Homework 5

Topology II

Winter 2016/17

Please, also have a look at Homework Set 3, since we have not discussed most of them.

Problem 1

In a proposition discussed in class we show that for $k<n$ we have

$$
\tilde{H}_{j}\left(S^{n} \backslash h\left(S^{k}\right)\right) \cong \mathbb{Z}
$$

for $j=n-k-1$ and 0 otherwise. With $S^{k}=D_{+}^{k} \cup D_{-}^{k}$ with $D_{ \pm}^{k}$ being the north and south hemisphere, respectively. Let $S^{k-1}=D_{+}^{k} \cap D_{-}^{k}$ be the equator sphere. Then we have a long exact sequence from Mayer-Vietoris

$$
\begin{aligned}
0=\tilde{H}_{j}\left(S^{n} \backslash h\left(D_{+}^{k}\right)\right) & \oplus \tilde{H}_{j}\left(S^{n} \backslash h\left(D_{+}^{k}\right)\right) \longrightarrow \tilde{H}_{j}\left(S^{n} \backslash h\left(S^{k-1}\right)\right) \\
& \longrightarrow \tilde{H}_{j-1}\left(S^{n} \backslash h\left(S^{k}\right)\right) \longrightarrow \tilde{H}_{j-1}\left(S^{n} \backslash h\left(D_{+}^{k}\right)\right) \oplus \tilde{H}_{j-1}\left(S^{n} \backslash h\left(D_{-}^{k}\right)\right)=0
\end{aligned}
$$

from which follows for $1 \leq k<n$ that

$$
\tilde{H}_{j}\left(S^{n} \backslash h\left(S^{k-1}\right)\right) \cong \tilde{H}_{j-1}\left(S^{n} \backslash h\left(S^{k}\right)\right)
$$

What is wrong with extending the formalism to the case $k=n$? We would get

$$
0=\tilde{H}_{0}\left(S^{n} \backslash h\left(D_{+}^{n}\right)\right) \oplus \tilde{H}_{0}\left(S^{n} \backslash h\left(D_{-}^{n}\right)\right) \longrightarrow \tilde{H}_{0}\left(S^{n} \backslash h\left(S^{n-1}\right)\right) \longrightarrow 0
$$

which is wrong since by the proposition

$$
\tilde{H}_{0}\left(S^{n} \backslash h\left(S^{n-1}\right)\right) \cong \mathbb{Z}!
$$

How can we correct the method? What would be non-trivial conclusions? See Hatcher, pg. 170.

