Prof. Klaus Mohnke Institut für Mathematik Rudower Chaussee 25 Haus 1 Raum 306

Übungsblatt 3

Analysis II* SS 2016

(Abgabe: 10.05.2016)

Aufgabe 1 (3+3+4 Punkte)

Entscheiden Sie, welche der folgenden Abbildungen $f: X \to Y$ zwischen den jeweils angegebenen metrischen Räumen (X, d_X) und (Y, d_Y) stetig sind. Begründen Sie!

(i) (X, d_X) - beliebiger metrischer Raum, $Y = X \times X$ mit der Metrik $d_Y((x_1, x_2), (x'_1, x'_2)) = d_X(x_1, x'_1) + d_X(x_2, x'_2)$ und $f: X \to X \times X$ die Diagonalabbildung $x \mapsto (x, x)$.

(ii) $X = \mathbb{R}^2$ und $Y = \mathbb{R}$ mit d_X bzw. d_Y - euklidische Metrik in Dimension zwei bzw. eins und $f : \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^4 + y^4}}, & \text{falls } (x,y) \neq (0,0) \\ 0, & \text{falls } (x,y) = (0,0). \end{cases}$$

(iii) $X = \mathcal{C}^1([0,1]) = \{g: [0,1] \to \mathbb{R}: g \text{ differenzierbar}\}$ mit der Metrik, die durch die Supremumsnorm gegeben ist

$$d_X(g_1, g_2) = ||g_1 - g_2|| = \sup\{|g_1(x) - g_2(x)| : x \in [0, 1]\},\$$

 $Y = \mathbb{R}$, wobei d_Y die durch den Betrag gegebene Metrik ist und $f: X \to Y, g \mapsto g'(1)$. Hinweis: Betrachten Sie zum Beispiel die Folge $(g_n(x) = x^n/n)_{n \in \mathbb{N}}$.

Aufgabe 2 (6+4 Punkte)

(i) Sei (X, d_X) ein metrischer Raum und $f: X \to X$ eine stetige Abbildung. Zeigen Sie, dass der Graph $\Gamma_f := \{(x, f(x)) : x \in X\} \subset X \times X$ von f abgeschlossen ist. Auf $X \times X$ wird dabei die Metrik aus der Vorlesung betrachtet, d.h.

$$D((x, x'), (y, y')) = \max\{d(x, y); d(x', y')\}.$$

(ii) Geben Sie ein Beispiel einer nicht stetigen Abbildung $f : \mathbb{R} \to \mathbb{R}$, so dass der Graph $\Gamma_f \subset \mathbb{R}^2$ abgeschlossen ist. Begründen Sie!

Aufgabe 3 (5+5 Punkte)

- (i) Es sei $(V, \| \cdot \|)$ ein normierter (reeller oder komplexer) Vektorraum, aufgefasst als metrischer Raum mit der von $\| \cdot \|$ induzierten Metrik. Beweisen Sie, dass die Abbildung $V \to B(0,1) \subset V$, $v \mapsto v/(1 + \|v\|)$ ein Homöomorphismus ist.
- (ii) Wir betrachten den Einheitskreis $S^1 = \{z \in \mathbb{C} : |z| = 1\} \subset \mathbb{C}$ mit der durch die euklidische Metrik auf $\mathbb{C} \simeq \mathbb{R}^2$ induzierten Metrik. Entscheiden Sie, ob die Abbildung $f : [0, 2\pi) \to S^1$, $t \mapsto \exp(it)$ ein Homöomorphismus ist. Begründen Sie!

Folgende Beispielaufgaben können in den Übungen vom 03.05-05.05 besprochen werden:

Aufgabe Ü1

Sei $A \subset \mathbb{R}$ eine abgeschlossene und beschränkte Teilmenge. Zeigen Sie, dass $f : \mathbb{R} \to \mathbb{R}$, $f(x) := \min\{|x - a| : a \in A\}$ eine wohldefinierte stetige Abbildung ist.

Aufgabe Ü2

Beweisen oder widerlegen Sie die folgenden Aussagen:

- (i) Eine Abbildung $f: \mathbb{R} \to \mathbb{R}^2$, $x \mapsto (f_1(x), f_2(x))$ ist genau dann stetig (bezüglich der euklidischen Metrik), wenn $f_1, f_2: \mathbb{R} \to \mathbb{R}$ stetig sind.
- (ii) Eine Abbildung $f: \mathbb{R}^2 \to \mathbb{R}$ ist genau dann stetig, wenn für jedes $(x,y) \in \mathbb{R}^2$ die Abbildungen $\mathbb{R} \to \mathbb{R}$, $r \mapsto f(x,r)$ und $\mathbb{R} \to \mathbb{R}$, $r \mapsto f(r,y)$ stetig sind.

Hinweis: Betrachten Sie bei (ii) z. B. die Abbildung g Aufgabe 1(2) von Blatt 12 der Übungen zu Analysis 1.

Aufgabe Ü3

Eine Abbildung $f: X \to Y$ zwischen zwei metrischen Räumen heißt offen (bzw. abgeschlossen), falls $f(U) \subset Y$ offen (bzw. abgeschlossen) ist für jede offene (bzw. abgeschlossene) Teilmenge $U \subset X$. Zeigen Sie, dass die Abbildung $\mathbb{R} \to \mathbb{R}^2$, $x \mapsto (x,0)$ abgeschlossen, aber nicht offen ist. Beweisen Sie, dass die Abbildung $\mathbb{R}^2 \to \mathbb{R}$, $(x,y) \mapsto x$ offen, aber nicht abgeschlossen ist.

Aufgabe Ü4

Wiederholen Sie den Begriff eines Homöomorphismus zwischen zwei metrischen Räumen. Zeigen Sie: Für alle $a,b,c,d\in\mathbb{R},\ a< b\ \mathrm{und}\ c< d,\ \mathrm{sind}\ \mathrm{die}\ \mathrm{beiden}\ \mathrm{offenen}\ \mathrm{Intervalle}\ (a,b)\ \mathrm{und}\ (c,d)\ \mathrm{(aufgefasst\ als\ metrische}\ \mathrm{Räume}\ \mathrm{mit}\ \mathrm{der\ von}\ \mathbb{R}\ \mathrm{induzierten}\ \mathrm{Metrik})$ zueinander homöomorph. Beweisen Sie, dass $(-1,1)\ \mathrm{und}\ [-1,1]\ \mathrm{nicht}\ \mathrm{homöomorph}\ \mathrm{zueinander\ sind}.$

Aufgabe Ü5

Entscheiden Sie, ob ein Homöomorphismus zwischen (-1,1) und $(-1,1) \setminus \{0\}$ (aufgefasst als metrische Räume mit der von \mathbb{R} induzierten Metrik) existiert. Begründen Sie!