Homework 1

Topology II

Winter 2016/17

Problem 1 (Five-Lemma)

Consider the following commutative diagram of abelean groups:

$A \xrightarrow{f} $	$B \xrightarrow{g}$	$C \xrightarrow{h}$	$D \xrightarrow{k}$	E
$\downarrow \alpha$	$\int \beta$	$\downarrow \gamma$	$\int \delta$	$\downarrow \epsilon$
$A' \xrightarrow{f'} \rightarrow$	$B' \xrightarrow{g'}$	$C' \xrightarrow{h'}$	$D' \xrightarrow{k'}$	E'

Show that if the rows are exact, i.e. Kerg = Imf, Kerh = Img, Kerk = Imh (and analogously for die lower row) and β und δ are isomorphisms, α is surjectiv and δ is injectiv, then γ is also an isomorphism.

Problem 2

Let $f: X \to Y$ be a continuous map between topological spaces X, Y. Let $f_n: C_n(X) \to C_n(Y)$ be the homomorphism between the chain groups of X and Y, respectively, defined on the generators $\sigma: \Delta^n \to X$

$$f_n(\sigma) = f \circ \sigma : \Delta^n \to Y.$$

(1) Show that f_n is a chain map, i.e. $f_n \circ \partial_{n+1} = \partial_{n+1} \circ f_{n+1}$ for all $n \in \mathbb{N}$.

(2) Explain how this implies, that (f_n) induce a well-defined homomorphism $f_{*n} : H_n(X) \to H_n(Y)$.

(3) Derive the functoriality of this construction, i.e. $(f \circ g)_* = f_* \circ g_*$, where $g : X \to Y$ and $f: Y \to Z$ are continuous maps.

(4) Show that homeomorphic spaces X and Y have isomorphic homologies.

Problem 3 Show the inclusion $p \mapsto q$ for $q \in U$ induces an isomorphism (on all degrees)

$$H_*(\{p\}) \cong H_*(U)$$

for any starshaped set $U \subset \mathbb{R}^n$ without using the homotopy property of singular homology. Hint: Consider the homomorphism $c_n : C_n(U) \to C_{n+1}(U)$ given on a generator $\sigma : \Delta^n \to U$ by $c_n(\sigma) : \Delta^{n+1} \to U$ via

$$c_n(\sigma)(t_0, t_1, \dots, t_{n+1}) := t_{n+1}q + (1 - t_{n+1})\sigma(\frac{t_0}{1 - t_{n+1}}, \dots, \frac{t_n}{1 - t_{n+1}})$$

if $t_{n+1} < 1$ and $c(\sigma)(0, ..., 0, 1) = q$. Check that $c_n(\sigma)$ is continuous. Derive the formulas

$$\partial_{n+1} \circ c_n - c_{n-1} \circ \partial_n = \mathrm{id}.$$

for n > 0 and

$$\partial_1 \circ c_0 = \mathrm{id} - \sigma_q$$

where by $\sigma_q: \Delta^0 \to U$ we denote the map $\sigma(1) = q$. Conclude the claim.