1− q2n) = q

1
12
(
q2; q2)

∞ . (B.1.22)

The main difference to [105,107] is, that by the virtue of t(y) being a holomorphic function
of yq we can conclude that (B.1.19) holds for the whole Euclidian regime, where the
periods are defined by (B.1.1) such that |q| < 1.

B.1.3 Expression of the Periods as q-Series
For the (complementary) complete elliptic integral of the first kind (K ′) K one has the
expression

K = π

2ϑ
2
3(q) K ′ = − log(q)

2 ϑ2
3(q) . (B.1.23)

Inserting this relation in (B.1.1) and using t(q) (B.1.19) for the prefactor yields expressions
in terms of q-series. The first few terms of the q-series are

Ψ1 ∝
ϑ2

3(q)
(1− tq) 3/4 4

√9− tq
= 1√

3
−
√

3q +
√

3q2 −
√

3q3 +
√

3q4 +
√

3q6 +O
(
q7)
(B.1.24)

where tq = t(q) (B.1.19). Normalizing with
√

3 and comparing with OEIS reveals
agreement with the sequence A137608 given as

ϑ2
3(q)√

3 (1− tq) 3/4 4
√9− tq

= Ψ(−q)3

Ψ (−q3) . (B.1.25)

6One can check by expansion in q that it is equivalent to the expression given in [107].
7see e.g. [142] for an overview of its properties
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B.1.4 Expressing the Kernel Ψ3
1/W (Ψ1,Ψ2) in Terms of E-Functions

Up to a multiplicative constant, this integration kernel reads

Ψ3
1

W (Ψ1,Ψ2) ∝
(9− tq)

1
4 tqϑ

6
3(q)

(1− tq) 5/4 (B.1.26)

where tq = t(q) is given in (B.1.19). Expanding this expression in terms of the nome q
yields a power series, where the first few terms are

(9− tq)
1
4 tqϑ

6
3(q)

(1− tq) 5/4 = −9
√

3q − 45
√

3q2 − 81
√

3q3 − 99
√

3q4 − 216
√

3q5 − 405
√

3q6 +O
(
q7) .

(B.1.27)

Normalizing with respect to the first coefficients and comparing with OEIS shows that
the obtained q-series is the known sequence A214262. Using the results of OEIS we
have

− 1
9
√

3
(9− tq)

1
4 tqϑ

6
3(q)

(1− tq) 5/4 = q ((−q;−q)∞) 5 (−q3;−q3)∞ ((q6; q6)∞) 4

((q2; q2)∞) 4 (B.1.28)

=
∞∑
k=1

k2(−1)k(−q)k
(−q)k + (−q)2k + 1 (B.1.29)

=
∞∑
k=1

k2(−1)k(−q)k
(r3 − (−q)k) (r∗3 − (−q)k) (B.1.30)

= − i√
3

∞∑
k=1

k2(−1)k
(

1
1− r3(−q)k −

1
1− r∗3(−q)k

)
(B.1.31)

= − i√
3

∞∑
k=1

∞∑
l=1

k2(−1)k
(
rl3(−q)kl − (r∗3)l (−q)kl

)
(B.1.32)

= − i√
3

(ELi−2,0(−1, r3,−q)− ELi−2,0(−1, r∗3,−q)) (B.1.33)

= 1√
3
E−2,0(−1, r3,−q) , (B.1.34)

where r3 denotes the third root of unity and the sum representation in the second line
(B.1.29) is given on the OEIS. Partial fraction decomposition, as well as identifying a
geometric series lead to (B.1.32). Including the constant stemming from Ψ1 and W one
has

Ψ3
1

W (Ψ1,Ψ2) = −6iπ2 µ
2

m2E−2,0(−1, r3,−q) . (B.1.35)

B.1.5 Expressing the Kernel Ψ4
1(t+ 3)4 in Terms of E-Functions

We have by using (B.1.1) and replacing the elliptic integral by the ϑ-function (B.1.23)

Ψ1(t+ 3) ∝ 3 (1− tq)
1
4 (9− tq) 3/4ϑ2

3(q)
2 (tq − 9) − (1− tq)

1
4 (9− tq) 3/4ϑ2

3(q)
2 (tq − 1) . (B.1.36)
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The comparison with OEIS shows that the expansion of both terms matches the sequence
A123331.

Transforming 3(1−tq)
1
4 (9−tq)3/4ϑ2

3(q)
2(tq−9) to E-Functions

The first few terms of the q-expansion of the first term are

3 (1− tq)
1
4 (9− tq) 3/4ϑ2

3(q)
2 (tq − 9) = −

√
3

2 − 3
√

3q − 6
√

3q2 − 3
√

3q3 + 3
√

3q4 − 6
√

3q6 +O
(
q7)

(B.1.37)

and comparing the coefficients after normalizing with 3
√

3 yields the known sequence
A123331. Using the results therein, we have

1
3
√

3
3 (1− tq)

1
4 (9− tq) 3/4ϑ2

3(q)
2 (tq − 9) = −1

6 −
∞∑
k=1

(−1)k(−q)k
(−q)k + (−q)2k + 1 (B.1.38)

= −1
6 −

1√
3
E0,0(−1, r3,−q) (B.1.39)

where we used, that the series is basically the same as in the treatment of the first kernel
Ψ3

1/W (Ψ1,Ψ2).

Transforming (1−tq)
1
4 (9−tq)3/4ϑ2

3(q)
2(tq−1) to E-Functions

The q-expansion of the second summand reads

(1− tq)
1
4 (9− tq) 3/4ϑ2

3(q)
2 (tq − 1) = −3

√
3

2 + 3
√

3q − 6
√

3q2 + 3
√

3q3 − 3
√

3q4 − 6
√

3q6 +O
(
q7)

(B.1.40)

and we see, that the coefficients are up to their signs the same as in the previous case.
We therefore can take a similar series, namely

1
3
√

3
(1− tq)

1
4 (9− tq) 3/4ϑ2

3(q)
2 (tq − 1) = −1

2 −
∞∑
k=1

(−q)k
−(−q)k + (−q)2k + 1 (B.1.41)

= −1
2 + 1√

3
E0,0 (1, r∗6,−q) (B.1.42)

where the sixth root of unity enters due to the different denominator.
Putting everything together and including the prefactors yields

Ψ1(q)(tq + 3) = 6πµ2

m2

(
1√
3
− E0,0 (1, r6

∗,−q)− E0,0 (−1, r3,−q)
)

(B.1.43)

= 6πµ2

m2

(
1√
3

+ 2E0,0 (1, r3,−q)
)

(B.1.44)

where we used the identity (B.3.1) shown in section (B.3.1).
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B.1.6 Expressing the Kite Kernel Ψ3
1/((t−1)W (Ψ1,Ψ2)) in Terms

of E-Functions

For the kite integral we have in addition to the sunrise kernels the kernel

Ψ1

(tq − 1)Wq(Ψ1,Ψ2) ∝
(tq − 9)tqϑ3(q)6

(1− tq)9/4(9− tq)3/4 , (B.1.45)

where we used (B.1.1) and replaced the elliptic integral by the ϑ-function (B.1.23).
The first few terms of the q-expansion read

(tq − 9)tqϑ3(q)6

(1− tq)9/4(9− tq)3/4 = 9
√

3q − 36
√

3q2 + 81
√

3q3 − 144
√

3q4 + 216
√

3q5 − 324
√

3q6 +O
(
q7)

(B.1.46)

and normalizing with the leading coefficient 9
√

3 yields the matching sequence A122373
in the OEIS. Using the sum representation therein we have

1
9
√

3
(tq − 9)tqϑ3(q)6

(1− tq)9/4(9− tq)3/4 = −9
8

∞∑
k=0

k2(−q)k
(−q)k + (−q)2k + 1 −

1
8

∞∑
k=0

(−1)kk2(−q)k
(−q)k + (−q)2k + 1

= − 1
8
√

3
(
9E−2;0 (1; r3;−q) + E−2;0 (−1; r3;−q)

)
(B.1.47)

where we used that it is basically the same sum as in section B.1.4. Inserting the constants
we have

Ψ1,q

(tq − 1)Wq(Ψ1,Ψ2) = −6iπ2

8
µ2

m2

(
9E−2;0 (1; r3;−q) + E−2;0 (−1; r3;−q)

)
, (B.1.48)

where r3 denotes the third root of unity.

B.1.7 Expressing log(tq), log(1− tq) and log(1− tq/9) in Terms of
E-Functions

For the sunrise as well as the kite integral it is important to do derive the representation
of certain logarithms of the kinematic invariant in terms E-functions. This will be done in
the following by

1. Finding a representation of the argument of the logarithm as a product of q-
Pochammer symbols by using OEIS.

2. Transform the resulting logarithm by using the in section B.2 discussed methods
and in particular (B.2.13) and (B.2.12).
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log(tq):

We use the representation (B.1.19) and have

log(tq) = log
(
−9q ((q3;−q3)∞) 4 ((q6; q6)∞) 4

((q;−q)∞) 4 ((q2; q2)∞) 4

)
B.2== −4(E1;0 (r6; 1;−q) + E1;0 (r6; 1; q) + E1;0 (r3; 1; q)) + log(−9q)
= −8E1;0 (r6; 1;−q)− 4E1;0 (r3; 1;−q) + log(−9q)
= −4E1;0 (r3;−1;−q) + log(−9q)

(B.1.49)

where we synchronized the argument to −q in the second to last line (see (7.3.54) ) and
summarized the E-functions (see B.3.2). The identity which yields the last line is not
covered in this appendix8 but its validity has been verified up to order O(q800).

log(1− tq):

The expansion of 1− tq coincides with the sequence A132972 from which we get

log(1− tq) = 3 log
(

((−q;−q)∞) 3 (q6; q6)∞
((q2; q2)∞) 3 (−q3;−q3)∞

)
= 3(E1;0 (−1; 1;−q)− E1;0 (r6; 1;−q))

(B.1.50)

where the argument was synchronized to −q9.

log(1− tq/9):

For 1−tq/9 we find by comparison of the coefficients of the q-expansion that it corresponds
to the known sequenceA164617 obtained by expanding a specific quotient of Ramanujan’s
Ψ and Φ functions. We have in terms of q-Pochammer symbols

1− tq/9 = ((−q3;−q3)∞) 3 (q6; q6)∞
(−q;−q)∞ ((q;−q)∞) 2 ((q2; q2)∞) 3 ((q3;−q3)∞) 2 (B.1.51)

and therefore

log(1− tq/9) = log
(

((−q3;−q3)∞) 3 (q6; q6)∞
(−q;−q)∞ ((q;−q)∞) 2 ((q2; q2)∞) 3 ((q3;−q3)∞) 2

)
(B.1.52)

= 3E1;0 (−1; 1;−q) + E1;0 (r6; 1;−q)− 4E1;0 (r3; 1;−q) (B.1.53)

where the argument was synchronized to −q.

8It involves showing that a certain partitioning of terms qij/j for every i · j even cancels identically at
every order in q.

9We get E-functions with argument q and −q. Transformation to the same argument −q is meant by
“synchronizing” in the following.
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B.2 Logarithms of q-Pochammer Symbols and ELi-
Functions

In the following section I will show, that there is an easy translation of logarithms of
q-Pochammer symbols into ELi- and E-functions. This relationship is useful for practical
computations, since every of the q-series found by comparison with OEIS can be expressed
in terms of q-Pochammer symbols.

The q-Pochammer symbols of interest are

(αqa, βqa)∞ =
∞∏
k=0

(
1− αqa(βqa)k

)
=
∞∏
k=0

(
1−

((
α

β

) 1
a

(β 1
a q)k+1

)a) (B.2.1)

where a ∈ Z and α, β, q ∈ C such that the product converges. In the cases relevant to this
thesis we always have α = ±β = ±1.

The first thing to notice is, that

log ((αqa, βqa)∞) (B.2.1)== log
(
∞∏
k=0

(
1− αqa(βqa)k

))

=
∞∑
k=0

log
(

1− α

β
(βqa)k+1

)
= −

∞∑
n=1

∞∑
k=0

1
n

(
α

β

)n
(βqa)n(k+1)

k→k+1== −ELi1;0

(
α

β
; 1; βqa

)
.

(B.2.2)

The problem with this representation is, that it translates into ELi’s of higher order qa
dependence instead of q. This problem can be easily circumvented by consideration of the
factorization

1−
((

α

β

) 1
a

(β 1
a q)k+1

)a

=: 1− xα,β(q)a

= eiπ
∏

1≤n≤a

(
x− e2iπ n

a

)
= eiπ(1+a)e

2iπ
a

∑a
n=1 n

∏
1≤n≤a

1− x e−2iπ n
a︸ ︷︷ ︸

=:w∗a(n)


a∈Z==

∏
1≤n≤a

(
1−

(
α

β

) 1
a

w∗a(n)(β 1
a q)k+1

)
(B.2.3)
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where w∗a(n) is a root of unity10. With this factorization we have

(αqa, βqa)∞ =
∏

1≤n≤a

(
w∗a(n)

(
α

β

) 1
a

β
1
a q, β

1
a q

)
∞

(B.2.4)

and therefore

log ((αqa, βqa)∞) (B.2.4)==
∑

1≤n≤a

log
((

w∗a(n)
(
α

β

) 1
a

β
1
a q, β

1
a q

)
∞

)
(B.2.2)== −

∑
1≤n≤a

ELi1,0

(
w∗a(n)

(
α

β

) 1
a

; 1; β 1
a q

)
.

(B.2.5)

The Special Case α = ±β and the Representation with E

The sum (B.2.5) can in general not easily be written in terms of E functions, due to the

prefactor
(
α
β

) 1
a in front of the roots of unity wa(n). But for α = ±β it can. Here one has

to notice:

1. E0,1

(
(±1) 1

awa(n), 1, q
)

= ELi0,1
(

(±1) 1
awa(n), 1, q

)
+ELi0,1

((
(±1) 1

awa(n)
)∗
, 1, q

)
2. For every (±1) 1

awa(n) /∈ R, the complex conjugate
(

(±1) 1
awa(n)

)∗
/∈ R is also in

the sum (B.2.5)

From that observation it follows directly for α = ±β

log ((±βqa, βqa)∞) = −
∑

1≤n≤a

ELi1,0
(
w∗a(n) (±1)

1
a ; 1; β 1

a q
)

(B.2.6)

= −1
2

∑
1 ≤ n ≤ a

n|(±1)
1
aw∗a(n) ∈ {±1}

E1,0

(
(±1)

1
a w∗a(n); 1; β 1

a q
)

(B.2.7)

−
∑

1 ≤ n ≤ a
n|(±1)

1
aw∗a(n) ∈ H

E1,0

(
(±1)

1
a w∗a(n); 1; β 1

a q
)

(B.2.8)

where H denotes the upper half plane.

Possible Reduction of the Argument

In the result (B.2.8) there is still one problem, since there is a β 1
a term in front of the

nome. Such a term is in general not wanted, since it spoils the multiplication properties.
In some cases, it can easily be removed. For this we note, that the resulting q-series
(α = ±β) has the form

log ((±βqa, βqa)∞) =
∑
j,l>0

1
j

(
(±1)

j
a

a∑
k=1

(wa(k))j
)(

β
1
a q
)jl

(B.2.9)

10Not necessarily a primitive one like the rn’s.
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where wa(k)j = e2iπkj/a and11

a∑
k=1

(wa(k))j =
{
a for j = a · n|n ∈ Z

0 else .
(B.2.10)

We can therefore write the result as:

log ((±βqa, βqa)∞) =
∑
j,l>0

1
aj

(
(±1)ja

) (
β

1
a q
)ajl

(B.2.11)

and get the two cases:

β = 1:

log ((±qa, qa)∞) = −1
2

∑
1 ≤ n ≤ a

n|(±1)
1
aw∗a(n) ∈ {±1}

E1,0

(
(±1)

1
a w∗a(n); 1; q

)

−
∑

1 ≤ n ≤ a
n|(±1)

1
aw∗a(n) ∈ H

E1,0

(
(±1)

1
a w∗a(n); 1; q

) (B.2.12)

β = −1, a odd:

log ((±qa,−qa)∞) = −1
2

∑
1 ≤ n ≤ a

n|(±1)
1
aw∗a(n) ∈ {±1}

E1,0

(
(∓1)

1
a w∗a(n); 1;−q

)

−
∑

1 ≤ n ≤ a
n|(±1)

1
aw∗a(n) ∈ H

E1,0

(
(∓1)

1
a w∗a(n); 1;−q

)
.

(B.2.13)

We conclude this section by summarizing its results. The first takeaway is, that we
can transform every q-Pochammer symbol where the powers of q are the same12 into
ELi-functions which might have an higher order of q in its argument. ELi-functions
with higher order of q in its argument might conflict with the iterated integration used
throughout this thesis. Therefore further restriction on the form of the q-Pochammer
symbols had to be made, but the class which can be transformed directly into E-functions
is still quite big and given by (B.2.12) and (B.2.13). They are enough for a derivation of
all necessary results in this thesis. Nonetheless, this is probably a point where further
generalizations are possible.

11Proof: For j = a · n clear; For j 6= n · a ⇒ e2iπj/a 6= 1, such that
∑a
k=1

(
e2iπ ja

)k
= 1−e2iπj

1−e2iπ j
a

= 0
where the geometric series was used.

12That condition might not be necessary, since e.g. identities like (q, q2)∞ = 1/(−q, q)∞ [142] can be
used.
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B.3 Identities of E-Functions

B.3.1 An E-Identity Involving the Third and Sixth Root of
Unity

In the following the identity(
En,n(1, r3, q) + En,n(−1, r3, q)

)
+
(
En,n(1, r3, q) + En,n(1, r∗6, q)

)
= 0 (B.3.1)

where rn denotes the n-th root of unity and which was used for the simplification of the
integration kernels will be shown for the case m = n = 013. The first summand can be
written as

E0,0(1, r3, q) + E0,0(−1, r3, q) = 1
i

∑
i,j>0

(
1 + (−1)j

) (
ri3 − (r∗3)i

)︸ ︷︷ ︸
2i=(ri3)

qij (B.3.2)

= 4
∑
i,j>0

sin
(

2πi
3

)
q2ij . (B.3.3)

The second summand reads

E0,0(1, r3, q) + E0,0(1, r∗6, q) = 1
i

∑
i,j>0

(
ri3 − (r∗3)i + (r∗6)i − ri6

)
qij (B.3.4)

= 2
∑
i,j>0

(
sin
(

2πi
3

)
− sin

(
2πi
6

))
︸ ︷︷ ︸

=0 for i=2n+1

qij (B.3.5)

= 2
∑
i,j>0

(
2 cos

(
2πi
3

)
− 1
)

︸ ︷︷ ︸
= −2 ∀i|mod(i, 3) 6= 0
= 1 ∀i|mod(i, 3) = 0

sin
(

2πi
3

)
︸ ︷︷ ︸

=0 ∀i|mod(i,3)=0

q2ij (B.3.6)

= −4
∑
i,j>0

sin
(

2πi
3

)
q2ij (B.3.7)

and we see, that at every order in q both summands cancel exactly.

B.3.2 A Useful Relation for m+ n Odd at Roots of Unity
Because of the definition of the E-function

Em;n (x; y; q) = ELim;n (x; y; q) + ELim;n

(
1
x

; 1
y

; q
)

for m+ n = 2k + 1|k ∈ Z (B.3.8)

and (ζki )∗ = 1/ζki with ζki being a root of unity, we immediately have

Em;n
(
ζki ; ζ lj; q

)
= Em;n

(
(ζki )∗; (ζ lj)∗; q

)
(B.3.9)

13Notice, that it is enough to show this identity at (m,n) = (0, 0) since every other case is governed by
n-fold iterated integration and differentiation.
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B.4 An Algorithm for Symbolic Expansions of E-functions
The results of the computations of the sunrise and the kite integral are given in terms of
the ELi-functions, which are defined as a convergent power series in q with |q| < 1. While
these series permit nice properties for analytical calculations like iterated integration, it is
mandatory to have an fast expansion algorithm up to a certain order u in q, to obtain
numerical results.
In this section some ideas on how to implement such an algorithm are discussed.

B.4.1 A brute force, straightforward algorithm
In principle, the expansion task is easily done by restricting the sums in the definitions of
the ELi-functions to the upper bound u

ELim1,...,ml;n1,...,nl;2o1,...,2ol−1(x1, . . . , xl; y1, . . . , yl; q) = (B.4.1)

=
u∑
j1

. . .
u∑
jl

u∑
k1

. . .

u∑
kl

xj11
jm1

1
. . .

xjll
jmll

· y
k1
1
kn1

1
. . .

ykll
knll
· q

j1k1+...+jlkl

l−1∏
i=1

(
l∑
r=i

jrkr)oi
(B.4.2)

and omitting terms of order > O(qu).
Procedure BruteForceApproach
Input: ELi-function of depth l; expansion order: u
Result: q-series expansion of order O(qu)
begin

(* Define summands for ELi-function *)

expansion0=
(

l∏
s=1

xjss
jmss
· y

ks
s

knss
· qjsks

)
·
(
l−1∏
i=1

(
l∑
r=i

jrkr)oi
)−1

;
(*Sum over all j and k*)
for t=1 to l do

(* Minor change of summation limits to reduce number of terms
> O(qu) *)

expansionN=
u−l+1∑
kt=1

(
bu/ktc∑
jt=1

expansion0
)

;

expansion0=expansionN ;
expansionN ← Omit terms of order > O(qu)

Even though this approach, as depicted in the BruteForceApproach procedure, is the
most obvious, it has two mayor downsides:

1. The brute force approach BruteForceApproach only gives an exact series expansion
without terms of order > O(qu) for depth l = 1. The number of unwanted terms
of order > O(qu) grows tremendously fast for increasing l > 1. This can not be
circumvented by minor changes in the summation limits.
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2. The nested structure of the denominator
(
l−1∏
i=1

(
l∑
r=i

jrkr)oi
)−1

does not allow any

factorization of the expansion for ~o 6= ~0 and l > 1.

Therefore, any straightforward attempt to expand ELi-functions of higher depth to a
reasonably high order (e.g. l = 3 up to O(q100)) will result in long computation times
caused by the computations of unwanted terms and their nested denominators.

B.4.2 An advanced algorithm
While it is not yet obvious how to circumvent the computation of unwanted terms, the
analytical properties of the ELi-functions give rise to the possibility of factorizing the
complete expansion procedure by getting rid of the nested denominators.
The essential relations to achieve a complete factorisation are

ELim1,...,ml;n1,...,nl;2(o1+1),...,2ol−1(x1, . . . , xl; y1, . . . , yl; q) = (B.4.3)

=
q∫

0

dq′
q′

ELim1,...ml;n1,...,nl;2o1,...,2ol−1(x1, . . . , xl; y1, . . . , yl; q′) (B.4.4)

⇔ q∂qELim1,...,ml;n1,...,nl;2o1,...,2ol−1(x1, . . . , xl; y1, . . . , yl; q) = (B.4.5)
= ELim1,...,ml;n1,...,nl;2(o1−1),...,2ol−1(x1, . . . , xl; y1, . . . , yl; q) (B.4.6)

and

ELim1,...ml;n1,...,nl;0,2o2,...,2ol−1(x1, . . . , xl; y1, . . . , yl; q) = (B.4.7)
= ELim1;n1(x1; y1; q) · ELim2,...ml;n2,...,nl;2o2,...,2ol−1(x2, . . . , xl; y2, . . . , yl; q) . (B.4.8)

By consecutive usage of (B.4.6) it is possible to reduce o1 to zero and factor out an ELi
of depth 1 with (B.4.8).

For the sake of illustration, the function ELim1,m2;n1,n2;2o1(x1, x2; y1, y2; q) is therefore
given by the o1-fold iterated integration

ELim1,m2;n1,n2;2o1(x1, x2; y1, y2; q) = (B.4.9)

=
∫ q

0

(
. . .

(∫ q2

0
(ELim1;n1(x1; y1; q1)ELim2;n2(x2; y2; q1)) dq1

q1

)
. . .

)
dqo1

qo1

. (B.4.10)

Since we are interested in the numerical evaluation of ELi-functions for |q| < 1 only, the
q-expansion and iterated integration can be interchanged. If the series expansion of the
product of ELi-function in (B.4.10) is given by

ELim1;n1(x1; y1; q)ELim2;n2(x2; y2; q) = a2q
2 + a3q

3 + a4q
4 + . . .+ auq

u +O(qu+1)
(B.4.11)

the expansion of ELim1,m2;n1,n2;2o1(x1, x2; y1, y2; q) is trivially obtained by

ELim1,m2;n1,n2;2o1(x1, x2; y1, y2; q) = a1

2o1
q2 + a3

3o1
q3 + . . .+ au

uo1
qu +O(qu+1) . (B.4.12)
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These considerations lead to the advanced recursive algorithm depicted in AdvancedAp-
proach. This procedure works with ELi-functions of depth 1 only and is therefore free of
any computations of the nested denominators.
Procedure AdvancedApproach
Input: ELi-function of depth l; expansion order: u
Result: q-series expansion of order O(qu)
begin

if l==1 then
(*Notice: The brute force approach is well suited for l==1*)

expansionN=BruteForceApproach(ELim1;n1(x1; y1; q));

else
(* usage of (B.4.6) and (B.4.10) *)

expansion0 =
(

(B.4.13)
BruteForceApproach(ELim1;n1(x1; y1; q)) (B.4.14)
× AdvancedApproach(ELim2,...,ml;n2,...,nl;2o2,...,2ol−1(x2, . . . , xl; y2, . . . , yl; q))

(B.4.15))
; (B.4.16)

(* o1-fold iterated integration via replacement *)
expansionN=expansion0 /. qα → 1

αo1
qα ;

expansionN ← Omit terms of order > O(qu)

The series expansion procedures described above are easily modified to work with E-
functions as well. But since any E-function can be written as a linear combination of
ELi-functions, this is the natural point for parallelized q-series expansion of E-functions.

B.5 Explicit Expressions for Hyperlogarithms and E-
functions in Terms of E-functions

This expressions are obtained by computing the iterated integrals as described in sec-
tion 7.4.1. The here listed explicit expressions are published in [124] and taken from there.
They are included since they are referred to in section 7.6.1 as an explanation for the
increasing error by constant order in the q-expansion at higher orders in the ε-expansion.

G (1; y) = 3
[
E1;0 (−1; 1;−q)− E1;0 (r6; 1;−q)

]
,

G (0, 1; y) = 3
[
E2;1 (−1; 1;−q)− E2;1 (r6; 1;−q)

]
−12

[
E0,1;−1,0;2 (r3,−1;−1, 1;−q)− E0,1;−1,0;2 (r3, r6;−1, 1;−q)

]
,

G (1, 1; y) = 9
[
E0,1;−1,0;2 (−1,−1; 1, 1;−q)− E0,1;−1,0;2 (−1, r6; 1, 1;−q)
−E0,1;−1,0;2 (r6,−1; 1, 1;−q) + E0,1;−1,0;2 (r6, r6; 1, 1;−q)

]
. (B.5.1)
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G (0, 0, 1; y) = 3
[
E3;2 (−1; 1;−q)− E3;2 (r6; 1;−q)

]
− 12

[
E0,1;−1,0;4 (r3,−1;−1, 1;−q)

−E0,1;−1,0;4 (r3, r6;−1, 1;−q)
]
− 12

[
E0,2;−1,1;2 (r3,−1;−1, 1;−q)

−E0,2;−1,1;2 (r3, r6;−1, 1;−q)
]

+ 48
[
E0,0,1;−1,−1,0;2,2 (r3, r3,−1;−1,−1, 1;−q)

−E0,0,1;−1,−1,0;2,2 (r3, r3, r6;−1,−1, 1;−q)
]
,

G (0, 1, 1; y) = 9
[
E0,1;−1,0;4 (−1,−1; 1, 1;−q)− E0,1;−1,0;4 (−1, r6; 1, 1;−q)

−E0,1;−1,0;4 (r6,−1; 1, 1;−q) + E0,1;−1,0;4 (r6, r6; 1, 1;−q)
]

−36
[
E0,0,1;−1,−1,0;2,2 (r3,−1,−1;−1, 1, 1;−q)− E0,0,1;−1,−1,0;2,2 (r3,−1, r6;−1, 1, 1;−q)

−E0,0,1;−1,−1,0;2,2 (r3, r6,−1;−1, 1, 1;−q) + E0,0,1;−1,−1,0;2,2 (r3, r6, r6;−1, 1, 1;−q)
]
,

G (1, 0, 1; y) = 9
[
E0,2;−1,1;2 (−1,−1; 1, 1;−q)− E0,2;−1,1;2 (−1, r6; 1, 1;−q)

−E0,2;−1,1;2 (r6,−1; 1, 1;−q) + E0,2;−1,1;2 (r6, r6; 1, 1;−q)
]

−36
[
E0,0,1;−1,−1,0;2,2 (−1, r3,−1; 1,−1, 1;−q)− E0,0,1;−1,−1,0;2,2 (−1, r3, r6; 1,−1, 1;−q)

−E0,0,1;−1,−1,0;2,2 (r6, r3,−1; 1,−1, 1;−q) + E0,0,1;−1,−1,0;2,2 (r6, r3, r6; 1,−1, 1;−q)
]
,

G (1, 1, 1; y) = 27
[
E0,0,1;−1,−1,0;2,2 (−1,−1,−1; 1, 1, 1;−q)

−E0,0,1;−1,−1,0;2,2 (−1,−1, r6; 1, 1, 1;−q)− E0,0,1;−1,−1,0;2,2 (−1, r6,−1; 1, 1, 1;−q)
+E0,0,1;−1,−1,0;2,2 (−1, r6, r6; 1, 1, 1;−q)− E0,0,1;−1,−1,0;2,2 (r6,−1,−1; 1, 1, 1;−q)
+E0,0,1;−1,−1,0;2,2 (r6,−1, r6; 1, 1, 1;−q) + E0,0,1;−1,−1,0;2,2 (r6, r6,−1; 1, 1, 1;−q)
−E0,0,1;−1,−1,0;2,2 (r6, r6, r6; 1, 1, 1;−q)

]
. (B.5.2)

The E-functions needed for the evaluation of the first two Laurent-coefficients of the
sunrise are:

E1;0(−1; 1;−q) = E1;0(−1; 1;−q)− log(2) (B.5.3)

E2;0(r3;−1;−q) = E2;0(r3;−1;−q)− 1
2i
(
Li2(r3)− Li2

(
1
r3

))
(B.5.4)

E1;0(r3; 1;−q) = E1;0(r3; 1;−q) + 1
2

(
− log

(
1− 1

r3

)
− log(1− r3)

)
(B.5.5)

E3;1(r3;−1;−q) = E3;1(r3;−1;−q)− 1
2i
(
Li3(r3)− Li3

(
1
r3

))
(B.5.6)

E0,1;−2,0;4(r3, r3;−1,−1;−q) = E0,1;−2,0;4(r3, r3;−1,−1;−q)

+ 1
2

(
− log

(
1− 1

r3

)
− log(1− r3)

)
E2;0(r3;−1;−q)

(B.5.7)
E0,1;−2,0;4(r3, r3;−1, 1;−q) = E0,1;−2,0;4(r3, r3;−1, 1;−q)

+ 1
2

(
− log

(
1− 1

r3

)
− log(1− r3)

)
E2;0(r3;−1;−q)

(B.5.8)
E0,1;−2,0;4(r3,−1;−1, 1;−q) = E0,1;−2,0;4(r3,−1;−1, 1;−q)− log(2)E2;0(r3;−1;−q) .

(B.5.9)
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