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Abstract

A method to obtain all-order asymptotic results for the coefficients of perturbative ex-
pansions in zero-dimensional quantum field is described. The focus is on the enumeration
of the number of skeleton or primitive diagrams of a certain QFT and its asymptotics. The
procedure heavily applies techniques from singularity analysis and is related to resurgence.
To utilize singularity analysis, a representation of the zero-dimensional path integral as a
generalized hyperelliptic curve is deduced. As applications the full asymptotic expansions
of the number of disconnected, connected, 1PI and skeleton Feynman diagrams in various
theories are given.

Contents

1 Introduction 1

2 Formal integrals 2
2.1 (Feynman)-Diagrammatic interpretation . . . . . . . . . . . . . . . . . . . . . 3
2.2 Representation as affine hyperelliptic curve . . . . . . . . . . . . . . . . . . . 6
2.3 Asymptotics by singularity analysis . . . . . . . . . . . . . . . . . . . . . . . . 9

3 The ring of factorially divergent power series 12

4 Overview of zero-dimensional QFT 13

5 The Hopf algebra structure of renormalization 14

6 Application to zero-dimensional QFT 17
6.1 Notation and verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2 ϕ3-theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.3 ϕ4-theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.4 QED-type theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.4.1 QED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.4.2 Quenched QED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.4.3 Yukawa theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

A Singularity analysis of x(y) 43

1 Introduction

Zero-dimensional quantum field theory (QFT) serves as a toy-model for realistic QFT cal-
culations. Especially the behaviour of zero-dimensional QFT at large order is of interest, as
calculations in these regimes for realistic QFTs are extremely delicate.
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Perturbation expansions in QFT turn out to be divergent [22], that means perturbative
expansions of observables in those theories usually have a vanishing radius of convergence.
The large growth of the coefficients, causing the divergence, is believed to be governed by
the proliferation of Feynman diagrams when the loop-order becomes large. The analysis of
this large order behaviour lead to many important results reaching far beyond the scope of
quantum field theory [7, 8, 35]. Moreover, the divergence of the perturbation expansion in
QFT is linked to non-perturbative effects [21].

The extraction of large order results of realistic QFTs becomes most complicated when
renormalization comes into play. For instance, the relationship between renormalons, which
are avatars of renormalization at large order, and instantons [34, 49], classical field configu-
rations, which are in close correspondence with the large order behaviour of the theory [36],
remains elusive [44].

The utility of zero-dimensional QFT as a reasonable toy-model comes mainly from the
fact that observables are combinatorial generating functions of the number of Feynman
diagrams. Zero-dimensional QFT is therefore a reasonable starting point to study the di-
vergence of the perturbation expansions in realistic QFTs.

Zero-dimensional QFT has been extensively studied [28, 18, 6, 26, 3, 40]. The purpose
of this article is to study the asymptotics of the observables in zero-dimensional QFT and
the associated graph counting problems. The focus will be on the renormalization of zero-
dimensional QFT and the asymptotics of the renormalized quantities, which will provide
the number of skeleton or primitive Feynman diagrams.

As Feynman diagram techniques can also be used in quantum mechanics, the analysis
provided here can also give insights into large order expansions of observables in classical
theories [7, 35].

With techniques which fall into the realm of resurgence’ alien calculus [23], complete
asymptotic expansions for all observables in zero-dimensional field theory and the respective
enumeration problems can be obtained. To establish the connection of renormalization and
restricted graph counting, the lattice structure of renormalization can be used [12]. In
this article, these techniques will be combined and applied to various examples in zero-
dimensional QFT and graph counting.

In Section 2, basic properties of the formal integrals, which are associated to zero-
dimensional QFTs, will be recalled and a representation of these expressions as local ex-
pansions of a generalized hyperelliptic curve will be derived. These expansions will enable
us to rigorously extract all-order asymptotics by purely algebraic means. In Section 3, the
ring of factorially divergent power series will be introduced, which allows very efficient ex-
traction of all-order asymptotics from composed formal quantities. A short overview over
some observables in zero-dimensional QFT will be given in Section 4 and, to motivate the
renormalization procedure, the structure of the Hopf algebra of Feynman diagrams will be
sketched in Section 5. In Section 6, various examples will be given. Explicit asymptotics
of the number of skeleton diagrams will be provided for ϕ3, ϕ4, QED, quenched QED and
Yukawa theory.

2 Formal integrals

The starting point for zero-dimensional QFT is the path integral, which becomes an ordinary
integral in the zero-dimensional case. For instance, in a scalar theory the partition function
is given by

Z(~) :=

∫
R

dx√
2π~

e
1
~

(
− x

2

2a
+V (x)

)
, (2.1)

where V ∈ x3R[[x]], the potential, is some power series with the first three coefficients in x

vanishing and a is a strictly positive parameter. The whole exponent S(x) = −x
2

2a
+V (x) is

the action.
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The integral (2.1) is ill-defined for general V (x). If we substitute, for example, V (x) = x4

4!
,

it is not integrable over R. Also the power series expansion makes only limited sense as the
actual function Z(~) will have a singularity at ~ = 0 - even in cases where the expression
is integrable. One way to continue is to modify the integration contour, such that the
integrand vanishes fast enough at the border of the integration domain. The disadvantage
of this method is that the integration contour must be chosen on a case by case basis.

This article is mainly concerned with the coefficients of the expansion in ~ of the integral
(2.1). We wish to give meaning to such an expressions in a way that highlights its power
series nature. Moreover, we like to free ourselves from restrictions in choices of V (x) as far
as possible. We therefore treat the integral (2.1) as a formal expression.

The procedure to obtain a power series expansion from this formal integral is well-known
and widely used: The potential V (x) is treated as a perturbation around the Gaussian
kernel and the remaining integrand is expanded. The ‘integration’ will be solely performed
by applying the identity∫

R

dx√
2π~

e−
x2

2a~ x2n =
√
a(a~)n(2n− 1)!! n ≥ 0.

This procedure mimics the calculation of amplitudes in higher dimensions, as the above iden-
tity is the zero-dimensional version of Wick’s theorem [29]. This way, it directly incorporates
the interpretation of the coefficients of the power series as Feynman diagrams.

We expand the exponent of V (x) and exchange integration and summation and thereby
define the zero-dimensional path integral as the following expression:

Definition 2.1. Let F : x2R[[x]] → R[[~]] be the operator that maps S(x) ∈ x2R[[x]], a
power series with vanishing constant and linear terms as well as a strictly negative quadratic

term, S(x) = −x
2

2a
+ V (x), to F [S(x)] ∈ R[[~]] a power series in ~, such that

F [S(x)](~) =
√
a

∞∑
n=0

(a~)n (2n− 1)!![x2n]e
1
~V (x). (2.2)

This gives a well defined power series in ~, because [x2n]e
1
~V (x) is a polynomial in ~−1

of order smaller than n.
An advantage of applying this definition rather then using the integral itself is that

Definition 2.1 gives an unambiguous procedure to obtain result for a given potential whereas
the integration depends heavily on the choice of the integration contour.

The most important property of F , and another motivation to define it, is that it enu-
merates multigraphs.

2.1 (Feynman)-Diagrammatic interpretation

Proposition 2.1. If S(x) = −x
2

2a
+
∑∞
k=3

λk
k!
xk with a > 0, then

F [S(x)](~) =
√
a
∑

Γ

~|E(Γ)|−|V (Γ)| a
|E(Γ)|∏

v∈V (Γ) λnv

|Aut Γ|

where the sum is over all multigraphs Γ without two or one-valent vertices, where E(Γ) and
V (Γ) are the sets of edges and vertices of Γ and nv is the valency of vertex v.

This identity can also be used as definition of F . It is well-known that the terms in the
expansion of the integral (2.1) and therefore also the terms of F [S(x)](~) can be interpreted
as a sum over Feynman diagrams weighted by their symmetry factor. To calculate the n-th

coefficient of (2.1) or (2.2) with S(x) = −x
2

2a
+ V (x) and V (x) =

∑
k=3

λk
k!
xk,
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1. draw all graphs with excess n. The excess of a diagram Γ is given by |E(Γ)| − |V (Γ)|,
the number of edges minus the number of vertices. For connected graphs the excess
is equal to the number of loops minus 1. We say a graph has n loops if it has n
independent cycles.

2. Apply Feynman rules: For each individual graph Γ calculate the product
∏
v∈V (Γ) λ|v|,

where each vertex contributes with a factor λ|v| with |v| the valency of the vertex.

Subsequently, multiply by a|E(Γ)|.

3. Calculate the cardinality of the automorphism group of the graph. k-fold double-
edges give additional automorphisms of order k! and k-fold self-loops give additional
automorphisms of order 2kk!, which both commute with the rest of the automorphism
group. Divide the result of the previous calculation by this cardinality.

4. Sum all monomials and multiply the obtained polynomial by a normalization factor of√
a.

We may write the power series expansion of F [S(x)](~) in a diagrammatic way as follows:

F [S(x)](~) = φS
(

1 +
1

8
+

1

12
+

1

8

+
1

128
+

1

288
+

1

96
+

1

48
+

1

16
+

1

16
+

1

8
+

1

24

+
1

96
+

1

64
+

1

8
+

1

16
+

1

8
+

1

12
+

1

8

+
1

128
+

1

48
+

1

16
+

1

12
+

1

16
+

1

48
+ · · ·

)
=
√
a
(

1 +

((
1

8
+

1

12

)
λ2

3a
3 +

1

8
λ4a

2

)
~

+

(
385

1152
λ4

3a
6 +

35

64
λ2

3λ4a
5 +

35

384
λ2

4a
4 +

7

48
λ3λ5a

4 +
1

48
λ6a

3

)
~2 + · · ·

)

(2.3)

where φS is a linear map which applies the Feynman rules, encoded in S, to every graph.

The expression F [S(x)](~) =
∑∞
n=0 ~

nPn(λ3a
3
2 , λ4a

4
2 , . . .) is a sequence of polynomials Pn

of degree 2n.
Of course, drawing all diagrams for a specific model and applying the zero-dimensional

Feynman rules is not a very convenient way to calculate the power series F [S(x)](~) order
by order. A more efficient way is to derive differential equations from the formal integral
expression and solve these recursively [18, 3]. In some cases these differential equations can
be solved exactly [3] or sufficiently simple closed forms for the respective coefficients can be
found. For example, this is possible for the zero-dimensional version of ϕ3-theory:

Example 2.1 (The partition function of ϕ3-theory). In ϕ3-theory the potential takes the

form V (x) = x3

3!
, that means S(x) = −x

2

2
+ x3

3!
. From Definition 2.1 it follows that,

Zϕ
3

(~) = F
[
−x

2

2
+
x3

3!

]
(~) =

∞∑
n=0

~n(2n− 1)!![x2n]e
x3

3!~ =

∞∑
n=0

~n (6n− 1)!!

(3!)2n(2n)!
,

where we were able to expand the expression, because

[x6n]e
x3

3!~ =
1

(3!)2n~2n(2n)!

[x6n+k]e
x3

3!~ = 0 k = 1, 2, 3, 4, 5.
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The diagrammatic expansion starts with

Zϕ
3

(~) = φS
(

1 +
1

8
+

1

12

+
1

128
+

1

288
+

1

96
+

1

48
+

1

16
+

1

16
+

1

8
+

1

24
+ . . .

)
= 1 +

(
1

8
+

1

12

)
~ +

385

1152
~2 + . . .

which is the same as the expansion in (2.3) with a = λ3 = 1 and all other λk = 0.

Example 2.2 (Generating function of all multigraphs with given excess). The generating
function of all graphs without one or two-valent vertices is given by the partition function

of the ‘theory’ with the potential V (x) =
∑
k=3

xk

k!
= ex − 1− x− x2

2
. Therefore,

Zall(~) = F
[
−x2 − x− 1 + ex

]
(~) =

∞∑
n=0

~n(2n− 1)!![x2n]e
1
~

(
ex−1−x− x

2

2

)
.

Here, as in many cases where V (x) is not merely a monomial, the extraction of coefficients
is more difficult. Still, the power series expansion in ~ can be computed conveniently with
the methods which will be established in the next section. The diagrammatic expansion is
equivalent to the one given in (2.3) with a = 1 and all the λk = 1:

Zall(~) = 1 +
1

3
~ +

41

36
~2 + · · ·

Whereas this example as no direct interpretation in QFT, except maybe for the case of
gravity, where vertices with arbitrary valency appear, it shows that formal integrals are
quite powerful at enumerating general graphs. Hence, the techniques of zero-dimensional
QFT and formal integrals can be applied to a much broader class of topics, which evolve
around graph enumeration. Especially promising is the application to the theory of complex
networks [1]. We will elaborate on applications of formal integrals to these problems in a
future publication [13].

Example 2.3 (Zero-dimensional sine-Gordon model). For a more exotic zero-dimensional

QFT take S(x) = − sin2(x)
2

or V (x) = x2

2
− sin2(x)

2
= 4x

4

4!
− 16x

6

6!
+ 64x

8

8!
+ · · · . This can be

seen as the potential of a zero-dimensional version of the sine-Gordon model [16].

F
[
− sin2(x)

2

]
(~) =

∞∑
n=0

~n(2n− 1)!![x2n]e
1
~

(
x2

2
− sin2(x)

2

)
.

The diagrammatic expansion starts with

Zsine-Gordon(~) = φS
(

1 +
1

8
+

1

128
+

1

48
+

1

16
+

1

48
+ . . .

)
= 1 +

4

8
~ +

(
42

128
+

42

48
+

42

16
− 16

48

)
~2 + . . .

= 1 +
1

2
~ +

9

8
~2 + . . .

which is equal to the expansion in (2.3) with λ2k = (−1)k22k−2 and λ2k+1 = 0.

Example 2.4 (Stirling’s QFT). The following example is widely used in physics, although
we did not find any reference with the interpretation of a zero-dimensional QFT. As a matrix
model it is known as Penner’s model [42]. It agrees with Stirling’s asymptotic expansion of
the Γ-function [31, A. D]:
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From Euler’s integral for the Γ-function we can deduce with the change of variables
t→ Nex ,

Γ(N)√
2π
N

(
N
e

)N =
1√

2π
N

(
N
e

)N
∫ ∞

0

dttN−1e−t =
eN√

2π
N

∫
R
dxe−Ne

x+Nx

=

∫
R

dx√
2π 1

N

eN(1−x−ex),

This is the correction term of Stirling’s formula expressed as a zero-dimensional QFT. Note,
that the integral is actually convergent in this case, whereas the expansion in 1

N
is not.

Therefore,

ZStirling

(
1

N

)
:= F [1 + x− ex]

(
1

N

)
=

∞∑
n=0

1

Nn
(2n− 1)!![x2n]e

N

(
1+x+ x2

2
−ex

)
.

We can use the well-known Stirling expansion in terms of the Bernoulli numbers Bk to state
the power series more explicitly:

F [1 + x− ex]

(
1

N

)
= e

∑∞
k=1

Bk+1
k(k+1)

1
Nk ,

Interestingly, Proposition 2.1 provides us with a combinatorial interpretation of the Stir-
ling expansion. We can directly use expansion (2.3) to calculate the first terms:

ZStirling

(
1

N

)
:= φS

(
1 +

1

8
+

1

12
+

1

8
+ . . .

)
= 1 +

(
1

8
(−1)2 +

1

12
(−1)2 +

1

8
(−1)1

)
1

N

+

(
385

1152
(−1)4 +

35

64
(−1)3 +

35

384
(−1)2 +

7

48
(−1)2 +

1

48
(−1)1

)
1

N2
+ . . .

= 1 +
1

12

1

N
+

1

288

1

N2
+ . . .

which results in the well-known asymptotic expansion of the gamma function,

Γ(N) ∼
√

2π

N

(
N

e

)n(
1 +

1

12N
+

1

288N2
+ . . .

)
.

Moreover, taking the logarithm of F [1+x−ex]
(

1
N

)
and using the fact that the n-th Bernoulli

number vanishes if n is odd and greater than 1, gives us the combinatorial identities,

B2n

2n(2n− 1)
=
∑
|Γ|=2n

(−1)|V (Γ)|

|Aut Γ| 0 =
∑

|Γ|=2n+1

(−1)|V (Γ)|

|Aut Γ| ,

where the sum is over all connected graphs Γ with a fixed number of loops, denoted by |Γ|.

2.2 Representation as affine hyperelliptic curve

Calculating the coefficients of the power series given in Definition 2.1 using the expression in

eq. (2.2) directly is inconvenient, because an intermediate bivariate quantity e
1
~V (x) needs

to be expanded in x and in ~−1.
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A form that is computationally more accessible can be achieved by a formal change of

variables. Recall that we set S(x) = −x
2

2a
+ V (x). Expanding the exponential in eq. (2.2)

gives

F [S(x)](~) =
√
a

∞∑
n=0

∞∑
k=0

~n−kan(2n− 1)!![x2n]
V (x)k

k!
.

This can be seen as the zero-dimensional analog of Dyson’s series [29]. Shifting the summa-

tion over n and substituting V (x) = x2

2a
+ S(x) results in,

=

∞∑
n=0

∞∑
k=0

2−kan+ 1
2 ~n (2(n+ k)− 1)!!

k!
[x2n]

(
1 +

2a

x2
S(x)

)k

Because 2−k (2(n+k)−1)!!
(2n−1)!!k!

=
(n+k− 1

2
k

)
, it follows that

=

∞∑
n=0

an+ 1
2 ~n(2n− 1)!![x2n]

∞∑
k=0

(
n+ k − 1

2

k

)(
1 +

2a

x2
S(x)

)k
,

and using
∑∞
k=0

(
α+k−1

k

)
xk = 1

(1−x)α
gives,

=

∞∑
n=0

~n(2n− 1)!![x2n]

(
x√
−2S(x)

)2n+1

.

By the Lagrange inversion formula [yn]g(y) = 1
n

[xn−1]
(

x
f(x)

)n
, where f(g(y)) = y, this is

equivalent to

Proposition 2.2. If S(x) = −x
2

2a
+ V (x), then

F [S(x)](~) =

∞∑
n=0

~n(2n+ 1)!![y2n+1]x(y) (2.4)

where x(y) is the unique power series solution of y =
√
−2S(x(y)), where the positive branch

of the square root is taken.

Note, that this can be seen as a formal change of variables for the formal integral (2.1).
The advantage of using the Lagrange inversion formula is that it makes clear that the formal
change of variables in Proposition 2.2 does not depend on the analyticity or injectiveness
properties of S(x).

If S(x) is a polynomial, the equation y =
√
−2S(x(y)) can be interpreted as the definition

of an affine hyperelliptic curve,

y2

2
= −S(x) (2.5)

with at least one singular point or ordinary double point at the origin, because S(x) =

−x
2

2a
+ · · · . If S(x) is not a polynomial, but an entire function, it is a generalized affine

hyperelliptic curve.
This interpretation shows a surprising similarity to the theory of topological recursion

[24]. The affine complex curve is called spectral curve in this realm, as it is associated to
the eigenvalue distribution of a random matrix model. In the theory of topological recursion
the branch-cut singularities of the expansion of the curve play a vital role. They will also
be important for the extraction of asymptotics from formal integrals presented in the next
section.
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(a) Plot of the elliptic curve y2

2
= x2

2
− x3

3!
,

which can be associated to the pertur-
bative expansion of zero-dimensional ϕ3-
theory. The dominant singularity can be

found at (x, y) =
(

2, 2√
3

)
.
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(b) Plot of the generalized hyperelliptic

curve y2

2
= sin2(x)

2
with dominant singu-

larities at (x, y) =
(
±π

2
,±1

)
.

Figure 1: Examples of curves associated to formal integrals

Example 2.5 (ϕ3-theory as expansion of a complex curve). For ϕ3-theory the complex
curve takes the form

y2

2
=
x2

2
− x3

3!
. (2.6)

This is the elliptic curve depicted in Figure 1a. It is clearly visible that solving for x will
result in a multivalued function. With x(y), we mean the power series expansion at the origin
associated to the locally increasing branch. This branch is depicted as solid line. Moreover,
we see that this expansion will have a finite radius of convergence, which is dictated by the
location of the branch-cut singularity which is attained at y = 2√

3
.

Example 2.6 (Sine-Gordon model as expansion of a complex curve). Consider again the

action S(x) = − sin2(x)
2

discussed in Example 2.3. The complex curve takes the form,

y2

2
=

sin2(x)

2
.

This curve is depicted in Figure 1b. We may solve for x(y) = arcsin(y), which is the local
solution around y = 0, which is positive for y → 0+. This local solution is drawn as black
line in Figure 1b. Obviously, x(y) has singularities for y = ±1. From Proposition 2.2 it
follows that,

F
[
− sin2(x)

2

]
(~) =

∞∑
n=0

~n(2n+ 1)!![y2n+1] arcsin(y) =

∞∑
n=0

~n(2n− 1)!![y2n]
1√

1− y2
.

The last equality follows because arcsin′(y) = 1√
1−y2

. We will use this result in Section

6.4.1 to express the partition function of zero-dimensional QED using F
[
− sin2(x)

2

]
.

The representation of the coefficients of F [S(x)](~) as expansion of a generalized hyper-
elliptic curve can be used to calculate them efficiently. The expansion of x(y) must fulfill
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the differential equation

∂x

∂y
= − y

S′(x(y))
.

Using the initial condition x(0) = 0 and ∂x
∂y

> 0, while expanding this as a power series
results in the correct branch.

Example 2.7. For the coefficients of Zall(~), where S(x) = −x2 − x − 1 + ex, we obtain
the differential equation for x(y):

∂x

∂y
=

y

1 + 2x− ex

The coefficients of x(y) can be calculated by basic iterative methods. These coefficients can
be translated into coefficients of F [−x2 − x− 1 + ex](~) using Proposition 2.2.

2.3 Asymptotics by singularity analysis

One approach to calculate asymptotics of expressions such as the integral (2.1) is to perform
the coefficient extraction with a Cauchy integral and to approximate the result using the
method of steepest decent or saddle point method:

[~n]

∫
R

dx√
2π~

e
1
~

(
− x

2

2a
+V (x)

)
=∮

|~|=ε

d~
~n−1

∫
R

dx√
2π~

e
1
~

(
− x

2

2a
+V (x)

)
=

∮
|~|=ε

d~
∫
R

dx√
2π
e

1
~

(
− x

2

2a
+V (x)

)
−(n− 3

2
) log ~

See for instance [18], where this technique was applied to ϕ3-theory. This method was also
applied to higher dimensional path integrals to obtain the asymptotics for realistic QFTs
[36]. The saddle points are solutions to the classical equations of motion and are called
instantons in the realm of QFT.

The approach requires us to manipulate the integrand and to pick the right contour for
the integration. The main disadvantage is that this procedure will result in a complicated
asymptotic expansion.

There exists a powerful method called hyperasymptotics [9] to obtain large order asymp-
totics of integrals such as (2.1). This procedure is very general, as it also provides expo-
nentially suppressed contributions as a systematic expansion. The expansion of a specific
exponential order results in an expressions involving Dingle’s terminants [19]. Unfortunately,
these expressions can be quite complicated [9].

We will take a slightly different approach, as we aim to obtain a complete asymp-
totic expansion in n: We will compute the large n asymptotics of the coefficients an of
F [S(x)](~) =

∑
n=0 an~

n using singularity analysis of the function x(y). Singularity anal-
ysis has proven itself to be a powerful tool for asymptotics extraction even for implicitly
defined power series such as x(y) [25]. As x(y) can be interpreted as a variant of the Borel
transform of F [S(x)](~), this approach is in the spirit of resurgence [23], where singularities
of the Borel transform are associated to the factorial divergence of expansions.

We will briefly repeat the necessary steps to compute the asymptotics of the implicitly
defined power series x(y). For a detailed account on singularity analysis, we refer to [25,
Ch. VI].

By Darboux’s method, the asymptotics of the power series x(y) are determined by the
behaviour of the function x(y) near its dominant singularities. The dominant singularities
of a function are the singularities which lie on the boundary of the disc of convergence of its
expansion near the origin.

9



Finding the actual location of the dominant singularity can be quite complicated. In our

case we generally would need to calculate the monodromy of the complex curve y2

2
= −S(x).

However, in many examples the location of the dominant singularities is more or less obvious.
We will assume that the locations of the dominant singularities of x(y) are known and

that these singularities are of simple square root type. Let (τi, ρi) be the coordinates of such
a singularity. That means that x(y) is non-analytic for y → ρi and that limy→ρi x(y) = τi.
The requirement that the singularity is of square root type is equivalent to the requirement

that the curve y2

2
= −S(x) is regular at (x, y) = (τi, ρi).

Example 2.8. Consider the graph of the elliptic curve depicted in Figure 1a from ϕ3-theory.
It is clear that x(y) has a singularity at a fixed value of y = 2√

3
indicated by the dotted line.

This is in fact the unique dominant singularity in this example. The exponential growth
of the coefficients of x(y) =

∑∞
n=0 cny

n is governed by the radius of convergence, cn ∼

r−n =
(

2√
3

)−n
. More precise asymptotics of the coefficients are determined by the singular

expansion around the dominant singularity. In Figure 1a, the point (x0, y0) = (2, 2√
3
) is the

dominant singularity of x(y) as well as a critical point or saddle point of the function y(x) as
expected by the implicit function theorem. This saddle point coincides with a saddle point
of S(x). Although x(y) has a singularity at this point, the curve is stays regular.

Having found the dominant singularity, it is surprisingly easy to obtain a complete
asymptotic expansion for the large order behaviour of the coefficients of F [S(x)](~).

Theorem 2.1. If S(x) ∈ x2R[[x]], such that the local solution x(y) around the origin of
y2

2
= −S(x) has only square-root type dominant singularities at the regular points (τi, ρi)

with i ∈ I, then the Poincaré asymptotic expansion of the coefficients of F [S(x)](~) is given
by

[~n]F [S(x)](~) =

R−1∑
k=0

∑
i∈I

wi,kA
−(n−k)
i Γ(n− k) +O

(∑
i∈I

A−ni Γ(n−R)

)
(2.7)

where Ai = −S(τi), the O-notation refers to the n→∞ limit and

wi,n =
1

2πi
[~n]F [S(x+ τi)− S(τi)](~). (2.8)

The fact that the asymptotics of expansions such as F [S(x)](~) are governed by the
expansion around the saddle points of S(x) is well-known. The exact shape of the asymptotic
expansion can be seen as slightly distorted or ‘resurged’ version of the original expansion
was also observed for instance in [5], but we were not able to find a proof in the literature.
Therefore a proof is provided. It is an application of the Legendre inversion formula together
with a Lemma from the theory of hypergeometric functions. It is technical and postponed
to Appendix A.

As was illustrated in Example 2.8, a square-root type singularity of x(y) coincides with
a saddle point of S(x). This way Theorem 2.1 works in a very similar way to the saddle
point method.

To actually find the location of the dominant singularity in non-trivial cases, powerful
techniques of singularity analysis of implicitly defined functions can be applied. For instance,
if S(x) is a polynomial, a systematic treatment given in [25, Chap. VII] can be used. With
minor modifications this can also be applied to an entire function S(x) for the non-degenerate
case [4].

Note that the quadratic coefficient of S(x+τi)−S(τi) in the argument for F in eq. (2.8)
is not necessarily negative. The regularity of the complex curve only guarantees that it is
non-zero. We need to generalize Definition 2.1 to also allow positive quadratic coefficients.
With this generalization the choice of the branch for the square-root in eq. (2.2) becomes
ambiguous and we have to determine the correct branch by analytic continuation. In the
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scope of this article, we will only need a special case of Theorem 2.1, which remedies this
ambiguity:

Corollary 2.1. If S(x) = −x
2

2
+· · · is the power series expansion of an entire real function,

which has simple critical points only on the real line, then there are not more than two
dominant singularities associated with local minima of S(x) at x = τi. The minima must
have the same ordinate S(τi) = −A to qualify as dominant singularities. The coefficients of
the asymptotic expansion are given by

wi,n =
1

2π
[~n]F [S(τi)− S(x+ τi)](−~), (2.9)

where the argument of F has a strictly negative quadratic coefficient.

Proof. If S(x) is a real entire function, whose derivative vanishes on the real line, we can
analytically continue x(y) to a star-shaped domain excluding at most two rays on the real
line. On the real line x(y) can have singularities. By definition x = 0 is a local maximum of
S(x). It follows from Rolle’s theorem that the next critical point encountered on the real line
must be a local minimum. These minima are the only candidates for dominant singularities
of x(y). Using Theorem 2.1, we obtain 1

2πi
[~n]F [S(x+ τi)−S(τi)](~) as expansions around

the minima. The power series S(x + τi) − S(τi) starts with a positive quadratic term,
resulting in a prefactor of

√
−1. Taking the square root in the upper half plane results in

the correct expansion. Flipping the sign in the argument and in the expansion parameter
absorbs the imaginary unit in eq. (2.8).

Example 2.9. Let S(x) = −x
2

2
+ x3

3!
as in Examples 2.1, 2.5 and 2.8. The location of the

dominant singularity at x = τ = 2 can be obtained by solving S ′(τ) = 0 (see Figure 1a).
There is only one non-trivial solution. Therefore, this is the only dominant singularity of
x(y). We have A = −S(2) = 2

3
. It follows that,

[~n]F
[
−x

2

2
+
x3

3!

]
(~) =

R−1∑
k=0

wk

(
2

3

)−(n−k)

Γ(n− k) +O

((
2

3

)−n
Γ(n−R)

)
R ∈ N0,

where

wk =
1

2π
[~k]F [S(2)− S(x+ 2)](−~) =

1

2π
[~k]F

[
−x

2

2
− x3

3!

]
(−~).

Because generally F [S(x)](~) = F [S(−x)](~), the large n asymptotics of the power series

F
[
−x

2

2
+
x3

3!

]
(~) =

∑
n=0

zn~n = 1 +
5

24
~ +

385

1152
~2 +

85085

82944
~3

+
37182145

7962624
~4 +

5391411025

191102976
~5 + . . .

are given by the same sequence with negative expansion parameter: [~n]F
[
−x

2

2
+ x3

3!

]
(−~)

zn ∼
n→∞

1

2π

((
2

3

)−n
Γ(n)− 5

24

(
2

3

)−n+1

Γ(n− 1) +
385

1152

(
2

3

)−n+2

Γ(n− 2)

−85085

82944

(
2

3

)−n+3

Γ(n− 3) +
37182145

7962624

(
2

3

)−n+4

Γ(n− 4) + . . .

)

This is an occurrence of the quite general self-replicating or resurgent phenomenon of the
asymptotics of power series [23].
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Restricting the dominant singularities in Corollary 2.1 to be regular points of the complex
curve is necessary. Otherwise, it cannot be guaranteed that a critical point actually coincides
with a dominant singularity of x(y). We will illustrate this in

Example 2.10. Let S(x) = − (1−e−x)2

2
. This action has saddle points at τk = 2πik for all

k ∈ Z. Because S(τk) = 0 using Corollary 2.1 naively would imply that, [~n]F
[
− (1−e−x)2

2

]
∼(

1
0

)n
, which is clearly nonsensical. On the other hand, we can solve y2

2
= (1−e−x)2

2
for

x(y) = log 1
1−y . Using Proposition 2.2 immediately results in

F
[
− (1− e−x)2

2

]
=

∞∑
n=0

~n(2n+ 1)!![y2n+1] log
1

1− y

=

∞∑
n=0

~n(2n− 1)!![y2n]
1

1− y =

∞∑
n=0

~n(2n− 1)!!,

which naturally has a sound asymptotic description. The dominant singularity of x(y) is

obviously at y = 1. An association of the asymptotics with saddle points of (1−e−x)2

2
is not

possible in this case, due to the irregularity of the complex curve at the saddle points.

3 The ring of factorially divergent power series

For the applications to diagram counting and zero-dimensional QFT, the algebraic properties
of power series with asymptotics as in eq. (2.7) will be exploited. They also provide a
compact notation for lengthy asymptotic expressions. These properties can be derived from
the broader theory of resurgence established by Jean Ecalle [23]. Resurgence has been
successfully applied to various physical problems [2] and provides a promising approach to
tackle non-perturbative phenomena in QFT [20]. A recent review is given by David Sauzin in
[38]. For the present considerations only a toy version of the complete resurgence machinery
will be required. We will use the notation of [11], where all the necessary tools for the
present application were established. We will introduce this mathematical toolbox briefly:

Definition 3.1. Define R[[x]]A with A ∈ R>0 to be the subset of the ring of power series
f ∈ R[[x]], whose coefficients have a Poincaré asymptotic expansion of the form,

fn =

R−1∑
k=0

ckA
−n+β+kΓ(n+ β − k) +O(A−nΓ(n+ β −R)), (3.1)

with coefficients ck ∈ R and β ∈ R. This subset forms a subring of R[[x]] as was shown in
[11].

A linear operator can be defined on R[[x]]A which maps a power series to its asymptotic
expansion. This operator is called alien derivative in the context of resurgence’ alien calculus.

Definition 3.2. Let AAx : R[[x]]A → x−βR[[x]] be the operator which maps a power series

f(x) =
∑∞
n=0 fnx

n to the generalized power series
(
AAx f

)
(x) = x−β

∑∞
k=0 ckx

k such that,

fn =

R−1∑
k=0

ckA
−n−β+kΓ(n+ β − k) +O(A−nΓ(n+ β −R)) ∀R ≥ 0. (3.2)

To adapt to the context of path integrals and to the notation of resurgence two changes
were made with respect to the notation of [11]: The exponent A is given in reciprocal form
as common in resurgence. Moreover, the monomial x−β is included into the definition of
the A-operator, which maps to power series with a fixed monomial prefactor or equiva-
lently generalized Laurent series. This change simplifies the notation of the chain rule for
compositions of power series heavily.
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Example 3.1. Let f(x) =
∑∞
n=m+1 Γ(n+m)xn. It follows that f ∈ R[[x]]1 and

(
A1
x f
)

(x) =
1
xm

.

Example 3.2. For certain QED-type theories, we will need sequences which do not be-
have as an integer shift of the Γ-function. If for instance, f(x) =

∑∞
n=0(2n − 1)!!xn =

1√
2π

∑∞
n=0 2n+ 1

2 Γ
(
n+ 1

2

)
xn, then

(
A

1
2
x f

)
(x) = 1√

2π~ in accord to Definition 3.2.

The A-operator is a derivative, which obeys the following identities for f, g ∈ R[[x]]A.
Cited from [11]:

AAx (f(x) + g(x)) = AAx f(x) + AAx g(x) Linearity

AAx (f(x)g(x)) = g(x)AAx f(x) + f(x)AAx g(x) Leibniz rule

AAx f(g(x)) = f ′(g(x))AAx g(x) + e
A
(

1
x
− 1
ξ

)
(AAξ f(ξ))

∣∣
ξ=g(x)

Chain rule

AAx g−1(x) = −g−1′(x)e
A
(

1
x
− 1
ξ

)
(AAξ g(ξ))

∣∣
ξ=g−1(x)

Inverse

= −eA
(

1
x
− 1
ξ

) AAξ g(ξ)

∂ξg(ξ)

∣∣∣∣∣
ξ=g−1(x)

where f ′(x) denotes the usual derivative of f(x). We require g0 = 0 and g1 = 1 for the chain
rule and the inverse.

With this notation at hand, the asymptotics of a formal integral, which fulfills the
restrictions of Corollary 2.1, may be written in compact form as,

AA~ F [S(x)] (~) =
1

2π

∑
i∈I

F [S(τi)− S(x+ τi)] (−~),

where τi are the locations of the dominant saddle points, A = −S(τi) and F [S(x)] (~) ∈
R[[~]]A. The important property is that F-expressions are stable under application of the

A-derivative. This makes the calculation of the asymptotics as easy as calculating the
expansion at low-order.

Example 3.3. The asymptotics deduced in Example 2.9 can be written in compact form
as,

A
2
3
~ F

[
−x

2

2
+
x3

3!

]
(~) =

1

2π
F
[
−x

2

2
+
x3

3!

]
(−~),

where F
[
−x

2

2
+ x3

3!

]
(~) ∈ R[[~]]

2
3 .

4 Overview of zero-dimensional QFT

The zero-dimensional partition function of a scalar theory with interaction given by V (x) is
written as a formal integral,

Z(~, j) :=

∫
dx√
2π~

e
1
~

(
− x

2

2
+V (x)+xj

)
.

This integral is to be understood as a formal expansion in ~ and j. The discussion from
Section 2 does not immediately apply here, because of the additional xj term, which was not
allowed in Definition 2.1. We can always transform the expression above into the canonical
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form as in Definition 2.1 by formally shifting the integration variable,

Z(~, j) = e
−
x20
2

+V (x0)+x0j

~

∫
R

dx√
2π~

e
1
~

(
− x

2

2
+V (x+x0)−V (x0)−xV ′(x0)

)

= e
−
x20
2

+V (x0)+x0j

~ F
[
−x

2

2
+ V (x+ x0)− V (x0)− xV ′(x0)

]
(~)

where x0 = x0(j) is the unique power series solution of x0(j) = V ′(x0(j)) + j.
The exponential prefactor enumerates all (possibly disconnected) tree diagrams with

the prescribed vertex structure and the F-term enumerates all diagrams with at least one
cycle in each connected component. It is useful to separate the tree-level diagrams as they
contribute with negative powers in ~, which spoils the simple treatment in the formalism
of power series. Trees and diagrams with at least one cycle are isolated after restricting to
connected diagrams, which are generated by the free energy of the theory:

W (~, j) := ~ logZ(~, j) =

= −x
2
0

2
+ V (x0) + x0j + ~ logF

[
−x

2

2
+ V (x+ x0)− V (x0)− xV ′(x0)

]
(~) ,

where we conventionally multiply by ~ to go from counting by excess to counting by loop
number and x0 = x0(j). The reason that taking the logarithm transforms the disconnected
to the connected generating function of diagrams is that Feynman diagrams, which are
weighted by their symmetry factors, are labelled combinatorial objects [25].

The next step is to perform a Legendre transformation to get access to the effective
action G, which is a generating function in ~ and ϕc,

G(~, ϕc) := W − jϕc
ϕc := ∂jW.

The equation ϕc = ∂jW needs to be solved for j to obtain G as a generating function in
~ and ϕc. Explicitly, this is only necessary if the potential allows tadpole diagrams. The
Legendre transformation can be interpreted as a combinatorial operation which maps a set
of connected graphs to the respective set of 2-edge-connected graphs or 1-particle irreducible
(1PI) graphs. See [30] for a combinatorial treatment of the Legendre transformation in this
context.

The coefficients of G in ϕc are called proper Green functions of the theory. More specif-
ically, the first derivative ∂ϕcG|ϕc=0 is called the generating function of (proper) tadpoles,
the second derivative ∂2

ϕcG|ϕc=0 is called (1PI) propagator and higher derivatives ∂kϕcG|ϕc=0

are called proper k-point function.
A further step in the analysis of zero-dimensional QFT is the calculation of the renor-

malization constants. The calculation is slightly artificial in zero-dimensional QFT, as there
are no explicit divergences to renormalize. Without momentum dependence every ‘integral’
for a graph is convergent. Thus renormalization has to be defined in analogy with higher
dimensional models. To motivate the renormalization procedure for zero-dimensional QFT,
we will use the Hopf algebra structure of Feynman diagrams.

5 The Hopf algebra structure of renormalization

In this section, the important properties of the Hopf algebra of Feynman diagrams [17] will
be briefly recalled. In [12], a detailed analysis of the Hopf algebra of Feynman diagrams
with emphasis on the use for zero-dimensional combinatorial QFTs is given. Consult [37]
for a general review of Hopf algebras of Feynman diagrams.
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Definition 5.1. Let Hfg be the R-algebra generated by all mutually non-isomorphic, super-
ficially divergent, 1PI Feynman diagrams of a certain QFT. The multiplication of generators
is given by the disjoint union: m : Hfg⊗Hfg → Hfg, γ1⊗γ2 7→ γ1∪γ2. It is extended linearly
to all elements in the vector space Hfg. Hfg has a unit u : R 7→ IR ⊂ Hfg, where I is associ-
ated to the empty diagram and a counit ε : Hfg → R, which vanishes on every generator of
Hfg except I. The coproduct on the generators is defined as follows:

∆Γ :=
∑

γ∈Ps.d.(Γ)

γ ⊗ Γ/γ : Hfg → Hfg ⊗Hfg,

where the complete contraction Γ/Γ is set to I and the vacuous contraction Γ/∅ to Γ.
Ps.d.(Γ) denotes the set of all superficially divergent subgraphs of Γ:

Ps.d.(Γ) :=

{
γ ⊂ Γ such that γ =

∏
i

γi and γi is 1PI and ω(γi) ≤ 0

}
,

where ω(γi) is the superficial degree of divergence of the 1PI subgraph γi obtained by power
counting [46].

As a Hopf algebra Hfg is equipped with a antipode S : Hfg → Hfg, which is defined
recursively by the identity u ◦ ε = m ◦ (id⊗S) ◦∆.

We define the element Xr ∈ Hfg as

Xr := ±1 +
∑

1PI graphs Γ
s.t. res Γ=r

Γ

|Aut Γ| ,

where the sum is over all 1PI Feynman graphs with a designated residue r. The residue of
a graph is the external leg structure of the graph or equivalently the vertex that is created
if all edges of the graph are contracted to a point. The negative sign is only assumed if r is
of propagator-type.

The most important property of Hfg from the perspective of renormalization is given by
the identity [32, Thm. 5],

∆Xr =

∞∑
L=0

XrQ2L ⊗Xr
∣∣
L
, (5.1)

where
∣∣
L

is the projection to graphs of the fixed number of loops L and Q is the invariant
charge. This identity holds in renormalizable QFTs. For a QFT with a single vertex, Q is
defined as

Q :=

 Xv√∏
e∈v(−Xe)

 1
|v|−2|

, (5.2)

where the product is over all edge-type resides that are incident to the vertex-type v and
|v| denotes the number of edges incident to the vertex-type. Algebraic operations are to be
understood in the combinatorial sense. For instance, arbitrary powers are translated using
the generalized binomial theorem, (I +X)α =

∑∞
n=0

(
α
n

)
Xn.

In theories with more than one vertex-type all possible different definitions of Q must
agree in a certain sense as dictated by the Slavnov-Taylor-Identities [32, 45].

Feynman rules can be defined conveniently as elements of the group of characters of
Hfg. Characters are algebromorphisms φ : Hfg → A from Hfg to some algebra A, which
map the unit IHfg to the unit of A, φ(IHfg) = IA and respect the multiplication: φ(Γ1Γ2) =
φ(Γ1)φ(Γ2) for two elements Γ1,Γ2 ∈ Hfg. The zero-dimensional Feynman rules φ : Hfg →
R[[~]] are simply given by,

φ{Γ}(~) = ~|Γ|,
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where |Γ| denotes the number of loops of Γ. The argument of maps from Hfg to some other
space will be embraced with curly brackets to avoid confusion with the proceeding power
series argument. By definition,

gr(~) := φ{Xr}(~) = ±1 +
∑

1PI graphs Γ
s.t. res Γ=r

~|Γ|

|Aut Γ| ,

is the generating function of labeled 1PI graphs with residue r. If rk is the residue with k
external legs in a scalar theory, grk (~) is the k-th derivative of the effective action in the
respective QFT, that means the proper k-point function: grk (~) = ∂kϕcG|ϕc=0. In higher
dimensions with more general Feynman rules, φ will map to a power series with coefficients
in a function space.

In a kinematic renormalization scheme the counterterm map for given Feynman rules
φ : Hfg → A is given by the character,

SφR : Hfg → A

SφR = R ◦ φ ◦ S,

where R : A→ A is the projection operator with kerR = A+ which, loosely speaking, maps
the ‘convergent part’ of the Feynman rules in A+ to zero. The process of splitting A is a
Birkoff decomposition [17]. The choice of a specific splitting is equivalent with the choice
of a certain renormalization scheme. The renormalized Feynman rules or Bogoliubov map is
then given by,

φRren := SφR ∗ φ,

where ∗ is the star product, φ1 ∗ φ2 := m ◦ (φ1 ⊗ φ2) ◦∆ on the group of characters of Hfg

[37]. The images of Xr under SφR, zr := SφR{X
r} are called counterterms or z-factors.

For the renormalization of a realistic QFT, there are infinitely many options for the choice
of a renormalization scheme. In zero-dimensional QFT on the other hand, the target algebra
takes the simple form A = R[[~]]. The only sensible renormalization scheme, which respects
the grading of the Hopf algebra and reflects the usual properties of realistic renormalization,
is the choice R = id.

In zero-dimensional QFT, we therefore fix our renormalization scheme to R = id:

Sφ : Hfg → R[[~]]

Sφ = φ ◦ S

The renormalized Feynman rules take a very simple form in this case,

φren = Sφ ∗ φ = (φ ◦ S) ∗ φ = u ◦ ε,

where u ◦ ε maps every element of Hfg to zero except for the unit u ◦ ε(I) = 1.
The renormalized Green functions in zero-dimensional QFT are therefore

grren = φren{Xr}(~) = ±1

with + sign for vertex-type residue r or − for propagator-type residue r. We can take the
identities above as renormalization conditions, which dictate the form of our counterterms,
as has been done in [18] and [3].
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By using the identity in eq. (5.1) and the definition of the antipode S, renormalized
Feynman rules can be written as

±1 = (Sφ ∗ φ){Xr}(~) = (m ◦ (φ⊗ Sφ) ◦∆Xr)(~)

=

∞∑
L=0

φ{Xr}(~) (φ{Q}(~))2L [~L]Sφ{Xr}(~)

= φ{Xr}(~)Sφ{Xr}(~φ{Q}(~)2)

= gr(~)zr(~α(~))

where α(~) := φ{Q}(~)2 is the square of the invariant charge. Defining ~(~ren) as the unique
power series solution of ~ren = ~(~ren)α(~(~ren)) gives the identity,

zr(~ren) = ± 1

gr(~(~ren))
(5.3)

with + sign for vertex-type residue r or − for propagator-type residue r. Therefore, to obtain
the z-factors in zero-dimensional QFT from the proper Green functions, the equation for
the renormalized expansion parameter ~ren must be solved for ~. This computation can be
performed in R[[~]]. The asymptotics of these quantities can be obtained explicitly using of
the A-derivative.

The main advantage of the Hopf algebra formulation is that the combinatorial inter-
pretation is more accessible. In [11], it was proven by the author that, in theories with
only a three-valent vertex, the generating function zr(~ren) counts the number of skeleton
or primitive diagrams if r is of vertex-type. In theories with four-valent vertices zr(~ren)
‘almost’ counts the number of skeleton diagrams. These results were obtained by exploiting
the inherent lattice structure of Feynman diagrams and the close relation of this structure
with the Hopf algebra.

6 Application to zero-dimensional QFT

6.1 Notation and verification

The coefficients of asymptotic expansions in the following section are given in the notation
of Section 3. That means, a row in a table such as,

prefactor ~0 ~1 ~2 ~3 ~4 ~5(
AA~ f

)
(~) C~−β c0 c1 c2 c3 c4 c5

corresponds to an asymptotic expansion of the coefficients of the power series f(~):

[~n]f(~) = C

R−1∑
k=0

ckA
−n−β+kΓ(n+ β − k) +O(A−nΓ(n+ β −R)).

The given low-order expansions were checked by explicitly counting diagrams with the
program feyngen [10]. All given expansions were computed up to at least 100 coefficients us-
ing basic computer algebra. Although the asymptotics were completely obtained by analytic
means, numerical computations were used to verify the analytic results. All given asymp-
totic expansions were checked by computing the asymptotics from the original expansions
using the Richardson-extrapolation of the first 100 coefficients.

6.2 ϕ3-theory

Disconnected diagrams We start with an analysis of the asymptotics of zero dimen-
sional ϕ3-theory, which has been analyzed in [18] using differential equations. For the sake
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of completeness, we will repeat the calculation with different methods and obtain all-order
asymptotics in terms of F expressions.

The partition function with sources is given by the formal integral,

Zϕ
3

(~, j) :=

∫
dx√
2π~

e
1
~

(
− x

2

2
+ x3

3!
+xj

)
= 1 +

j2

2~
+

j3

3!~
+

1

2
j +

5

24
~ + . . . (6.1)

Pictorially, this may be depicted as,

Zϕ
3

(~, j) = φS
(

1 +
1

2
+

1

6
+

1

8
+

1

2
+

1

8
+

1

4

+
1

6
+

1

4
+

1

8
+

1

12
+ . . .

)
with the additional Feynman rule that every one-valent vertex is assigned a factor of j.

After a shift and rescaling of the integration variable Zϕ
3

(~, j) takes the form,

Zϕ
3

(~, j) = e
−
x20
2

+
x30
3!

+x0j

~
1

(1− 2j)
1
4

∫
dx√

2π ~

(1−2j)
3
2

e
(1−2j)

3
2

~

(
− x

2

2
+ x3

3!

)

= e
(1−2j)

3
2 −1+3j
3~

1

(1− 2j)
1
4

Zϕ
3

0

(
~

(1− 2j)
3
2

) (6.2)

where x0 := 1 −
√

1− 2j and Zϕ
3

0 (~) := Zϕ
3

(~, 0). The last equality gives a significant
simplification, because we are effectively left with a univariate generating function. The
combinatorial explanation for this is that we can always ‘dress’ a graph without external
legs - a vacuum graph - by attaching an arbitrary number of rooted trees to the edges of

the original graph. We also note that −x
2
0
2

+
x30
3!

+ x0j = 1
3
((1 − 2j)

3
2 − 1 + 3j), sequence

A001147 in the OEIS [43], is the generating function of all connected trees build out of three
valent vertices.

The generating function of graphs without external legs is given by

Zϕ
3

0 (~) = F
[
−x

2

2
+
x3

3!

]
(~) ,

which has been discussed in Examples 2.1, 2.5, 2.8, 2.9 and 3.3. The first coefficients of

Zϕ
3

(~, j) are given in Table 1a. Using theorem 2.1 the generating function of the asymptotics

of Zϕ
3

0 were calculated in Example 2.9. Written in the notation of Section 3. We have

Zϕ
3

0 ∈ R[[~]]
2
3 and

A
2
3
~ Z

ϕ3

0 (~) =
1

2π
F
[
−x

2

2
+
x3

3!

]
(−~) =

1

2π
Zϕ

3

0 (−~).

This very simple form for the generating function can of course be traced back to the simple
structure of ϕ3, which is almost invariant under the A-derivative.

The bivariate generating function of the asymptotics is obtained by using theA-derivative
on eq. (6.2) and applying the chain rule from Section 3:

A
2
3
~ Z

ϕ3

(~, j) = e
(1−2j)

3
2 −1+3j
3~

1

(1− 2j)
1
4

e
2
3

1−(1−2j)
3
2

~ A
2
3

~̃
Zϕ

3

0

(
~̃
) ∣∣

~̃= ~

(1−2j)
3
2

=
1

2π
e

1−(1−2j)
3
2 +3j

3~
1

(1− 2j)
1
4

Zϕ
3

0

(
− ~

(1− 2j)
3
2

)
.

(6.3)
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prefactor ~0 ~1 ~2 ~3 ~4 ~5

∂0
jZ

ϕ3 ∣∣
j=0

~0 1 5
24

385
1152

85085
82944

37182145
7962624

5391411025
191102976

∂1
jZ

ϕ3 ∣∣
j=0

~0 1
2

35
48

5005
2304

1616615
165888

929553625
15925248

167133741775
382205952

∂2
jZ

ϕ3 ∣∣
j=0

~−1 1 35
24

5005
1152

1616615
82944

929553625
7962624

167133741775
191102976

∂3
jZ

ϕ3 ∣∣
j=0

~−1 5
2

385
48

85085
2304

37182145
165888

26957055125
15925248

5849680962125
382205952

(a) The first coefficients of the bivariate generating function Zϕ
3

(~, j).

prefactor ~0 ~1 ~2 ~3 ~4 ~5(
A

2
3

~ ∂0
jZ

ϕ3∣∣
j=0

)
(~) ~0

2π 1 − 5
24

385
1152 − 85085

82944
37182145
7962624 − 5391411025

191102976(
A

2
3

~ ∂1
jZ

ϕ3∣∣
j=0

)
(~) ~−1

2π 2 1
12 − 35

576
5005
41472 − 1616615

3981312
185910725
95551488(

A
2
3

~ ∂2
jZ

ϕ3∣∣
j=0

)
(~) ~−2

2π 4 1
6 − 35

288
5005
20736 − 1616615

1990656
185910725
47775744(

A
2
3

~ ∂3
jZ

ϕ3∣∣
j=0

)
(~) ~−3

2π 8 − 5
3

25
144 − 1925

10368
425425
995328 − 37182145

23887872

(b) The first coefficients of the bivariate generating function A
2
3
~ Z

ϕ3

(~, j).

Table 1: Partition function in ϕ3-theory.

Note that the A-derivative commutes with expansions in j, as we leave the number of
external legs fixed while taking the limit to large loop order. The first coefficients of the

asymptotics of Zϕ
3

(~, j) are listed in Table 1b.
We may also expand the expression for the asymptotics in eq. (6.3) in ~ to obtain a

generating function for the first coefficient of the asymptotic expansions of the derivatives
by j:

A
2
3
~ Z

ϕ3

(~, j) =
1

2π
e

2j
~

(
1 +

(
− 5

24
+

1

4

2j

~
− 1

8

(2j)2

~2

)
~ + . . .

)
A

2
3
~ ∂

m
j Z

ϕ3

(~, j)
∣∣
j=0

=
1

2π

(
2

~

)m(
1 +

(
− 5

24
+

3m

8
− m2

8

)
~ + . . .

)
By Definition 3.2 this can be translated into an asymptotic expression for large order coef-

ficients. With ∂mj Z
ϕ3

(~, j)
∣∣
j=0

=
∑∞
n=0 zm,n~

n:

zm,n =

R−1∑
k=0

cm,k

(
2

3

)−m−n+k

Γ(n+m− k) +O

((
2

3

)−m−n+R

Γ(n+m−R)

)
,

for all R ≥ 0, where cm,k = [~k]~m A
2
3
~ ∂

m
j Z

ϕ3

(~, j)
∣∣
j=0

or more explicitly,

zm,n ∼
2m

2π

(
2

3

)−m−n
Γ(n+m)

(
1 +

2

3

(
− 5

24
+

3m

8
− m2

8

)
1

n+m− 1
+ . . .

)
,

which agrees with the coefficients, which were given in [18] in a different notation.
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~0 ~1 ~2 ~3 ~4 ~5

∂0
jW

ϕ3∣∣
j=0

0 0 5
24

5
16

1105
1152

565
128

∂1
jW

ϕ3∣∣
j=0

0 1
2

5
8

15
8

1105
128

1695
32

∂2
jW

ϕ3∣∣
j=0

1 1 25
8 15 12155

128
11865

16

∂3
jW

ϕ3∣∣
j=0

1 4 175
8 150 158015

128 11865

(a) Table of the first coefficients of the bivariate generating function Wϕ3

(~, j).

prefactor ~0 ~1 ~2 ~3 ~4 ~5(
A

2
3

~ ∂0
jW

ϕ3∣∣
j=0

)
(~) ~1

2π 1 − 5
12

25
288 − 20015

10368
398425
497664 − 323018725

5971968(
A

2
3

~ ∂1
jW

ϕ3∣∣
j=0

)
(~) ~0

2π 2 − 5
6 − 155

144 − 17315
5184 − 3924815

248832 − 294332125
2985984(

A
2
3

~ ∂2
jW

ϕ3∣∣
j=0

)
(~) ~−1

2π 4 − 11
3 − 275

72 − 31265
2592 − 7249295

124416 − 553369915
1492992(

A
2
3

~ ∂3
jW

ϕ3∣∣
j=0

)
(~) ~−2

2π 8 − 46
3 − 407

36 − 51065
1296 − 12501815

62208 − 988327615
746496

(b) Table of the first coefficients of the bivariate generating function A
2
3
~ W

ϕ3

(~, j).

Table 2: Free energy in ϕ3-theory.

Connected diagrams The generating function of the connected graphs can be obtained
by taking the logarithm:

Wϕ3

(~, j) := ~ logZϕ
3

(~, j)

=
1

3
((1− 2j)

3
2 − 1 + 3j) +

1

4
~ log

1

1− 2j
+ ~ logZϕ

3

0

(
~

(1− 2j)
3
2

)
(6.4)

=
5

24
~2 +

1

2
j~ +

5

8
j~2 +

1

2
j2 +

1

2
j2~ +

25

16
j2~2 + . . .

This can be written as the diagrammatic expansion,

Wϕ3

(~, j) = φS
(1

2
+

1

6
+

1

2
+

1

4
+

1

6
+

1

4
+

1

8
+

1

12
+ . . .

)
where we now assign a ~|L(Γ)| to every graph, where |L(Γ)| is the number of loops of Γ. The

large-n asymptotics of the coefficients wn(j) = [~n]Wϕ3

(~, j) can be obtained by using the
chain rule for A:

A
2
3
~ W

ϕ3

(~, j) = ~
[
e

2
3

(
1
~−

1
~̃

)
A

2
3

~̃
logZϕ

3

0

(
~̃
)]

~̃= ~

(1−2j)
3
2

. (6.5)

With these expressions, we can obtain explicit generating functions for the connected n-point
functions and their all-order asymptotics. For instance,

Wϕ3
∣∣∣
j=0

= ~ logZϕ
3

0 (~) A
2
3
~ Wϕ3

∣∣∣
j=0

= ~A
2
3
~ logZϕ

3

0 (~)

∂Wϕ3

∂j

∣∣∣∣∣
j=0

=
1

2
~ + 3~2∂~ logZϕ

3

0 (~) A
2
3
~
∂Wϕ3

∂j

∣∣∣∣∣
j=0

=
(
2 + 3~2∂~

)
A

2
3
~ logZϕ

3

0 (~).
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Every n-point function is a linear combination of logZϕ
3

(~) and its derivatives and the

asymptotics are linear combinations of A
2
3
~ logZϕ

3

(~) = 1
2π

Z
ϕ3

0 (−~)

Z
ϕ3

0 (~)
and its derivatives.

Of course, we could derive differential equations, which are fulfilled by Zϕ
3

0 (~), logZϕ
3

(~)

and A
2
3
~ logZϕ

3

(~) to simplify the expressions above. This would have to be done in a very
model specific manner. We will not pursue this path in the scope of this article, as we aim
for providing machinery which can be used for general models.

Some coefficients of the bivariate generating functions Wϕ3

(~, j) and A
2
3
~ W

ϕ3

(~, j) are
given in Tables 2a and 2b.

Furthermore, we can observe the classic result, proven by Wright [48], that the asymp-
totics of connected and disconnected graphs differ only by a subdominant contribution.

1PI diagrams The next object of interest is the effective action,

Gϕ
3

(~, ϕc) = Wϕ3

(~, j(~, ϕc))− j(~, ϕc)ϕc, (6.6)

which is the Legendre transform of W , where j(~, ϕc) is the solution of ϕc = ∂jW
ϕ3

(~, j). A
small calculation reveals what for the special case of ϕ3-theory this can be written explicitly

in terms of ϕc. It is convenient to define γϕ
3

0 (~) := Gϕ
3

(~,0)
~ = Wϕ3

(~,j(~,0))
~ . Eq. (6.4) gives

us the more explicit form,

γϕ
3

0 (~) =
(1− 2j0(~))

3
2 − 1 + 3j0(~)

3~
+

1

4
log

1

1− 2j0(~)
+ logZϕ

3

0

(
~

(1− 2j0(~))
3
2

)
.

where j0(~) = j(~, 0) is the unique power series solution of the equation 0 = ∂Wϕ3

∂j
(~, j0(~)),

The bivariate generating function Gϕ
3

(~, ϕc) is then,

Gϕ
3

(~, ϕc) = −ϕ
2
c

2
+
ϕ3
c

3!
+

1

2
~ log

1

1− ϕc
+ ~γϕ

3

0

(
~

(1− ϕc)3

)
. (6.7)

The combinatorial interpretation of the identity is the following: A 1PI diagram either has no
or only one loop, or it can be reduced to a vacuum diagram by removing all external legs and
the attached vertices. This bivariate generating function can be depicted diagrammatically
as,

Gϕ
3

(~, ϕc) = φS
(
− 1

2
+

1

6
+

1

2
+

1

4
+

1

6
+

1

12
+ . . .

)
,

where we assign a ϕc instead of j to every external leg.

Acting with the A-derivative on γϕ
3

0 gives,

A
2
3
~ γ

ϕ3

0 (~) = A
2
3
~
Wϕ3

(~, j0(~)))

~

=

(
A

2
3
~
Wϕ3

(~, j))
~

)
j=j0(~)

+

∂Wϕ3

∂j
(~, j)

∣∣
j=j0(~)

~ A
2
3
~ j0(~)

where the second term vanishes by the definition of j0. Therefore,

A
2
3
~ γ

ϕ3

0 (~) =

[
e

2
3

(
1
~−

1
~̃

)
A

2
3

~̃
logZϕ

3

0

(
~̃
)]

~̃= ~

(1−2j0(~))
3
2

,

21



~0 ~1 ~2 ~3 ~4 ~5

∂0
ϕcG

ϕ3∣∣
ϕc=0

0 0 1
12

5
48

11
36

539
384

∂1
ϕcG

ϕ3∣∣
ϕc=0

0 1
2

1
4

5
8

11
4

539
32

∂2
ϕcG

ϕ3∣∣
ϕc=0

−1 1
2 1 35

8
55
2

7007
32

∂3
ϕcG

ϕ3∣∣
ϕc=0

1 1 5 35 605
2

49049
16

(a) Table of the first coefficients of the bivariate generating function Gϕ
3

(~, ϕc).

prefactor ~0 ~1 ~2 ~3 ~4 ~5(
A

2
3

~ ∂0
ϕcG

ϕ3 ∣∣
ϕc=0

)
(~) e−1 ~1

2π 1 − 7
6 − 11

72 − 10135
1296 − 536087

31104 − 296214127
933120(

A
2
3

~ ∂1
ϕcG

ϕ3 ∣∣
ϕc=0

)
(~) e−1 ~0

2π 2 − 7
3 − 137

36 − 10729
648 − 1630667

15552 − 392709787
466560(

A
2
3

~ ∂2
ϕcG

ϕ3 ∣∣
ϕc=0

)
(~) e−1 ~−1

2π 4 − 26
3 − 179

18 − 15661
324 − 2531903

7776 − 637309837
233280(

A
2
3

~ ∂3
ϕcG

ϕ3 ∣∣
ϕc=0

)
(~) e−1 ~−2

2π 8 − 100
3 − 101

9 − 18883
162 − 3471563

3888 − 940175917
116640

(b) Table of the first coefficients of the bivariate generating function A
2
3
~ G

ϕ3

(~, ϕc).

Table 3: Effective action in ϕ3-theory.

and

A
2
3
~ G

ϕ3

(~, ϕc) = ~
[
e

2
3

(
1
~−

1
~̃

)
A

2
3

~̃
γϕ

3

0 (~̃)

]
~̃= ~

(1−ϕc)3

= ~
[
e

2
3

(
1
~−

1
~̃

)
A

2
3

~̃
logZϕ

3

0

(
~̃
)]

~̃= ~

(1−ϕc)3
(
1−2j0

(
~

(1−ϕc)3

)) 3
2

.
(6.8)

This can be expanded in ϕc to obtain the the asymptotics of the 1PI or ‘proper’ n-point

functions. Some coefficients of the bivariate generating function Gϕ
3

and its asymptotics
are listed in Tables 3a and 3b.

As for the disconnected diagrams, we can also expand A
2
3
~ G

ϕ3

(~, ϕc) in ~ to obtain an

asymptotic expansion for general m with ∂mϕcG
ϕ3

(~, ϕc)
∣∣
ϕc=0

=
∑∞
n=0 gm,n~

n. Expanding
gives,

A
2
3
~ G

ϕ3

(~, ϕc) = ~e
−1+ 2ϕc

~

2π

(
1− 1

6

(
7 + 3(2ϕc)

2) ~
− 1

72

(
11 + 126(2ϕc)− 42(2ϕc)

2 − 8(2ϕc)
3 − 9(2ϕc)

4) ~2 + . . .

)
.

Translated to an asymptotic expansion this becomes,

gm,n ∼
e−1

2π
2m
(

2

3

)−m−n
Γ(n+m− 1)

×
(

1− 1

9

7− 3m+ 3m2

n+m− 2
− 1

162

11 + 210m− 123m2 + 48m3 − 9m4

(n+m− 3)(n+m− 2)
+ . . .

)
.

22



~0
ren ~1

ren ~2
ren ~3

ren ~4
ren ~5

ren

~(~ren) 0 1 − 7
2 6 − 33

2 − 345
16

zϕ2
c
(~ren) 1 1

2 − 1
2 − 1

4 −2 − 29
2

zϕ3
c
(~ren) 1 −1 − 1

2 −4 −29 − 545
2

(a) Table of the first coefficients of the renormalization quantities in ϕ3-theory.

prefactor ~0
ren ~1

ren ~2
ren ~3

ren ~4
ren ~5

ren(
A

2
3

~ren
~
)

(~ren) e−
10
3

~−1

2π −16 412
3 − 3200

9
113894

81
765853

243
948622613

14580(
A

2
3

~ren
zϕ2

c

)
(~ren) e−

10
3

~−1

2π −4 64
3

76
9

13376
81

397486
243

284898947
14580(

A
2
3

~ren
zϕ3

c

)
(~ren) e−

10
3

~−2

2π −8 128
3

152
9

26752
81

794972
243

569918179
14580

(b) Table of the first coefficients of the asymptotics of the renormalization quantities in ϕ3-theory.

Table 4: Renormalization constants in ϕ3-theory.

Renormalization constants and skeleton diagrams To perform the charge renor-
malization as explained in detail in Section 5, the invariant charge in ϕ3-theory needs to be
defined in accordance to eq. (5.2),

α(~) :=

 ∂3
ϕcG

ϕ3

|ϕc=0(~)(
−∂2

ϕcG
ϕ3 |ϕc=0(~)

) 3
2

2

(6.9)

The exponents in the expression above are a consequence of the combinatorial fact, that a
1PI ϕ3-graph has two additional vertices and three additional propagators for each additional
loop. We need to solve

~ren = ~(~ren)α(~(~ren))

for ~(~ren). The asymptotics in ~ren can be obtained by using the formula for the composi-
tional inverse of A-derivative given in Section 3 on this expression:

(A
2
3
~ren ~(~ren)) = −

e 2
3

(
1

~ren
− 1

~

)
A

2
3
~ (~α(~))

∂~ (~α(~))


~=~(~ren)

.

The z-factors are then obtained as explained in Section 5. They fulfill the identities,

−1 = zϕ2
c
(~ren)∂2

ϕcG
ϕ3 ∣∣

ϕc=0
(~(~ren))

1 = zϕ3
c
(~ren)∂3

ϕcG
ϕ3 ∣∣

ϕc=0
(~(~ren))

By application of the A-derivative, the asymptotics of zϕ3
c

are:

A
2
3
~ren zϕ3

c
(~ren) = −

[(
∂3
ϕcG

ϕ3 ∣∣
ϕc=0

(~)
)−2

e
2
3

(
1

~ren
− 1

~

)(
A

2
3
~ ∂

3
ϕcG

ϕ3 ∣∣
ϕc=0

(~)

−
(
∂~∂

3
ϕcG

ϕ3 ∣∣
ϕc=0

(~)
) A 2

3
~ (~α(~))

∂~ (~α(~))


~=~(~ren)

.

(6.10)
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and for zϕ2
c

analogously. Some coefficients of the renormalization constants and their asymp-
totics are given in Tables 4a and 4b.

It was observed by Cvitanović et al. [18] that 1− zϕ3
c
(~ren) is the generating function of

skeleton diagrams. Skeleton diagrams are 1PI diagrams without any superficially divergent
subgraphs. Utilizing the Hopf algebra of Feynman graphs and the interpretation of subgraph
structures as algebraic lattices, this was proven by the author in [11]. Applying Definition
3.2 directly gives a complete asymptotic expansion of the coefficients of 1− zϕ3

c
(~ren),

[~nren](1− zϕ3
c
(~ren)) =

R−1∑
k=0

ck

(
2

3

)−n−2+k

Γ(n+ 2− k) +O

((
2

3

)−n
Γ(n+ 2−R)

)

for R ≥ 0, where ck = [~kren]

(
−~2

ren A
2
3
~ren zϕ3

c
(~ren)

)
. Or more explicit for large n,

[~nren](1− zϕ3
c
(~ren)) ∼ e−

10
3

2π

(
2

3

)−n−2

Γ(n+ 2)

(
8− 2

3

128

3

1

n+ 1

−
(

2

3

)2
152

9

1

n(n+ 1)
−
(

2

3

)3
26752

81

1

(n− 1)n(n+ 1)
+ . . .

)
.

The constant coefficient of A
2
3
~ren zϕ3

c
(~ren) was also given in [18].

Using the first coefficients of A
2
3
~ ∂

3
ϕcG

ϕ3 ∣∣
ϕc=0

and −A
2
3
~ren zϕ3

c
(~ren), we may deduce

that the proportion of skeleton diagrams in the set of all proper vertex diagrams is,

e
− 10

3

2π

(
2
3

)−n−2
Γ(n+ 2)

(
8− 2

3
128
3

1
n+1

+ . . .
)

e−1

2π

(
2
3

)−n−2
Γ(n+ 2)

(
8− 2

3
100
3

1
n+1

+ . . .
) = e−

7
3

(
1− 56

9

1

n
+O

(
1

n2

))
.

A random 1PI diagram in ϕ3-theory is therefore a skeleton diagram with probability

e−
7
3

(
1− 56

9

1

n
+O

(
1

n2

))
,

where n is the loop number.
All results obtained in this section can be translated to the respective asymptotic results

on cubic graphs. For instance, 1
3!

(1− zϕ3
c
(~ren)) is the generating function of cyclically four-

connected graphs with one distinguished vertex. In [47], the first coefficient of the asymptotic
expansion of those graphs is given, which agrees with our expansion. More connections to
graph counting problems of this kind will be discussed in a future publication [13].

6.3 ϕ4-theory

In ϕ4-theory the partition function is given by the formal integral,

Zϕ
4

(~, j) :=

∫
dx√
2π~

e
1
~

(
− x

2

2
+ x4

4!
+xj

)
= 1 +

j2

2~
+

j4

4!~
+

5

8
j2 +

1155

128
j4 +

1

8
~ + . . .

In this case, it is not possible to completely absorb the j dependents into the argument

of Zϕ
4

0 . We only can do so up to fourth order in j, which is still sufficient to obtain the
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prefactor ~0 ~1 ~2 ~3 ~4 ~5

∂0
jZ

ϕ4 ∣∣
j=0

~0 1 1
8

35
384

385
3072

25025
98304

1616615
2359296

∂2
jZ

ϕ4 ∣∣
j=0

~−1 1 5
8

105
128

5005
3072

425425
98304

11316305
786432

∂4
jZ

ϕ4 ∣∣
j=0

~−2 3 35
8

1155
128

25025
1024

8083075
98304

260275015
786432

(a) The first coefficients of the bivariate generating function Zϕ
4

(~, j).

prefactor ~0 ~1 ~2 ~3 ~4 ~5(
A

3
2

~ ∂0
jZ

ϕ4∣∣
j=0

)
(~) ~0

√
2π

1 − 1
8

35
384 − 385

3072
25025
98304 − 1616615

2359296(
A

3
2

~ ∂2
jZ

ϕ4∣∣
j=0

)
(~) ~−2

√
2π

6 1
4 − 5

64
35
512 − 5005

49152
85085
393216(

A
3
2

~ ∂4
jZ

ϕ4∣∣
j=0

)
(~) ~−4

√
2π

36 − 9
2

9
32 − 35

256
1155
8192 − 15015

65536

(b) The first coefficients of the bivariate generating function A
3
2
~ Z

ϕ4

(~, j).

Table 5: Partition function in ϕ4-theory.

generating functions which are necessary to calculate the renormalization constants:

Zϕ
4

(~, j) =

∫
dx√
2π~

e
1
~

(
− x

2

2
+ x4

4!
+~ log cosh xj

~

)

=

∫
dx√
2π~

e
1
~

(
− x

2

2
+ x4

4!
+~( 1

2 ( xj~ )
2− 1

12 ( xj~ )
4
+O(j6)

)

=

∫
dx√
2π~

e
1
~

(
−(1− j

2

~ ) x
2

2
+(1−2 j

4

~3 ) x
4

4!

)
+O(j6)

=
1√

1− j2

~

Zϕ
4

0

(
~

1− 2 j
4

~3

(1− j2

~ )2

)
+O(j6)

where Zϕ
4

0 (~) := Zϕ
4

(~, 0) = F
[
−x

2

2
+ x4

4!

]
(~).

The asymptotics of Zϕ
4

0 can be calculated directly by using Corollary 2.1: The action

S(x) = −x
2

2
+ x4

4!
is real analytic and all critical points lie on the real axis. The non-

trivial critical points of S(x) = −x
2

2
+ x4

4!
are τ± = ±

√
3!. The value at the critical points

is S(τ±) = − 3
2
. These are the dominant singularities which both contribute. Therefore,

A = 3
2

and S(τ±)− S(x+ τ±) = −x2 ± x3√
3!

+ x4

4!
.

A
3
2
~ Z

ϕ4

0 (~) =
1

2π

(
F
[
−x2 +

x3

√
3!

+
x4

4!

]
(−~) + F

[
−x2 − x3

√
3!

+
x4

4!

]
(−~)

)
=

1

π
F
[
−x2 +

x3

√
3!

+
x4

4!

]
(−~)

=
1√
2π

(
1− 1

8
~ +

35

384
~2 − 385

3072
~3 +

25025

98304
~4 − 1616615

2359296
~5 + . . .

)
The combinatorial interpretation of this sequence is the following: Diagrams with three or
four-valent vertices are weighted with a λ3 =

√
3! for each three-valent vertex, λ4 = 1 for

each four-valent vertex, a factor a = 1
2

for each edge and a (−1) for every loop in accordance
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~0 ~1 ~2 ~3 ~4 ~5

∂0
jW

ϕ4 ∣∣
j=0

0 0 1
8

1
12

11
96

17
72

∂2
jW

ϕ4 ∣∣
j=0

1 1
2

2
3

11
8

34
9

619
48

∂4
jW

ϕ4 ∣∣
j=0

1 7
2

149
12

197
4

15905
72

107113
96

(a) The first coefficients of the bivariate generating function Wϕ4

(~, j).

prefactor ~0 ~1 ~2 ~3 ~4 ~5(
A

3
2

~ ∂0
jW

ϕ4∣∣
j=0

)
(~) ~1

√
2π

1 − 1
4

1
32 − 89

384
353
6144 − 10623

8192(
A

3
2

~ ∂2
jW

ϕ4∣∣
j=0

)
(~) ~−1

√
2π

6 − 3
2 − 13

16 − 73
64 − 2495

1024 − 84311
12288(

A
3
2

~ ∂4
jW

ϕ4∣∣
j=0

)
(~) ~−3

√
2π

36 −45 − 111
8 − 687

32 − 25005
512 − 293891

2048

(b) The first coefficients of the bivariate generating function A
3
2
~ W

ϕ4

(~, j).

Table 6: Free energy in ϕ4-theory.

to Proposition 2.1. The whole sequence is preceded by a factor of
√
a = 1√

2
as required by

the definition of F .
The asymptotics for Zϕ

4

(~, j) can again be obtained by utilizing the chain rule for A:

A
3
2
~ Z

ϕ4

(~, j) =
1√

1− j2

~

[
e

3
2

(
1
~−

1
~̃

)
(A

3
2

~̃
Zϕ

4

0 )
(
~̃
)]

~̃=~
1−2

j4

~3

(1− j
2

~ )2

+O(j6)

The first coefficients of Zϕ
4

(~, j) are given in Table 5a and the respective asymptotic ex-
pansions in Table 5b.

The generating function of the connected graphs is given by,

Wϕ4

(~, j) := ~ logZϕ
4

(~, j) =
1

2
~ log

1

1− j2

~

+ ~ logZϕ
4

0

(
~

1− 2 j
4

~3

(1− j2

~ )2

)
+O(j6)

and the asymptotics are,

A
3
2
~ W

ϕ4

(~, j) = ~
[
e

3
2

(
1
~−

1
~̃

)
A

3
2
~ logZϕ

4

0

(
~̃
)]

~̃=~
1−2

j4

~3

(1− j
2

~ )2

+O(j6).

The first coefficients of the original generating function and the generating function for the
asymptotics are given in Tables 6a and 6b.

The effective action, which is the Legendre transform of Wϕ4

,

Gϕ
4

(~, ϕc) = Wϕ4

(~, j)− jϕc

where ϕc := ∂jW
ϕ4

, is easy to handle in this case, as there are no tadpole diagrams.

Derivatives of Gϕ
4

(~, ϕc) with respect to ϕc can be calculated by exploiting that ϕc = 0
implies j = 0. For instance,
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~0 ~1 ~2 ~3 ~4 ~5

∂0
ϕcG

ϕ4∣∣
ϕc=0

0 0 1
8

1
12

11
96

17
72

∂2
ϕcG

ϕ4∣∣
ϕc=0

−1 1
2

5
12

5
6

115
48

625
72

∂4
ϕcG

ϕ4∣∣
ϕc=0

1 3
2

21
4

45
2

1775
16

4905
8

(a) The first coefficients of the bivariate generating function Gϕ
4

(~, j).

prefactor ~0 ~1 ~2 ~3 ~4 ~5(
A

3
2

~ ∂0
ϕcG

ϕ4 ∣∣
ϕc=0

)
(~) ~1

√
2π

1 − 1
4

1
32 − 89

384
353
6144 − 10623

8192(
A

3
2

~ ∂2
ϕcG

ϕ4 ∣∣
ϕc=0

)
(~) ~−1

√
2π

6 − 15
2 − 45

16 − 445
64 − 22175

1024 − 338705
4096(

A
3
2

~ ∂4
ϕcG

ϕ4 ∣∣
ϕc=0

)
(~) ~−3

√
2π

36 −117 369
8 − 1671

32 − 103725
512 − 1890555

2048

(b) The first coefficients of the bivariate generating function A
3
2
~ G

ϕ4

(~, j).

Table 7: Effective action in ϕ4-theory.

Gϕ
4
∣∣∣
ϕc=0

= Wϕ4

(~, 0)

∂2
ϕcG

ϕ4
∣∣∣
ϕc=0

= − ∂j

∂ϕc

∣∣∣∣
ϕc=0

= − 1

∂2
jW

ϕ4
∣∣
j=0

∂4
ϕcG

ϕ4
∣∣∣
ϕc=0

=
∂4
jW

ϕ4
∣∣∣
j=0(

∂2
jW

ϕ4
∣∣
j=0

)4

The calculation of the asymptotic expansions can be performed by applying the A-derivative
on these expressions and using the Leibniz and chain rules to write them in terms of the

asymptotics of Wϕ4

. Some coefficients of Gϕ
4

(~, j) are listed in Table 7a with the respective
asymptotics in Table 7b.

Using the procedure established in Section 5, the renormalization constants can be cal-
culated by defining the invariant charge as

α(~) :=


(
∂4
ϕcG

ϕ4
∣∣∣
ϕc=0

(~)

) 1
2

∂2
ϕcG

ϕ4
∣∣
ϕc=0

(~)


2

.

Having defined the invariant charge, the calculation of the renormalization constants is
completely equivalent to the calculation for ϕ3-theory. The results are given in Table 8a
and 8b.

Argyres et al. [3] remarked that 1 − zϕ4
c
(~ren) does not count the number of skeleton

diagrams in ϕ4-theory as might be expected from analogy to ϕ3-theory. The fact that this
cannot by the case can be seen from the second term of zϕ4

c
(~ren) which is positive (see Table

8a), destroying a counting function interpretation of 1 − zϕ4
c
(~ren). In [11] it was proven

by the author that additionally to skeleton diagrams, also chains of one loop diagrams,
. . . contribute to the generating function zϕ4

c
(~ren). The chains of one loop bubbles

contribute with alternating sign.
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~0
ren ~1

ren ~2
ren ~3

ren ~4
ren ~5

ren

~(~ren) 0 1 − 5
2

25
6 − 15

2
25
3

zϕ2(~ren) 1 1
2 − 7

12
1
8 − 9

16 − 157
96

zϕ4(~ren) 1 − 3
2

3
4 − 11

8 − 45
16 − 499

32

(a) Table of the first coefficients of the renormalization quantities in ϕ4-theory.

prefactor ~0
ren ~1

ren ~2
ren ~3

ren ~4
ren ~5

ren(
A

3
2

~ren
~
)

(~ren) e−
15
4

~−2
√

2π
−36 387

2 − 13785
32

276705
256 − 8524035

8192
486577005

65536(
A

3
2

~ren
zϕ2

)
(~ren) e−

15
4

~−2
√

2π
−18 219

4
567
64

49113
512

8281053
16384

397802997
131072(

A
3
2

~ren
zϕ4

)
(~ren) e−

15
4

~−3
√

2π
−36 243

2 − 729
32

51057
256

7736445
8192

377172477
65536

(b) Table of the first coefficients of the asymptotics of the renormalization quantities in ϕ4-theory.

Table 8: Renormalization constants in ϕ4-theory.

The generating function of skeleton diagrams in ϕ4 theory is given by [11],

1− zϕ4
c
(~ren) + 3

∑
n≥2

(−1)n
(
~ren

2

)n
, (6.11)

where we needed to include a factor of 4! to convert from [11] to the present notation of
leg-fixed diagrams. The first coefficients are,

0,
3

2
, 0, 1, 3,

31

2
,

529

6
,

2277

4
,

16281

4
,

254633

8
,

2157349

8
,

39327755

16
,

383531565

16
, . . .

The asymptotic expansion of this sequence agrees with the one of (1− zϕ4
c
(~ren)),

[~nren](1− zϕ4
c
(~ren)) ∼ e−

15
4

√
2π

(
2

3

)n+3

Γ(n+ 3)

(
36− 3

2

243

2

1

n+ 2

+

(
3

2

)2
729

32

1

(n+ 1)(n+ 2)
−
(

3

2

)3
51057

256

1

n(n+ 1)(n+ 2)
+ . . .

)
.

More coefficients are given in Table 8b.

6.4 QED-type theories

We will discuss more general theories with two types of ‘particles’, which are of QED-type
in the sense that we can interpret one particle as boson and the other as fermion with a
fermion-fermion-boson vertex.

Consider the partition function

Z(~, j, η) :=

∫
R

dx√
2π~

∫
C

dzdz̄

π~
e

1
~

(
− x

2

2
−|z|2+x|z|2+jx+ηz̄+η̄z

)
.

28



The Gaussian integration over z and z̄ can be performed immediately,

Z(~, j, η) =

∫
R

dx√
2π~

dzdz̄

π~
e

1
~

(
− x

2

2
−(1−x)|z− η

1−x |
2+jx+

|η|2
1−x

)

=

∫
R

dx√
2π~

1

1− xe
1
~

(
− x

2

2
+jx+

|η|2
1−x

)

=

∫
R

dx√
2π~

e
1
~

(
− x

2

2
+jx+

|η|2
1−x+~ log 1

1−x

)
(6.12)

The combinatorial interpretation of this expression is the following: |η|
2

1−x generates a fermion

propagator line and ~ log 1
1−x generates a fermion loop, both with an arbitrary number of

boson lines attached. The interpretation of the jx and −x
2

2
terms are standard.

We will consider the following variations of this partition function:

(QED) In quantum electrodynamics (QED) all fermion loops have an even num-
ber of fermion edges, as Furry’s theorem guarantees that diagrams with
odd fermion loops vanish. The modification,

~ log
1

1− x → ~1

2

(
log

1

1− x + log
1

1 + x

)
=

1

2
~ log

1

1− x2
,

results in the required partition function. This combinatorial result is
due to Cvitanović et al. [18].

(Quenched QED) In the quenched approximation of QED, fermion loops are neglected al-
together. This corresponds to the modification ~ log 1

1−x → 0.

(Yukawa) We will also consider the integral without modification. Also odd fermion
loops are allowed in this case. This can be seen as the zero-dimensional
version of Yukawa theory.

6.4.1 QED

In QED the partition function in eq. (6.12) must be modified to

ZQED(~, j, η) :=

∫
R

dx√
2π~

e
1
~

(
− x

2

2
+jx+

|η|2
1−x+ 1

2
~ log 1

1−x2

)
. (6.13)

As in ϕ4-theory, we hide the dependence on the sources inside a composition:

ZQED(~, j, η) :=

(
1 +

j2

2~
+
|η|2

~

)
ZQED

0

 ~
(

1 + 2j|η|2
~2

)
(

1− 2|η|2
~

)(
1− j2

~

)


+O(j4) +O(j2|η|2) +O(|η|4),

where

ZQED
0 (~) := ZQED(~, 0, 0) =

∫
R

dx√
2π~

e
1
~

(
− x

2

2
+ 1

2
~ log 1

1−x2

)
.

Recall that this expression is meant to be expanded under the integral sign. Because

e
1
2

log 1
1−x2 = 1√

1−x2
, we conclude, using the rules of Gaussian integration that

ZQED
0 (~) =

∞∑
n=0

~n(2n− 1)!![x2n]
1√

1− x2
.
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prefactor ~0 ~1 ~2 ~3 ~4 ~5

∂0
j (∂η∂η̄)0ZQED

∣∣
j=0
η=0

~0 1 1
2

9
8

75
16

3675
128

59535
256

∂2
j (∂η∂η̄)0ZQED

∣∣
j=0
η=0

~−1 1 3
2

45
8

525
16

33075
128

654885
256

∂0
j (∂η∂η̄)1ZQED

∣∣
j=0
η=0

~−1 1 3
2

45
8

525
16

33075
128

654885
256

∂1
j (∂η∂η̄)1ZQED

∣∣
j=0
η=0

~−1 1 9
2

225
8

3675
16

297675
128

7203735
256

(a) The first coefficients of the trivariant generating function ZQED(~, j, η).

prefactor ~0 ~1 ~2 ~3 ~4 ~5(
A

1
2

~ ∂0
j (∂η∂η̄)0ZQED

∣∣
j=0
η=0

)
(~) ~0

π 1 − 1
2

9
8 − 75

16
3675
128 − 59535

256(
A

1
2

~ ∂2
j (∂η∂η̄)0ZQED

∣∣
j=0
η=0

)
(~) ~−2

π 1 1
2 − 3

8
15
16 − 525

128
6615
256(

A
1
2

~ ∂0
j (∂η∂η̄)1ZQED

∣∣
j=0
η=0

)
(~) ~−2

π 1 1
2 − 3

8
15
16 − 525

128
6615
256(

A
1
2

~ ∂0
j (∂η∂η̄)2ZQED

∣∣
j=0
η=0

)
(~) ~−3

π 1 − 1
2

1
8 − 3

16
75
128 − 735

256

(b) The first coefficients of the trivariant generating function A
1
2
~ Z

QED(~, j, η).

Table 9: Partition function in QED.

In Example 2.6 it was shown using Proposition 2.2 that this may be written as,

ZQED
0 (~) = F

[
− sin2(x)

2

]
(~).

The partition function of zero-dimensional QED without sources is therefore equal to the
partition function of the zero-dimensional sine-Gordon model.

Using Corollary 2.1, it is straightforward to calculate the all-order asymptotics. The

saddle points of − sin2(x)
2

all lie on the real axis. The dominant saddles are at τ± = ±π
2

. We

find that A = − sin2(τ±)

2
= 1

2
and S(τ±)−S(τ± + x) = − sin2(x)

2
. Therefore, ZQED

0 ∈ R[[~]]
1
2

and

A
1
2
~ Z

QED
0 (~) = A

1
2
~ F

[
− sin2(x)

2

]
(~) =

2

2π
F
[
− sin2(x)

2

]
(−~).

The calculation of the asymptotics of ZQED(~, j, η) as well as setting up the free energy
WQED(~, j, η) and calculating its asymptotics are analogous to the preceding examples.
The respective first coefficients are listed in Tables 9 and 10.

The effective action is given by the two variable Legendre transformation of WQED:

GQED(~, φc, ψc) = WQED(~, j, η)− jφc − η̄ψc − ηψ̄c,

where φc = ∂jW
QED and ψc = ∂η̄W

QED. Because there are no tadpole diagrams in QED,
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~0 ~1 ~2 ~3 ~4 ~5

∂0
j (∂η∂η̄)0WQED

∣∣
j=0
η=0

0 0 1
2 1 25

6 26

∂2
j (∂η∂η̄)0WQED

∣∣
j=0
η=0

1 1 4 25 208 2146

∂0
j (∂η∂η̄)1WQED

∣∣
j=0
η=0

1 1 4 25 208 2146

∂1
j (∂η∂η̄)1WQED

∣∣
j=0
η=0

1 4 25 208 2146 26368

(a) The first coefficients of the trivariant generating function WQED(~, j, η).

prefactor ~0 ~1 ~2 ~3 ~4 ~5(
A

1
2

~ ∂0
j (∂η∂η̄)0WQED

∣∣
j=0
η=0

)
(~) ~1

π 1 −1 1
2 − 17

2
67
8 − 3467

8(
A

1
2

~ ∂2
j (∂η∂η̄)0WQED

∣∣
j=0
η=0

)
(~) ~−1

π 1 −1 − 3
2 − 13

2 − 341
8 − 2931

8(
A

1
2

~ ∂0
j (∂η∂η̄)1WQED

∣∣
j=0
η=0

)
(~) ~−1

π 1 −1 − 3
2 − 13

2 − 341
8 − 2931

8(
A

1
2

~ ∂1
j (∂η∂η̄)1WQED

∣∣
j=0
η=0

)
(~) ~−2

π 1 −1 − 3
2 − 13

2 − 341
8 − 2931

8

(b) The first coefficients of the trivariant generating function A
1
2
~ W

QED(~, j, η).

Table 10: Free energy in QED.

it follows that,

GQED
∣∣
ϕc=0
ψc=0

= WQED
∣∣
j=0
η=0

∂ψc∂ψ̄cG
QED

∣∣
ϕc=0
ψc=0

= − 1

∂η∂η̄WQED
∣∣
j=0
η=0

∂2
ϕcG

QED
∣∣
ϕc=0
ψc=0

= − 1

∂2
jW

QED
∣∣
j=0
η=0

∂ϕc∂ψc∂ψ̄cG
QED

∣∣
ϕc=0
ψc=0

=

∂j∂η∂η̄W
QED

∣∣
j=0
η=0

∂2
jW

QED
∣∣
j=0
η=0

(
∂η∂η̄WQED

∣∣
j=0
η=0

)2 .

The calculation of asymptotics is similar to the example of ϕ4-theory. Coefficients for the
effective action are listed in Table 11.

To calculate the renormalization constants we define the invariant charge as,

α(~) :=


∂ϕc∂ψc∂ψ̄cG

QED
∣∣
ϕc=0
ψc=0(

−∂2
ϕcG

QED
∣∣
ϕc=0
ψc=0

) 1
2
(
−∂ψc∂ψ̄cGQED

∣∣
ϕc=0
ψc=0

)


2

.

The first coefficients of the renormalization constants and their asymptotics are listed in
Table 12.

As in the example of ϕ3-theory, the z-factor for the vertex, zϕcψcψ̄c can be used to
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~0 ~1 ~2 ~3 ~4 ~5

∂0
φc

(∂ψc∂ψ̄c)
0GQED

∣∣
φc=0
ψc=0

0 0 1
2 1 25

6 26

∂2
φc

(∂ψc∂ψ̄c)
0GQED

∣∣
φc=0
ψc=0

−1 1 3 18 153 1638

∂0
φc

(∂ψc∂ψ̄c)
1GQED

∣∣
φc=0
ψc=0

−1 1 3 18 153 1638

∂1
φc

(∂ψc∂ψ̄c)
1GQED

∣∣
φc=0
ψc=0

1 1 7 72 891 12672

(a) The first coefficients of the trivariant generating function GQED(~, φc, ψc).

prefactor ~0 ~1 ~2 ~3 ~4 ~5(
A

1
2

~ ∂0
φc

(∂ψc∂ψ̄c)
0GQED

∣∣
φc=0
ψc=0

)
(~) ~1

π 1 −1 1
2 − 17

2
67
8 − 3467

8(
A

1
2

~ ∂2
φc

(∂ψc∂ψ̄c)
0GQED

∣∣
φc=0
ψc=0

)
(~) ~−1

π 1 −3 − 9
2 − 57

2 − 2025
8 − 22437

8(
A

1
2

~ ∂0
φc

(∂ψc∂ψ̄c)
1GQED

∣∣
φc=0
ψc=0

)
(~) ~−1

π 1 −3 − 9
2 − 57

2 − 2025
8 − 22437

8(
A

1
2

~ ∂1
φc

(∂ψc∂ψ̄c)
1GQED

∣∣
φc=0
ψc=0

)
(~) ~−2

π 1 −7 − 3
2 − 75

2 − 3309
8 − 41373

8

(b) The first coefficients of the trivariant generating function A
1
2
~ G

QED(~, φc, ψc).

Table 11: Effective action in QED.

~0
ren ~1

ren ~2
ren ~3

ren ~4
ren ~5

ren

~(~ren) 0 1 −5 14 −58 20

zφ2
c
(~ren) 1 1 −1 −1 −13 −93

z|ψc|2(~ren) 1 1 −1 −1 −13 −93

zφc|ψc|2(~ren) 1 −1 −1 −13 −93 −1245

(a) Table of the first coefficients of the renormalization quantities in QED.

prefactor ~0
ren ~1

ren ~2
ren ~3

ren ~4
ren ~5

ren(
A

1
2

~ren
~
)

(~ren) e−
5
2
~−1

π −2 24 − 379
4

6271
12

38441
64

17647589
480(

A
1
2

~ren
zφ2

c

)
(~ren) e−

5
2
~−1

π −1 13
2

67
8

5177
48

513703
384

83864101
3840(

A
1
2

~ren
z|ψc|2

)
(~ren) e−

5
2
~−1

π −1 13
2

67
8

5177
48

513703
384

83864101
3840(

A
1
2

~ren
zφc|ψc|2

)
(~ren) e−

5
2
~−2

π −1 13
2

67
8

5177
48

513703
384

83864101
3840

(b) Table of the first coefficients of the asymptotics of the renormalization quantities in QED.

Table 12: Renormalization constants in QED.
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enumerate the number of skeleton diagrams. Asymptotically, this number is given by,

[~nren](1− zϕcψcψ̄c(~ren)) ∼ e−
5
2

π

(
1

2

)−n−2

Γ(n+ 2)

(
1− 1

2

13

2

1

n+ 1

−
(

1

2

)2
67

8

1

n(n+ 1)
−
(

1

2

)3
5177

48

1

(n− 1)n(n+ 1)
+ . . .

)
,

which can be read off Table 12. The first two coefficients of this expansion were also given
in [18] in a different notation.

6.4.2 Quenched QED

For the quenched approximation, we need to remove the log-term in the partition function
given in eq. (6.12):

ZQQED(~, j, η) :=

∫
R

dx√
2π~

e
1
~

(
− x

2

2
+jx+

|η|2
1−x

)

The partition function cannot be reduced to a generating function over diagrams without
sources as the only diagram without sources is the empty diagram.

To obtain the first order in |η|2, the partition function can be rewritten as,

ZQQED(~, j, η) = e
j2

2~

1 +
|η|2

~(1− j)

∫
R

dx√
2π
(

~
(1−j)2

) 1

1− xe
− x2

2

(
~

(1−j)2

)
+O(|η|4)

 .

The formal integral in this expression can be easily expanded:∫
R

dx√
2π~

1

1− xe
− x

2

2~ =

∞∑
n=0

~n(2n− 1)!! =: χ(~)

This is in fact the expression, we encountered in Example 2.10, whose asymptotics cannot
be calculated by Corollary 2.1 or Theorem 2.1. But extracting the asymptotics ‘by hand’ is

trivial. Because (2n− 1)!! = 2
n+1

2√
2π

Γ
(
n+ 1

2

)
, we can write,

A
1
2
~ χ(~) =

1√
2π~

,

in the language of the ring of factorially divergent power series. It follows that,

ZQQED(~, j, η) = e
j2

2~

(
1 +

|η|2

~(1− j)χ
(

~
(1− j)2

)
+O(|η|4)

)

A
1
2
~ Z

QQED(~, j, η) =
|η|2e

j2

2~

~(1− j)

(
A

1
2
~ χ

(
~

(1− j)2

))
(~) +O(|η|4)

and by the chain rule for A,

A
1
2
~ Z

QQED(~, j, η) =
|η|2e

j2

2~

~(1− j)

[
e

1
2

(
1
~−

1
~̃

)
A

1
2

~̃
χ
(
~̃
)]

~̃= ~
(1−j)2

+O(|η|4)

=
|η|2e

j2

2~

~(1− j)

[
e

1
2

(
1
~−

1
~̃

)
1√
2π~̃

]
~̃= ~

(1−j)2

+O(|η|4)

=
|η|2e

j
~

√
2π~ 3

2

+O(|η|4)
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~0 ~1 ~2 ~3 ~4 ~5

∂0
j (∂η∂η̄)1WQQED

∣∣
j=0
η=0

1 1 3 15 105 945

∂1
j (∂η∂η̄)1WQQED

∣∣
j=0
η=0

1 3 15 105 945 10395

(a) The first coefficients of the trivariant generating function WQQED(~, j, η).

prefactor ~0 ~1 ~2 ~3 ~4 ~5(
A

1
2

~ ∂0
j (∂η∂η̄)1WQQED

∣∣
j=0
η=0

)
(~) ~0

√
2π~ 1 0 0 0 0 0(

A
1
2

~ ∂1
j (∂η∂η̄)1WQQED

∣∣
j=0
η=0

)
(~) ~−1

√
2π~ 1 0 0 0 0 0

(b) The first coefficients of the trivariant generating function A
1
2
~ W

QQED(~, j, η).

Table 13: Free energy in quenched QED.

Obtaining the free energy, which is essentially equivalent to the partition function, is straight
forward,

WQQED(~, j, η) = ~ logZQQED(~, j, η) =
j2

2
+
|η|2

1− j χ
(

~
(1− j)2

)
+O(|η|4)

A
1
2
~ W

QQED(~, j, η) =
|η|2e

j− j
2

2
~

√
2π~

+O(|η|4).

The effective action obtained by the Legendre transformation of WQQED can also be ex-
pressed explicitly:

GQQED(~, ϕc, ψc) = −ϕ
2
c

2
+ |ψc|2

(ϕc − 1)

χ
(

~
(1−ϕc)2

) +O(|ψc|4)

A
1
2
~ G

QQED(~, ϕc, ψc) = |ψc|2
e
ϕc−

ϕ2
c
2

~
√

2π~
(1− ϕc)2

χ
(

~
(1−ϕc)2

)2 +O(|ψc|4).

The first coefficients of the free energy and effective action are listed in Tables 13 and 14
together with the respective asymptotics.

The invariant charge is defined as

α(~) :=

 ∂ϕc∂ψc∂ψ̄cG
QED

∣∣
ϕc=0
ψc=0(

−∂ψc∂ψ̄cGQED
∣∣
ϕc=0
ψc=0

)


2

,

and the calculation of the renormalization quantities works as before. Some coefficients
are listed in Table 15. The sequence generated by 1 − zϕcψcψ̄c(~ren), which enumerates
the number of skeleton quenched QED vertex diagrams, was also given in [15]. It is entry
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~0 ~1 ~2 ~3 ~4 ~5

∂0
φc

(∂ψc∂ψ̄c)
1GQQED

∣∣
φc=0
ψc=0

−1 1 2 10 74 706

∂1
φc

(∂ψc∂ψ̄c)
1GQQED

∣∣
φc=0
ψc=0

1 1 6 50 518 6354

(a) The first coefficients of the trivariant generating function ΓQQED(~, φc, ψc).

prefactor ~0 ~1 ~2 ~3 ~4 ~5(
A

1
2

~ ∂0
φc

(∂ψc∂ψ̄c)
1GQQED

∣∣
φc=0
ψc=0

)
(~) ~0

√
2π~ 1 −2 −3 −16 −124 −1224(

A
1
2

~ ∂1
φc

(∂ψc∂ψ̄c)
1GQQED

∣∣
φc=0
ψc=0

)
(~) ~−1

√
2π~ 1 −4 −3 −22 −188 −1968

(b) The first coefficients of the trivariant generating function A
1
2
~ ΓQQED(~, φc, ψc).

Table 14: Effective action in quenched QED.

~0
ren ~1

ren ~2
ren ~3

ren ~4
ren ~5

ren

~(~ren) 0 1 −4 8 −28 −48

z|ψc|2(~ren) 1 1 −1 −1 −7 −63

zφc|ψc|2(~ren) 1 −1 −1 −7 −63 −729

(a) Table of the first coefficients of the renormalization quantities in quenched QED.

prefactor ~0
ren ~1

ren ~2
ren ~3

ren ~4
ren ~5

ren(
A

1
2

~ren
~
)

(~ren) e−2 ~0
√

2π~ −2 20 −62 928
3

2540
3

330296
15(

A
1
2

~ren
z|ψc|2

)
(~ren) e−2 ~0

√
2π~ −1 6 4 218

3 890 196838
15(

A
1
2

~ren
zφc|ψc|2

)
(~ren) e−2 ~−1

√
2π~ −1 6 4 218

3 890 196838
15

(b) Table of the first coefficients of the asymptotics of the renormalization quantities in quenched QED.

Table 15: Renormalization constants in quenched QED.
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A049464 in the OEIS [43]. The asymptotics, read off from Table 15, of this sequence are,

[~nren](1− zϕcψcψ̄c(~ren)) ∼ e−2(2n+ 1)!!

(
1− 6

2n+ 1

− 4

(2n− 1)(2n+ 1)
− 218

3

1

(2n− 3)(2n− 1)(2n+ 1)
+ . . .

)
,

where we used (2n− 1)!! = 2
n+1

2√
2π

Γ(n+ 1
2
). The first five coefficients of this expansion have

been conjectured by Broadhurst [14] based on numerical calculations.

6.4.3 Yukawa theory

The partition function of Yukawa-theory in zero-dimensions is given by,

ZYuk(~, j, η) :=

∫
dx√
2π~

e
1
~

(
− x

2

2
+jx+

|η|2
1−x+~ log 1

1−x

)

Similarly, to the case of quenched QED, we can rewrite this, with χ(~) =
∑∞
n=0(2n−1)!!~n,

as,

ZYuk(~, j, η) =
e
j2

2~

1− j − |η|2~
χ

 ~(
1− j − |η|2~

)2

+O(|η|4),

where we expanded up to first order in |η|2.

It follows from A
1
2
~ χ(~) = 1√

2π~ and the chain rule that,

A
1
2
~ Z

Yuk(~, j, η) =
1√
2π~

e
j
~

(
1 + |η|2 1− j

~2

)
+O(|η|4) (6.14)

As in the case of quenched QED, the asymptotic expansions for each order in j and |η| up
to |η|2 of the disconnected diagrams are finite and therefore exact. Some coefficients are
given in Table 16. The free energy is defined as usual,

WYuk(~, j, η) = ~ logZYuk(~, j, η)

=
j2

2
+ ~ log

1

1− j − |η|2~
+ ~ logχ

 ~(
1− j − |η|2~

)2

+O(|η|4),

Its asymptotics are given by,

A
1
2
~ W

Yuk(~, j, η) =
~√
2π~

e
j− j

2

2
~

1− j − |η|
2

~

(
1− (1−j)2

~

)
χ

(
~

(1−j− |η|
2

~ )2

) +O(|η|4)

Some coefficients are given in Table 17. The 1PI effective action is given by the Legendre
transformation of WYuk(~, j, η).

GYuk(~, ϕc, ψc) = WYuk(~, j, η)− jϕc − η̄ψc − ηψ̄c,

where j, η, ϕc and ψc are related by the equations, ϕc = ∂jW
Yuk and ψc = ∂η̄W

Yuk. Per-
forming this Legendre transform is non-trivial in contrast to the preceding three examples,
because we can have tadpole diagrams as in the case of ϕ3-theory.
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prefactor ~0 ~1 ~2 ~3 ~4 ~5

∂0
j (∂η∂η̄)0ZYuk

∣∣
j=0
η=0

~0 1 1 3 15 105 945

∂1
j (∂η∂η̄)0ZYuk

∣∣
j=0
η=0

~0 1 3 15 105 945 10395

∂2
j (∂η∂η̄)0ZYuk

∣∣
j=0
η=0

~−1 1 3 15 105 945 10395

∂0
j (∂η∂η̄)1ZYuk

∣∣
j=0
η=0

~−1 1 3 15 105 945 10395

∂1
j (∂η∂η̄)1ZYuk

∣∣
j=0
η=0

~−1 2 12 90 840 9450 124740

(a) The first coefficients of the trivariant generating function ZYuk(~, j, η).

prefactor ~0 ~1 ~2 ~3 ~4 ~5(
A

1
2

~ ∂0
j (∂η∂η̄)0ZYuk

∣∣
j=0
η=0

)
(~) ~0

√
2π~ 1 0 0 0 0 0(

A
1
2

~ ∂1
j (∂η∂η̄)0ZYuk

∣∣
j=0
η=0

)
(~) ~−1

√
2π~ 1 0 0 0 0 0(

A
1
2

~ ∂2
j (∂η∂η̄)0ZYuk

∣∣
j=0
η=0

)
(~) ~−2

√
2π~ 1 0 0 0 0 0(

A
1
2

~ ∂0
j (∂η∂η̄)1ZYuk

∣∣
j=0
η=0

)
(~) ~−2

√
2π~ 1 0 0 0 0 0(

A
1
2

~ ∂1
j (∂η∂η̄)1ZYuk

∣∣
j=0
η=0

)
(~) ~−3

√
2π~ 1 −1 0 0 0 0

(b) The first coefficients of the trivariant generating function A
1
2
~ Z

Yuk(~, j, η).

Table 16: Partition function in Yukawa-theory.
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~0 ~1 ~2 ~3 ~4 ~5

∂0
j (∂η∂η̄)0WYuk

∣∣
j=0
η=0

0 0 1 5
2

37
3

353
4

∂1
j (∂η∂η̄)0WYuk

∣∣
j=0
η=0

0 1 2 10 74 706

∂2
j (∂η∂η̄)0WYuk

∣∣
j=0
η=0

1 1 6 50 518 6354

∂0
j (∂η∂η̄)1WYuk

∣∣
j=0
η=0

1 2 10 74 706 8162

∂1
j (∂η∂η̄)1WYuk

∣∣
j=0
η=0

1 6 50 518 6354 89782

(a) The first coefficients of the trivariant generating function WYuk(~, j, η).

prefactor ~0 ~1 ~2 ~3 ~4 ~5(
A

1
2

~ ∂0
j (∂η∂η̄)0WYuk

∣∣
j=0
η=0

)
(~) ~1

√
2π~ 1 −1 −2 −10 −74 −706(

A
1
2

~ ∂1
j (∂η∂η̄)0WYuk

∣∣
j=0
η=0

)
(~) ~0

√
2π~ 1 −2 −3 −16 −124 −1224(

A
1
2

~ ∂2
j (∂η∂η̄)0WYuk

∣∣
j=0
η=0

)
(~) ~−1

√
2π~ 1 −4 −3 −22 −188 −1968(

A
1
2

~ ∂0
j (∂η∂η̄)1WYuk

∣∣
j=0
η=0

)
(~) ~−1

√
2π~ 1 −2 −3 −16 −124 −1224(

A
1
2

~ ∂1
j (∂η∂η̄)1WYuk

∣∣
j=0
η=0

)
(~) ~−2

√
2π~ 1 −4 −3 −22 −188 −1968

(b) The first coefficients of the trivariant generating function A
1
2
~ W

Yuk(~, j, η).

Table 17: Free energy in Yukawa-theory.
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As for ϕ3-theory, we define

γYuk
0 (~) :=

GYuk
∣∣
ϕc=0
ψc=0

~
=

WYuk
∣∣
j=j0
η=0

~

=
j0(~)2

2~
+ log

1

1− j0(~)
+ logχ

(
~

(1− j0(~))2

)
,

where j0(~) is the power series solution of 0 = ∂jW
Yuk
∣∣
j=j0(~)

. This gives

GYuk(~, ϕc, 0) = −ϕ
2
c

2
+ ~ log

1

1− ϕc
+ ~γYuk

0

(
~

(1− ϕc)2

)
+ ~ |ψc|

2(1− ϕc)
j0
(

~
(1−ϕc)2

) +O(|ψc|4).

This equation also has a simple combinatorial interpretation: Every fermion line of a vacuum
diagram can be dressed with an arbitrary number of external photons associated to a 1

1−ϕc
factor. Every additional loop gives two additional fermion propagators. The first two terms
compensate for the fact that there are no vacuum diagrams with zero or one loop.

The asymptotics result from an application of the A-derivative. Some coefficients are
listed in Table 18. These sequences were also studied in [33]. They obtained the constant,
e−1, and the linear coefficients − 9

2
and − 5

2
using a combination of numerical and analytic

techniques.
The calculation of the renormalization constants proceeds as in the other cases with the

invariant charge defined as for QED. The first coefficients are listed in Table 19.
In [39, 40] various low-order coefficients, which were obtained in this section, were enu-

merated using Hedin’s equations [27]. The numerical results for the asymptotics given in
[40] agree with the analytic results obtained here. The Γ(x) expansion of [40] corresponds to
the generating function ∂ϕc∂ψc∂ψ̄cG

Yuk
∣∣
ϕc=0
ψc=0

(~) and the Γ(u) expansion to the generating

function 2 − zϕcψcψ̄c(~). The later is the generating function of all skeleton diagrams in
Yukawa theory. Written traditionally the asymptotics are,

[~nren](1− zϕcψcψ̄c(~ren)) ∼ e−
7
2 (2n+ 3)!!

(
1− 15

2

1

2n+ 3

−97

8

1

(2n+ 1)(2n+ 3)
− 1935

16

1

(2n− 1)(2n+ 1)(2n+ 3)
+ . . .

)
.
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[1] Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks.
Reviews of modern physics, 74(1):47, 2002.

[2] Inês Aniceto, Ricardo Schiappa, and Marcel Vonk. The resurgence of instantons in
string theory. arXiv preprint arXiv:1106.5922, 2011.

[3] EN Argyres, AFW van Hameren, RHP Kleiss, and CG Papadopoulos. Zero-dimensional
field theory. The European Physical Journal C-Particles and Fields, 19(3):567–582,
2001.

39



~0 ~1 ~2 ~3 ~4 ~5

∂0
φc

(∂ψc∂ψ̄c)
0GYuk

∣∣
φc=0
ψc=0

0 0 1
2 1 9

2 31

∂1
φc

(∂ψc∂ψ̄c)
0GYuk

∣∣
φc=0
ψc=0

0 1 1 4 27 248

∂2
φc

(∂ψc∂ψ̄c)
0GYuk

∣∣
φc=0
ψc=0

−1 1 3 20 189 2232

∂0
φc

(∂ψc∂ψ̄c)
1GYuk

∣∣
φc=0
ψc=0

−1 1 3 20 189 2232

∂1
φc

(∂ψc∂ψ̄c)
1GYuk

∣∣
φc=0
ψc=0

1 1 9 100 1323 20088

(a) The first coefficients of the trivariant generating function GYuk(~, ϕc, ψc).

prefactor ~0 ~1 ~2 ~3 ~4 ~5(
A

1
2

~ ∂0
φc

(∂ψc∂ψ̄c)
0GYuk

∣∣
φc=0
ψc=0

)
(~) e−1 ~1

√
2π~ 1 − 3

2 − 31
8 − 393

16 − 28757
128 − 3313201

1280(
A

1
2

~ ∂1
φc

(∂ψc∂ψ̄c)
0GYuk

∣∣
φc=0
ψc=0

)
(~) e−1 ~0

√
2π~ 1 − 5

2 − 43
8 − 579

16 − 44477
128 − 5326191

1280(
A

1
2

~ ∂2
φc

(∂ψc∂ψ̄c)
0GYuk

∣∣
φc=0
ψc=0

)
(~) e−1 ~−1

√
2π~ 1 − 9

2 − 43
8 − 751

16 − 63005
128 − 7994811

1280(
A

1
2

~ ∂0
φc

(∂ψc∂ψ̄c)
1GYuk

∣∣
φc=0
ψc=0

)
(~) e−1 ~−1

√
2π~ 1 − 9

2 − 43
8 − 751

16 − 63005
128 − 7994811

1280(
A

1
2

~ ∂1
φc

(∂ψc∂ψ̄c)
1GYuk

∣∣
φc=0
ψc=0

)
(~) e−1 ~−2

√
2π~ 1 − 17

2
29
8 − 751

16 − 75021
128 − 10515011

1280

(b) The first coefficients of the trivariant generating function A
1
2
~ G

Yuk(~, ϕc, ψc).

Table 18: Effective action in Yukawa-theory.
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~0
ren ~1

ren ~2
ren ~3

ren ~4
ren ~5

ren

~(~ren) 0 1 −5 10 −36 −164

zφ2
c
(~ren) 1 1 −1 −3 −13 −147

z|ψc|2(~ren) 1 1 −1 −3 −13 −147

zφc|ψc|2(~ren) 1 −1 −3 −13 −147 −1965

(a) Table of the first coefficients of the renormalization quantities in Yukawa-theory.

prefactor ~0
ren ~1

ren ~2
ren ~3

ren ~4
ren ~5

ren(
A

1
2

~ren
~
)

(~ren) e−
7
2

~−1
√

2π~ −2 26 − 377
4

963
2

140401
64

16250613
320(

A
1
2

~ren
zφ2

c

)
(~ren) e−

7
2

~−1
√

2π~ −1 15
2

97
8

1935
16

249093
128

42509261
1280(

A
1
2

~ren
z|ψc|2

)
(~ren) e−

7
2

~−1
√

2π~ −1 15
2

97
8

1935
16

249093
128

42509261
1280(

A
1
2

~ren
zφc|ψc|2

)
(~ren) e−

7
2

~−2
√

2π~ −1 15
2

97
8

1935
16

249093
128

42509261
1280

(b) Table of the first coefficients of the asymptotics of the renormalization quantities in Yukawa-theory.

Table 19: Renormalization constants in Yukawa-theory.
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A Singularity analysis of x(y)

Proof of Theorem 2.1. Starting with Proposition 2.2

F [S(x)](~) =

∞∑
n=0

~n(2n+ 1)!![y2n+1]x(y), (A.1)

we wish to compute the singular expansion of x(y) at the removable singularity (x, y) =

(τi, ρi) defined as the solution of y2

2
= −S(x) with positive linear coefficient, to obtain the

asymptotics of F [S(x)](~).

43



Solving for y and shifting the defining equation of the hyperelliptic curve to the point of
the singularity gives,

y =
√
−2S(x)

ρi − y =
√
−2S(τi)−

√
−2S(x)

1− y

ρi
= 1−

√
S(x)

S(τi)

where ρi =
√
−2S(τi). The right hand side is expected to be of the form ≈ S

′′(τi)
2

(τi − x)2

for x→ τi. Setting ui =
√

1− y
ρi

and vi = τi − x gives

ui =

√√√√1−

√
S(τi − vi)
S(τi)

,

where the branch of the square root which agrees with the locally positive expansion around
the origin must be taken. We would like to solve this equation for vi to obtain the Puiseux
expansion at the singular point:

vi(ui) =

∞∑
k=1

di,ku
k
i

The coefficients di,k can be expressed using the Lagrange inversion formula,

di,k = [uni ]vi(ui) =
1

n
[vn−1
i ]

 vi√
1−

√
S(τi−vi)
S(τi)


n

. (A.2)

The asymptotics of [yn]x(y) are given by the singular expansions around dominant singu-
larities,

[yn]x(y) ∼
n→∞

[yn]
∑
i∈I

∑
k=0

di,k

(
1− y

ρi

) k
2

.

Expanding using the generalized binomial theorem and noting that only odd powers of k
contribute asymptotically gives,

[yn]x(y) ∼
n→∞

∑
i∈I

(−1)nρ−ni
∑
k=0

(
k + 1

2

n

)
di,2k.

Substituted into eq. (A.1), this results in,

[~n]F [S](~) = −(2n+ 1)!!
∑
i∈I

ρ−2n−1
i

R−1∑
k=0

(
k + 1

2

2n+ 1

)
di,2k+1 +O

(∑
i∈I

(
2

ρ2
i

)n+ 1
2

Γ(n−R)

)

where the asymptotic behaviour of the binomial
(k+ 1

2
2n+1

)
∼

n→∞
Ck

(2n+1)
k+3

2
and the double

factorial (2n+1)!! = 2n+ 3
2

Γ(n+ 3
2

)
√

2π
were used to derive the form of the rest term. Substituting

eq. (A.2) results in

[~n]F [S](~) =

R−1∑
k=0

(2n− 1)!!

2

(
k − 1

2

2n

)∑
i∈I

ρ−2n−1
i [v2k

i ]φi(vi)
2k+1

+O

(∑
i∈I

(−S(τi))
nΓ(n−R)

) (A.3)
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where φi(vi) := −vi√
1−
√
S(τi−vi)
S(τi)

. It is easily checked by the reflection and duplication formulas

for the Γ-function that

(2n− 1)!!

2

(
k − 1

2

2n

)
=

(−1)k2n−kΓ(k + 1
2
)

(2π)
3
2

Γ(n− k
2

+ 1
4
)Γ(n− k

2
+ 3

4
)

Γ(n+ 1)
. (A.4)

The following lemma by Paris [41, Lemma 1],

Γ(n+ a)Γ(n+ b)

n!
=

R−1∑
m=0

(−1)m
(1− a)m(1− b)m

m!
Γ(n+ a+ b− 1−m)

+O(Γ(n+ a+ b− 1−R)) ∀R ≥ 0,

can be used to expand the product of Γ functions. The expression an = Γ(n+a)
Γ(a)

denotes the

rising factorial. Applying this to eq. (A.4) gives,

(2n− 1)!!

2

(
k − 1

2

2n

)
=

(−1)k2n−k

(2π)
3
2

R−k−1∑
m=0

(−1)m2−2mΓ(k + 1
2

+ 2m)

m!
Γ(n− k −m)

+O(Γ(n−R))

=
2n

2π

R−k−1∑
m=0

(−1)m+k2−3m−2k− 1
2 (2(m+ k) + 1)!!

×

(
2m+ k − 1

2

m

)
Γ(n− k −m) +O(Γ(n−R))

This can be substituted into eq. (A.3):

[~n]F [S](~) =

R−1∑
k=0

2n

2π

R−k−1∑
m=0

(−1)m+k2−3m−2k− 1
2 (2(m+ k) + 1)!!

×

(
2m+ k − 1

2

m

)
Γ(n− k −m)

∑
i∈I

ρ−2n−1
i [v2k

i ]φi(vi)
2k+1

+O

(∑
i∈I

(−S(τi))
nΓ(n−R)

)

=

R−1∑
m=0

2n

2π
(−1)m2−2m− 1

2 (2m+ 1)!!Γ(n−m)

×
∑
i∈I

ρ−2n−1
i

m∑
k=0

2−k
(
m+ k − 1

2

k

)
[v

2(m−k)
i ]φi(vi)

2(m−k)+1

+O

(∑
i∈I

(−S(τi))
nΓ(n−R)

)
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The inner sum evaluates to,

m∑
k=0

2−k
(
m+ k − 1

2

k

)
[v

2(m−k)
i ]φi(vi)

2(m−k)+1

= [v2m
i ]φi(vi)

2m+1
m∑
k=0

(
m+ k − 1

2

k

)
2−k

(
vi

φi(vi)

)2k

= [v2m
i ]

φi(vi)
2m+1(

1− 1
2

(
vi

φi(vi)

)2
)m+ 1

2

= [v2m
i ]

 φi(vi)√
1− 1

2

(
vi

φi(vi)

)2


2m+1

= 2m+ 1
2 [v2m

i ]

 −vi√
1− S(τi−vi)

S(τi)

2m+1

= (−2S(τi))
m+ 1

2 [v2m
i ]

(
−vi√

S(τi − vi)− S(τi)

)2m+1

Therefore,

[~n]F [S](~) =
1

2π

R−1∑
m=0

(−1)m(2m+ 1)!!Γ(n−m)

×
∑
i∈I

(−S(τi))
n−m[v2m

i ]

(
vi√

2S(τi + vi)− 2S(τi)

)2m+1

+O

(∑
i∈I

(−S(τi))
nΓ(n−R)

)

=
1

2πi

R−1∑
m=0

(2m+ 1)!!Γ(n−m)

×
∑
i∈I

(−S(τi))
n−m[v2m

i ]

(
vi√

−2 (S(τi + vi)− S(τi))

)2m+1

+O

(∑
i∈I

(−S(τi))
nΓ(n−R)

)

which proves the theorem after using the Lagrange inversion formula and Proposition 2.2.
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