Type-definable groups in C-minimal structures

Fares Maalouf

Model theory

Abstract:

This paper studies type-definable groups in C-minimal structures. We show first for some of these groups, that they contain a cone which is a subgroup. This result will be applied to show that in any geometric locally modular non trivial C-minimal structure, there is a definable infinite C-minimal group.

Résumé:

Cet article traite des groupes type-définissables dans les structures C-minimales. On démontre d’abord pour certains de ces groupes, qu’ils contiennent un cône qui est un sous-groupe. Ce résultat sera appliqué pour montrer que dans toute structure géométrique C-minimale non triviale et localement modulaire, il y a un groupe C-minimal définissable infini.

1 Introduction

We prove first under certain conditions, that a type-definable group in a C-minimal structure M contains a cone which is a definable subgroup of M. Similar results are already known in other contexts. In [3], Hrushovski shows that in a stable structure, a type-definable group is the intersections of definable groups. And in the case where the structure is totally transcendental, then the group is in fact definable. More recently, Milliet shows in [2] similar results for small theories. A theory is small, if for each natural number n, it has countably many n-types over the empty set, and a structure is small if its theory is. It is proved in [2] that a \emptyset-type-definable group of finite arity in a small structure is the intersection of definable groups, and that for any type-definable group G in a simple small structure, and any finite subset A of G, there is a definable group containing A.

In section 2 we prove the following:

Theorem 1 Let $M = (M, C, \ldots)$ be a C-minimal structure and $G = (G, , 1, C)$ an infinite type-definable C-group in M such that G is an intersection of cones of M. Then G contains a cone which is a subgroup. In particular, G contains a definable infinite C-group.

Theorem 1 as well as its proof, are very similar to results which can be found in [6]. In order to be self-contained, we will reproduce here most of the necessary arguments for the proof.

The next result follows from Theorem 1. It can be already found in [6], though it is not stated there as a separate result.

Theorem 2 Let $G = (G, , C, 1, \ldots)$ be a C-minimal group. Then G contains a cone which is a subgroup.

Theorem 1 will be used to strengthen a result from [4]. We show the following

Theorem 3 Let $M = (M, C, \ldots)$ be a geometric locally modular non trivial C-minimal structure. Then there is a definable infinite C-minimal group in M.

*Equipe de Logique Mathématique, CNRS-UFR de Mathématiques (Université Paris7), 175 Rue du Chevaleret 75013 Paris. email: maalouf@logique.jussieu.fr
Notations: We use $\mathcal{M}, \mathcal{N}, \ldots$ to denote structures and M, N, \ldots for their underlying sets.

We start with a few definitions and preliminary results. C-structures have been introduced and studied in [5] and [6]. We remind in what follows their definition and principal properties. A C-structure is a structure $M = (M, C, \ldots)$, where C is a ternary predicate satisfying the following axioms:

- $\forall x, y, z, C(x, y, z) \rightarrow C(x, z, y)$
- $\forall x, y, z, C(x, y, z) \rightarrow \neg C(y, x, z)$
- $\forall x, y, z, w, C(x, y, z) \rightarrow C(x, w, z) \lor C(w, y, z)$
- $\forall x, y, x \neq y \exists z \neq y, C(x, y, z)$

Let M be a C-structure. We call cone any subset of M of the form $\{x; M \models C(a, x, b)\}$, where a and b are two distinct elements of M. It follows from the first three axioms of C-relations that the cones of M form a basis of a completely disconnected topology on M. The last axiom guarantees that all cones are infinite.

Let (T, \leq) be a partially ordered set. We say that (T, \leq) is a tree if the set of elements of T below any fixed element is totally ordered by \leq, and if any two elements of T have a greatest lower bound. A branch of T is a maximal totally ordered subset of T. It is easy to check that if a and b are two distinct branches of T, then $\text{sup}(a \cap b)$ exists. On the set of branches of T, we define a ternary relation C in the following way: we say that $C(a, b, c)$ is true if and only if $b = c$ or $a, b,$ and c are all distinct and $\text{sup}(a \cap b) < \text{sup}(b \cap c)$. It is easy to check that this relation on the set of branches satisfies the first three axioms of a C-relation.

A theorem from [1] shows that C-structures can be looked at as a set of branches of a tree. We will then associate to any C-structure M a tree T. We will call it the underlying tree of M, and the elements of T will be called nodes. To any $x, y \in M$, $x \neq y$, we associate the node $t := \text{sup}(x \cap y)$, where x and y are seen as subsets of T. This operation is well defined, and we say then that x and y branch at t. If a and b are two elements of M branching at a node t, and if D is the cone $D := \{x \in M; C(a, x, b)\}$, we say then that D is the cone at the node t containing b. If t and t' are two nodes, we denote by $t||t'$ the property that t and t' are not comparable in T with respect to the relation \leq. If A and B are two sets of nodes, we denote by $A||B$ the property that, for any $t \in A$ and $t' \in B$, $t||t'$.

Definition 4 Let $\mathcal{M} = (M, C, \ldots)$ be a C-structure. We say that \mathcal{M} is C-minimal if and only if for any structure $\mathcal{M}' = (M', C, \ldots)$ elementarily equivalent to \mathcal{M}, any definable subset of M' can be defined without quantifiers using only the relations C and $=$.

2 A cone of a C-minimal group is a subgroup

Definition 5 We say that $G = (G, 1, C)$ is a C-group if and only if G is a C-structure, $(G, 1)$ is a group and for all $x, y, z, a, b \in G, G \models C(x, y, z) \rightarrow C(a, x, b a, y, b, a z, b)$.

Let $G = (G, 1, C)$ be a C-group and T its underlying tree. Let $t \in T$, and $x, y, x', y', z \in G$ be such that, x and y, as well as x' and y' branch at t (recall that the elements of a C-structure are looked at as branches of the underlying tree). It is easy to check that z, x and z, y, as well as z, x' and z, y', all branch again at the same node, which we denote by t^2. We can then define a left action of G on T, $(z, t) \mapsto t^z$, and check that this action preserves \leq. We will speak then of orbits of G on T. Similarly one can check that if D is a cone of G at a node t, then $z, D := \{z, x; x \in D\}$ is a cone at the node t^z.

Proposition 6 Let $G = (G, 1, C)$ be a C-group and T its underlying tree. Suppose that some orbit Ω of G on T is an antichain. Then there is a cone in G which is a subgroup.

Proof: Let $s \in \Omega$ and $g \in G$ be such that $s \in g$. Since $g^{-1}g = 1$, then $t := s g^{-1}$ is an element of $\Omega \cap 1$ (here we see 1 as a branch of T). Let X be the cone at the node t containing 1. We want to show that X is a subgroup of G. Take $h \in X$. Then $h X$ is a cone at the node t^h. But $t^h \in \Omega$, and
if \(t^h \neq t \), \(t^h \) is incomparable with \(t \) (\(\Omega \) is an antichain). In this case, since a chain contains no two incomparable elements, \(h.X \cap X = \emptyset \). But this cannot happen since \(1 \) and \(h \) are two elements of \(X \), and thus \(h \in h.X \cap X \). We have shown that \(h.X \) is the cone at the node \(t \) containing \(h \), and then \(h.X = X \). And since \(1 \in X \), \(h^{-1} \in X \). Since this is true for any \(h \in X \), \(X \) is a subgroup of \(G \). \(\square \)

We now will show in what follows that the same result holds for the \(C \)-groups of the statement of Theorem 1 in the case where there is an orbit which is not an antichain.

Lemma 7 Let \(\mathcal{M} = (M,C,\ldots) \) and \(\mathcal{G} = (G,.,1,C) \) be as in the statement of Theorem 1. There is a definable subset \(V \) of \(M \) and an \(M \)-definable function \(F : V \times V \mapsto M \) such that \(G \in V, F|G \times G = . \) and \(F \) is a \(C \)-isomorphism in each variable.

Proof: By compactness we know that the group operation of \(\mathcal{G} \) is definable in \(\mathcal{M} \). Denote then by \(F \) an \(M \)-definable ternary relation which restriction to \(G \) is \(.\), the group operation of \(\mathcal{G} \). For an element \(x \) of \(M \), denote by \(C_x := \{ y \in M; \neg C(y,x,1) \} \). Let \(V \) be the set of elements \(x \) of \(M \) such that, \(F \) defines on \(C_x \times C_x \) a binary function which is a \(C \)-isomorphism in each variable. So \(V \) is definable, and using the fact that \(G \) is an intersection of cones of \(M \), we see easily that \(V \) and \(F \) do the job. \(\square \)

Notations: Let from now on \(\mathcal{M} = (M,C,\ldots) \) and \(\mathcal{G} = (G,.,1,C) \) be as in the statement of Theorem 1, and let \(V \) and \(F \) be as in the statement of Lemma 7. \((T,<) \) will be the underlying tree of \(\mathcal{G} \), and \((T',<) \) will be the underlying tree of \(V \) (we have that \(T \subset T' \)).

Now doing as above, but using \(F \) instead of \(. \), we can define the left action of \(V \) on \(T' \). We will speak then of orbits of \(V \) on \(T' \) via \(F \).

Lemma 8 Let \(t \in T \) and \(x \in V \setminus G \). Then \(t^x \notin T \).

Proof: Since \(G \) is an intersection of cones of \(M \), it is enough to show that for all \(y \in G \), \(F(x,y) \notin G \).

Suppose not. If \(F(x,y) = z \in G \), by the fact that \(F \) is one-to-one in each variable and the fact that the restriction of \(F \) to \(G \times G \) is the operation \(. \) of \(G \), we get that \(x = y^{-1}.z \in G \). Contradiction. \(\square \)

Lemma 9 Let \(\Omega \) be an orbit of \(G \) on \(T \) and \(z \in G \). Then in \(T \), \(\Omega \cap z \) is a finite union of intervals and points.

Proof: Let \(t \in \Omega \), and \(\Omega' \) be the orbit of \(V \) on \(T' \) via \(F \) containing \(t \). By \(C \)-minimality \(\Omega' \cap z \) is a finite union of intervals and points. By Lemma 8, \(\Omega = \Omega' \cap T \), so \(\Omega \cap z = \Omega' \cap z \cap T \). And then in \(T \), \(\Omega \cap z \) is a finite union of intervals and points.

The two following results can be found in [6]. But we will restate them here in a slightly more general context.

Proposition 10 Let \(\Omega \) be an orbit of \(G \) on \(T \). Then there are no elements \(r, s, t \in \Omega \) such that \(r < s, r < t \) and \(s||t \).

Proof: This is exactly Lemma 4.6 of [6], except for the fact that in our case \(\mathcal{G} \) is not necessarily \(C \)-minimal: \(\mathcal{G} \) satisfies only the hypothesis of Theorem 1, namely that it is a type-definable \(C \)-group in a \(C \)-minimal structure \(\mathcal{M} \) and its universe \(G \) is an intersection of cones of \(\mathcal{M} \). The same proof of Lemma 4.6 of [6] works as well in our case, except for replacing the centralizer of an element \(h \) of \(\mathcal{G} \) by the set \(C^*_L(h) := \{ x \in V, F(x,h) = F(h,x) \} \). Lemma 7 is used only at this step. \(\square \)

Let \(\Omega \) be an orbit of \(G \) on \(T \). For all \(t \in \Omega \), let \(L_t := \{ t' \in \Omega; t \leq t' \lor t \geq t' \} \). Using Proposition 10, it is easy to check that the relation \(\sim \) defined on \(\Omega \) by \(t \sim t' \iff t' \in L_t \) is an equivalence relation. For all \(t, t' \in \Omega \), we denote by \(\bar{t} \) the class of \(t \) modulo \(\sim \). Note that \(\bar{t} = \bar{t'} \) if and only if \(L_t = L_{t'} \). Set \(L \equiv \Omega \setminus \Omega/\sim \). It is obvious that \(\{ L_t; t \in \Omega/\sim \} \) is a partition of \(\Omega \) and that if \(t \neq t' \in \Omega/\sim \), \(L_t||L_{t'} \) (for the notations see the introduction). Now if \(\Omega \) is not an antichain, at least one of the \(L_t \) is not a singleton. And since \(G \) acts transitively on the set \(\{ L_t; t \in \Omega/\sim \} \), none of the \(L_t \) is a singleton.
Proposition 11 Let \(\Omega \) be an orbit of \(G \) on \(T \) which is not an antichain. As above, we write \(\Omega := \bigcup_{\epsilon \in \Omega/\sim} L_{\epsilon} \). Then for all \(\epsilon \), there is no \(g \in G \) such that \(L_{\epsilon} \subset g \).

Proof: Suppose for a contradiction that for some \(\epsilon, g \), \(L_{\epsilon} \subset g \). Let \(s < t \in L_{\epsilon} \), and \(h \in G \) be such that \(h \) branches with \(g \) in \(s \). The image \(L_{\epsilon}^{g^{-1}.h} \) of \(L_{\epsilon} \) under the left action of \(g^{-1}.h \) is a subset of \(h \). But from Proposition 10 and the fact that \(\Omega^{g^{-1}.h} = \Omega \), \(L_{\epsilon}^{g^{-1}.h} \) contains no elements of \(h \) above \(s \), so we get that \(L_{\epsilon}^{g^{-1}.h} \subset g \cap h \). On the other hand, we can find \(t_{1} \in \Omega \) such that \(t_{1}^{g^{-1}.h} = t \). But then \(t_{1} \notin L_{\epsilon} \) and \(t_{1} \) is not comparable with \(t \). But \(t_{1}^{g^{-1}.h} \in L_{\epsilon} \) is comparable with \(t^{g^{-1}.h} \in h \cap g \). Contradiction. \(\square \)

Proposition 12 Suppose that some orbit \(\Omega \) of \(G \) on \(T \) is not an antichain. Then there is a cone of \(G \) which is a \(C \)-subgroup.

Proof: We use the notations of Proposition 11. Let \(L_{\epsilon} \) be such that \(1 \cap L_{\epsilon} \neq \emptyset \). Let \(x \) be an element of \(G \) containing a node of \(L_{\epsilon} \setminus 1 \) (such an element exists by Proposition 11). Let \(t \) be the node of \(T \) at which \(x \) branches with \(1 \). We want to show that the cone containing \(1 \) at the node \(t \) is a subgroup of \(G \). Denote this cone by \(D \), and let \(h \in D \). Since \(1 \in D \), \(h.D \) is a cone containing \(h \) at the node \(t^{h} \). Note first that \(t, t^{h} \in h \), then either \(t \leq t^{h} \) or \(t^{h} \leq t \). Note also that \(t^{h} \in L_{\epsilon} \). We want to show that \(h.D = D \). Since \(h \in D \cap h.D \), it is enough to show that \(t^{h} = t \). Suppose not. If \(t^{h} > t \), then by the definitions of \(t \) and \(D \) and the fact that \(t^{h} \in L_{\epsilon}, t^{h} \notin h \). But this is impossible. And if \(t^{h} < t \), then \(t^{h-1} > t \), and for the same reason as above, \(1 \notin h^{-1}.D \), which is impossible. So for all \(h \in D \), \(h.D = D \), and since \(1 \in D \), \(D \) is a \(C \)-subgroup of \(G \). \(\square \)

Theorem 1 follows directly from Propositions 6 and 12. \(\square \)

Proof of Theorem 3: Let \(M = (M, C, \ldots) \) be a non trivial locally modular geometric \(C \)-minimal structure, and let \(M^{\prime} \) be an \(\omega \)-saturated structure elementarily equivalent to \(M \). We show in [4] that in \(M^{\prime} \) there is an infinite type-definable \(C \)-group \(G^{\prime} = (G^{\prime}, 1, C) \), and moreover, \(G^{\prime} \) is an intersection of cones of \(M \). Thus \(G^{\prime} \) satisfies the hypothesis of Theorem 1, and there is a cone \(D \) of \(G^{\prime} \) which is an infinite \(C \)-group definable in \(M^{\prime} \). Since \(M \equiv M^{\prime} \), there is an infinite \(C \)-group \(G \) definable in \(M \). And \(G \) is \(C \)-minimal because \(M \) is \(C \)-minimal. \(\square \)

References

