
Linear polynomial reduction for Feynman

integrals

MASTERTHESIS

for attainment of the academic degree of

Master of Science

(M. Sc.)

submitted at

Mathematisch-Naturwissenschaftliche Fakultät I

Institut für Physik

Humboldt-Universität zu Berlin

by

Martin Lüders

born on 02.08.1988 in Potsdam

Advisor:

1. Prof. Dr. Dirk Kreimer

2. Dr. Christian Bogner

submitted on: 9th September 2013

2

Contents

1 Introduction 3

2 Fundamentals 5

2.1 Feynman integrals . 5
2.2 Graph polynomials . 7

3 Graph Theory 15

4 Reduction Algorithms 19

4.1 Hyperlogarithms . 19
4.2 The integration procedure . 20
4.3 Simple reduction algorithm . 22
4.4 Fubini reduction algorithm . 25
4.5 Improved Fubini reduction algorithm 26

5 Theoretical analysis 31

6 Computional analysis 37

6.1 Implementation . 37
6.2 Choice of test candidates . 39
6.3 Refining the sample . 40

7 Results 43

7.1 Fubini algorithm . 43
7.1.1 Some statistical results 43
7.1.2 Critical minors . 44
7.1.3 The critcal minor K4 44

7.2 Improved Fubini algorithm . 48
7.2.1 Some statistical results 48
7.2.2 Critical minors . 48

7.3 Comparision between the algorithms 48
7.3.1 Reducibility . 48

3

7.3.2 Size of the compatibility graph 49

8 Introduction to the computer program 51

8.1 Implemented commands . 51
8.1.1 The command poly . 51
8.1.2 The command main 53
8.1.3 The command fubinishow 53
8.1.4 The commands hasminork4, istminimalg, istminimalp . 55

8.2 Hints for testing . 55
8.2.1 The command NonIsomorphicGraphs 55
8.2.2 Multithreaded computing 56

9 Conclusion 57

4

Abstract

This thesis deals with an integration algorithm for Feynman integrals using
hyperlogarithms and it focus on classifying the class of Feynman graphs where
we can use this algorithm. Therefor we prove a graph theoretical property
which can be used to classify this class. We also determine the class explicitly
for a subset of the Feynman graphs.

2

Chapter 1

Introduction

Computations of processes in pertubative quantum field theory involve three
steps. The first one is to determine the corresponding Feynman diagrams,
the second step is the regularisation and renormalisation such that we obtain
convergent integrals and the last step is the integration of the integrals. For
the last step there are many approaches but none is suitable for all cases thus
one always has to decide which approach to use. In 2008 an algorithm for
the integration of Feynman integrals using hyperlogarithms was presented by
Francis Brown. It has the advantage that the calculations can be done by a
computer which enables us to handle more complicated integrals. Like the
other algorithms, it can be only used for a share of the Feynman integrals,
they are called linearly reducible, and we want to know which ones are linearly
reducible. To determine if we can use the algorithm, we have to apply one
of the three reduction algorithms by Francis Brown. They act on the level
of polynomials appearing during the integration, such that the test ist much
faster than simply trying to integrate. The three algorithms differ in the
method of defining an upper bound of the appearing polynomials. This
thesis will show that the set of linearly reducible graphs is minor closed
which enables us to classify the set of linearly reducible graphs by a smaller
set of graphs and we will also calculate these graphs for an example. The
second chapter is about the fundamentals of calculating an Feynman integral
in parametric form and the third one is a short introduction to the part of the
graph theory needed. The next chapter contains the idea of the integration
algorithm and three reduction algorithms to test whether the integration
algorithm is useable in a given case. In the fifth chapter we prove a theorem
which enables us to simplify the classification of the set of Feynman graphs
where the algorithm is suitable. The sixth chapter will deal with the results
of the examination of a class of Feynman graphs using the implemented
reduction algorithms and the last chapter is a short presentation of my own

3

implementation with the aim to enable the reader to run their own tests.

4

Chapter 2

Fundamentals

2.1 Feynman integrals

From the free Lagrangian and the interaction Lagrangian we can derive the
Feynman propagator and the coupling terms. In scalar theories the coupling
terms are scalar factors with a delta function for momentum conservation.
In other theories the coupling terms can involve tensor structures. Using
the Feynman propagator we can derive the Feynman integral for a given
Feynman graph.
For a scalar theory like φ3− or φ4-theory the Feynman integrand in the
momentum space is a product of propagators and with a delta function for
every vertex. The propagators depend on the momentum k and the mass m
of the line and have the form 1

k2−m2 . Thus the integral reads as

∫

d4k1

∫

d4k2 . . .

∫

d4kn
1

k2
1 −m2

1

. . .
1

k2
n −m2

n

∏

v

δ
(

∑

kvi

)

,

with the notation that kvi are the momentum entering vertex v respectively
−kvi if the momentum is leaving the vertex v.
The next step is the integration of some of the ki such that the δ functions
disappear. Without loss of generality we can assume that only k1, . . . kl are
left. The other momenta are replaced by a linear combination qi of these l
momenta, thus the new Feynman integral reads as

∫

d4k1

∫

d4k2 . . .

∫

d4kl
1

k2
1 −m2

1

. . .
1

k2
l −m2

l

1

q2l+1 −m2
l+1

1

q2n −m2
n

.

This integration is over the momentum space but it can be useful to tranfer
the calculation into Feynman parameters. This can be done by using the

5

Feynman trick based on the identity:

1

A
=

∫ ∞

0

dx exp(−Ax).

It holds if the integral is well defined and the real part of A is positive.
It can be extended to obtain the generalized Feynman identity which involves
products 1

∏n
j=1

A
νj
j

. Usally we only need the simple case νj = 1 for all j:

1
∏n

j=1 Aj

= (n− 1)!
n
∏

j=1

(∫ ∞

0

dαj

) δ
(

1−∑n
j=1 αj

)

(

∑n
j=1 αjAj

)n . (2.1)

This identity is useful because we transfer the product of Feynman propa-
gators into a sum where the momentum integration can be done easily. The
integration domain with respect to the Feynman parameters αi is compact
because the δ function in 2.1 enables us to exchange the upper bound to 1.
Using the generalized Feynman identity and integrating out the momenta
and perform a few algebraic transformations (see [9, 8]) leads to the well
known parametric Feynman integral:

IG =
Γ(ν − LD/2)
∏n

j=1 Γ(νj)

∫

αj≥0

δ

(

1−
n
∑

i=1

αi

)(

n
∏

j=1

dαjα
νj−1
j

)

ϕν−(L+1)D/2

Ψν−LD/2
.

(2.2)

Theories with tensor structure like QED also lead to integrals of the same
form but with additional prefactors which do not influence the integration
process. D is the dimension in the theory used. L is the loop number of
the graph and νi is the exponent of the Feynman propagator of edge ei. As
stated before it is usally equal to one because for a physical graph we have
νi = 1 for all i, but there are identities between Feynman integrals which
involve higher/lower exponents. Hence it will be useful to look at the more
general case. The αi are the Feynman parameters which will be our new
integration parameters. The functions ϕ and Ψ are the first and second
Symanzik polynomial and depend on the Feynman parameters and Ψ also
depends on particle masses and kinematic invariants. The next few pages
will deal with the calculations of them.
The convergence of integral 2.2 depends on the graph and the dimension of
the theory used.
There are many approaches to obtain a convergent integral, for example
dimensional regularization (see [2]) where we assume that the dimension is

6

decreased by ǫ such we obtain a convergent integral for ǫ > 0 and look at the
laurent expansion with respect to ǫ. Another approach is descriped by Dirk
Kreimer and Francis Brown in [3] using the Hopf-algebra-structure of QFT.
Another problem are the infrared divergences which should cancel out but
the divergences may lead to problems during the calculation. The resulting
integral will depend on the approach choosen but in general we obtain a new
integrand which depends on powers of the graph polynomials and on the
logarithm of graph polynomials.

2.2 Graph polynomials

First of all we have to define the terms spanning tree and spanning 2-tree:

Definition 1: For a given graph G we define the set of spanning trees T1

to be the set consisting of all subgraphs of G which are trees and contain all
vertices of G. Hence if G is not connected, there is no spanning tree.

1 2

3

Figure 2.1: Graph G

Example. In this example we choose G to be the graph in figure 2.1. From
a combinatorical point of view it is clear that we need to choose two edges
to get a spanning tree, because from Euler’s Formula we know that the loop
number is L = E−V +1 and a tree has L = 0. This leads to

(

4
2

)

= 6 possible
ways to select two out of four edges. But choosing the two parallel arcs will
not lead to a spanning tree, because it does not contain vertex 3 and it is not
even a tree because it contains a loop. Thus we obtain five spanning trees
shown in figure 2.2 as thick lines.

Remark. The number of edges of a graph G we have to delete to obtain a
spanning tree is always equal to the loop number of the graph G.

7

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

Figure 2.2: Spanning trees of G

Definition 2: For a given graph G we define the set of spanning 2-trees
T2 to be the set consisting of all unordered pairs (T1, T2) of subgraphs of G
which fulfill the conditions: T1 and T2 are trees, T1 ∩ T2 = ∅ and T1 ∪ T2

contains all vertices of G.

Example. Using the graph G as in the example above, our 2-trees consist
of a tree T1 consisting of a single edge and another tree T2 only consisting
of a single vertex. All four edges of G are possible as T1 thus we obtain four
2-trees for our graph G

Remark. As in the case of spanning trees, the 2-trees always consist of a
fixed number of edges but we have to delete one more edge than in the case
of spanning trees.

Using these two definitions we define the Symanzik polynomials:

Definition 3: Let G be a graph with the spanning trees T1 and the spanning
2-trees T2 and PT be the set of external momenta attached to T . Then

ϕ =
∑

T∈T1

∏

ei /∈T
αi,

Ψ =
∑

(T1,T2)∈T2





∏

ei /∈T1∪T2

αi









∑

pj∈PT1

∑

pk∈PT2

pj · pk
µ2



+ ϕ

n
∑

i=1

αi
m2

i

µ2
.

8

Hence if G has loop number L then ϕ is homogeneous of degree L and ϕ
homogeneous of degree L+ 1 in the α-variables.

Remark. If the graph G is not connected, then there are no spanning trees
and the first Symanzik polynomial ϕ is zero.

1 2

3

e

e

e e

1

2

3 4

Figure 2.3: Graph G

Example. Looking again at our graph G in figure 2.1 and choosing an or-
dering of the edges, for example the one in figure 2.3, we obtain:

ϕ = α1α2 + α1α4 + α2α4 + α2α3 + α1α3.

Assume all internal edges have mass zero, then the second Symanzik polyno-
mial is:

Ψ = α2α3α4(p1+p2)p3+α1α3α4(p1+p2)p3+α1α2α4(p1+p3)p2+α1α2α3(p2+p3)p1.

Because of momentum conservation we get p1 + p2 + p3 = 0, hence we can
rewrite Ψ to be:

Ψ = α2α3α4(−p23) + α1α3α4(−p23) + α1α2α4(−p22) + α1α2α3(−p21).

There are many other ways to calculate the Symanzik polynomials, most
useful for implementation are matrix based approaches. The one used in my
program is based on [4].
The calculation of the first Symanzik polynomial of a graph G using the
approch in [4] is divided into four steps:

9

• Choose an arbitary but fixed ordering of the n vertices and the k edges
in G and label the edges and vertices with the corresponding numbers.

• Create a quadratic n× n-matrix M . For 1 ≤ i ≤ n set Mii =
∑

j∈Ni
xj

where Ni is the set of indizes of edges in G which contain the vertex
i. For i 6= j set Mij = −∑l∈Ni∩Nj

xl. Note that Ni ∩ Nj is the set of
edges between vertex i and j, hence M is a symmetric matrix.

• Delete row n and column n of M to obtain the new Matrix M̃ and
calculate the determinant f :=

∣

∣

∣
M̃
∣

∣

∣
.

• Substitute xi =
1
αi

in f to obtain f̃ and define

ϕ =

(

k
∏

i=1

αi

)

f̃ .

Remark. The determinant of M̃ does not change if we delete row i and
column i for 1 ≤ i ≤ n instead of deleting row n and column n.

A similar calculation can be used for the second Symanzik polynomial:

• Choose an arbitary but fixed ordering of the n vertices and the k edges
in G and label the edges and vertices with the corresponding numbers.

• create a quadratic n×n-matrix M . For 1 ≤ i ≤ n set Mii =
∑

j∈Ni
xj+

∑

pj∈Pi
pj neglecting the vectorical character of pi for a moment. Here

Ni is the set of indizes of edges in G which contain the vertex i and
Pi is the set of external momenta at vertex i. For i 6= j set Mij =
−∑l∈Ni∩Nj

xl. Note that Ni ∩ Nj is the set of edges between vertex i
and j, hence M is a symmetric matrix.

• Calculate the determinant f := |M | and define pipj to be the dot
product of pi and pj, any other products of momenta do not matter
because they will be removed in the next step.

• Define f ′ to be the polynomial f after removing all monomials which
do not have a total degree of exactly two in the external momenta pi.

• Substitute xi =
1
αi

in f ′ to obtain f̃ and define

Ψ0 =

(

k
∏

i=1

αi

)

f̃ .

10

• Let mi be the internal mass of edge ei. Define:

Ψ = Ψ0 + ϕ

k
∑

i=1

αim
2
i .

Remark. Usally it is useful to rewrite Ψ in Mandelstam variables to get
rid of the dot product. If there are more than four external momenta you
have to use a more general approach (see [7]) to define the maximal set of
independend scalar values of the dot products.

Example. Let us again look at the graph G of figure 2.3 with the same
ordering of edges. It has 3 vertices and 4 edges.

• We already chose the ordering of figure 2.3.

• The matrix M reads:

M =





x1 + x2 + x3 −x1 − x2 −x3

−x1 − x2 x1 + x2 + x4 −x4

−x3 −x4 x3 + x4



 .

• The calculation of the minor M̃ and the function f yields:

M̃ =

[

x1 + x2 + x3 −x1 − x2

−x1 − x2 x1 + x2 + x4

]

,

f = (x1 + x2 + x3)(x1 + x2 + x4)− (x1 + x2)
2

= (x1 + x2)(x3 + x4) + x3x4.

• Substituting the xi gives:

ϕ = α1α2α3α4

((

1

α1

+
1

α2

)(

1

α3

+
1

α4

)

+
1

α3α3

)

ϕ = (α2 + α1)(α4 + α3) + α1α2

= α1α2 + α1α3 + α1α4 + α2α3 + α2α4.

This is the same result as in the calculation using spanning trees. The way
to obtain Ψ is similar:

• We choose again the ordering of figure 2.3.

11

• The resulting matrix M is:

M =





x1 + x2 + x3 + p1 −x1 − x2 −x3

−x1 − x2 x1 + x2 + x4 + p2 −x4

−x3 −x4 x3 + x4 + p3



 .

• We do not need the summands linear in a single pi or linear in p1p2p3,
hence we go straight to f ′:

f ′ = p1p2(x3 + x4) + p1p3(x1 + x2 + x4) + p2p3(x1 + x2 + x3).

• Substituting the xi lead to:

Ψ0 = α1α2α3α4

(

p1p2
α3

+
p1p2
α4

+
p1p3
α1

+
p1p3
α2

+
p1p3
α4

+
p2p3
α1

+
p2p3
α2

+
p2p3
α3

)

= α1α2α3α4

(

p1p3 + p2p3
α1

+
p1p3 + p2p3

α2

+
p1p2 + p2p3

α3

+
p1p2 + p1p3

α4

)

= α1α2α3α4

(−p23
α1

+
−p23
α2

+
−p22
α3

+
−p21
α4

)

= α2α3α4(−p23) + α1α3α4(−p23) + α1α2α4(−p23) + α1α2α3(−p23).

• We use again mi = 0 for the internal edges such that

Ψ = Ψ0.

There is also one identity between Symanzik polynomials of a graph G and
the Symanzik polynomials of the graphs G//ek and G\ek obtained by deleting
or contracting one edge. For explizit definitions of G//e and G\e see the
next chapter.

Lemma 4. For massless internal edges the following well known identities
holds:

ϕG = ϕG\eαk + ϕG//e

ΨG = ΨG\ekαk +ΨG//ek .

Proof: Consider the spanning trees of G. Each tree T either contains the
edge ek or not. All spanning trees T not containing ek are also spanning trees
of G\ek and all spanning trees of G\ek are spanning trees of G and are not
containing ek. This introduces a bijection between the spanning trees of G
not containing ek and the spanning trees of G\ek. The similar holds for the

12

spanning trees of G//ek and the spanning trees of G containing ek. G//ek is
obtained by identifying the two vertices of the edge ek. If we have a spanning
tree T of G which contains ek, we obtain a spanning tree of G//ek by the
contraction of the edge ek in T . For the other direction we have to add the
edge ek to the spanning trees of G//ek to connect the two vertices of ek which
are identified in G//ek. Hence we get a bijection between the spanning trees
on G//ek and the spanning trees on G which contain ek. Using the defintion
of the first Symanzik polnomial we obtain:

ϕG =
∑

T∈T1

∏

ei /∈T
αi

ϕG =
∑

T∈T1,ek∈T

∏

ei /∈T
αi +

∑

T∈T1,ek /∈T

∏

ei /∈T
αi

ϕG =ϕG//ek + αk

∑

T∈T1,ek /∈T

∏

ei /∈T,ei 6=ek

αi

ϕG =ϕG//ek + αkϕG\ek .

The same can be done for the second Symanzik polynomials because we get
the same correspondence between 2-trees of G and the 2-trees of G//e and
G\e.

Remark. Note that we need to be able to define G//ek in a proper way. If
ek is an edge which connects one vertex with itself a contraction in the sense
introduced in the next chapter is not possible.
Deletion of an edge such that the graph G is no longer connected leads to a
trivial first Symanzik polynomial, but the formula is still valid.

13

14

Chapter 3

Graph Theory

Feynman graphs usally consist of different kinds of edges which correspond
to different particles such as photons, electrons or protons. Hence different
edges lead to different Feynman integrals but after dealing with the tensor
structure and the regularization only integrands which depend on the two
Symanzik polynomials are left. Hence the algorithm is independent of the
kind of edges thus we can simply choose a single edge kind, making com-
plete tests of all n-loop graphs much easier because it decreases the amount
of possible graphs. But this only enable us to decide if a graph is linearly
reducible and not. For the integration process the result will depend on the
edge kind used because the integrands will get different prefactors.
However, standard graphs from graph theory are not enough for our purpose
because we have external momenta which are an additional information us-
ally not considered in graph theory. Thus we are using a standard graph
together with a list of vertices where external momenta enter the graph and
we will adopt the formalism of minors of graphs to our extended class of
graphs.

Definition 5: A deletion of an edge maps a graph onto another graph with
the same vertex count and with edge count decreased by one and simply
removes the specified edge.

Remark. The list of vertices with external momenta does not change. If the
deleted edge was not a bridge, the loop number decreases by 1. The new graph
will be denoted by G\ei where G is the original graph and ei the edge which
is removed. Therefore ei must be contained in G. The result of removing
several different edges does not depend on the order such that we do not have
to specify this order, thus (G\ei) \ej can be written as G\{ei, ej}.

15

(a) Graph before deleting thick
edges

(b) The same graph after deleting
thick edges

Figure 3.1: Example for deleting edges

Definition 6: A contraction of an edge ei between vertex A and B maps a
graph onto another graph with vertex count and edge count both decreased
by one. It identifies the vertices A and B and removes the edge ei.

Remark. Hence the loop number does not change. The new graph will be
denoted by G//ei where G is the original graph and ei the edge which is con-
tracted. Therefore ei must be contained in G and furthermore we only allow
edges where at most one of the corressponding vertices have an external mo-
mentum, thus we do not change the number vertices where external momenta
enter. The result of removing several different edges does not depend on the
order such that we do not have to specify this order, thus (G//ei) //ej can
be written as G//{ei, ej}. For an example see figure 3.2. Contraction of an
edge connecting a vertex with itself would be the same as the deletion, because
it decreases the loop number. We will always treat it as a deletion and define
the contraction to be not valid.

Remark. Contracting and deleteting edges commute, such that we do not
have to specify which one we do first.

Definition 7: A graph G′ is called a minor of a graph G if there are two
distinct subsets A and B of edges of G such that G′ = G\A//B.

16

(a) Graph before contracting double
lined edges

(b) The same graph after contract-
ing edges

Figure 3.2: Example for contracting edges

Figure 3.3: A graph and one of his minors

Example. The right graph in figure 3.3 is a minor of the left one because it
is obtained by contracting the double lined edge and deleting the thick edge.

Remark. Being a minor introduces a partial order on the set of graphs.
Hence in a few cases we can say that graph G1 is smaller than G2 because
G1 is contained in G2 as a minor. And we can conclude that if G1 is smaller
than G2 and G2 is smaller than G3 then also G1 is smaller than G3 holds.
Later we will see that if we can do the integration for a graph G, we can
transfer the set of appearing polynomials to all graphs smaller than G.

17

Definition 8: A set A of graphs is called minor closed if for every graph
G ∈ A every minor G′ of G is an element of the set A.

Definition 9: Let A be a minor closed set. A graph G is called a critical
minor if G /∈ A but every minor G′ 6= G of G is an element of A.

Example. The set of planar graphs is minor closed because deleting edges of
a planar graph always results in a planar graph. The same holds for contract-
ing edges of a planar graph. The famous graph theoretical Robertson-Seymour
theorem [12] tells us, that every minor closed set has a finite number of criti-
cal minors. In case of planar graphs it is known as Wagner’s conjecture [13].
The critical minors are only the K5 and the K3,3 shown in figure 3.4. Hence
every non-planar graph contains one of them as a minor. The Robertson-
Seymour theorem holds for standard graphs and it is uncertain if it also holds
for our extended graphs with external momenta.

Figure 3.4: Critical minors of the planar graphs

18

Chapter 4

Reduction Algorithms

In this chapter we will introduce parts of the integration algorithm by Francis
Brown, published in his article [5]. We only give an incomplete review of the
integration procedure because we want to focus on the criteria which tells us if
the integration will succeed. But the knowledge of the integration algorithm
is useful to understand the reduction algorithm of testing if an expression is
integrable.

4.1 Hyperlogarithms

The integration is based on the use of hyperlogarithms [14], but I will only
give the definition from the paper [5] without describing the useful hints how
to calculate with them. For a more detailed view about these functions I
want to refer to [10].

Definition 10: Let Σ = {σ0, σ1, . . . , σN} be a set of distinct points of C

and let us assume σ0 = 0. Create an alphabet A = {a0, . . . aN} where each
symbol ai corresponds to the point σi. Denote Ax the set of all words in A
including the empty word e. Let Q 〈A〉 be the vector space generated by all
words w in Ax. To each word w we assign a hyperlogarithm function:

Lw(z) : C\Σ → C,

which is multivalued and let log(z) denote the principal branch of the loga-
rithm.

The hyperlogarithm is uniquely determined by the following three properties:

• Le(z) = 1 and Lan
0
(z) = 1

n!
logn(z) for all n ≥ 1.

19

• For all words w ∈ Ax and 0 ≤ i ≤ N :

∂

∂z
Laiw(z) =

1

z − σi

Lw(z) for z ∈ C\Σ.

• For all words w ∈ Ax not of the form w = an0 :

lim
z→0

Lw(z) = 0.

Remark. The three properties define Lw(z) inductively over the weight of
Lw(z) which is the number of letters in w. Laiw(z) is uniquely defined by
Lw(z) and the known constant of integration from the last property.

4.2 The integration procedure

In our case the roots σi are rational functions of the Feynman parameters with
arbitary prefactors in the Mandelstam variables and internal and external
masses.
For the first cases we assume that the roots for the letters ai do not depend
on the next integration variable.
From the definition of the hyperlogarithm function we obtain

∫

dz

z − σi

Lw(z) = Laiw.

Using partial integration we can also integrate terms like:

1

(z − σi)n
Lw(z).

Each step of the partial integration reduces the weight of the hyperlogarithm
function by one, thus the integration will succeed in at most k steps where
k is the weight of Lw(z).
We can also handle terms like 1

f(z)
Lw(z) where f(z) can be decomposed into

linear factors. For two factors it can be done as follows:
∫

dz

(z − σi)(z − σj)
Lw(z) =

∫ (

1

z − σi

− 1

z − σj

)

1

σi − σj

Lw(z)dz

=
1

σi − σj

(

Laiw − Lajw

)

.

The partial fraction decomposition leads to the new fraction 1
σi−σj

. In the

case of more than two factors, we know that we still get a sum of fractions

20

with denominators linear in z or a power of a linear polynomial. But how
does the additional fractions in the partial decomposition look? The answer
is that we only get fractions of the form 1

σi−σj
where σi and σj are roots of

f . This can be proven via induction over the number of roots. Let {σk}nk=1

be the roots of f with σ1 6= σn (otherwise we are in the previous case) and
the polynomial has a leading coefficent of 1 then:

1

f
=

1
∏n

k=1(z − σk)

=
1

σn − σ1

(

1
∏n

k=2(z − σk)
− 1
∏n−1

k=1(z − σk)

)

.

Hence after this step we obtain two new denominators with degree decreased
by one and new prefactors of the form 1

σi−σj
.

We omitted the part which deals with the problem of regularisation of the
hyperlogs. It is a technical feature which is not needed for the understanding
of the further thesis.
The hard part is that we obtain a hyperlogarithm where the σk may depend
on the next integration variable. To handle this problem we have to replace
the σk such that they no longer depend on the next integration parameter.
If the σk depend in a well behaved manner on the next integration variable
the replacement is possible. The condition is that the numerator and the de-
nominator of σk factors into linear terms in the next integration variable and
also for σk−σi and for differences of roots where one appears as an argument
of the hyperlogarithm and the other is contained in the rational prefactor of
the hyperlogarithm. Then we can transform the implicit dependence into an
explicit dependence.

This sketch gives us an idea that we have to focus on the σi in each step to
decide if the integration can be done. It does not matter whether we look
at the roots σi of a polynomial or the corresponding polynomial. At the
beginning we have a given set of polynomials appearing in the integrand,
which would be ϕ and Ψ in case of Feynman integrals. From this we want
to calculate the appearing polynomials in the next steps. In each step we
know that if all polynomials factor into linear terms in the next integration
variable we can do the next integration. Let Sk be the set of all factors of the
polynomials after integrating over α1 . . . αk. Our condition tells us that all
elements have to be linear in the next integration variable αk+1, but we need
to know how the set will change in this step. Lets write each polyonmial
fi ∈ Sk as fi = giαk+1 + hi. It is obvious that we obtain the linear part gi of

21

each polynomial and the absolute part hi because they appear as prefactors
in the next step. Furthermore we investigated the fact that we get additional
prefactors from polyonmial decomposition. The roots σi correspond to fi via
σi =

hi

gi
hence

σi − σj =
higj − hjgi

gigj
.

Hence we also get polynomials of the form higj−hjgi in our next step. Keep-
ing this in mind we will recall three algorithms of polyonmial calculations to
decide if the integration algorithm will succeed or not.

4.3 Simple reduction algorithm

The Simple reduction algorithm by Francis Brown was first presented in [5]
and simply does the polynomial analysis for a given ordering of integration
variables.
Let us assume a set A = {f1, . . . , fN} where all polynomials fi are linear in
αr. Then they can be written as fi = giαr + hi. Note that gi and hi are
independend of αr. The algorithm constists of two steps:

• We define an intermediate set Ã(r) via:

Ã(r) = {(gi)1≤i≤N , (hi)1≤i≤N , (gihj − gjhi)1≤i<j≤N}.

• The new set A(r) is the set of all irreducible factors of the polynomials

in Ã(r).

The new set A(r) is independent of αr and describes an upper bound of the
appearing polynomials after integrating αr. This has to be done for each step
of the integration. Assume we have choosen an order of integration r1, . . . rn
we use the step above to calculate S(r1) from the starting set S. This set we
use to calculate S(r1)(r2) =: S(r1,r2) and so on leading to a sequence of sets
S, S(r1), S(r1,r2), . . . S(r1,...rn). To obtain these sets we have to choose an order
of integration such that every polynomial in S(r1,...ri) is linear in αri+1

for all
i from 0 to n − 1. If such an ordering exists, we call the set S to be simply
reducible.

Example. We will demonstrate the Simple reduction algorithm on the graph
shown in figure 4.1. Let us assume that edge 1 und 2 are massless and edge
3 has mass M . Let us further assume that p23 = 0 and p21 = m2

1 6= 0,
p22 = m2

2 6= 0. Hence we get:

ϕ = α1 + α2 + α3 (4.1)

Ψ = −m2
2α1α2 −m2

1α1α3 −M2α3 (α1 + α2 + α3) . (4.2)

22

Figure 4.1: Example for the reduction algorithms

Our starting set is S = {ϕ,Ψ}. Ψ is not linear in α3 hence we can not start
the reduction with α3.
Reduction for calculation of S(1):

• The first set we have to calculate is S̃(1):

S̃(1) = {1,−m2
2α2 −m2

1α3 −M2α3, α2 + α3,−M2α3 (α2 + α3) ,

−M2α3 (α2 + α3)−
(

−m2
2α2 −m2

1α3 −M2α3

)

(α2 + α3)}.

• We can only factor the three polynomials

−m2
2α2 −m2

1α3 −M2α3 = (−1)
(

m2
2α2 +m2

1α3 +M2α3

)

−M2α3 (α2 + α3) = (−1)(M)2(α3)(α2 + α3)

and

−M2α3 (α2 + α3) +
(

m2
2α2 +m2

1α3 +M2α3

)

(α2 + α3)

=
(

m2
2α2 +m2

1α3

)

(α2 + α3) .

Hence we obtain:

S(1) = {1,−1, α2 + α3,M, α3,m
2
1α2 +m2

2α3 +M2α3,m
2
2α2 +m2

1α3}.

The same can be done to obtain S(2).

• First step is the calculation of S̃(2):

S̃(2) = {1,−m2
2α1 −M2α3, α1 + α3,−m2

1α1α3 −M2α3 (α1 + α3) ,

−m2
1α1α3 −M2α3 (α1 + α3)−

(

−m2
2α1 −M2α3

)

(α1 + α3)}.

23

• We can only factor the two polynomials

−m2
2α1 −M2α3 = (−1)

(

m2
2α1 +M2α3

)

and

−m2
1α1α3 −M2α3 (α1 + α3) +

(

m2
2α1 +M2α3

)

(α1 + α3) =

α1

(

−m2
1α3 +m2

2α1 +m2
2α3

)

.

Hence we obtain:

S(2) = {1,−1, α1 + α3, α1,m
2
2α1 +M2α3,−m2

1α3 +m2
2α1 +m2

2α3}.

As already stated, S(3) cannot be calculated, but S(1) and S(2) are linear in
every Feynman paramenter thus we can derive S(1,2), S(1,3), S(2,1), S(2,3). The
trivial terms like 1,−1,m1,m2,M, α1, α3 do not create new critical polyno-
mials because their linear and absolut part are 0, 1 or the polynomial itself
and one part is equal to zero thus gihj − gjhi degenerates to gihj which will
factor into the factors of gi and hj. Using this observation we only have to
consider the nontrivial cases of gihj − gjhi.

• For this reduction step we have to calculate S̃(1,2):

S̃(1,2) = {1,−1, 0,M, α3,m
2
1α3,m

2
2,m

2
1α3+M2α3,

(

α3m
2
2

)

−
(

m2
1α3 +M2α3

)

}

• We get 4 polynomials which can be factorized:

m2
2 = (m2)

2

m2
1α3 = (m1)

2α3

m2
1α3 +M2α3 = (α3)

(

m2
1 +M2

)

(

α3m
2
2

)

−
(

m2
1α3 +M2α3

)

= (α3)
(

m2
2 −m2

1 +M2
)

.

Hence we obtain:

S(1,2) = {1,−1, 0,M, α3,m1,m2,m
2
1 +M2,m2

2 −m2
1 +M2}.

Hence we can now calculate S(1,2,3) and our graph is simply reducible with the
ordering 1, 2, 3. But we can also calculate S(2,1).

• Calculation of S̃(2,1) yields:

S̃(2,1) = {1,−1, 0, α3,m
2
2,M

2α3,−m2
1α3 +m2

2α3, α3m
2
2 −M2α3,

α3m
2
2 −

(

−m2
1α3 +m2

2α3

)

,M2α3m
2
2 −m2

2

(

−m2
1α3 +m2

2α3

)

}

24

• We get a few polynomials which can be factorized:

m2
2 = (m2)

2

M2α3 = (M)2α3

−m2
1α3 +m2

2α3 = α3 (m1 +m2) (m2 −m1)

α3m
2
2 −M2α3 = α3 (m2 +M) (m2 −M)

α3m
2
2 −

(

−m2
1α3 +m2

2α3

)

= α3(m1)
2

M2α3m
2
2 −m2

2

(

−m2
1α3 +m2

2α3

)

= α3(m2)
2
(

M2 +m2
1 −m2

2

)

.

Hence we obtain:

S(2,1) = {1,−1, 0, α3,m2,M,m2
1+m2

2,m2−M,m2+M,m1,M
2+m2

1−m2
2}.

Thus the graph is also simply reducible with the ordering 2, 1, 3. The orderings
1, 3, 2 and 2, 3, 1 succeed too.

4.4 Fubini reduction algorithm

Francis Brown also described an enhanced version of the previous algorithm
which leads to a better bound of the singularities. It takes the Fubini theorem
into account, telling us that the result of an integration does not depend on
the order of integration. Hence the singularities after integrating over αr1

and αr2 are contained in S(r1,r2) but also in S(r2,r1). Thus they must be
contained in S(r1,r2) ∩ S(r2,r1). This new set is called S[r1,r2] and can be used
to calculate S[r1,r2](r3) with the same two steps as in the simple reduction
algorithm. Fubini’s theorem holds for more variables, hence we define:

S[r1,...,rk] =
k
⋂

i=1

S[r1,...,r̂i,...,rk](ri).

If some of the S[r1,...,r̂i,...,rk](ri) cannot be calculated because S[r1,...,r̂i,...,rk] is not
linear in αri , then this set is ommited from the intersection. If this holds for
all sets, then S[r1,...,rk] cannot be calculated and the algorithm fails with the
choosen ordering.
Similiar to the simple reduction algorithm we call S to be linearly reducible
if there exists an ordering r1, . . . rn such that S[r1,...ri] is linear in αri+1

for all
i from 0 to n− 1.

25

Example. Let us again look at our graph 4.1 and the two corresponding
Symanzik polynomials in 4.1 and 4.2. The Fubini reduction algorithm is the
same for the calculation of S(1) and S(2), hence the results will be the same
too. But in the next step we can see the advantage of the Fubini reduction
algorithm, because if we want to obtain S[1,2] we have to calculate S(1,2) and
S(2,1) and take the intersection. From the previous section we know:

S(1,2) = {1,−1, 0,M, α3,m1,m2,m
2
1 +M2,m2

2 −m2
1 +M2}

S(2,1) = {1,−1, 0, α3,m2,M,m2
1 +m2

2,m2 −M,m2 +M,m1,M
2 +m2

1 −m2
2}.

Thus we obtain:
S[1,2] = {1,−1, 0,m1,m2,M, α3}.

The reduction succeeds too but we have less critical polynomials. It can also
happen for other graphs, that they are not simply reducible but from taking the
Fubini theorem into account we can discard a few polynomials which might
enable us to continue the reduction thus they can be linearly reducible.

4.5 Improved Fubini reduction algorithm

Further analysis by Francis Brown showed that not all polynomials from the
previous algorithm will appear, he detected that a few elements of
(gihj − gjhi)1≤i<j≤N will cancel out each other. Hence we only have to con-
sider a smaller subset of pairs (i, j). This improvement is descriped in [6]
and tells us, that we only have to consider compatible pairs of polynomials.
Which polynomials are compatible will be defined in the reduction algorithm.
We change the Fubini algorithm slightly by assigning to every set of polyno-
mials a graph with a vertex per polynomial and an edge between two vertices
if the polynomials are compatible.
We start again with the same set S and the compatibility graph is defined to
be the complete graph. As before we calculate S[r1,...,rk](rk+1) out of S[r1,...,rk]

if all polynomials are linear in αrk+1
. Every calculation consists of 4 steps.

Let us say the starting set of this calculation is A which contains N poly-
nomials and therefore a compatiblity graph with N vertices defining which
polynomials are compatible.

• Create a new set Ã(r) via:

Ã(r) = {(gi)1≤i≤N , (hi)1≤i≤N , (gihj − gjhi)(i,j)compatible
}.

A pair (i, j) is compatible if the polynomials fi and fj are compatible by
definition, that is if the compatibility graph contains an edge between
the vertices corresponding to fi and fj.

26

• Assign to every polynomial in Ã a pair of indizes (i, j) which charac-
terizes how it was created. These are their parents. If it was created
as the linear part gi of fi the indizes are (i,∞), for the absolute part
hi of fi the indizes are (i, 0) and for gihj − gjhi the pair is (i, j). If a
polynomial in Ã is created multiple times, assign all pairs of indizes to
it. A last special case is if fi was independet of αr, then hi = fi and
therefore we assign (i, 0) but additionally we assign the pair (i,∞).

• Define A(r) to be the set of all irreducible factors of the polynomials in

Ã(r), keeping the pair of indizes of the polynomials from Ã(r). If we get
the same factor from two different polynomials keep both pairs.

• Define a new compatibility graph by defining a, b ∈ A(r) to be compat-
ible if their pairs of indizies contain at least one common index

As in the Fubini algorithm we take the intersection of different ways. On the
level of the polynomials it is the same:

S[r1,...,rk] =
k
⋂

i=1

S[r1,...,r̂i,...,rk](ri).

On the level of compatibility graphs we define two polynomials in S[r1,...,rk]

to be compatible if they are compatible in the sets S[r1,...,r̂i,...,rk](ri) for all
1 ≤ i ≤ k. We call a starting set S weakly linearly reducible if we find an
ordering of edges such that S[r1,...,rk] is linear in αrk+1

for all 0 ≤ k ≤ n− 1.

Remark. This algorithm enables us to get an even better bound for the crit-
ical polynomials. In our example from the graph in 4.1 nothing will change
because the first step will be done with the complete graph. Hence the first
reduction step of the improved Fubini algorithm is the same as in the Fubini
algorithm. The second step could be already different but in our case this does
not happen.

Example. To obtain a difference between the improved Fubini algorithm and
the Fubini algorithm, we have to change our graph. An easy example is the
box with 4 external momenta which fulfills the on-shell-condition and one
massive internal line shown in figure 4.2.
The two Symanzik polynomials are:

ϕ = α1 + α2 + α3 + α4

Ψ = ϕM2α1 + sα1α4 + tα1α4 − sα2α3.

27

1

2 3

4

Figure 4.2: Example for the improved Fubini reduction algorithm

We want to calculate S[1,2]. The first observation is that Ψ is not linear in
α1. Hence we have to start with the calculation of S(2). Thus we obtain the
set of polynomials:

S̃(2) = {1, α1 + α3 + α4,M
2α1 (α1 + α3 + α4) + sα1α4 + tα1α4,M

2α1 − sα3,

(α1 + α3 + α4)
(

M2α1 − sα3

)

−
(

M2α1 (α1 + α3 + α4) + sα1α4 + tα1α4

)

}.

Note that compatibilities between polynomials independent of all αi and any
other polynomial does not matter, because one obtains fi = 0 for one of the
polynomials hence the term fihj − fjhi becomes fjhi which factors into fj
and hi and these factors are always contained in the new set. We also lose
no compatibilities in the next step, because fi = 0 always leads to the linear
part of the other polynomial. Hence if two polnomials are calculated from the
i-th polynomial, both are the linear part of a polynomial and therefore already
compatible.
Let ϕ be the first polynomial and Ψ the second polynomial, then the parents
of the critical polynomials are:

α1 + α3 + α4 (0, 1)

M2α1 (α1 + α3 + α4) + sα1α4 + tα1α4 (0, 2)

M2α1 − sα3 (∞, 2)

(α1 + α3 + α4) (−sα3)− (sα1α4 + tα1α4) (1, 2).

We can only factor the second polynomial and obtain α1 and
M2 (α1 + α3 + α4) + sα4 + tα4 which still have the same parents (0, 2). Now
we have to define the new compatibilities between the five new polynomials.
Because we only have 4 possible parents (0,∞, 1, 2) the only ways that two

28

polynomials have no common parent is, that one is from (0, 1) and the other
from (∞, 2) or one from (0, 2) and the other from (∞, 1). The third case
(0,∞) and (1, 2) is not possible because (0,∞) cannot appear. In our case
we conclude that all pairs of polynomials except for (α1+α3+α4,M

2α1−sα3)
are compatible. Using the Fubini reduction we would have gotten the same
set S(2) but in the next step we would get one more polynomial in the Fubini
algorithm from the pair (α1 + α3 + α4,M

2α1 − sα3).
The next step is to calculate S(2,1). First we have to prove that all polynomials
are linear in α1, which is true.

S̃(2,1) = {1, 0, α3 + α4,M
2,M2 (α3 + α4) + sα4 + tα4,−sα3, (−sα3)(α3 + α4),

− sα3 − sα4 − tα4, (α3 + α4)(M
2)− (M2 (α3 + α4) + sα4 + tα4),

M2(M2 (α3 + α4) + sα4 + tα4) + (sα3)(M
2),

(α3 + α4)(−sα3 − sα4 − tα4)− (−sα3)(α3 + α4),

M2((−sα3)(α3 + α4))− (M2 (α3 + α4) + sα4 + tα4)(−sα3),

M2((−sα3)(α3 + α4))− (−sα3)(−sα3 − sα4 − tα4)}.

Factorisation leads to

S(2,1) = {1, 0, α3 + α4,M
2,M2 (α3 + α4) + sα4 + tα4, α3, s,−1,

− sα3 − sα4 − tα4, (s+ t), α4, (M
2 (α3 + α4) + sα4 + tα4) + (sα3),

M2((α3 + α4))− (−sα3 − sα4 − tα4)}
= {1, 0,−1,M2, s+ t, α3, α4, α3 + α4,M

2 (α3 + α4) + sα4 + tα4,

− sα3 − sα4 − tα4,M
2 (α3 + α4) + sα4 + tα4 + sα3}.

The polynomials appeared several times from different parents such that it
is very hard to get the compatibilities for the next step, but we do not need
them, because we can already see, that the improved Fubini algorithm is
better than the Fubini algorithm, because the Fubini algorithm also contains
the factors of (α3 + α4)M

2 + sα3 which is not contained in S(2,1). S(1,2) can-
not be calculated thus we obtain S[1,2] = S(2,1). Further calculation of these
polynomials show that the graph is weakly linearly reducible but it is also
linearly reducible even if intermediate steps contain more critical polynomi-
als. But there are also cases with G weakly linearly reducible but not linearly
reducible. But one cannot deal with them without a computer.

Remark. It is obvious that every simply reducible set S is linearly reducible
and every linearly reducible set is weakly linearly reducible.

29

30

Chapter 5

Theoretical analysis

The previous chapter showed us a tool for deciding if we can integrate the
Feynman integral with the method of [5]. But it has to be done for every
graph. In this section we want to make an investigation how we can transfer
our knowlegde about a graph to other graphs. This will enable us in many
cases to decide if a graph is linearly reducible without doing the reduction
process. Therefore we will prove the following theorem 11.

Theorem 11. The set of linearly reducible graphs with a fixed number of
external edges and without internal masses is minor-closed.

Remark. That means if we have found a graph G which is not linearly
reducible, all graphs which contain G as a minor are not linearly reducible
too. On the other hand if we have found a graph G which is linearly reducible,
all minors of G are linearly reducible too.

For the proof we will need a few definitions and lemmas first.

Definition 12: To each polynomial f in the n variables αi, i = 1 . . . n we
assign a corresponding projective polynomial f̄ in the 2n variables xi, yi,
i = 1 . . . n by:

f̄(x1, y1, . . . , xn, yn) =
∏

i

yni

i · f
(

x1

y1
, . . . ,

xn

yn

)

,

where ni is the degree of f in αi. Hence yni

i will cancel out all yi in the

denominator of f
(

x1

y1
, . . . , xn

yn

)

.

Remark. Choosing a greater ni does not change the result because we will
factorize the polynomials in each step such that the additional factor yi does
not matter.

31

Remark. Using the above definition we introduce the projective graph poly-
nomials Ψ̄, ϕ̄. Without internal masses Ψ and ϕ are at most linear in all
Feynman parameters αi such that Ψ̄, ϕ̄ is at most linear in the xi and yi.
There are only two cases where Ψ is independent of a αk. First case is a
graph which contains a brigde with edge ek, hence ek is contained in every
spanning tree. And the other case is a graph which is not connected such that
Ψ = 0.

Lemma 13. To eliminate special cases we will use the polynomials Ψ̃, ϕ̃.
They are defined in the same way as the projective polynomials but with fixed
ni = 1 for all i. Thus we do not have to take care if a deletion or a contraction
changes the powers ni by creation of a brigde. Note that we obtain Ψ̄, ϕ̄ by
factorizing Ψ̃, ϕ̃ because they can only contain additional factors yi
Let Ψ̃G,Ψ̃G//ei and Ψ̃G\ei be the polynomials for G,G//ei and G\ei. Then

Ψ̃G//ei = Ψ̃G

∣

∣

∣

xi=0,yi=1
, (5.1)

Ψ̃G\ei = Ψ̃G

∣

∣

∣

xi=1,yi=0
. (5.2)

Proof: Remember the contraction-deletion formula in lemma 4:

ΨG = ΨG\ekαk +ΨG//ek .

In the case of these polynomials it will transform to

Ψ̃G = Ψ̃G\ekxk + Ψ̃G//ekyk

because ΨG\ekαk transforms into

n
∏

i=1

yi ·ΨG\ek(
x1

y1
, . . . ,

x̂k

yk
, . . . ,

x1

y1
) · xk

yk
= ykΨ̄G\ek ·

xk

yk
.

Similar for ΨG//ek :

n
∏

i=1

yi ·ΨG//ek(
x1

y1
, . . . ,

x̂k

yk
, . . . ,

xn

yn
) = ykΨ̄G//ek

Setting xk = 0, yk = 1 immediately proves 5.1.
Setting xk = 1, yk = 0 proves 5.2.

Corollary 14. The lemma also holds for the second graph polynomial because
it fulfills the same contraction-deletion formula if we have no internal masses.

32

Lemma 15. If the Fubini reduction algorithm succeeds for the graph poly-
nomials Ψ, ϕ of a graph G, it also succeeds for the corresponding projective
graph polyonmial Ψ̄, ϕ̄ if we treat the xi like the αi and set yi = 1 after
reducing the corresponding xi.

Proof: We will prove that the sets of irreducible factors for every step of
the reduction of the projective graph polynomials Ψ̄, ϕ̄ can be obtained via
creation of the corresponding projective polynomials in the reduction of the
graph polynomials Ψ, ϕ.
In the case of the starting set S0 = {Ψ̄, ϕ̄} it holds by assumptions. This is
the starting point of our induction, hence it is sufficent to show it for one
reduction step.
By assumption the set A in the reduction of the projective graph polynomials
consists of the polynomials {f̄1, . . . f̄N} where f1 . . . fN are the polynomials in
the reduction with the graph polynomials. From the definition of projective
polynomials we can conclude, that f̄ is linear in xi if and only if f is linear
in αi.
The elements of the intermediate sets Ã in the projective case correspond to
the ones in the nonprojective case because from f̄ corresponds to f we can

conclude that ∂
∂xi

f̄
∣

∣

∣

yi=1
corresponds to ∂

∂αi
f . The same holds for f̄

∣

∣

xi=0,yi=1

and f |αi=0. The property also tranfers to products because the highest de-
gree in each variable simply adds up. For sums it is slightly more difficult
because we can decrease the degree be adding a polynomials with the op-
posite leading coefficent. But this only leads to the case that f̄1 + f̄2 might
be a multiple of f1 + f2 by the factor of some yi not causing any problems
because they disappear in the factorization.
Hence we can say that the intermediate set Ã in both cases corresponds to
each other.
We still need to show that we can transfer the factorisations from the level
of polynomials in Feynman parameter αi to factorisations of projective poly-
nomials in xi, yi. Assume that f factors into g · h. We need to show that:

f̄ = ḡ · h̄
∏

i

y
ni(f)
i · f(x1

y1
, . . . ,

xn

yn
) =

∏

i

y
ni(g)
i · g(x1

y1
, . . . ,

xn

yn
) ·
∏

i

y
ni(h)
i ·h(x1

y1
, . . . ,

xn

yn
).

This is true if and only if
∏

i

y
ni(f)
i =

∏

i

y
ni(g)
i ·

∏

i

y
ni(h)
i

and this is true if and only if ni(f) = ni(g)+ni(h) for all i. But this is always
true if f = g · h because if g is of degree ni(g) in αi and h is of degree ni(h)

33

in αi then g · h is of degree ni(h) + ni(g) in αi.
This proves the fact that for every graph G which is linearly reducible the
algorithm succeeds with the projective graph polynomials too, because in
every step of the reduction we only have to exchange the polynomials by
their corresponding ones.

Lemma 16. The previous lemma also holds for the other direction and the
proof is trivial, because

Ψ̄
∣

∣

y1=y2=...=yn=0
= Ψ(x1, . . . , xn).

The same holds for ϕ.

Lemma 17. If G is linearly reducible this also holds for G//ek and G\ek.

Proof: By lemma 13 we know that we obtain Ψ̄G//ek , ϕ̄G//ek by setting xk =
0, yk = 1 in Ψ̄G, ϕ̄G and factor out additional factors yi.
As long as we do not reduce edge k in the Fubini reduction algorithm of
G//ek, we can always choose the same factorisations as in the reduction for
G and set xk = 0, yk = 1, because all functions are polynomials and setting
variables to 1 or 0 will not change that fact. If we would reduce edge k in
the reduction for G, we cannot do the same for G//ek because this edge is
not contained. But we know that all polynomials are affine in xk in this step
of the Fubini reduction and therefore are affine in yk too, because the power
nk of yk was choosen such that nk is the highest power of xk.
Let S = {f1, f2, . . . , fn} be the set before reducing ek in the reduction of G.
Then the new set contains irreducible factors of all polynomials of the form

fi|xk=0,yk=1 and ∂
∂xk

fi

∣

∣

∣

yk=1
.

But the set of fi|xk=0,yk=1 is the set of polynomials of the reduction of G//ek
at the same step. Therefore we can continue the steps after this in the same
way as before. Hence we can conclude G//ek is linearly reducible if G is
linearly reducible.
In the case of G\ek the proof is similar, only the step of reducing ek we have
to change slightly.
Using the fact that every summand either is containing xk or yk and fi is
affine in both variable we can rewrite:

∂

∂xk

fi

∣

∣

∣

∣

yk=1

= fi|xk=1,yk=0 .

Using the right side of this formula we obtain that G\ek is linearly reducible
if G is linearly reducible.

34

Corollary 18. By induction: If G is linearly reducible then every minor of
G is linearly reducible. This corollary proves theorem 11.

Theorem 19. The set of linearly reducible graphs with a fixed number of
external edges and where each edge has attached either mass 0 or an inde-
pendend value is minor-closed.

The proof of this theorem is similar to the one before, but we only have
the contraction-deletion-formula for the first graph polynomial. The second
graph polynomial can be written as ϕ = ϕ0 + ϕ1, where ϕ0 is the part
independent of the masses, thus it fullfills the contraction-deletion-formula
and ϕ1 = (

∑

m2
iαi) ·Ψ.

The lemma 13 is still valid for the first graph polynomial but for the second
graph polynomial we have to change the proof.

Lemma 20. As in lemma 13 we define ϕ̃ to eliminate special cases, but this
time we set ni = 1 if mi = 0 and ni = 2 otherwise.
Choose an edge ei where mi = 0.
Let ϕ̃G,ϕ̃G//ei and ϕ̃G\ei be the polynomials for G,G//ei and G\ei. Then the
same formula still holds:

ϕ̃G//ei = ϕ̃G|xi=0,yi=1 (5.3)

ϕ̃G\ei = ϕ̃G|xi=1,yi=0 . (5.4)

Proof: From lemma 13 we already know that ϕ̄0 fullfills 5.3 and 5.4 because
it does not depend on the mass setting.
For the nonprojective graph polynomial part ϕ1 we obtain:

ϕG//ei1
=

(

∑

j 6=i

m2
jαj

)

·ΨG//ei (5.5)

=

(

∑

j

m2
jαj

)∣

∣

∣

∣

∣

mi=0

·ΨG//ei (5.6)

=

(

∑

j

m2
jαj

)

·ΨG//ei . (5.7)

Note that ϕG is linear in αi because ϕG0
is linear and from mi = 0 we

conclude that
∑

j m
2
jαj is independent of αi and ΨG is linear in αi. Thus if

we look at the graph polynomial ϕ̃, the power of yi is equal to 1. Setting
xi = 0, y1 = 1 does not change the factor

∑

j m
2
jαj and we already know that

35

Ψ̄G

∣

∣

xi=0,yi=1
= Ψ̄G//ei . Hence:

ϕ̃G//ei1
=

(

∑

j

m2
jαj

)

· Ψ̃G

∣

∣

∣

xi=0,yi=1
(5.8)

=

((

∑

j

m2
jαj

)

· Ψ̃G

)∣

∣

∣

∣

∣

xi=0,yi=1

(5.9)

= ϕ̃G1
|xi=0,yi=1 . (5.10)

Similar formula holds for ϕG\ei1 because Ψ̃G

∣

∣

∣

xi=1,yi=0
= Ψ̃G\ei . Hence

ϕ̃G//ei1
= ϕ̃G1

|xi=1,yi=0 .

Together with the formula for ϕ0 we obtain 5.3 and 5.4.

Lemma 15 also holds for the massive case because the proof can be trans-
fered one to one. We will use it to show lemma 17 for the massive case:

Lemma 21. If G is linearly reducible this also holds for G//ek and G\ek.

Proof: First note, that if G is reducible and the mass mk of edge ek is
arbitary, then G is linearly reducible too if we set mk = 0. Hence it is
sufficent to prove the lemma for edges with mk = 0. Using lemma 20 creates
the polynomials for the cases of the two minors. The following steps of the
proof we can transfer one to one from lemma 17, because lemma 20 states
the same property as lemma 13.

Corollary 22. By induction: If G is linearly reducible then every minor of
G is linearly reducible.
This corollary proves theorem 19.

Remark. This proof can be transfered from the fubini algorithm to the im-
proved fubini algorithm without any problems because if two polynomials in
the reduction of the minor are compatible the corresponding ones of the orig-
inal graph are compatible too, hence we will keep our subset property.

36

Chapter 6

Computional analysis

The theoretical part in the previous chapter gives us an idea how to classify
the linearly reducible graphs but it does not give us any clue on the question
for how many graphs this algorithm will succeed. Therefore I created a Maple
implementation of the Fubini algorithm and the improved Fubini algorithm
which enables us to do a case study for a large class of graphs.

6.1 Implementation

• Fubini reduction

One of the implementations uses the Fubini algorithm (see section 4.4)
to check if a given graph is linearly reducible. First of all it com-
putes the two graph polynomials ϕ and Ψ using the matrix approach
in section 2.2 and substitutes the external momenta by the Mandel-
stam variables. These two polynomials are used as starting set for the
reduction.
One of the problems in the implementation is the factorization because
Maple does not have a built-in factorization algorithm which is useable
for our case, because we only want the factors to be polynomials in the
αi but they may depend on arbitary algebraic functions in the Man-
delstam variables. Hence it was nessesary to write an own algorithm
which uses the roots of a polynomial to create the factorization. One
case in the reduction, where we need the improved factorization is the
polynomial sα2

1 − tα2
2 because every factorization involves roots of the

Mandelstam variables s und t.
The main problem resulting from the manualy implemented factori-
sation is that we cannot expect a unique factorization, because fac-
tors only depending on the Mandelstam variables can be arbitarily dis-

37

tributed among the factors of the polynomial. In case of our polynomial
sα2

1 − tα2
2 we might get:

(
√
sα1−

√
tα2)(

√
sα1+

√
tα2) = sα2

1−tα2
2 = s(α1−

√

t

s
α2)(α1+

√

t

s
α2).

Simply taking the intersection would lead to wrong results, because one

set could contain
√
sα1 −

√
tα2 and the other one α1 −

√

t
s
α2 resulting

in removing both polynomials from the set of critical polynomials. This
problem can be avoided via comparing the roots of the polynomials,

for this polynomial we get α1 =
√

t
s
α2 in both cases, the roots with

respect to α2 are the same too, hence the two polynomials should be
treated as the same polynomial. Doing this comparision algebracily is
very slow but nummerically it might happen that we get a false result.
This may erroneously lead to linearly reducible sets because it can re-
duce the amount of critical polynomials. I tested the slow algebracily
comparision on a few examples and got the same result as in the num-
merical attempt. Thus I decided to use the much faster nummerical
comparision.
Another source of errors may appear during factorization because it
may happen that the program is unable to find a factorization of a
polynomial even if one exists. Hence we get polynomials with higher
degrees in our set of critical minors which may lead to the case that
the reduction stops because we cannot find any variable for which all
polynomials are linear thus we get a false negativ result. Maple is able
to find all roots of polynomials up to degree four, thus the error can
only appear if polynomials have degree five or higher in an αk. This
problem cannot be completly solved, because there is no general solu-
tion formula for polynomials of degree five which was already proved
1823 by Niels Henrik Abel.
A last source of errors is the problem of detecting whether a poly-
nomial is linear, because Maple does not always simplify everything
which leads to terms seeming to be nonlinear but in fact they are lin-
ear. For example α1 +

√

α2
2 is nonlinear for Maple. If we are using

the assuming command to define α2 to be a positiv real number Maple
frequently crashes. At least the assuming command seems to work
with the function which calculates the roots of a polynomial. There
it is used to reduce the number of erroneosly nonlinear polynomials,
but it is not assured that the same problem cannot appear on another
position.

38

• Improved Fubini reduction For the implementation of the Improved
Fubini algorithm (see section 4.5) I extended the previous implemen-
tation by adding the compatibility check which is stored in a set of
compatible pairs of polynomials. It uses the same factorisation code as
before, leading to the same problems.

6.2 Choice of test candidates

First of all I want to remark, that the analysis with the program does not
have the aim of trying all possible simple graphs. It should show that there
are many nontrivial graphs for which the reduction succeeds. Therefore I
made a few assumptions to obtain a small class of graphs for testing. These
constraints will consist of five assumptions.

• Number and kind of external momenta

Graphs without external momenta are already analysed in [5] and Fran-
cis Brown also showed that these results can be transfered to graphs
with two external legs. To obtain a small set of graphs we should take
at most four external legs. For many applications it is sufficant to con-
sider only external momenta which fulfill the on-shell condition p2i = 0.
In this case the second Symanzik polynomial ϕ will be zero if we only
have three external legs hence we would be back to the case of vaccum
graphs. Thus my sample should have four external legs. This also has
the advantage that we are able to transform the products of the exter-
nal momenta into Mandelstam variables, which is not possible for five
or more external legs. If we want to extend the program to higher num-
bers of external momenta we are forced to use a more general way to
obtain independent scalar values for the dot products of the momenta
(e.g. see [7]).

• Internal edges

We can decide if we allow massive internal edges but [11] states that
every graph with a cut through three massive lines cannot be expressed
by less general class of polylogarithms hence our reduction is likely to
fail. Thus we should stay in the case without massive edges. This also
greatly reduces the number of cases we have to test.

• Loop number

Most of the one- and two-loop calculations can be calculated without
the hyperlogarithm approach. Hence we should go to loop numbers as
high as possible. High loop numbers lead to a problem because the

39

number of possible graphs with n loops grows faster than exponential.
Thus we have to determine how many loops are possible, but we should
test at least all 3-loop graphs.

Hence we restrict ourselves to all graphs with four external legs with on-shell
condition p2i = 0 and massless internal edges and start with up to three loops.

6.3 Refining the sample

To deal with the 3-loop-graphs we have to find a representative set of graphs.
Randomly choosing edges would lead to many isomorphic graphs which do
not give any new information. Hence we consider the following:

• Nonisomorphic graphs:

Maple has a built-in command to create all nonisomorphic graphs with
a given vertex and edge count. But it is unable to test if choosen
vertices for external momenta are equivalent. For only four external
legs we can still test all possiblities.

• Edge and external momentum permutations

The permutation of internal edge labels only leads to a permutation
of the indices in the Symanzik polynomials and does not change if
the graph is reducible or not. Permutation of external momenta only
permutate the Mandelstam variables. Hence it is sufficent to test only
one way of labeling the edges.

• 1PI-graphs:

It is well-known that we do not have to test graphs which are only 1-
edge-connected because they can be written as a product of two graphs
created by deleting the edge which links both parts.

• 2-valent vertices:

A vertex with only two internal edges and without external edges does
not appear in any theory. Hence these cases can be neglected too.
Furthermore it would produce an infinte amount of graphs for a given
loop number because splitting one edge into two edges does not change
the loop number but creates a new graph. One more feature of our
algorithm was that in 2.2 the reduction algorithms do not depend on
the powers vi and splitting one edge only doubles the vi.

40

Furthermore one can neglect graphs which contain an already found critical
minor. But these graphs can be used to test the implementation, because
the theorem in the previous chapter tells us, that the set of linearly reducible
graphs is minor closed.

41

42

Chapter 7

Results

7.1 Fubini algorithm

7.1.1 Some statistical results

For up to 2-loop-diagrams every graph with four external momenta fullfilling
the on-shell condition p2i = 0 and with massless internal lines is linearly
reducible. Using the server of the math institute enabled me to run 4-loop-
cases on about 200 cores for about four weeks. During this time about 600
cases were tested. The server was nessesary because even a few single cases
reached about 300GB RAM usage and therefore cannot be handled on a
standard computer. In comparision none of the 3-loop-cases reached more
than 8GB RAM usage. The testing would have been more efficent if we could
run a single case on several cores but the current Maple version is unable to
execute the factor command in a multithreaded environment.
For the 3-loop-case we obtain 109 cases in our studied class after decreasing
the number of these cases using the ideas of the previous section. Only 39
of these cases are not linearly reducible. Hence in about 64% of the cases it
is possible to use the integration via hyperlogarithms. This number would
change if we would change one of the ways we reduced the number of cases,
but it shows that the algorithm succeeds in many cases. 29 cases out of
the 39 cases which are not linearly reducible failed because they contain the
critical minor K4.
The 600 cases tested are only a small part of all 4-loop-cases, but they show,
that the algorithm can also be used for graphs with higher loop numbers.
From the about 600 cases tested, about 100 failed to be linearly reducible
because they contained the critical minor K4 and another 100 cases other
failed too. An investigation of these latter graphs did not exhibit new critical
minors which do not already appear on the 3-loop-level. But this does not

43

mean that there are no new critical minors with four loops, because it could
be similar to the 3-loop-case where we only found a single small critical minor
and all other critical minors have at least nine edges.
It seems that the fraction of linearly reducible graphs with four loops is
higher, but this is a false impression. It depends on the fact, that only small
graphs were tested, which contain less critical minors.
Due to experience about the memory usage I not even tried to compute some
5-loop-cases, but it is clear that the share of linearly reducible graphs will
decrease. Even if we would assume that there are no more critical minors, the
chance that a given graph contains an already known critical minor increases
with the size of the given graph.

7.1.2 Critical minors

As already stated, the first critical minor which appeared was the K4 on the
3-loop-level. It is the only case where we can prove by hand that it is a
critical minor. This will be done in the next subsection.
On the 3-loop-level there are 10 cases not containing the K4 which are not
linearly reducible, but one graph appeared three times with different isomor-
phic external momenta. Hence we only have to consider the 8 graphs shown
in figure 7.1.

The first three of them contain only 9 edges thus they must be critical
minors because all graphs with at most 8 edges which do not contain the K4

are linearly reducible. From the other 5 graphs only three are critcal minors
because the other two contain a critcal minor with 9 edges. The graph (d)
contains the graph (b) as minor and the graph (c) is a minor of graph (g).
Hence we get a set of 7 critical minors for 3 loops. These are the graphs
(a), (b), (c), (e), (f), (h) in figure 7.1 and the already known K4.

7.1.3 The critcal minor K4

For the attempt to reduce K4 we will use the same ordering of edges shown
in figure 7.2 and assumptions as in the program. This leads to the graph-
polynomials:

ϕ =α4α5α6 + α3α4α6 + α3α4α5 + α2α5α6 + α2α4α5 + α2α3α6 + α2α3α5

+ α2α3α4 + α1α5α6 + α1α4α6 + α1α3α6 + α1α3α5 + α1α3α4 + α1α2α6

+ α1α2α5 + α1α2α4,

Ψ =− sα2α3α4α5 − tα1α3α4α6 + (s+ t)α1α2α5α6.

44

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 7.1: Not linearly reducible graphs

45

1

2
3 4

5

6

Figure 7.2: Non linearly reducible graph K4

Due to the high symmetry of the graph K4 we only have to consider a few
subsets of edges for the reduction. For the first step we can simply choose
edge 1 because choosing any other edge will only lead to a permutation of
the indices of the αi. For the second step there are two possiblities. We can
choose two connected edges, without loss of generality 1 and 2, or two edges
without common vertex, without loss of generality 1 and 6.
We need to calculate the set S(1) first.

S̃(1) = {α4α5α6 + α3α5α6 + α3α4α5 + α2α5α6 + α2α4α5 + α2α3α6 + α2α3α5

+ α2α3α4, α5α6 + α4α6 + α3α6 + α3α5 + α3α4 + α2α6 + α2α5 + α2α4,

− sα2α3α4α5,−tα3α4α6 + (s+ t)α2α5α6,

(α4α5α6 + α3α5α6 + α3α4α5 + α2α5α6 + α2α4α5 + α2α3α6+

α2α3α5 + α2α3α4) (−tα3α4α6 + (s+ t)α2α5α6)+

(α5α6 + α4α6 + α3α6 + α3α5 + α3α4 + α2α6 + α2α5 + α2α4) (sα2α3α4α5)}

The first four polynomials in S̃(1) are linear in all αi. We only need to try to
factorize the last polynomial which is of degree two in all αi, thus we need
to find a factorisation to start the next step. Let us call the polynomial f .
Assume f can be written as a product of two polynomials f1, f2 both of de-
gree 1 in α2. Hence the roots with respect to α2 of f1 and f2 have the simple
form g

h
with polynomials g and h. Thus the roots of f should have the same

form. Because f is of degree 2 in α2 we can simply calculate the roots x1/2.

46

f =α2
2A+ α2B + C

A =tα2
6α

2
5 + sα2

5α4α3 + sα2
5α3α6 + sα2

5α4α6 + tα6α
2
5α3 + sα2

6α
2
5 + tα6α5α4α3

+ tα6α
2
5α4 + sα2

6α5α3 + tα2
6α5α3 + sα5α

2
4α3 + 2sα6α5α4α3

B =tα6α
2
5α4α3 + sα5α

2
4α

2
3 + tα2

6α
2
5α4 + sα2

6α5α4α3 + sα5α
2
4α3α6

+ sα2
6α

2
5α4 − tα6α

2
4α

2
3 + sα5α4α

2
3α6 − tα2

6α4α
2
3 + 2sα6α

2
5α4α3

+ sα2
5α4α

2
3 − tα6α4α

2
3α5 − tα6α

2
4α3α5

C =− tα2
6α

2
4α

2
3 − tα2

6α
2
4α3α5 − tα6α

2
4α

2
3α5

The roots are x1/2 =
−B±

√
B2−4AC
2A

, hence we need
√
B2 − 4AC to be a poly-

nomial. But in fact, it is not a polynomial. We can prove this via showing,
that it has no double roots, but it is much easier to set most of the variables
to 1 and look at the new polynomial. α3 = α4 = α5 = s = t = 1 gives
B2 − 4AC = 36α4

6 + 80α3
6 + 56α2

6 + 16α6 + 4 = 4(α6 + 1)2(9α2
6 + 2α6 + 1).

This is not a square, hence it is impossible to factor f into two polynomials
of degree one in α2.
The high symmetry of the K4 also proves that it cannot be factored into two
polynomials of degree one in α3, α4 or α5. The only missing part is to prove
if it factors into two polynomials of degree one in α6. This can be done in
the same way as before, leading to:

f =α2
6A+ α6B + C

A =tα2
5α

2
2 + tα2

5α4α2 + sα5α4α3α2 − tα4α
2
3α2 + sα2

5α4α2 + sα2
5α

2
2 + sα5α3α

2
2

+ tα5α3α
2
2 − tα2

4α
2
3 − tα2

4α3α5

B =tα5α4α3α
2
2 + sα2

5α4α
2
2 − tα4α

2
3α5α2 + 2sα5α4α3α

2
2 − tα2

4α
2
3α5 + sα2

5α3α
2
2

+ sα5α
2
4α3α2 + tα2

5α3α
2
2 − tα2

4α
2
3α2 + sα5α4α

2
3α2 + tα2

5α4α
2
2 + 2sα2

5α4α3α2

− tα2
4α3α5α2 + tα2

5α4α3α2

C =sα2
5α4α

2
3α2 + sα5α

2
4α3α

2
2 + sα5α

2
4α

2
3α2 + sα2

5α4α3α
2
2.

Using the same setting α3 = α4 = α5 = s = t = 1 gives B2 − 4AC =
17α4

2 − 20α3
2 − 10α2

2 + 12α2 + 1 = (α2 − 1)2(17α2
2 + 14α2 + 1) which is again

no square. This leads to the fact, that S[1](2) cannot be computed, due to
symmetry the same holds for S[2](1) hence S[1,2] is unobtainable. The same
holds for S[1,6].
Hence the reduction of K4 already fails for the second variable and therefore
it is not linearly reducible.

47

7.2 Improved Fubini algorithm

7.2.1 Some statistical results

For comparison we tested the same cases as in the section before also with
the Improved Fubini algorithm. We already know, that every graph which is
linearly reducible is also weakly linearly reducible. Hence we expect at most
the same number of graphs where the algorithm fails.
Indeed, the number of cases where the algorithm fails decreased from 39 to
34. The K4 is still a critcal minor appearing in 29 cases which are not weakly
linearly reducible.
Due to the experience with 4 loops with the Fubini algorithm I decided not
to calculate all graphs on 4 loop level. I only tried a few examples to test
the performance difference between the algorithms. On small graphs there is
no difference in time and memory usage but for bigger graphs the Improved
Fubini algorithm in general is slightly faster and uses only a fraction of the
memory, but there are also a few graphs where the Fubini algorithm is faster.

7.2.2 Critical minors

As already said, we still keep the K4 as a critcal minor, because we saw in
the last section that it already fails in the second step because there is no
αi in which all polynomials are linear. This cannot change because the first
step in the improved Fubini algorithm and the Fubini algorithm are the same
because in the first step all polynomials are compatible. Hence S(1) is the
same in both algorithms.
The other five cases not involving the K4 only consist of 3 different graphs
shown in figure 7.3. They already appeared as non linearly reducible graphs
in the previous section and we know that graph (b) has the graph (a) as a
minor. Hence we only get a total of 3 critical minors for the improved Fubini
algorithm.

7.3 Comparision between the algorithms

7.3.1 Reducibility

The decrease in non-reducible cases shows that the improved Fubini algo-
rithm is an improvement. I expect that also in higher loop orders there are
more critical minors if we only use the Fubini algorithm. Only viewing the
number of non reducible cases, which decreased from 39 to 34 is a small
benefit, but on the level of critical minors we achived a decrease from seven

48

(a) (b) (c)

Figure 7.3: Not weakly linearly reducible graphs

down to only three critical minors. The great impact of K4 on the number
of non reducible cases follows from the fact, that K4 is much smaller than
the other critical minors, hence it is a minor for many more graphs.

7.3.2 Size of the compatibility graph

As already stated in the description of the improved Fubini algorithm, we
would get back the Fubini algorithm if we compute at each step with the
complete graph as compatibility graph. Hence our benefit depends on how
many edges the compatibility graph contains. This number of edges is hard
to estimate because it depends on polynomials which appear multiple times,
the number of irreducible factors of each polynomial and the intersection of
compatiblity graphs.
To get an impression of the numbers, I studied how many polynomials in each
step have been found and how many compatible pairs. Running through all
3 loop cases and average over each polynomial count leads to the diagram in
figure 7.4. The fluctuations for higher polynomial numbers appear because
of the fact that these high counts only appears one or two times. The error
bars are calculated from the variance of edge counts for a specific count of
polynomials. If we only have a given polynomial count once in our test set,
we cannot calculate the variance and this point gets no error bar.
The complete graph contains

(

n
2

)

edges if there are n polynomials. For com-
parision this number is drawn into the graph as individual points too.
I also considered comparing total numbers of all polynomials in a reduction
but this leads to a misleading result, because in the improved Fubini reduc-
tion one might do more steps leading to more polynomials in the reduction.
Hence it will depend on the chosen cases. Another problem is that the
factorisation is slightly differently implemented which may lead to different

49

numbers of polynomials.

Figure 7.4: Edge count over polynomial count

50

Chapter 8

Introduction to the computer

program

This chapter will explain how you can use the program for your own calcu-
lations.
First you have to download the source code 1 from the homepage of Prof.
Dirk Kreimer. The Fubini algorithm and the improved Fubini algorithm are
contained in the two files "fubini.txt" and "improvedfubini.txt". To use them
in Maple, copy the files to the Maple working folder or start Maple from the
folder the files are contained in. To load them into a Maple file use

read("fubini.txt"):

read("improvedfubini.txt"):

8.1 Implemented commands

8.1.1 The command poly

The command poly computes the two Symanzik polynomials for a given
graph with 4 external edges and transforms the products of external momenta
into Mandelstam variables. There is an on-shell-condition p2i = mein2

i as-
sumed thus the second Symanzik polynomial also depends on the rest masses
of the four external particles mein1,mein2,mein3,mein4. If we want to ob-
tain p2i = 0, we have to set the four masses to 0. One can also set an
individual mass for every internal line.
For the input the GraphTheory package of Maple is used. For instructions

1www.mathematik.hu-berlin.de/~kreimer/fubinireduction.zip

51

www.mathematik.hu-berlin.de/~kreimer/fubinireduction.zip

how to create a graph see the documentation of Maple. I would suggest to
create the graph with the help of the weight matrix.
Maple’s GraphTheory package does not support multiple edges, therefore I
use the built-in weights of edges. An edge with weight 1 stands for a single
edge between the two vertices, weight 2 stands for two edges between the
vertices and so on. To set the masses for the internal edges we use a list
as a second argument. The first entry is the mass of the first internal edge
and so on. The ordering of the internal edges depends on the ordering of
the vertices in a way that we first sort the edges by the lower vertex number
and if two edges have the same lower vertex number they are ordered by the
higher vertex number. In the case of two edges connecting the same vertices
their ordering does not matter. If the graph was created by the use of a
weight matrix, the ordering can be obtained by counting the entries in the
upper triangle line by line.
In the main program the masses have to be numbers or variables from the
set {M,M1,M2, . . .M15}.

The third input argument is a list with four integer entries to define the
position of the four external momenta.
The output consists of the two Symanzik polynomials and the number of
internal edges. Therefore the output can be directly used for the main pro-
gram.

Example. This example shows the calculation of the Symanzik polynomials
for the example graph in figure 4.2 with the same assumptions. These are:
one line is massive and all external momenta fulfill p2i = 0.

graph:=MakeWeighted(Graph(Matrix(4, 4, [0, 1, 0, 1, 1, 0, 1, 0, 0,

1, 0, 1, 1, 0, 1, 0]))):

S0:=poly(graph,[M,0,0,0],[1,2,3,4]);

[{a[2]+a[4]+a[3]+a[1],a[1]^2*M^2+a[1]*M^2*a[2]+a[1]*M^2*a[4]+

a[1]*M^2*a[3]+s*a[4]*a[1]-mein[1]^2*a[4]*a[1]-

mein[1]^2*a[2]*a[1]-mein[2]^2*a[3]*a[1]-mein[2]^2*a[4]*a[1]+

t*a[4]*a[1]-mein[3]^2*a[4]*a[1]-mein[3]^2*a[4]*a[3]-

s*a[3]*a[2]-mein[4]^2*a[4]*a[2]-mein[4]^2*a[4]*a[1]}, 4]

#introducing the p[i]^2=0 condition

Sonshell0:=subs({mein[1]=0,mein[2]=0,mein[3]=0,mein[4]=0},S0);

[{a[2]+a[4]+a[3]+a[1],a[1]^2*M^2+a[1]*M^2*a[2]+a[1]*M^2*a[4]+

a[1]*M^2*a[3]+s*a[4]*a[1]+ t*a[4]*a[1]- s*a[3]*a[2]}, 4]

52

8.1.2 The command main

The command main starts the Fubini algorithm or the improved Fubini al-
gorithm and will save the results in a global variable sset. It needs two
arguments. The first one is the set of critical polynomials we have at the
beginning. In case of Feynman integrals these are the two Symanzik polyno-
mials. The second argument is the number n of integration parameters. The
integration parameters are a1, . . . an, hence the starting set must be written
using the ai as integration parameters.
Most of the limitations of this command are based on the hardware used
because especially the Fubini algorithm consumes large amounts of memory.
It is also possible to reach Maple limitations which result in errors like stack-
overflow. The only build-in limitation is given by the numerical comparision
of two polynomials which involves only random values for up to 15 integration
variables. This can be extended without problems but even general graphs
with 11 edges are not possible on a standard computer. The random values
are fixed thus the result is deterministic and will not change if we run the
program again. But as already stated in the previous chapter, this might
lead to false positive results, but this risk in nessessary if we want to run the
program in a reasonable amount of time.
There is a small difference between the implementation and the described
algorithm in the third chapter. To reach a higher performance, all critical
polynomials not depending on the Feynman parameters will be removed after
each step. This improves the performance but will not change whether a set
is (weakly) linearly reducible.

Example.

Sonshell0:=[{a[2]+a[4]+a[3]+a[1],a[1]^2*M^2+a[1]*M^2*a[2]+

a[1]*M^2*a[4]+a[1]*M^2*a[3]+ s*a[4]*a[1]+t*a[4]*a[1]-

s*a[3]*a[2]}, 4]:

main(op(Sonshell0));

8.1.3 The command fubinishow

The command fubinishow is used to show the results of the algorithm after
running the main command. It will process the global variable containing
many informations of the algorithm process. It only needs an integer as input
to define which information should be presented. The possibilities are:

• 0:
Only shows if the set was linearly reducible or not.

53

• 1:
If the given set is (weakly) linearly reducible it shows the best inte-
gration order. Therefore the weight function gewicht is used to define
the effort to calculate a given step. There is already a predefined func-
tion of the form ki with k the number of critical polynomials in the
step and i the number of the step. This function is choosen because a
hyperlogarithm in this step could have a weight of i and each of the i
paramenters can be chosen out of the k polynomials. Thus we could
have ki terms in this step. This function can be replaced by a function
defined by the user.

• 2:
It shows the best integration order and the appearing critical polyno-
mials for each step.

• 3:
It shows the sets of critical polynomials for all subsets of edges.

• 4:
This case is only available for the improved Fubini reduction and it
shows in addition the pairs of compatible polynomials.

Note that option 3 and 4 create a large output which could freeze the Maple
instance for several minutes.
To get a specific set of critical polynomials there is also the command
fubinishowsingle which needs a list of Feynman parameter indices as input
and shows the specific set of critical polynomials together with the pairs of
compatible polynomials.

Example. After running the main function with the arguments from the
previous example one can get an integration order via

fubinishow(1);

[4,3,2,1]

A single intermediate result like S(2) can be obtained via:

fubinishowsingle([2]);

[[s*a[4]*a[1]+t*a[4]*a[1]+s*a[4]*a[3]+s*a[3]^2+s*a[3]*a[1],

a[1]*M^2+t*a[4]+M^2*a[4]+M^2*a[3]+s*a[4],a[1],a[4]+a[3]+

a[1],a[1]*M^2-s*a[3]],{{a[1],a[1]*M^2-s*a[3]},{a[1],

a[4]+a[3]+a[1]},{a[1],a[1]*M^2+t*a[4]+M^2*a[4]+M^2*a[3]+

s*a[4]},{a[1],s*a[4]*a[1]+t*a[4]*a[1]+s*a[4]*a[3]+s*a[3]^2+

54

s*a[3]*a[1]},{a[1]*M^2-s*a[3],a[1]*M^2+t*a[4]+M^2*a[4]+

M^2*a[3]+s*a[4]},{a[1]*M^2-s*a[3],s*a[4]*a[1]+t*a[4]*a[1]+

s*a[4]*a[3]+s*a[3]^2+s*a[3]*a[1]},{a[4]+a[3]+a[1],a[1]*M^2+

t*a[4]+M^2*a[4]+M^2*a[3]+s*a[4]},{a[4]+a[3]+a[1],

s*a[4]*a[1]+t*a[4]*a[1]+s*a[4]*a[3]+s*a[3]^2+s*a[3]*a[1]},

{a[1]*M^2+t*a[4]+M^2*a[4]+M^2*a[3]+s*a[4],s*a[4]*a[1]+

t*a[4]*a[1]+ s*a[4]*a[3]+ s*a[3]^2+ s*a[3]*a[1]}}]

8.1.4 The commands hasminork4, istminimalg, istmin-

imalp

The command hasminork4 tests if a given graph with four external momenta
contains the K4 as a minor where the external momenta are at the four ver-
tices of the graph. The input is a graph and a list of integers for the external
momenta. The output is 1 if it has the K4 as a minor and 0 otherwise.
The command istminimalg proves if a graph is 1PI. The input is an un-
weighted graph and the output is true for 1PI and false otherwise. istminimalp
tests if a graph given by its weight matrix with given momenta setting has
no 2-valent vertices or if the two edges of the 2-valent vertex are connecting
two vertices with a line between them. This can be used to obtain all graphs
of given loop number via nonisomophic graphs, because graphs in Maple’s
GraphTheory package cannot contain double edges and the described setting
corresponds to a double edge.

Example. Assume we still have the variables defined during the last few
examples.

istminimalg(Graph(Matrix(4, 4, [0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0,

1, 1, 0, 1, 0])));

true

istminimalp(Matrix(4, 4, [0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1,

0, 1, 0],[1,2,3,4]);

1

hasminork4(graph,[1,2,3,4]);

0

8.2 Hints for testing

8.2.1 The command NonIsomorphicGraphs

Maple has a built-in command to derive all non-isomorphic graphs of given
edge and vertex number E and V . This can be used to produce all graphs

55

with a given loop number L because L = E − V + 1 holds for all connected
graphs. Assuming that one can neglect graphs with 2-valent vertices, the
number of vertices a graph with fixed loop number is limited.
This set can be refined by the functions hasminork4, istminimalg,

istminimalp and other constraints.

Example. To examine all 1PI graphs with two loops and four or five vertices
you can use

setgraph:=[NonIsomorphicGraphs(5,4,output=graphs,outputform=

adjacency,restrictto=connected),NonIsomorphicGraphs(6, 5,

output=graphs,outputform=adjacency,restrictto=connected)]:

for A in setgraph do

if istminimalg(A)=1 then

yourmainfunction(A);

fi;

od;

Remark. It is usally faster and less memory consuming to deal with the
adjacency matrices than with the graphs.

8.2.2 Multithreaded computing

The current program runs on a single core only because the multithreaded
approach crashes. The reason might be that the factor command from
Maple is not threadsafe. This might be solved in future versions of Maple.
To enable the use of multiple cores in the program for the improved Fubini
reduction, the seq command in line 291 has to be exchanged by the parallel
command Seq. If I recognize a change in Maple, I will also upload a new
multithreaded version. In Maple 15 and 16 it does not work.
But even if it is impossible to use multiple cores for one problem, one can
run multiple instances of this programm to test many different cases at the
same time.

56

Chapter 9

Conclusion

The advantages of the reduction algorithms presented in chapter 4 are that
they are much faster than the integration and can be used to determine a
suitable integration order. Thus they are an important step when deriving a
Feynman integral since the algorithms already show whether the integration
algorithm can be applied in this case. Unfortunately, the three reduction
algorithms only give an upper bound for the polynomials appearing during
the integration. Even the improved Fubini reduction algorithm cannot give
a strict bound, because the appearing polynomials not only depend the two
Symanzik polynomials by itself but also on the form of the integrand.
Hence a perfect reduction algorithm for testing whether a graph is integrable
by hyperlogarithms will depend on the theory used. This makes the results
not universally valid. The results in chapter 7 also show that there is only
a small set which might be further refined by a better reduction algorithm.
Chapter 7 also shows that the improved Fubini algorithm is a useful improve-
ment of the reduction algorithm thus it is worthwhile to find an algorithm
which delivers an even better upper bound to further reduce the amount of
non reducible graphs.

The minor closedness of the (weakly) linearly reducible graphs which has
been proved in chapter 5 can be viewed as a first step in characterizing the
set of reducible graphs. We introduced minors as an abstract graph theo-
retical object, but it also appears in the calculation of pertubative quantum
field theory. That is because the minors of the higher loop corrections are
the corrections of lower loop order or not connected graphs, which can be
neglected. Thus we obtain two useful implications:
1. If the graphs corresponding to the n loop corrections are not linearly re-
ducible, then this also holds for the higher loop corrections.
2. If all graphs corresponding to the n loop corrections are linearly reducible

57

then this also holds for all lower loop corrections.

Chapter 8 is written to engage other people to use this algorithm or fur-
ther extend the program such that it is capable of doing the integration or
the determination of the Feynman diagrams for the corrections and their
renormalisations. This automation would enable us to calculate higher loop
corrections compared to the integration by hand. The integration algorithm
already has been implemented by Erik Panzer (see [15]) and an implementa-
tion using multiple polylogarithms is in progress (see [16]).

I would like to thank Dirk Kreimer for the opportunity to write this thesis
in his research group, as well as for suggesting the topic. I am very grateful
to my advisor Christian Bogner for his support in all phases of the work, es-
pecially for his hints and corrections during the writing process. My thanks
also go to Erik Panzer and Francis Brown for the discussions concerning the
integration algorithm, and finally I want to thank everyone in the research
group for the great atmosphere.

58

Bibliography

[1] J. C. Collins, “Renormalization. An Introduction To Renormalization,
The Renormalization Group, And The Operator Product Expansion”,
Cambridge, Uk: Univ. Pr. (1984) 380p

[2] G. ’t. Hooft and M. Veltman, “Regularization and renormalization of
gauge fields”, Nuclear Physics B 44 (1972)

[3] F. Brown and D. Kreimer, “Decomposing Feynman rules”, PoS LL 2012

(2012) 049 [arXiv:1212.3923 [hep-th]].

[4] C. Bogner and S. Weinzierl, “Feynman graph polynomials”, Int. J. Mod.
Phys. A 25 (2010) 2585 [arXiv:1002.3458 [hep-ph]].

[5] F. Brown, “The Massless higher-loop two-point function”, Commun.
Math. Phys. 287 (2009) 925 [arXiv:0804.1660 [math.AG]].

[6] F. Brown, “On the periods of some Feynman integrals”, arXiv:0910.0114
[math.AG].

[7] F. Rohrlich, “Scalar Variables for the S-Matrix”, Il nuovo cimento, Vol.
XXXVIII, N.1 (1965)

[8] R. J. Eden, P. V. Landshoff, D. I. Olive and J. C. Polkinghorne, “The
analytic S-Matrix”, Cambridge, Uk: Univ. Pr. (1966)

[9] C. Itzykson and J. B. Zuber, “Quantum Field Theory”, McGraw-Hill Inc
(1980)

[10] L. Lewin, “Polylogarithms and associated functions”, North Holland
(1981)

[11] R. Scharf, “Zur Berechnung von skalaren Ein- und Zweischleifen-
Integralen”, Diploma thesis at Universität Würzburg (1991)

59

[12] N. Robertson, P. D. Seymour, “Graph minors. I.” to “Graph minors.
XX.”, Journal of Combinatorial Theory (1983-2004)

[13] N. Robertson, P. D. Seymour, “Graph minors. XX., Wagner’s conjec-
ture”, Journal of Combinatorial Theory (2004)

[14] J. A. Lappo-Danilewski, “Mémoires sur la théorie des systèmes des équa-
tions différentielles linéaires”, Chelsea, New York (1953)

[15] E. Panzer, “On the analytic computation of massless propagators in
dimensional regularization”, Nuclear Physics, Section B 874 (2013)

[16] C. Bogner,F. Brown, “Symbolic integration and multiple polyloga-
rithms”, arXiv:1209.6524 [hep-ph]

60

Selbständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet
habe.

Berlin, den 9.09.2013

Martin Lüders

61

	Introduction
	Fundamentals
	Feynman integrals
	Graph polynomials

	Graph Theory
	Reduction Algorithms
	Hyperlogarithms
	The integration procedure
	Simple reduction algorithm
	Fubini reduction algorithm
	Improved Fubini reduction algorithm

	Theoretical analysis
	Computional analysis
	Implementation
	Choice of test candidates
	Refining the sample

	Results
	Fubini algorithm
	Some statistical results
	Critical minors
	The critcal minor K4

	Improved Fubini algorithm
	Some statistical results
	Critical minors

	Comparision between the algorithms
	Reducibility
	Size of the compatibility graph

	Introduction to the computer program
	Implemented commands
	The command poly
	The command main
	The command fubinishow
	The commands hasminork4, istminimalg, istminimalp

	Hints for testing
	The command NonIsomorphicGraphs
	Multithreaded computing

	Conclusion

