HUMBOLDT-UNIVERSITÄT ZU BERLIN INSTITUT FÜR MATHEMATIK

PD Dr. Angela Ortega

Übungsaufgaben zur Vorlesung Mathematik für PhysikerInnen (Analysis II) (SS 19) Übungsblatt 1

Abgabetermin: 23.04.2019 vor der Vorlesung

Bitte schreiben Sie auf die Abgaben Ihren Namen, die Matrikelnummer und Ihre Übungsgruppe drauf.

Aufgabe 1 (4 Punkte)

- (a) Zeigen Sie, dass $||(x_1,\ldots,x_n)||_{\infty} := \max_{1 \leq j \leq n} \{|x_j|\}$ definiert eine Norm in \mathbb{R}^n .
- (b) Zeigen Sie, dass $||AB||_F \le ||A||_F ||B||_F \quad \forall A \in M(l,m)$ und $\forall B \in M(m,n)$, wobei $||\cdot||_F$ die Frobenius Norm bezeichnet.

Aufgabe 2 (8 Punkte)

(a) Seien (A_j) und (B_j) konvergenten Matrizenfolgen aus M(n,n). Mit Hilfe von 1(b) zeigen Sie:

$$\lim_{j \to \infty} (A_j B_j) = (\lim_{j \to \infty} A_j)(\lim_{j \to \infty} B_j).$$

(b) Zeigen Sie, dass für alle $A, B \in M(n, n)$ mit AB = BA

$$\exp(A+B) = \exp A \cdot \exp B$$
 gilt.

- (c) Berechnen Sie $\exp \begin{pmatrix} 0 & \varphi \\ \varphi & 0 \end{pmatrix}$ für $\varphi \in \mathbb{R}$.
- (d) Beweisen Sie, dass eine konvergente Folge in einem normierten Verktorraum beschränkt ist.

Aufgabe 3 (8 Punkte)

- (a) Beweisen Sie, dass die Vereinigung endlich vieler abgeschlossener Mengen ist abgeschlossen.
- (b) Zeigen Sie, dass die Menge N der Nullstellen einer stetigen Funktion $f:[a,b]\to\mathbb{R}$ ist abgeschlossen.
- (c) Man betrachte $\mathbb Z$ als Teilmenge von $\mathbb R$. Was ergibt sich für $\overline{\mathbb Z},\ \partial\mathbb Z,\ \overset{\circ}{\mathbb Z}?$

(d) Zeigen Sie, dass jeder Halbraum in \mathbb{R}^n

$$\{x \in \mathbb{R}^n \mid \langle x, a \rangle > b\}$$

mit $a \neq 0$ und $b \in \mathbb{R}$ eine offene Menge ist.