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The study of Feynman rules is much facilitated by the two Symanzik polynomials, homogeneous

polynomials based on edge variables for a given Feynman graph. We review here the role of a

recently discovered third graph polynomial based on half-edges which facilitates the transition

from scalar to gauge theory amplitudes: the corolla polynomial. We review in particular the use

of graph homology in the construction of this polynomial.
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1. Introduction

The computation of a gauge theory suffers the enormous number of integrals one is confronted

with. This results from the fact that the number of Feynman graphs contributing to a given am-

plitude is much bigger than in a scalar field theory, and from the fact that the spin structure of the

Feynman rules gives a much more complicated tensorial structure.

Hence, the reduction to master integrals is a much more cumbersome undertaking. Here we

report on recent progress connecting the integrand for a connected amplitude in non-abelian gauge

theory to the amplitude for a scalar connected 3-regular amplitude: all vertices are cubic.

2. Scalar vs Gauge Theory amplitudes

The starting point is the amplitude for a Feynman graph in a scalar cubic theory which is given

(in D = 4 dimensions say) through the two graph- or Symanzik-polynomials ΦΓ,ψΓ, where

ΦΓ = φΓ +

(

∑
e∈EΓ

Aem2
e

)

ψΓ,

and ψΓ,φΓ are the classic first and second graph polynomials:

ψΓ = ∑
spanningtrees T

∏
e6∈T

Ae,

φΓ = ∑
spanningtwo−trees T1∪T2

Q(T1) ·Q(T2) ∏
e6∈T1∪T2

Ae,

with Q(Ti) the sum of the external momenta attached to vertices of Ti.

There exists then a corolla differential DΓ such that the Feynman integrand IΓ for connected

3-regular graphs Γ,

IΓ =
e
−

ΦΓ
ψΓ

ψ2
Γ

,

gives rise, when summed over connected 3-regular graphs Γ to the total gauge theory amplitude,

using DΓIΓ.

For an example consider the connected one-loop triangle graphs. The scalar graphs are,
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2
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2
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whilst in the gauge theory case we have more:

+ + + + +

+ + +

+ + +
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2 +1
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+1

2

+1
2 +1

2 +1
2

We have internal quark- and ghost-loops, and 4-valent gluon vertices.

If we replace first all edges in the 3-regular scalar case by gauge-boson edges there are two

steps remaining: to either shrink internal boson edges to generate 4-valent boson vcertices, or else

to replace internal gauge-boson loops by ghost or fermion loops.

It is remarkable that in this process, the ranks of the automorphism groups of graphs play along

(meaning that symmetry factors play along). This is due to an underlying double complex of two

graph homologies based on either shrinking edges or marking closed cycles in the graph [2].

Both homologies can be implemented using a new graph polynomial on half-edges, the corolla

polynomial [1].

3. Graph Homology

Theorem ([2]):

Let e be an edge connecting two 3-gluon vertices in a graph Γ, χe
+ be the operator which shrinks

edge e, extend χe
+ to zero when acting between any other two vertices. Let S, with S2 = 0, be the

corresponding graph homology operator. Then, for a gauge theory amplitude r:

Let X
r,n
0x; jgl be the sum of all 3-regular connected graphs, with j ghost loops, and with external legs

determined by r and loop number n, weighted by colour and symmetry, let X
r,n
/x, jgl

be the same

allowing for 3- and 4-valent vertices. We have

i) : eχ+X
r,n
0 x; jgl = X

r,n
/x; jgl

,

ii) : Seχ+X
r,n
0x; jgl = 0.

This theorem shows we can generate all 4-valent couplings by graph homology as studied in Vogt-

mann’s paper [4] based on a study of graph homology initiated by Kontsevich.

Theorem ([2]):

Let δC
+ be the operator which marks a cycle C through 3-valent vertices and unmarked edges, extend

2



The corolla polynomial Dirk Kreimer

δC
+ to zero on any other cycle. Let T , with T 2 = 0, be the corresponding cycle homology operator.

Then:

Let X
r,n
jx;0gl be the sum of all connected graphs with j 4-vertices contributing to amplitude r and

loop number n and no ghost loops, weighted by colour and symmetry, X
r,n
jx;/gl

be the same allowing

for any possible number of ghost loops. We have

i) : eδ+X
r,n
jx;0gl = X

r,n
jx;/gl

,

ii) : Teδ+X
r,n
jx;0gl = 0.

This theorem ensures that we cn insert ghost loops (or fermion loops for that matter) using a cycle

homology on graphs. This homology was introduced in [2].

These two operations are compatible [2, 5]:

Theorem ([2]):

i) We have [S,T ] = 0 ⇔ (S+T )2 = 0 and

Teδ++χ+X
r,n
0x;0gl = 0, Seδ++χ+X

r,n
0x;0gl = 0.

ii) Together, they generate the whole gauge theory amplitude from 3-regular graphs:

eδ++χ+X
r,n
0x;0gl = X

r,n
/x;/gl

=: X r,n.

X r,n, the series over all graphs contributing to a physical amplitude, each graph weighted by

its symmetry factor, is the only non-trivial element in the bicomplex of cycle- and graph-homology

[2, 5]. This indeed is BRST homology graph-theoretically. To interprete BRST homology by graph

homologies is an approach very much in line with an early analysis of QCD provided for example

in Predrag Cvitanovic’s lecture notes [6].

4. The corolla polynomial and differential

The next step is to use the above structures to find an efficient transition from scalar to gauge

theory amplitudes. This is facilitated by the corolla polynomial given in [1] whose definition we

follow:

It is a polynomial based on half-edge variables av, j assigned to any half-edge (v, j) determined

by a vertex v and an edge j of a graph Γ. We have

• For a vertex v ∈V let n(v) be the set of edges incident to v (internal or external).

• For a vertex v ∈V let Dv = ∑ j∈n(v) av, j.

• Let C be the set of all cycles of Γ (cycles, not circuits). This is a finite set.
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• For C a cycle and v a vertex in V , since Γ is 3-regular, there is a unique edge of Γ incident to

v and not in C, let vC be this edge.

• For i ≥ 0 let

Ci = ∑
C1,C2,...Ci∈C

C jpairwise disjoint

((

i

∏
j=1

∏
v∈C j

av,vC

)

∏
v6∈C1∪C2∪···∪Ci

Dv

)

• Then

C = ∑
j≥0

(−1) jC j

C =CΓ is the corolla polynomial.

Having this polynomial at our disposal, we can replace any of its half-edges by a differential

operator. This defines a corolla differential which acts on the scalar integrand. It acts on auxil-

iary external momenta ξe (which are set to the physical momenta only after the action) which we

supplement in the scalar integrand for each internal edge e.

Dg(h) :=− 1
2
gµh+ µh−

(

εh+

1

Ae(h+)

∂

∂ξ (h+)µh

− εh−

1

Ae(h−)

∂

∂ξ (h−)µh

)

,

for any half-edge h. Here, a half-edge h determines at a 3-regular vertex two other half-edges

h+,h− using that we can orient each corolla by a theorem in [4] much used in [2] (which in tun

determines the signs εh±), and each such half-edge furthermore determines an edge e = e(h) to

which it belongs.

h

h+

h−

e(h)

e(h+)

e(h−)

Double differentials wrt the same half edge generate the Feynman rules for a 4-valent vertex via

Cauchy’s residue formula: differentiating twice, the Leibniz rule ensures the emergence of poles

with residues which are the contributions of grapgs with 4-valent gluon vertices [2].

5. Results

Finally, we get the Feynman integrands in the unrenormalized and renormalized case for a

gauge theory amplitude r from 3-regular connected graphs of scalar fields.

Theorem ([2]):

The full Yang–Mills amplitude ŪΓ for a graph Γ can be obtained by acting with a corolla differen-

tial operator on the scalar integrand UΓ({ξe}) for Γ, setting the edge momenta ξe = 0 afterwards.
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Moreover, ŪΓ gives rise to a differential form J
ŪΓ
Γ and there exists a vector HΓ such that the un-

renormalized Feynman integrand for the sum of all Feynman graphs contributing to the connected

k-loop amplitude r is

Φ(X r,k) = ∑
|Γ|=k,res(Γ)=r

colour(γ)

sym(Γ)

∫

HΓ

J
ŪΓ
Γ ,

The renormalized analogue is given by writing ŪR
Γ instead of ŪΓ [2].

This was all generalized to the full Standard Model by David Prinz [3], showing that even spon-

taneous symmetry breaking respects the structure of graph homologies and can be approached by

the corolla polynomial, with suitable adoptions for the matter and ghost content of that model.

6. Outer Space Structure of Gauge Theory

There are growing signs that the parametric approach to Feynman diagrams has a deep con-

nection to the structure of Outer Space [8, 9], in particular when investigating monodromies of

amplitudes. For the case of gauge theories where vertices of valence higher than four vanish, this

generates rather interesting Outer Spaces where cells corresponding to co-dimension two hyper-

surfaces are missing.

A simple example is the one-loop triangle graph. The co-dimension one edges are boundaries

populated by a graph with one three-valent and one four-valent vertex (unions like a∪b in the fig-

ure). The zero-dimensional co-dimension two cells are points decorated by tadpoles which would

have a forbidden 5-valent vertex a∪b∪ c. This is to be removed.

a

b

c

a

b

c

a

b

c

∼ ∼

b

a ∪ c

a ∪ b

c

+
+

+−
−

−

a
b ∪ c ∼ a

b ∪ c

a

b

c

a
b ∪ c

a

b

c

Note that when such Outer Spaces with missing cells adopted to gauge theories have been

constructed, a Green Function is an integral over the whole such Outer Space - a piecewise linear

sum of integrals [10] over the volume of all cells of the still allowed codimensions.

7. Outlook

• The two Kirchhoff polynomials are distinguished as unique polynomials on edge variables

having recusive contraction deletion properties.
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• The corolla polynomial is similarly distinguished amongst half-edge polynomials having

recursive half-edge deletion properties [1].

• This allows to construct the renormalized integrand for a connected amplitude in gauge the-

ory from the scalar amplitudes for connected 3-regular graphs [2].

• David Prinz has generalized this approach to amplitudes to the full SM [3].

• Marcel Golz is turning this into a very efficient algorithm for QED amplitudes [7].

• What is the corolla polynomial for spin 2 bosons and hence for quantum gavity?

• Can we combine the reduction to master integrals (Laporta’s algorithm) with this transition

to gauge theory?
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