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The QCD β-function from global solutions to
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Abstract

We study quantum chromodynamics from the viewpoint of untruncated Dyson–Schwinger equa-
tions turned to an ordinary differential equation for the gluon anomalous dimension. This non-
linear equation is parameterized by a function P (x) which is unknown beyond perturbation theory.
Still, very mild assumptions on P (x) lead to stringent restrictions for possible solutions to Dyson–
Schwinger equations.

We establish that the theory must have asymptotic freedom beyond perturbation theory and
also investigate the low energy regime and the possibility for a mass gap in the asymptotically free
theory.
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1 Introduction

We study non-perturbative aspects of quantum chromodynamics (QCD). We do so by investigating
Dyson–Schwinger equations. Instead of solving a truncated version of these a priori very intricate
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equations [22], we use recent insight into the mathematical structure of quantum field theory to gain
insight into the possible structure of solutions. This approach has been successfully applied to quantum
electrodynamics in [5] and is here extended to QCD.

1.1 The method

We follow the methods employed in our work on QED [5], adopted to the study of QCD in the back-
ground field approach as developed by Abbott [1, 2]. Let us first reconsider the situation for quantum
electrodynamics. There, thanks to the Ward identity, it suffices to consider the anomalous dimension
γ1(x) of the photon which is essentially the β-function, β(x) = xγ1(x).

This anomalous dimension is obtained from the photon’s self-energy, a two-point function which is
determined non-perturbatively by the knowledge of a single Lorentz scalar function

G(x, L) = 1−
∞
X

k=1

γk(x)L
k ,

with x the fine structure constant and L = ln (−q2/µ2), where the inverse photon-propagator is (q2gµν−
qµqν)G(x, L).

Combining this with the combinatorial Dyson-Schwinger equations and using an expansion into suit-
able integral kernels which parametrize the corresponding integral equation, the Dyson-Schwinger
equation combine with the renormalization group equation to give

i) a recursion for the γk:

γk(x) = −1

k
γ1(x)(1− x∂x)γk−1(x), k ≥ 2 , (1)

ii) a differential equation for γ1(x):

γ1(x)(1− x∂x)γ1(x) + γ1(x)− P (x) = 0 . (2)

Here, i) comes from the renormalization group, ii) from the DSE, and P (x) is a suitably constructed
series over residues. The appearance of the operator (1± x∂x) is typical for a gauge theory.

We will now address a non-abelian gauge theory, resulting in a similar set-up (in particular, i) and ii)
remain form-invariant) once we learned to make effective use of quantum gauge invariance to reduce
again to a single ODE. Obviously, however, P (x) will be a different function, in particular, it will
change sign. We study the consequences of this fact with minimal knowledge on the behavior of P (x).
Still, as in QED, we will see that we can learn quite a bit regarding the non-perturbative sector of QCD.

To proceed, we turn to the background field method.
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1.2 Background field method

We first have to consider the set of vertices and propagators in the background field gauge. They define
a set R given as follows:

QQ

c̄c

dQQQ

dAQQ

QQQQ

AQQQ

AQAQ

c̄Qc

c̄Ac

c̄cQA

c̄cAA

AA

.

Here, names attached to the vertices and propagators are short hand memos of the corresponding mono-
mials in the Lagrangian.

The field content is Q for the internal quantized gauge field, A for an external background gauge
field, c̄, c for the anti-ghost and ghost field. Coupling of Fermionic matter will not change the ensuing
discussion in any way and is omitted for convenience. See Abbott [2] for details.

With the set R comes an accompanying set of 1PI Feynman graphs naturally labeled by elements in
this set according to their type and number of external legs.

We consider in particular Green functions for such graphs and adopt the results of [18], see also [19],
which read as expected ∀r ∈ R

Xr = I±
X

k≥1

[g2]k
X

|γ|=k

1

sym(γ)
Bγ;r

+

 

Q

v∈γ[0] Xv

Q

e∈γ[1]

√
Xe

!

,

with

Bγ
+(h) =

X

Γ∈<Γ>

bij(γ, h,Γ)

|h|∨
1

maxf(Γ)

1

(γ|h)Γ , (3)
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where maxf(Γ) is the number of maximal forests of Γ, |h|∨ is the number of distinct graphs obtainable
by permuting edges of h, bij(γ, h,Γ) is the number of bijections of external edges of h with an insertion
place in γ such that the result is Γ, and finally (γ|h) is the number of insertion places for h in γ [18].
P

Γ∈<Γ> indicates a sum over the linear span < Γ > of generators of H .

Next, we divide by the ideal I which implements the Slavnov–Taylor identities which here is generated
order in order in g2 by

X c̄Ac = X c̄Qc = X c̄c, XdQQQ = XdAQQ = XQQ = XAA ,

XAAQQ = XAQAQ = XAQQQ = XQQQQ = XdQQQ .

On H/I we then get two independent Green functions which need renormalization

XAA, X c̄c ,

corresponding to a mere two-element set

RH/I = {AA, c̄c} .

Also, we then find an combinatorial invariant charge uniquely defined as

C = I/
√
XAA = I/

√
XQQ ,

so that, as in QED, the β-function is just half the negative anomalous dimension of the gauge field.

Note that the addition of massless fermions would just add in H/I an element ψ̄ψ for the fermion
self-energy but would not change the ideal or the invariant charge.

The system of combinatorial Dyson Schwinger equations is then

XAA = I−
X

k

[g2]kBk,AA
+

�

XAA [C]−2k
�

X c̄c = I−
X

k

[g2]kBk,c̄c
+

�

X c̄c [C]−2k
�

.

Note that this determines XAA in terms of itself, while X c̄c is a function of itself and XQQ. We write
Xr = I −Pk≥1[g

2]kcrk, with crk ∈ H/I the generators of a sub Hopf algebra [18, 9] given by all
graphs which contribute to an amplitude r at a chosen order k. Note that the resolution of a Green
functions into images of Hochschild one-cocycles Br

+ is the mathematical equivalent of a resolution of
all overlapping divergences into non-overlapping integral kernels. That this is possible in a non-abelian
theory was realized early by Baker and Lee [7].

See [18, 19, 25, 26] for explicit examples how Hochschild cohomology and Hopf algebras relate.

There hence is a quotient Hopf algebra HAA spanned by generators cAA
k of XAA. Similarly, going

temporarily to the quotient Hopf algebra Hc̄c defined by XAA = I, cAA
k = 0, we find that this is a
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cocommutative Hopf algebra (which is obvious from setting C = I) and hence we find a factorization
of groups into an abelian subgroup Spec(Hc̄c) and a normal subgroup Spec(HAA),

Spec(H/I) = Spec(HAA)⋊ Spec(Hc̄c) ,

corresponding to a short exact sequence which splits

I → Spec(HAA) → Spec(H/I) → Spec(Hc̄c) → I .

It is this factorization which allows us to compute the β-function of QCD by an ODE for a single
equation below. Note that the situation is similar to QED: there, the Ward identity allows for a similar
semi-direct product structure between photon amplitudes and Fermionic matter. Gauge invariance then
allows to eliminate all short-distance singularities in the abelian subgroup thanks to the work of Baker,
Johnson and Willey, and one is left with the photon propagation as the only source of renormalization.

Here, we can compute the β-function from GAA(x, L), but would have to consider the full coupled
system to determine Gc̄c(x, L) (and Gψ̄ψ(x, L)), which we do not attempt here.

Furthermore, note that the simplification at k = 1

B1,AA
+



XAA [C]−2� = B1,AA
+ (I) .

This is typically for gauge theories and emphasizes that we are in a single equation situation with s = 1
[5]. Terms Br

+(I) always deliver a pure residue from their short-distance singularities, and these terms
are intimately connected to fermion determinants. We will not pursue this connection any further here.

The background field method is then suited to our approach as it allows us to compute the QCD beta
function from a single ordinary differential equation.

Indeed, a change of basis of primitives allows to reduce the application of Feynman rules to the study of
one-variable Mellin transforms for the integral kernels for the above primitives Bk,r

+ (I), and from there
we can strictly follow the techniques of [20, 21, 27] to get to an single ordinary differential equation:

γ1(x) + γ1(x)
2 − P (x)− xγ1(x)γ

′
1(x) = 0 .

Here, P (x) is a suitable series over primitives. As always, we renormalize using a momentum scheme
with subtractions at q2 = µ2. That scheme is uniquely suited [14] to our gauge-invariant non-perturbative
approach.

1.3 Qualitative properties of QCD

From perturbative computations, asymptotic freedom is firmly established. We will establish it beyond
perturbation theory below. Perturbatively, this is mainly a self-consistency statement: assuming that
the QCD coupling constant is small, we approximate the theory by its loop expansion to a few orders.
The resulting polynomial approximation to the beta function supports the claim of asymptotic freedom
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in perturbation theory: β(x) < 0, 0 < x < 1, hence at large momentum transfer lim−Q2→∞ αs(L) → 0,
L = ln(−Q2/µ2). The coupling indeed becomes small in that limit.

As usual, perturbation theory agrees well with observations: asymptotic freedom is a well-established
experimental fact.

Much more intricate is the study

−Q2 → 0+ .

This is beyond the reach of perturbation theory. Nevertheless, different approaches point out that in
that limit, the gluon propagator might turn to a constant, confirming an old suggestion of Cornwall that
the free gluon develops in the interacting theory a momentum-dependent mass which vanishes at high
energies, but turns to a non-vanishing constant in the limit −Q2 → 0+. We study this behavior from
our viewpoint in section 3.

Results to this effect were already obtained by
i) Lattice computations [4];

ii) numerical study of Dyson Schwinger equations truncated in a gauge invariant way [13];

iii) in the Gribov-Zwanziger formalism [17].

Below, we reconsider the problem from a study of the possible structure of solutions of Dyson Schwinger
equations. We want to establish asymptotic freedom beyond perturbation theory, and want to discuss
to what extent a solution which exhibits asymptotic freedom can also exhibit a mass gap.

Again, as in the case of QED, we find the most interesting solution to be a separatrix. In the case of
QCD, that separatrix is the only solution which has asymptotic freedom.

2 Results

In QCD, the Dyson-Schwinger equation for γ1 is

dγ1(x)

dx
= f(γ1(x), x) ≡

γ1(x) + γ1(x)
2 − P (x)

xγ1(x)
. (4)

We will assume that the primitive skeleton function satisfies the following assumptions:

H1: P is a twice differentiable function on R
+, with P (0) = 0, P ′(0) < 0 and P ′′(0) < 0.

H2: There exist x⋆ such that P (x) > −1
4

and P ′′(x) ≤ 0 (i.e. P is concave) on [0, x⋆].

H3: The function P (x) satisfies P (x) < 0 for all x > 0.

6











As in [5], we avoid the singularities of (4) at γ1 = 0 and x = 0 by specifying with an initial condition
at x⋆, namely,

dγ1(x)

dx
= f(γ1(x), x) ≡

γ1(x) + γ1(x)
2 − P (x)

xγ1(x)
, γ1(x

⋆) = γ0 . (5)

This ensures that solutions of (5) exist at least locally around x = x⋆. Though we will mainly look for
solutions or (4) with γ1(x

⋆) < 0 and x ≥ 0, we will occasionally comment on the γ1(x
⋆) > 0 case.

In the QED case, we proved in [5] (see also Section 5 of the present paper) the existence of a unique
value γ⋆

1(x0) (the separatrix) separating solutions that exist globally for all x ≥ x0 from those that
can only be continued up to a finite xmax > x0. As shown in Section 5, all solutions in QED can be
continued as x → 0, differing there ‘only’ by a flat behavior ∼ e−

1
x . In QCD the situation is reversed:

we will prove that all solutions starting at some appropriate x⋆ can be continued as x → ∞, but that
there is a unique value γ⋆

1(x
⋆) that separates solutions that cannot be continued as x → 0 from those

that can, which either satisfy γ1(0) = −1 if γ1(x
⋆) < γ⋆

1(x
⋆) or γ1(0) = 0 if γ1(x

⋆) = γ⋆
1(x

⋆). We call
the solution γ⋆

1(x) that satisfies γ⋆
1(0) = 0 the asymptotically free solution.

We will also use more speculative hypotheses on P (x):

S1: There exists p > 0 such that P (x) = −cxp + o(xp) as x → ∞.

S2: There exist xc ≥ − 1
P ′(0)

such that P ′′(x) ≤ 0 for all x ∈ [0, xc]

S3: There exist a (finite) interval [xc, xd] with xc > x⋆ such that

−
Z xd

xc

1 + 4P (z)

2z
dz ≥ 1 .

S4: There exist finite xl and xr such that P (xl) = P (xr) = −1
4

and P (x) > −1
4

for all 0 ≤ x < xl

and x > xr. The function P (x) does not satisfy S1, S2 and S3, but rather limx→∞(P (x)−P∞) =
limx→∞ xP ′(x) = 0 for some P∞ > −1

4
.

Let us briefly comment on our logic here. The H1-H3 hypotheses are a bare minimum for the results
we will present below. Within perturbation theory, we have

P (x) = γ1(x) +O(x3) = −β1x− β2x
2 +O(x3) (6)

as x → 0, where −β1 and −β2 are the 1 and 2-loop coefficients of the β function, namely β1 = 9 and
β2 = 64 for nf = 6. As such, the hypotheses H1 and H2 are reasonable. While it also follows from
(6) that P (x) < 0 at least for small values of x, extending this to all values of x is somewhat more
speculative.

As we will show below, if P (x) < −1
4

on a ‘sufficiently large interval’, for instance if either S1, S2 or
S3 hold, all solutions of (5) satisfy γ1(x) = −1 for some x ≥ x⋆. It then follows from H3 that they
grow linearly as x → ∞ if

D(P ) = −
Z ∞

x⋆

P (z)

z3
dz < ∞ ,
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and faster than linearly if D(P ) = ∞. Incidentally, we showed in [5] (see also Section 5 of the present
paper), that the finiteness/infiniteness of D(P ) was intimately linked with the existence/non-existence
as x → ∞ of solutions of the analogous of (5) for QED. It is striking to see that the same criterion
distinguishes between different type of behavior in QCD as well1.

Note that an anomalous dimension growing at least linearly as x → ∞ leads to a Landau pole for
the running coupling, and hence a serious obstacle to studying the infrared behavior of the Gluon
propagator. Despite that, we will show in Section 3.1 that this pole (if present) can be removed using
an unsubtracted dispersion relation, see e.g. [24], and the Gluon propagator can still be studied in the
infrared limit.

In contrast, if γ1(x) is finite as x → ∞, we avoid the Landau pole, and can study the Gluon propagator
without using dispersion relations. Such constant asymptotics for γ1 can only happen if P (x) tends to
a constant as x → ∞. This motivates (part of) the hypothesis S4. Under that hypothesis, we will show
that there is only one solution that satisfies

lim
x→∞

γ1(x) = −1 +
√
1 + 4P∞

2
≡ γ∞ .

If P∞ = 0, we call that solution the confinement solution γc
1(x), and if P∞ > 0, we call it a strong

confinement solution. On physical grounds, the asymptotically free and (strong) confinement solutions
need to be the same. Unfortunately, for generic P (x) satisfying H1, H2 and S4, these two solutions are
different. We did not succeed in finding a sufficient condition on P (x) that guarantees both solutions
are the same. Despite that, a necessary condition is certainly that P (x) makes at least one (small)
excursion below −1

4
, while avoiding the S1-S3 conditions, see also figure 1 below or Section 4.4.

By standard folklore and heuristics [3], a nowhere vanishing β-function, β(x) < 0, ∀x > 0, which
we will indeed establish below under assumption H1 above, implies a mass gap in QCD, and hence a
confinement scenario following old ideas of Cornwall [15]. We will come back to that in Section 3 of
this paper.

Remark 2.1 If P∞ > 0 in hypothesis S4, P (x) has a further zero for a finite x1 > 0, P (x1) = 0. In
such a case, using the running coupling formulation of (4), one sees that some solutions spiral around
the zero of P (x), themselves having infinitely many zeroes. The asymptotically free solution γ⋆

1(x) may
or may not spiral around x = x1, depending on details of P . Should it be captured, we get a solution
γ1(x) which has a UV fix-point at zero and an infrared fixpoint at x1. This is the Banks-Zaks scenario
[8].

In the remainder of this section, we are going to state our main results. The proofs and technical details
are postponed to Section 4 of this paper.

Our first main result gives a complete characterization of the behavior of solutions of (5) for x < x⋆.
In particular, it establishes the uniqueness of the solution exhibiting asymptotic freedom.

1though of course the primitive skeleton functions P are different in both cases
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Theorem 2.2 Under the hypotheses H1 and H2, there is a unique value γ⋆
1(x

⋆) < 0 such that the
corresponding solution γ⋆

1(x) of (5) exists for all x ∈ [0, x⋆] and satisfies lim
x→0

γ⋆
1(x) = 0. Additionally,

that solution satisfies

p

1 + 4P (x)− 1

2
≤ γ⋆

1(x) ≤ P ′(0)x , (7)

If γ1(x
⋆) < γ⋆

1(x
⋆), then the corresponding solution satisfies lim

x→0
γ1(x) = −1. If γ⋆

1(x
⋆) < γ1(x

⋆) < 0,

then there exist xmin > 0 such that the corresponding solution satisfies γ1(xmin) = 0.

Note that since

√
1+4P (x)−1

2
= P ′(0)x + O(x2) as x → 0, (7) shows that γ⋆

1(x) = P ′(0)x + O(x2) as
x → 0.

As we will prove in Proposition 4.8) of Section 4 below, all solutions of Theorem 2.2 can be continued
as x → ∞ by only adding the H3 assumptions. In Proposition 4.6, we will show that solutions that
satisfy γ1(xmin) = 0 for some 0 < xmin < x⋆ can be continued in the first quadrant (becoming double-
valued) by reverting to the so-called ‘running coupling’ formulation of (5) (see also [5]). In particular
these solutions will satisfy γ1(x0) > 0 for some x0 > xmin.

Our second main result concerns the asymptotic behavior as x → ∞ of solutions that enter the first
quadrant, or attain the value −1 somewhere. This last condition can be verified under additional as-
sumptions on P such as S1, S2 or S3.

Proposition 2.3 Assume P (x) satisfies H1-H3 and that one of the two following statements holds:

1. −1 < γ1(x
⋆) < 0 and P (x) satisfies S1 or S3,

2. γ1(x
⋆) ≤ γ⋆

1(x
⋆) and P (x) satisfies S2.

Then there exists x0 > x⋆ such that the corresponding solution γ1(x) satisfies γ1(x0) = −1.

To be able to state our asymptotic result as x → ∞, we need first to introduce the slope function
SP (x0, x). This function is given by

SP (x0, x) =

�

γ1(x0)
2

x2
0

+ 2

Z x

x0

−P (z)

z3
dz

�
1
2

,

Note that, if D(P ) < ∞, the slope function SP (x0, x) goes to a finite value as x → ∞ for any x0.

We can now completely describe the asymptotic behavior as x → ∞ of solutions of (5):
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Theorem 2.4 Assume P (x) satisfies H1-H3. If there exists x0 > 0 such that either γ1(x0) > 0 or
γ1(x0) ≤ −1 then

x SP (x0, x) ≤ γ1(x) ≤ x

�

SP (x0, x) +
1

x0

�

− 1 if γ1(x0) > 0 ,

−x SP (x0, x) ≤ γ1(x) ≤ −x

�

SP (x0, x)−
1

x0

�

− 1 if γ1(x0) ≤ −1 .

Furthermore, if D(P ) < ∞ and γ1(x0) ≤ −1 or γ1(x0) > 0, there exists s > 0 such that

lim
x→∞

γ1(x)

x
=

(

−s < 0 if γ1(x0) ≤ −1

s > 0 if γ1(x0) > 0
.

If γ1(x0) ≤ −1, the convergence towards the limit is given by

�

�

�

γ1(x)

x
+ s

�

�

�
≤ C

Z ∞

x

−P (z)

z3
dz . (8)

If D(P ) < ∞ and γ1(x0) > 0, then (8) also hold, with −s replaced by s.

We want to stress here that the slope value s depends on the actual solution under consideration. Also,
for solutions that eventually enter the first quadrant, the value of the slope s has no reason to be the
same along the two branches of the solution (the one in the first quadrant, and the one in the fourth).
Also, note that the result depends only on the assumption γ1(x0) = −1.

We now state the existence and uniqueness of confinement solutions under hypothesis S4.

Theorem 2.5 Assume P (x) satisfies H1, H2 and S4. Then there exist a unique solution γc
1(x) of (4)

such that

lim
x→∞

γc
1(x) = lim

x→∞
−1 +

p

1 + 4P (x)

2
≡ γ∞ .

Furthermore, γc
1(x) satisfies the usual trichotomy as x decreases: either γc

1(0) = −1, or γc
1(0) = 0, or

γc
1(x) cannot be continued for x < xmin for some xmin > 0 where γc

1(xmin) = 0. Finally, if there exists
xmax such that ′P (x) > 0 for all x > xmax (hence P (x) is strictly increasing towards P∞), then

−
√
1 + 4P∞ + 1

2
≤ γc

1(x) ≤ −
p

1 + 4P (x) + 1

2

for all x > xmax.

As already noted above, we cannot show that γ⋆
1(x) = γc

1(x) without additional hypotheses on P (x).
We can however note that the two types of solutions are compatible: the confinement solution satisfies
the integral equation

γc
1(x) = −1 +

Z ∞

1

P (xt)

t2γc
1(xt)

dt , (9)
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γ∞ = −1

0

γ1
xxl xr

γc
1,−(x)

γc
1,+(x)

γ⋆
1,+(x)

γ⋆
1,−(x)

Figure 1: A ‘fragile’ solution: the solid bold curve is the solution combining asymptotic freedom
and confinement for some artificial P (x) with P∞ = 0. The dashed curves are the nullclines γ1 +
γ2
1 − P (x) = 0. The solid curves γc

1,± and γ⋆
1,± correspond to confinement and asymptotically free

solutions with P (x) perturbed so that the gap |xr−xl| is slightly larger (‘+’ subscripts) or smaller (‘−’
subscripts). In both cases, the asymptotically free solution and the confinement solution do not match.

whose r.h.s. converges to 0 as x → 0 if P (x)/γc
1(x) → 1 as x → 0. Characterizing the set of functions

P (x) for which the confinement solution and the asymptotically free one are the same is a difficult
problem, see e.g. figure 1 for an example with an ‘artificial’ P (x). A necessary condition is that
P (x) makes an excursion below −1

4
on (at least) one interval so that the nullclines, i.e. the location in

(x, γ1)-plane where γ′
1(x) = 0,

γ±(x) =
±
p

1 + 4P (x)− 1

2

show a gap as in figure 1. However if the gap is ‘too wide’, we have γ⋆
1(x) = γ∞ for some finite x,

and γc
1(xmin) = 0 for some xmin > 0, whereas if the gap is ‘too small’, γ⋆

1(x) intersects the nullcline
at some x > xr, and hence cannot reach γ∞ as x → ∞, while γc

1(x) intersects the nullcline at some
x < xl, and hence cannot reach 0 as x → 0.
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We conclude this section by explaining the terminology asymptotically free, confinement and strong
confinement for our solutions. These come from the study of the inverse Gluon propagator,

P−1(x,Q2) = Q2G(x, L) with L = ln(Q2/µ2) .

In Section (3.2) below, we solve the RGE equation expressing the scale invariance of G(x, L). In
particular, in Theorem 3.2, we show that if γ1(x) → γ∞ as x → ∞, then

G(x, L) =
X(L, x)

x
,

where X(t, x) is the running coupling, i.e. the solution of

dX(t, x)

dt
= X(t, x)γ1(X(t, x)) with X(t = 0, x) = x .

The possible large |t| behavior of X(t, x) are given by

X(t, x) ≃























x∞eγ∞t as t → −∞ if lim
x→∞

γ1(x) = γ∞ ,

− 1
P ′(0)t

as t → ∞ if lim
x→0

γ1(x)
x

= P ′(0) ,

x0e
−t as t → ∞ if lim

x→0
γ1(x) = −1 ,

where x∞ and x0 are some positive functions of x. Thus, in all cases where γ1(x) can be continued to
x = 0, G(x, L) → 0 in the ultraviolet regime L → ∞, and moreover

P−1(x,Q2) →







0 as L → ∞ if lim
x→0

γ1(x)
x

= P ′(0) ,

+x0 as L → ∞ if lim
x→0

γ1(x) = −1 ,

hence the terminology asymptotic freedom for the solution that satisfies γ1(x) = xP ′(0) + O(x2) as
x → 0. In the infrared regime, however,

G(x, L) ≃ x∞

x
eγ∞L =

x∞

x

�

Q2

µ2

�γ∞

as L → −∞ ,

and hence we find

lim
L→−∞

P−1(x,Q2) =







µ2 x∞

x
if lim

x→∞
γ1(x) = −1

∞ if lim
x→∞

γ1(x) < −1
, (10)

a finite mass gap if γ∞ = −1.
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3 The Gluon propagator, confinement and mass gaps in QCD

3.1 Corrections from dispersion relations

In QED, the coupling is weak at low energy or momentum transfer. In our previous work [5], we
could hence define boundary conditions at low energy, and studied the behavior of

P

k γkL
k for L > 0.

In particular, for γ1 = γ1(x̄(L)), a continuation to L < 0 was never needed by the choice of our
renormalization conditions. On the other hand, for large L ≫ 0 we could establish a separatrix, which
possibly avoids a Landau pole at any finite positive L. We conjectured that this might be the solution
chosen by Nature, and further detailed analysis of its properties awaits more analysis of the function
P (x). Should it turn out that P (x) is such that the separatrix will not avoid a Landau pole (i.e. turns
to infinity at finite L), we will have to turn to dispersion relations to understand the non-perturbative
corrections coming with such a pole, as recognized by Shirkov and collaborators early on [11].

For QCD, we again fix a small coupling, but this time large momentum transfer, L ≫ 0 for our
boundary conditions. We are now interested in a continuation to L ≪ 0, in particular we are interested
in L → −∞. Under very mild assumptions on P (x), and certainly by any experience from perturbative
approximations of the theory, we expect the anomalous dimension γ1 to go below the value −1 at some
finite coupling x, and hence x̄(L) to turn to infinity at some finite negative L. Shifting that L to zero
essentially defines the scale ΛQCD, and we are interested for that shifted LΛ to study the regime LΛ < 0,
in particular LΛ → −∞. To consider such a limit based from an approach formulated for LΛ > 0, we
will use dispersion relations. Our approach is motivated again by Shirkov and collaborators work [24].

On general grounds, we know that x̄(LΛ) and G(x, LΛ) can be treated by an unsubtracted dispersion
relation [23]:

fdisp(Q
2) =

Z ∞

0

ℑ(f(σ))
σ +Q2 − iη

dσ .

The inverse propagator needs a subtracted dispersion relation, which leads back to an unsubtracted
dispersion relation for G [23].

The Dyson–Schwinger equations themselves are supposed to hold for the whole theory regardless of
the sign of LΛ. Similar, the renormalization group equations for the running coupling are supposed to
hold. Our derivation which turned the Dyson–Schwinger equations into a ODE was valid for L > −LΛ,
hence remain valid, after shifting, for LΛ > 0.

Continuing to LΛ < 0 will generate non-perturbative corrections to γ1(x), and hence β(x), determined
from the requirement that equations of motion, renormalization group flow and analyticity properties
of field theory are what they are supposed to be.

Any perturbative approximation is in accordance with these properties of field theory only up to the
order considered. When we study solutions of Dyson–Schwinger equations, we demand accord with
these properties as a guide to find the necessary non-perturbative corrections in the region LΛ < 0.
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We hence will start by first applying a dispersion relation to analyze x̄(LΛ). That leads to a corrected
γ1,disp due to the fact that at LΛ = 0 we find that x̄ = ∞. Combining this with the assumption that the
uncorrected γ1(x) is driven below -1 at finite x allows an easy estimate of the corrected γ1,disp and also
allows for consistency with the direct analysis of G by dispersion methods.

Let us now start with a study of x̄(LΛ). We start our considerations by boundary conditions such that
G(x, L) = 1 at some very high momentum transfer µ2 ≫ 0, L = ln(Q2/µ2), which determines a
suitably small x in agreement with say deep inelastic scattering experiments [10].

We have

dx̄(x, L)

dL
= x̄γ1(x̄) ⇔

Z x̄(x,L)

x

1

uγ1(u)
du = L ,

and assume that the integral
Z ∞

x

1

uγ1(u)
du < ∞ .

In particular, we assume that γ1(x) < −1 for some positive finite x, in accordance with our previous
discussions and experimental evidence. We thus define

Λ2
QCD = µ2 + e

n

R ∞
x

1
uγ1(u)

du
o

.

Setting LΛ = ln(Q2/Λ2
QCD) to absorb the dependence on x, µ2, we get

−
Z ∞

x̄(LΛ)

1

uγ1(u)
du = LΛ . (11)

This equation defines LΛ(x̄) as well as the inverse function x̄(LΛ). Since x̄(0) = +∞, we cannot trust
our solution for Q2 < Λ2. To remedy this, we use our previous result that for large x, γ1(x) → −sx,
under our present assumptions.

Following the conventions of Shirkov [24], we define a running coupling in accordance with the ex-
pected analytic behavior of field theory using a dispersion relation:

x̄disp(Q
2) =

1

π

Z ∞

0

ℑ(x̄(ln(σ/Λ2)))

σ +Q2 − iη
dσ . (12)

The pole at −Q2 gives us back the uncorrected x̄(LΛ). But by assumption, there is a further pole in the
complex σ-plane, located at LΛ(∞) = 0. To study the contribution from that pole, we first note that as
x̄ → ∞, we have

LΛ = −
Z ∞

x̄(LΛ)

1

uγ1(u)
du ≃

Z ∞

x̄(LΛ)

1

su2
du =

1

sx̄(LΛ)
,

and hence x̄(LΛ) ≃ 1
sLΛ

near LΛ = 0. Feeding this relation into (12) gives (see [24])

x̄disp(LΛ) = x̄(LΛ) +
1

s(1− eLΛ)
.
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If we were to identify s with the one-loop coefficient of the β-function, this would reproduce Shirkov’s
analysis for one-loop QCD, see [24], where Shirkov also notes that s seem not to vary much at low loop
orders. Note that the correction to x̄(LΛ) goes to the finite value 1/s in the infrared limit LΛ → −∞.

Now, γ1 also obeys an unsubtracted dispersion relation. As γ1(x) is finite for all finite x and depends
on L only through x̄, the dispersion integral will correct γ1(x̄(L)) ≃ −sx̄(LΛ) by

γ1,disp(x̄(LΛ)) = γ1(x̄(LΛ))−
1

1− eLΛ
.

Note now that the correction to γ1 goes to −1 as LΛ → −∞. Using (1) and xγ1(x)∂x = ∂L, we get

γk,disp(x̄(LΛ)) = γk(x̄(LΛ)) + γk,corr(LΛ) with γk,corr(LΛ) →
(−1)k

k!
as LΛ → −∞ .

As such, the correction from the dispersion relation to the function G(x, LΛ) satisfies

Gcorr(x, LΛ) →
∞
X

k=0

(−1)k

k!
Lk
Λ = e−LΛ =

Λ2

Q2
as LΛ → −∞ ,

which gives an inverse propagator satisfying

lim
LΛ→−∞

P−1(x,Q2) = −Λ2 .

This gives a finite and renormalization group invariant positivity-violating mass gap. This compares
nicely with the results of Gracey et.al. [17].

Note that we rely completely on the assumption that physical quantities in massless field theory have
neither poles nor branch cuts off the negative (in our conventions) real axis and the result that the
solutions we get from our ODEs for the uncorrected x̄, γk, G(x, LΛ) are in accordance with these re-
quirements but for the isolated pole at LΛ = 0.

If a future analysis of P (x) justifies the trust in field theory expressed in this section remains to be
seen. We are content having identified a clean mechanism for the generation of a mass gap, based on
the consequences of the Hopf algebra structure underlying local field theory, and assuming analyticity
properties in accordance with the underlying axiomatic structure of local quantum fields.

Let us add a few comments which put our results in context. We rely on the assumptions on the function
P (x) outlined above. Note that the ODE for the anomalous dimension γ1(x) takes into account all the
iterations of superficially divergent graphs into each other, hence all renormalon ambiguities met in the
context of resummation of a perturbative series are taken care of. We hope this will make P (x), which
has an asymptotic expansion related to a weighted skeleton expansion, amenable to more constructive
methods of analysis in the future, in contrast to γ1(x) whose resummation as a perturbative series faces
such ambiguities.

On the other hand, we emphasize that our analysis avoids any truncation of Dyson–Schwinger equa-
tions, and any assumptions made on the infrared behaviour and infrared powercounting of QCD ampli-
tudes. It thus complements the approaches available so far in the literature, see for example [16]. While
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other methods based on Dyson–Schwinger equations attempt to solve them in some justifiable limit or
truncation, we establish properties of the solution of the full equations depending on assumptions made
for P (x).

3.2 Solving The Renormalization Group Equation for G(x, L)

Our goal in this section is to analyze the dressing function G(x, L) that modulates the free inverse
propagator. On general grounds, this function solves the Renormalization Group equation

�

− ∂L + xγ1(x)∂x − sγ1(x)
�

G(x, L) = 0 and G(x, 0) = 1 for x ≥ 0 , (13)

where s = ±1 distinguishes between writing the propagator as

P (x,Q2) =
G(x, ln(Q2/µ2))s

Q2

with s = 1 or s = −1. Note that the difference of (13) from the usual RGE equation
�

µ∂µ + β̃(g)∂g + γ̃(g)
�

G = 0

is merely a matter of convention on the definition of β, γ1 and x. In particular, (13) agrees with two-loop
computation of the Gluon propagator.

We will here make the following (minimal) hypothesis on γ1(x):

Hypothesis 3.1 The function γ1(x) is a negative C1([0,∞), (−∞, 0]) function whose only possible
zero is at x = 0, where γ1(x) = −dxq0 +O(xq0+1) with q0 ≥ 0 and d > 0.

Note that the results of Section 2 give q0 = 1 and d = −P ′(0) for the asymptotically free solution
γ1(x), in accordance with perturbation theory. For the solutions satisfying γ1(0) = −1 however, we
get q0 = 0 and d = 1.

We first note that one can attempt to solve (13) by writing

G(x, L) = 1− s
∞
X

k=1

γk(x)L
k with γk(x) =

γ1(x)

k

�

x∂x − s
�

γk−1(x) k ≥ 2 , (14)

since one has (at least formally) that

�

− ∂L + xγ1(x)∂x − sγ1(x)
�

G(x, L) = −sγ1(x) + s

∞
X

k=1

kγk(x)L
k−1 − γ1(x)

�

x∂x − s
�

γk(x)L
k

= s
∞
X

k=2

�

γk(x)−
γ1(x)

k

�

x∂x − s
�

γk−1(x)

�

kLk = 0 . (15)
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This approach naturally raises the (difficult) question of convergence of the series in (14) and (15).
We will use instead an alternative way of solving (13) that avoids these convergence problems. In
particular, while the series (14) necessarily converge on a symmetric interval of the form (−L0, L0) for
some (possibly infinite) L0 ≥ 0, our approach will give a solution to (13) that is defined on an interval
of the form (−L0,∞) for the same L0. As such, the approach below shows that the limit L → ∞ of
G(x, L) makes sense also if the series solution converges only on a finite interval.

Our method is based on the fact that (13) can be transformed into a linear transport equation by ap-
propriately factorizing G(x, L) into one part that cancels the term involving no derivatives and one part
that solves a genuine transport equation of the form

(−∂L + xγ1(x)∂x)H(x, L) = 0 . (16)

As such, it is important at first to consider the characteristics curve of (16). For each fixed x > 0, we
first define X(t, x) as the solution of the running coupling equation

dX(t, x)

dt
= X(t, x)γ1(X(t, x)) with X(t = 0, x) = x . (17)

Since γ1(x) is assumed to be C1, solutions of this equation exist at least locally around t = 0. For
further reference, we denote by D(x) the maximal interval of existence of the solution of (17) for a
fixed x.

Then for each fixed (x, L) ∈ R
+ ×R, we define the characteristic curve C(x, L) as

C(x, L) =
n

(X(t, x), L− t) with t ∈ D(x)
o

,

=

� �

X,L−
Z X

x

dz

zγ1(z)

�

with X ∈ R
+

�

. (18)

Note that both above formulations of the characteristic curve C(x, L) are equivalent. The characteristics
corresponding to different values of L are vertical translations of the same curve in the (x, L)-plane.
By hypothesis 3.1, we get that the characteristics are all asymptotically vertical as X → 0, and, as a
function of t, we have

X(t, x) ≃
(

e−ct as t → ∞ if q0 = 0

(ct)
1

−q0 as t → ∞ if q0 > 0
. (19)

The behavior of the characteristics as X → ∞ depends on the asymptotic behavior of γ1(x) as x → ∞.
In all cases, C(x, L) approaches (∞, L − L∞(x)) as X → ∞, where L∞(x) is the possibly infinite
quantity defined by

L∞(x) =

Z ∞

x

dz

zγ1(z)
.

This shows that the maximal interval of existence for solutions of (17) is D(x) = (L∞(x),∞). The
results of Section 2 show that L∞(x) is finite if there exists x0 > 0 where γ1(x0) = −1, and infinite

17



L

x

L

x

L = L∞(x)

Figure 2: Generic shape of characteristics curves in (x, L)-plane. The left panel shows the case where
L∞(x) is finite, the right panel when it is infinite. In the left panel, the characteristics cross the line L =
0 if and only if they are above the (bold) curve L = L∞(x), and all characteristics are asymptotically
horizontal as x → ∞. In the right panel, all characteristics cross the line L = 0, as they link (0,−∞)
to (∞,∞).
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otherwise. If L∞(x) > −∞, the characteristic C(x, L) intersects the line L = 0 if and only if L >
L∞(x). If −1 < γ1(x) < 0 for all x > 0, then L∞(x) = −∞ for all x > 0, and all characteristic
curves cross the line L = 0. The generic shape of the characteristics curves is displayed in figure 2.

We can now give the solution of (13) in accordance (for s = −1, as expected) with Bogoliubov-Shirkov
([12], App.IX, eq.(27)):

Theorem 3.2 Assume γ1(x) satisfies Hypothesis 3.1. Then the solution of (13) is given by

G(x, L) =

�

x

X(L, x)

�s

(20)

for all (x, L) such that L∞(x) < L < ∞ and x > 0.

We want to stress here that the relation (20) hold only for pair of values of (x, L) satisfying L∞(x) <
L < ∞. For pairs (x, L) with L ≤ L∞(x), G(x, L) can only be determined from G(x, 0) = 1 if one
specifies γ1(x) for x < 0 as well.

Assuming X(t, x) to be analytic for all t ∈ D(x), it is a straightforward computation (see Section
(3.3)) to show that (14) is the Taylor series expansion of (20) at L = 0. As such, the series solution
(14) is expected not to converge for |L| > L∞(x). However, the function provided by (20) is defined
for unbounded positive L and do solve (13) for all such L. If L∞(x) > −∞, Theorem 3.2 thus gives
G(x, L) for values of (x, L) for which the series formulation fails.

proof of Theorem 3.2. We first set

G(x, L) = xsH(x, L) (21)

for all x > 0. Substitution into (13) gives

�

− ∂L + xγ1(x)∂x

�

H(x, L) = 0 and H(x, 0) = x−s if x > 0 . (22)

We then note that H(x, L) is constant along the characteristic curve C(x, L), for we have

d

dt

�

H(X(t, x), L− t)
�

= −D2H(X(t, x), L− t) +D1H(X(t, x), L− t)
dX(t, x)

dt

=
h�

− ∂L + xγ1(x)∂x

�

H(x, L)
i

x=X(t,x),L=L−t
= 0 .

If the curve C(x, L) crosses the line L = 0 in the (x, L)-plane, it does so at t = L, and we get

H(x, L) = H(X(L, x), 0) = X(L, x)−s ,

which completes the proof.
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3.3 The series solution for G(x, L)

Throughout this section, we consider γ1 to be a fixed solution of (5) that exists for all x ≥ 0. We first
pick x0 > 0 and t0 ∈ R. These values are arbitrary. We then introduce

T (x) = t0 +

Z x

x0

dz

γ1(z)z
. (23)

We then note that

lim
x→∞

T (x) =

(

T∞ = −∞ if − 1 < γ1(x) ≤ 0 ∀x ≥ 0 ,

T∞ > −∞ if ∃x0 > 0 with γ1(x0) = −1
. (24)

Since T ′(x) = 1
γ1(x)x

< 0, x 7→ T (x) is an invertible map from R
+ to [T∞,∞). Moreover, we have

T (0) = ∞ and T (∞) = T∞. The inverse map x̃(t) (the solution of t = T (x̃(t))) satisfies the ‘running
coupling equations’

dγ̃1(t)

dt
= γ̃1(t) + γ̃1(t)

2 − P (x̃(t)) and
dx̃(t)

dt
= x̃(t)γ̃1(t) , (25)

where γ̃1(t) = γ1(x̃(t)). Since T (∞) = T∞, x̃(t) diverges as t → T∞ (and so does γ̃1(t) if γ1(x) = −1
for some x > 0).

Consider now the series solution (14). We first introduce the functions Sk such that

γk(x) =
1

k!
xs Sk(T (x))

for k ≥ 1. Substitution into (14) gives

Sk(T (x)) = S ′
k−1(T (x)) =

�

d

dt
Sk−1(t)

�
�

�

�

�

t=T (x)

.

Since s = ±1, we find from (25) that S1(t) =
γ̃1(t)
x̃(t)s

= −s d
dt
(x̃(t)−s). Using s2 = 1, we find

−sγk(x) =
xs

k!

�

dk

dtk

� 1

x̃(t)s

�

�
�

�

�

�

t=T (x)

(26)

for all k ≥ 1. Since x̃(T (x)) = x, the r.h.s. of (26) is equal to 1 when k = 0, and so

G(x, L) = 1 +

∞
X

k=1

−sγk(x)L
k = xs

∞
X

k=0

Lk

k!

�

dk

dtk

� 1

x̃(t)s

�

�
�

�

�

�

t=T (x)

. (27)

We now fix 0 < x < ∞. Since x is finite, T (x) > T∞, and since the above series is a Taylor series
of x̃(t)−s at t = T (x), the series converges and takes the value x̃(t + L)−s for small values of L if we
assume z(t) to be analytic at t = T (x). We thus find

G(x, L) =

�

x

x̃(T (x) + L)

�s

, (28)
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at least for sufficiently small L. This formula is the same as the one of Theorem 3.2: x̃(T (x)+ t) solves

dx̃(T (x) + t)

dt
= x̃(T (x) + t)γ1(x̃(T (x) + t)) , (29)

with initial condition x̃(T (x)) = x at t = 0, and so x̃(T (x) + t) = X(t, x) by uniqueness of solutions
of (17) and (29).

The question of convergence of (27) for large L depends on the (in-)finiteness of T∞. If T∞ is finite,
x̃(t) has a pole as t → T∞, and (27) must diverge for

L ≤ T∞ − T (x) =

Z ∞

x

dz

zγ1(z)
= L∞(x)

as in Section 3.2. However, since the series (27) can only converge for L on symmetric intervals, it is
also divergent for L ≥ −L∞(x) > 0. In that case, we have to revert to Section 3.2 for the validity of
(28).

4 Technical details for QCD

In this section, we present the technical details proving the statements of Section 2 on QCD. In our
analysis of (5), we use mainly two tools: integral representations of the solutions and null-clines. Our
strategy is directly inspired from [6] and our previous work [5] on QED.

There are two types of integral equations one can write for (5). The first one (see also [5]) reads

γ1(x) =
x(1 + γ1(x

⋆))

x⋆
− 1− x

Z x

x⋆

P (z)

z2γ1(z)
dz . (30)

For the second one, we let γ1(x) be a solution of (5) and γ2(x) be any function. Then for all x0, x ∈ I,
where I is the common interval where γ1 and γ2 are defined, we have

γ1(x)− γ2(x) =
�

γ1(x0)− γ2(x0)
�

K[γ1, γ2](x0, x) +

Z x0

x

R[γ2](y)K[γ1, γ2](y, x) dy , (31)

where

R[γ2](x) ≡
dγ2(x)

dx
− γ2(x) + γ2(x)

2 − P (x)

xγ2(x)
,

K[γ1, γ2](x0, x) ≡
�

x

x0

�

exp

�

−
Z x0

x

P (z)

zγ1(z)γ2(z)
dz

�

.

The null-clines are defined as the locations in (x, γ1)-plane where solutions satisfy γ′
1(x) = 0). These

are given by the graph of the two functions

γ±
c (x) =

±
p

1 + 4P (x)− 1

2
.
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In particular, as P (0) = 0 by hypothesis H1, and P (x) > −1
4

for x ∈ [0, x⋆], the null-clines extend at
least up to the line x = x⋆ in the (x, γ1)-plane. On the null-clines, the second derivative of γ1 is given
by

γ′′
1 (x) =

d

dx



f(γ±
c (x), x)

�

=
P ′(x)

|xγ±
c (x)|

. (32)

By hypotheses H1 and H2, we have

P ′(x) = P ′(0) +

Z x

0

P ′′(z)dz ≤ P ′(0) < 0 ∀x ∈ [0, x⋆] . (33)

Hence by (32), solutions of (5) can have at most one local maximum in the interval x ∈ [0, x⋆], and no
local minimum. For further reference, we also note that by hypotheses H1 and H2,

P (x) = P ′(0)x +

Z x

0

�
Z y

0

P ′′(z)dz

�

dy ≤ P ′(0)x ∀x ∈ [0, x⋆] . (34)

In particular, we have

min
x∈[0,x⋆]

−P (x)

x
= −P ′(0) = |P ′(0)| > 0 , (35)

and since P (x⋆) > −1
4

by hypothesis on x⋆, we have x⋆ < − 1
4P ′(0)

< ∞.

4.1 Existence, uniqueness and properties of the asymptotic freedom solution

We can now establish the existence, uniqueness and properties of the solution with asymptotic freedom.

Theorem 4.1 Under the hypotheses H1 and H2, there exists a unique value γ⋆
1(x

⋆) such that the cor-
responding solution γ⋆

1(x) of (5) exists for all x ∈ [0, x⋆] and satisfies lim
x→0

γ⋆
1(x) = 0.

Proof. We first prove that the solution is unique. Namely, assume ab absurdum that γ1 and γ2 are two
solutions of (5) on [0, x⋆] satisfying lim

x→0
γi(x) = 0. Since γi(x

⋆) < 0 and lim
x→0

γi(x) = 0, we necessarily

have γi(x) ≥ γ+
c (x) for all x ∈ [0, x⋆]. Since γ2 is a solution, we can apply (31) with R[γ2] = 0, and

using (35), we get

|γ1(x)− γ2(x)| ≥ |γ1(x⋆)− γ2(x
⋆)| x

x⋆
exp

�
Z x⋆

x

|P ′(0)|
γ+
c (z)

2
dz

�

. (36)

Since γ+
c (z) = P ′(0)z + O(z2) as z → 0, the r.h.s. of (36) diverges as x → 0, which contradicts

lim
x→0

γi(x) = 0. This shows that there can be at most one solution of (5) satisfying lim
x→0

γ1(x) = 0.
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To prove the existence of this solution, we define the two sets

I1 = {γ1(x⋆) ∈]γ+
c (x

⋆), 0[ s.t. ∃xmin ∈]0, x⋆[ with γ1(xmin) = 0} ,
I2 = {γ1(x⋆) ∈]γ+

c (x
⋆), 0[ s.t. ∃x1 ∈]0, x⋆[ with γ1(x1) = γ+

c (x1)} .

We will prove in Propositions 4.2 and 4.4 below that these sets are non-empty. Continuity of solutions
w.r.t. initial conditions imply that they are open, while (31) with R[γ2] = 0 shows that solutions are
ordered, which imply that each Ii is a single interval. Now since I1 and I2 are disjoint open intervals,
there exist at least one initial condition γ⋆

1(x
⋆) that is in neither sets, and hence the corresponding

solution γ⋆
1(x) satisfies limx→0 γ

⋆
1(x) = 0.

To establish that I1 is non-empty, we show that initial conditions at x = x⋆ sufficiently close to the
x-axis necessary cross it at some xmin < x⋆.

Proposition 4.2 For all γ0 ∈ [P ′(0)x⋆, 0[, there exists xmin ∈]0, x⋆[ such that the solution of (5) only
exists on x ∈ [xmin, x

⋆] and γ1(xmin) = 0.

Proof. Pick γ2(x) = P ′(0)x. Then by (34), we have

R[γ2](x) =
1

x2P ′(0)

Z x

0

�
Z y

0

P ′′(z)dz

�

dy > 0 ∀x ∈ [0, x⋆].

Applying (31), we get

γ1(x) = P ′(0)x +

Z x⋆

x

R[γ2](y)K[γ1, γ2](y, x) dy > P ′(0)x ∀x < x⋆ . (37)

In particular, γ1 cannot cease to exist by diverging to −∞ at a finite x < x⋆. We also see from (37) that
there exists x0 < x⋆ with γ1(x0) > P ′(0)x0. Using R[γ2] > 0, (35) and γ1(x) ≥ P ′(0)x in (31), we
find

γ1(x) ≥ P ′(0)x+ (γ1(x0)− P ′(0)x0)
x

x0

exp

�
Z x0

x

−1

P ′(0)z2
dz

�

≥ x

x0

�

P ′(0)x0 + (γ1(x0)− P ′(0)x0)e
1

|P ′(0)|x
− 1

|P ′(0)|x0

�

.

The proof is completed since γ1(x0)− P ′(0)x0 > 0.

Before proving that the interval I2 is non-empty, we can establish an additional property of the asymp-
totically free solution γ⋆

1 :

Corollary 4.3 The solution γ⋆
1 of Theorem 4.1 satisfies

γ+
c (x) < γ1(x) < P ′(0)x . (38)

for all x ∈]0, x⋆].
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Proof. To get the lower bound in (38), we recall that solutions can have at most one local maximum in
]0, x⋆] and no local minimum. Since lim

x→0
γ⋆
1(x) = 0, γ1(x) > γ+

c (x) for all x ∈]0, x⋆]. The upper bound

follows immediately from Proposition 4.2.

We now show that initial conditions sufficiently close (but above) the null-cline γ+
c (x

⋆) necessarily
cross it at some x < x⋆.

Proposition 4.4 There exist ǫ1 ≪ 1 sufficiently small such that the solution of (5) with γ1(x
⋆) =

γ+
c (x

⋆)(1− ǫ1) satisfies γ1(x) = γc(x) for some 0 < x < x⋆.

Proof. Let 0 < ǫ1 < 1
2

and γ1(x
⋆) = γ+

c (x
⋆)(1 − ǫ1). By continuity of solutions and since γ+

c (x
⋆) <

γ1(x
⋆) < γ1(x

⋆)(1− 2ǫ1), there exists 0 < x1 < x⋆ such that
(

γ+
c (x

⋆) < γ1(x) < γ+
c (x

⋆)(1− 2ǫ1) ∀x ∈]x1, x
⋆] and

γ1(x1) = γ+
c (x

⋆) or γ1(x1) = γ+
c (x

⋆)(1− 2ǫ1)
. (39)

Using these inequalities and hypothesis H2, we get

dγ1
dx

≥ − 2ǫ1
1− 2ǫ1

P (x⋆)

γ+
c (x

⋆)
∀x ∈ [x1, x

⋆] ,

which, upon integration, gives

γ1(x) ≤ γ+
c (x

⋆)(1− ǫ1) +
2ǫ1

1− 2ǫ1

P (x⋆)

γ+
c (x

⋆)
ln

�

x⋆

x

�

∀x ∈ [x1, x
⋆] . (40)

Let now x2 be the value at which the r.h.s. of (40) attains γ+
c (x

⋆)(1− 2ǫ1), namely

x2 = x⋆ exp

�−γ+
c (x

⋆)2(1− 2ǫ1)

2|P (x⋆)|

�

< x⋆ .

We now consider the two alternatives x2 < x1 and x2 ≥ x1.

Assume first that x2 < x1. Then (40) shows that γ1(x1) < γ+
c (x

⋆)(1 − 2ǫ1), and thus by definition of
x1 (see (39)), we have γ1(x1) = γ+

c (x
⋆) and since by H2, γ+

c (x) increases as x → 0, there exists an
x ∈ [x1, x

⋆] with γ1(x) = γ+
c (x).

Consider now the other possible case, namely x2 ≥ x1. Since now γ+
c (x

⋆) ≤ γ1(x) ≤ γ+
c (x

⋆)(1− 2ǫ1)
for all x ∈ [x2, x

⋆], and we conclude from (40) that

γ1(x)− γ+
c (x) ≤ γ+

c (x
⋆)− γ+

c (x)− ǫ1γ
+
c (x

⋆) +
2ǫ1

1− 2ǫ1

P (x⋆)

γ+
c (x

⋆)
ln

�

x⋆

x

�

. (41)

The proof is completed by noting that for x very close to (but strictly less than) x⋆, γ+
c (x

⋆)− γ+
c (x) is

negative, while the last two (positive terms) in (41) can be made arbitrarily small by picking ǫ1 small
enough.
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4.2 Behavior towards x = 0 of non-asymptotically free solutions

We first consider solutions of (5) corresponding to initial conditions γ1(x
⋆) < γ⋆

1(x
⋆). We have the

following result.

Proposition 4.5 Let γ0 < γ⋆
1(x

⋆). The corresponding solution γ1(x) of (5) exists for all x ∈ [0, x⋆] and
satisfies γ1(x) = −1 +O(x ln(x)) as x → 0.

Proof. Note first that since γ0 < γ⋆
1(x

⋆), there always exists x0 ≤ x⋆ such that γ1(x0) ≤ γ+
c (x0).

Namely, if this does not already hold at x⋆, the proof of Theorem 4.1 shows that it will eventually hold
at some smaller value of x. Since solutions can have at most one local maximum and no local minimum
in [0, x⋆], we then have

min(−1, γ1(x0)) ≤ γ1(x) ≤ γ+
c (x0) ∀x ∈ [0, x0] .

In particular, these solutions exist for all values of x ∈ [0, x⋆]. We then apply (30) and get

−1 + Cx+
x

|γ+
c (x0)|

Z x0

x

−P (z)

z2
dz ≤ γ1(x) ≤ −1 + Cx+

x

max(1, |γ+
c (x0)|)

Z x0

x

−P (z)

z2
dz ,

where C = 1+γ1(x0)
x0

. By hypotheses H1 and H2 (see also (34), P (x) = P ′(0)x + O(x2) it is then
straightforward to prove that γ1(x) = −1 +O(x(1 + ln(x))) as x → 0, which completes the proof.

We now consider solutions of (5) corresponding to initial conditions γ1(x
⋆) in the interval ]γ⋆

1(x
⋆), 0[.

We have the following result.

Proposition 4.6 Let γ0 ∈]γ⋆
1(x

⋆), 0[. The corresponding solution γ1(x) of (5) satisfies γ1(xmin) = 0 for
some xmin ∈]0, x⋆[. It can then be continued and enters the first quadrant (becoming double-valued),
and thus satisfies γ1(x0) > 0 for x > xmin.

Proof. Let xmin ≥ 0 be the minimal value such that γ1(x) exists ∀x ∈ [xmin, x
⋆]. We claim that

xmin > 0 and γ1(xmin) = 0. Namely, since γ1(x
⋆) > γ⋆

1(x
⋆), we have by (31) with R[γ2] = 0 that

γ1(x) = γ⋆
1(x) + (γ1(x

⋆)− γ⋆
1(x

⋆))
x

x⋆
exp

�
Z x⋆

x

−P (z)

zγ⋆
1(z)γ1(z)

dz

�

> γ⋆
1(x) (42)

for all x ∈ [xmin, x
⋆]. Assuming ab absurdum that xmin = 0 and γ1(x) < 0 for all x ∈ [0, x⋆] leads to

a contradiction, for then we would have γ1(x) > γ⋆
1(x) ≥ γ+

c (x) for all x ∈ [0, x⋆], and using (35) and
(42), we get

γ1(x) ≥ γ⋆
1(x) + (γ1(x

⋆)− γ⋆
1(x

⋆))
x

x⋆
exp

�
Z x⋆

x

|P ′(0)|
γ+
c (z)

2
dz

�

25



which goes to +∞ as x → 0. So xmin > 0 and γ1(xmin) = 0. Although (5) is singular at γ1(xmin) = 0,
these solutions can be continued in the first quadrant by reverting to the so-called ‘running coupling’
formulation of (5) (see also (25) and [5]). Namely, we introduce a new independent variable t, and
write x = X(t) and γ1(X(t)) = γ̃1(t), getting

dγ̃1(t)

dt
= γ̃1(t) + γ̃1(t)

2 − P (X(t)) γ̃1(t0) = 0 ,

dX(t)

dt
= X(t)γ̃1(t) X(t0) = xmin .

These equations are not singular at γ̃1 = 0, and thus solutions will exist (at least locally around t = t0).
Since P (x) < 0, the solution to these equations will satisfy γ̃1(t) = γ0 > 0 and X(t) = x0 > xmin for
some finite t > t0.

4.3 Behavior as x → ∞

We first show that solutions in the first quadrant are global, and satisfy appropriate estimates as x → ∞.

Proposition 4.7 Let γ1(x0) > 0, and assume P (x) satisfies H3. The corresponding solution γ1(x)
exists for all x ≥ x0, and satisfies

0 < xSP (x0, x) ≤ γ1(x) ≤ xSP (x0, x) +
x

x0

− 1

for all x ≥ x0.

Proof. We first note that

1

2

d

dx

�

γ1(x)
2
�

= γ1(x)
dγ1
dx

=
γ1(x)

x
+

γ1(x)
2 − P (x)

x
≥ γ1(x)

2 − P (x)

x
.

By integration, we find

γ1(x) ≥ x

s

γ1(x0)2

x2
0

+ 2

Z x

x0

−P (z)

z3
dz = xSP (x0, x) > 0 . (43)

This shows that solutions cannot cease to exist by reaching γ1(x) = 0 at some x > x0. Inserting (43)
into (30) gives

γ1(x) ≤
x(1 + γ1(x0))

x0
− 1 + x

Z x

x0

−P (z)

z3SP (x0, z)
dz = xSP (x0, x) +

x

x0
− 1 , (44)

since

dSP (x0, x)

dx
= − P (x)

x3SP (x0, x)
.
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The proof is completed since (44) shows that solutions cannot cease to exist by diverging to ∞ at a
finite x ≥ x0 either.

We now turn to the fate of any type of solutions of (5) with γ1(x
⋆) < 0 as x → ∞. Our first result is

that these solutions are global, i.e., they can be extended as x → ∞. In particular, the asymptotically
free γ⋆

1(x) is global.

Proposition 4.8 Let γ1(x
⋆) < 0 and assume P (x) satisfies H3. The corresponding solution of (5)

exists for all x ≥ x⋆, and satisfies

−xSP (x
⋆, x) ≤ γ1(x) ≤ max

 

γ1(x
⋆), sup

z∈[x⋆,x]

p

1 + 4P (z)− 1

4

!

< 0

for all x ≥ x⋆. In particular, if D(P ) < ∞, solutions grow at most linearly as x → ∞.

Proof. For the lower bound, note first that, as in the proof of Proposition 4.6, we have

1

2

d

dx

�

γ1(x)
2
�

= γ1(x)
dγ1
dx

=
γ1(x)

x
+

γ1(x)
2 − P (x)

x
≤ γ1(x)

2 − P (x)

x
,

which gives γ1(x) ≥ −xSP (x
⋆, x) upon integration. This shows that solutions cannot diverge to −∞

at a finite x > x⋆. Now suppose ab absurdum that there exists xmax < ∞ such that γ1(xmax) = 0. By
hypothesis H1-H3, we have −1

4
< supx∈[x⋆,xmax] P (x) < 0, and thus

γmax = max

 

γ1(x
⋆), sup

z∈[x⋆,xmax]

p

1 + 4P (z)− 1

4

!

satisfies −1
4
< γmax < 0. Note then that f(γ1, x) is strictly negative along the γ1 = γmax line since

sup
x∈[x⋆,xmax]

xf(γmax, x) ≤
�

1 + γmax −
δ

γmax

�

≤ −1

4
.

Since γ1(x
⋆) ≤ γmax, this shows that γ1(x) ≤ γmax for all x ∈ [x⋆, xmax], contradicting the ab absurdum

assumption. Hence solutions exist globally as x → ∞.

Our second result concern the asymptotics of some of these solutions as x → ∞. Namely, we can
estimate the growth of solutions that are somewhere less than −1.

Proposition 4.9 Assume P (x) satisfies H3 and γ1(x
⋆) < 0. If the corresponding solution of (5) satis-

fies γ1(x0) ≤ −1 for some x0 ≥ x⋆, then

−xSP (x0, x) ≤ γ1(x) ≤ −xSP (x0, x) +
x

x0

− 1 < 0

for all x ≥ x0.
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Proof. The lower bound is already contained in Proposition 4.8. The upper bound then follows imme-
diately from the lower bound and the integral formulation (30).

The condition γ1(x0) ≤ −1 is essential in Proposition 4.9 to guarantee that the upper bound is indeed
negative. We now give possible scenarios that guarantee solutions indeed reach γ1 = −1.

Proposition 4.10 Assume one of the two following statements holds:

1. −1 < γ1(x
⋆) < 0 and P (x) satisfies S1 or S3,

2. −1 < γ1(x
⋆) ≤ γ⋆

1(x
⋆) and P (x) satisfies S2.

Then there exists x0 > x⋆ such that the corresponding solution γ1(x) satisfies γ1(x0) = −1.

Proof. We consider the alternative 1. first. Note that S1 implies S3, so we can use hypothesis S3 only.
As shown in Proposition 4.8, any solution starting at γ1(x

⋆) < 0 exists for all values of x ≥ x⋆. In
particular, γ1(xc) = γmin < 0. If γmin ≤ −1, the proof is completed. If −1 < γmin < 0, we assume
ab absurdum that γ1(x) > −1 for all x ∈ [xc, xd]. Note that there cannot be an x ∈ [xc, xd] such that
γ1(x) = 0, hence −1 < γ1(x) < 0 for all x ∈ [xc, xd], and we have

d

dx
(γ1(x)

2) = 2
γ1(x) + γ1(x)

2 + 1
4

x
− 4P (x) + 1

2x
≥ −4P (x) + 1

2x

for all x ∈ [xc, xd]. Upon integration, we thus find that

γ1(x) ≤ −
s

γ2
min −

Z x

xc

1 + 4P (z)

2z
dz ≤ −

q

1 + γ2
min < −1

by hypothesis S3, which is a contradiction.

Consider then the alternative 2. Under hypothesis S2, we can extend (35) to get P (x) ≤ P ′(0)x for
all x ∈ [0, xc]. Consider now γ2(x) = P ′(0)x. We have R[γ2](x) > 0 for all x ∈ [0, xc]. Thus, since
γ1(x

⋆) ≤ γ⋆
1(x

⋆) and γ⋆
1(x

⋆) < P ′(0)x⋆ by Corollary 4.3, we find from (31) that

γ1(x) = P ′(0)x−
�

�

�
γ1(x

⋆)− γ2(x
⋆)
�

�

�
K[γ1, γ2](x

⋆, x)−
Z x

x⋆

R[γ2](y)K[γ1, γ2](y, x) dy ≤ P ′(0)x

for all x ∈ [x⋆, xc]. The proof is completed since xc > − 1
P ′(0)

by hypothesis S2, and thus γ1(xc) ≤
P ′(0)xc ≤ −1.

We conclude this section by showing that D(P ) < ∞ implies that all solutions that are either positive
or go below γ1 = −1 have a finite slope as x → ∞.
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Proposition 4.11 Assume D(P ) < ∞ and γ1(x0) ≤ −1 or γ1(x0) > 0, there exists s > 0 such that

lim
x→∞

γ1(x)

x
=

(

−s < 0 if γ1(x0) ≤ −1

s > 0 if γ1(x0) > 0
.

If γ1(x0) ≤ −1, the convergence towards the limit is given by

�

�

�

γ1(x)

x
+ s

�

�

�
≤ C

Z ∞

x

−P (z)

z3
dz . (45)

If D(P ) < ∞ and γ1(x0) > 0, then (8) also hold, with −s replaced by s.

Proof. Note that from Proposition 4.7 and 4.9, the hypothesis D(P ) < ∞ implies that all solutions
under consideration here satisfy

c1 x ≤ |γ1(x)| ≤ c2 x (46)

for some c1, c2 > 0 and all x ≥ x0. The integral formulation (30) then gives

γ1(x)

x
=

1 + γ1(x0)

x0
− 1

x
−
Z x

x0

P (z)

z2γ1(z)
dz , (47)

from which the proof follows immediately, since the r.h.s. of (47) converges by (46) and the hypothesis
D(P ) < ∞.

4.4 The confinement solution

In this section, we consider P (x) satisfying the hypotheses H1,H2 and S4. In particular, recall that we
assume the existence of xr > 0 such that P (xr) = −1

4
and P (x) > −1

4
for all x > xr and P (x) tending

to a finite limit as x → ∞. Any solution of (5) that satisfies

lim
x→∞

γ1(x) = γ∞ ≡ −1 +
√
1 + 4P∞

2
, (48)

needs to solve the integral equation obtained by taking the (formal) limit x⋆ → ∞ in (30), namely

γc
1(x) = −1 + x

Z ∞

x

P (z)

z2γc
1(z)

dz = −1 +

Z ∞

1

P (xt)

t2γc
1(xt)

dt . (49)

Defining

T [h](x) =

Z ∞

1

P (xt)− P∞

t2(γ∞ + h(xt))
dt− P∞

γ∞

Z ∞

1

h(xt)

t2(γ∞ + h(xt))
dt ,
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we see that any confinement solution can be written as γc
1(x) = γ∞+h(x) where h(x) satisfies h(x) =

T [h](x). Consider then Bx0 the Banach space obtained by completing the space of C∞
0 ([x0,∞),R)

functions under the norm

kfkx0 ≡ sup
x≥x0

|f(x)|+ x|f ′(x)| .

Since lim
x→∞

P (x) − P∞ = lim
x→∞

xP ′(x) = 0, kP − P∞kx0 can be made as small as one likes by taking

x0 > xr large enough. Standard arguments then show that T is a contraction in a ball of positive
radius ρ < 1 centered at 0 in B, which shows there exists a unique h ∈ B solving h = T [h]. Since
h(x) is regular, γc

1(x) = γ∞ + h(x) solves (5) for all x ≥ x0. We now remark that γc
1(x) will satisfy

(49) as long as it exists when x decreases below x0. However, it can only cease to exist if it satisfies
γ1(xmin) = 0 for some xmin > 0, for the r.h.s. of (5) is negative for large negative γ1. Assuming it can
be continued up to x = 0, we can conclude from Theorem (2.2) that either γc

1(0) = 0 or γc
1(0) = −1.

Finally, if P ′(x) > 0 for all x > xmax, then the lower nullcline

γ−
1 (x) = −

p

1 + 4P (x) + 1

2

is decreasing towards γ∞. If there was an x0 > xmax such that γc
1(x0) = γ−

1 (x0), then γc
1(x) would

enter a region of strictly positive derivatives w.r.t. x, and hence we would get γc
1(x) > γ−

1 (x0) > γ∞,
contradicting (48). Similarly, if there was an x0 > xmax such that γc

1(x0) = γ∞, then γc
1(x) would enter

a region of strictly negative derivative w.r.t. x, and hence would satisfy γc
1(x) < γ∞ for all x > x0,

contradicting (48) again. We thus find that under the monotonicity assumption on P (x), we have

γ∞ ≡ −1 +
√
1 + 4P∞

2
< γ1(x) < −1 +

p

1 + 4P (x)

2

for all (finite) x > xmax. This concludes the proof of Theorem 2.5.

5 Post Scriptum: QED[5] revisited

In a previous publication (see [5]), we have considered the initial value problem

dγ1(x)

dx
= fs(γ1(x), x) ≡

γ1(x) + γ1(x)
2 − P (x)

sxγ1(x)
, γ1(x0) = γ0 > 0 . (50)

with 0 < x0 < 1 fixed and P a C2 function on [0,∞), positive on (0,∞), with P (0) = 0 and P ′(0) 6= 0.
Defining the following (possibly infinite) quantity

D(P ) =

Z ∞

x0

−P (z)

z3
dz ,

we showed that D(P ) was intimately linked to the behavior/existence as x → ∞ of solutions starting
with γ1(x0) > 0. Namely, if D(P ) < ∞, we showed that there was a smallest (non-zero) value γ⋆

1(x0)
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separating global solutions (with γ1(x0) ≥ γ⋆
1(x0)) from solutions that cannot be continued to x = ∞.

We also showed that despite the singular nature of (50) as x → 0 and/or γ1 → 0, all solutions of (50)
could be continued for all x ∈ [0, x0], and would approach (0, 0) while satisfying for all x ∈ [0, x0] the
bound

γ1(x) ≤







Cb x if s < 1

Cb x | ln(x)| if s = 1

Cb x
1/s if s > 1

, (51)

for some constant Cb = Cb(s, γ0). In Lemma 5.2 below, we will improve the above to get linear bounds
in all cases (i.e. for s ≥ 1 as well). In the mean time, we define, for any (finite) integer p ≥ 2, the
truncation of the (divergent) series solution:

γ2,p(x) = P ′(0)x+

p
X

n=2

an xn .

The coefficients {an}n=2...p can be found recursively by imposing |R[γ2,p](x)| ≤ Cxp−1 as x → 0,
where the remainder map R is defined by

R[γ2](x) ≡
dγ2(x)

dx
− γ2(x) + γ2(x)

2 − P (x)

sxγ2(x)

for γ2(x) any function on [0, x0]. Note that by choosing x0 sufficiently small, we can ensure that
γ2,p(x) > 0 for all x ∈ [0, x0]. Also, since P ′(0) 6= 0 and γ2,p is continuous, there exists a constant
C > 0 such that γ2(x) ≤ Cx for all x ∈ [0, x0].

Finally, we also note that if γ1 solves (50) and γ2(x) is any positive function on [0, x0], then for all
x ∈ [0, x0], we have

γ1(x)− γ2(x) =
�

γ1(x0)− γ2(x0)
�

K[γ1, γ2](x0, x) +

Z x0

x

R[γ2](y)K[γ1, γ2](y, x) dy , (52)

where

K[γ1, γ2](x0, x) ≡ exp

�
Z x

x0

1

sz
+

P (z)

szγ1(z)γ2(z)
dz

�

=

�

x

x0

�
1
s

exp

�

−
Z x0

x

P (z)

szγ1(z)γ2(z)
dz

�

.

We are now in position to show that all solutions to (50) agree to all orders in perturbation theory with
the series solution.

Theorem 5.1 Let γ1 and γ2 be two solutions of (50). Fix p ≥ 2 and let γ2,p as above. Then there exist
constants C and Cp such that

�

� γ1(x)− γ2,p(x)
�

� ≤ Cpx
p , (53)

�

�

�
γ1(x)− γ2(x)

�

�

�
≤

�

�

�
γ1(x0)− γ2(x0)

�

�

�

�

x

x0

�
1
s

exp

�

C
� 1

x0
− 1

x

�

�

, (54)

where (53) holds for all x ∈ [0, x0/2] and (54) for all x ∈ [0, x0].
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In other words, for any solution of (50), any derivative (of finite order) converges as x → 0 to the
corresponding derivative of γ2,p. Hence a (truncated) power series expansion at x = 0 of any solution
agrees to any (finite) order with the truncated divergent series of the same order. Also, the difference
between any two solutions of (50) decays faster than e−C/x as x → 0.

Proof. In Lemma 5.2 below, we prove that there exist constants c1 and c2 such that γ1(x) ≤ c1x and
γ2(x) ≤ c2x for all x ∈ [0, x0] if γ1 and γ2 are solutions of (50). In particular, there exist a constant
C > 0 such that

K[γ1, γ2](y, x) ≤
�

x

y

�
1
s

exp

�

−
Z y

x

C

z2
dz

�

=

�

x

y

�
1
s

exp

�

C
�1

y
− 1

x

�

�

(55)

for all 0 ≤ x ≤ y ≤ x0. Since R[γ2](x) = 0 if γ2 is a solution of (50), we have

γ1(x)− γ2(x) =
�

γ1(x)− γ2(x)
�

K[γ1, γ2](x0, x) ,

from which we get (54) immediately.

On the other hand, γ2,p also satisfies γ2,p(x) ≤ Cx for all x ∈ [0, x0], and so K[γ1, γ2,p] also satisfies

K[γ1, γ2,p](y, x) ≤
�

x

y

�
1
s

exp

�

C
�1

y
− 1

x

�

�

for all 0 ≤ x ≤ y ≤ x0. In particular, for fixed x0, K[γ1, γ2,p](x0, x) decays faster than any power law
as x → 0. Assume now that x ≤ x0/2, and note that

�

� γ1(x)− γ2,p(x)
�

� ≤
�

� γ1(x0)− γ2,p(x0)
�

� K[γ1, γ2,p](x0, x) + C

Z x0

x

yp−1 K[γ1, γ2,p](y, x) dy .

Splitting the integral over [x, x0] into [x, 2x] and [2x, x0], and using that K[γ1, γ2,p](y, x) is a decreasing
function of y, we find

Z 2x

x

yp−1 K[γ1, γ2,p](y, x) dy ≤
Z 2x

x

yp−1 K[γ1, γ2,p](x, x) dy = xp


2p−1
p

�

Z x0

2x

yp−1 K[γ1, γ2,p](y, x) dy ≤ K[γ1, γ2,p](2x, x)

Z x0

2x

yp−1 dy = K[γ1, γ2,p](2x, x)
 xp

0−xp

p

�

.

The proof of (53) is completed by noting that by (55), K[γ1, γ2,p](2x, x) and K[γ1, γ2,p](x0, x) decay
faster than any power law as x → 0.

Lemma 5.2 For any γ0 > 0, the solution of (50) exists for all x ∈ [0, x0] and

γ1(x) ≤ C x ∀ x ∈ [0, x0]

for some C = C(x0, γ0) > 0.
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Proof. We first note for future reference that P (x)
x

is continuous for all x ∈ [0, x0], and that there exists
constants C± > 0 such that C−x ≤ P (x) ≤ C+x for all x ∈ [0, x0]. By (51), we only have to consider
s ≥ 1. We first choose α > 0 such that

α ≥
� max(2C+, Cb| ln(x0)|) if s = 1

max
�

2C+,
1

4x0(s−1)
, Cs

b4
s−1(s− 1)s−1

�

if s > 1
.

We then note that

fs(α x, x)− α =
1

sx
− P (x)

sx2α
+ α



1
s
− 1

�

≥ 1

sx
− C+

sxα
+ α



1
s
− 1

�

≥ 1

2sx
+ α



1
s
− 1

�

,

from which it follows that

fs(α x, x) > α ∀ x ∈ [0, X(s,α)] where X(s,α) =

�

x0 if s = 1
1

4α(s−1)
if s > 1

. (56)

We then note that

Cb X(1,α)| ln(X(1,α))| = Cb x0| ln(x0)| ≤ αx0 = αX(1,α) ,
Cb X(s,α)1/s = Cb

(4α(s−1))1/s
≤ 1

4(s−1)
= αX(s,α) if s > 1 .

(57)

In other words, (51) and (57) imply that the solution of (50) satisfies γ1(X(s,α)) ≤ αX(s,α). Since
X(s,α) ≤ x0, this means that as x decreases, solutions enter the triangle

Δs,α =
�

(x, γ1) | x ∈ [0, X(s,α)] and 0 ≤ γ1 ≤ α x
	

through its right boundary (i.e. at x = X(s,α)).

Solutions that enter Δs,α at x = X(s,α) cannot satisfy γ1(x
⋆) = αx⋆ at some x⋆ < X(s,α), for

by (56), we would have γ1(x) > αx for all x ∈ (x⋆, X(s,α)], a contradiction with γ1(X(s,α)) ≤
αX(s,α). Hence γ1(x) ≤ αx for all x ∈ [0, X(s,α)], and the proof is completed by noting that the
bound (51) is stronger than γ1(x) ≤ αx for x ∈ (X(s,α), x0].
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