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Abstract

Pert}u'butions of convex chance constrained stochastic programs are
considered the underlying probability distributions of which are Ir—
concave. Verifiable sufficient conditions are established gua.mntee.in s
f}ulder continuity properties of solution sets with respect to v;u-ia%
tions of the original distribution. Examples illustrate the potential
sharpness and limitations of the results. ,
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1 Introduction

Many applied optimizati o
B e HII)P P zation problems under uncertainty in constraints have

min{g(z) | x € X, h(z) > ¢}, (1)

where the objective function 9 is real-valued and convex on R™, X is a
f:lose{;id convex sul.)set of R™ expressing all deterministic const;rai’nts, the
Iiml u}f.tiqll_functlon’ h = (h%, couyhg) from IR™ to JR® has concave compo-

ents h; (i =1,...,s) and £ is an s-dimensional random vector playing e.g.
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the role of an uncertain demand, load or force etc. In case that it a.pp‘ez;rs
to be difficult or even impossible to introduce com_pensatlon cosf:s fDI‘VIO o
tions of the stochastic constraint 'i(z) = ¢, one nughl;. be led to hx. e.n. tl,i't:m
probability or reliability level p € (0, 1) subject to \la.r'hlch lt.he' COD‘SLIB.Il.fl as
to be satisfied. Denoting by p the (Borel) pr(.:ubapihl;}r dsstrlbl.ttlon. 1?1 §d011
IR* and by F), the corresponding probabilitg.f distribution function, this idea
leads to the probabilistic or chance constraint

u({¢ € R* | h(x) 2 €}) = Fu(h(z)) 2 P- (2)

Inserting (2) rather than the stochastic constraint ‘h(z) > €' into the model
(1), leads to the stochastic program

min{g(z) | ¢ € X, Fu(h(z)) Z P}- (3)

Stochastic programming models of the form (3) represent nonhnea; pm—f
grams which are often nonconvex and nonsmooth due to the proper 1e$£ &)
the multivariate distribution function Fy. Compare.d tc.a the conve'mt.y .??“
tures of the original model (1), the loss of conve}.uty in model.il(.i) gz t: s
perturbations (i.e. when replacing g by an approximate probab:l ity dis ;‘;:
bution ) appears to be disappointing. On the one ilancl: concavr.‘ty prot{)hat
ties of measures are well-known (cf. Appendix A for a brief e_xpomtm;a)b.l’ﬁ
Jead to convex constraint sets in (3) and cover many pr.actlcal probability
distributions. On the other hand, our analysis has to include nonconvex
serturbed models. _

pe”in Enost practical applications of the Sto(‘.ha.fif‘:ic pr.ogr‘aml}ung metl}loctl:;:
ogy only incomplete information on the probability disf:rlbutfon is ?IVB.J. al t
This fact motivates a stability or perturbation analysis of. (_.%) with respect
to variations of g in the space P(IR?) of all Borel probability measures on
IR®. Here we equip this space with the uniform or Kolmogorov distance

di(u,v) = | Fu — FVHOO_= yseulg-! lFu(y) - F,(y)l.

Stability issues for chance constrained programs are adressed. in 1 num'bts:r1
of papers (see e.g. (1],[4],[5],(6],(13], [15] and re‘fcrences th'erem).l typica
question in this respect is the continuity behaviour of optimal values

o(p) = inf{g(z) | = € X, Fu(h()) Z P}
and solution sets
() = argmin {g(z) | © € X, Fu(h(z)) Z p}

of problem (3) when the measure j is subjected to variations in (P(R?),dk)-
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In the present paper, we look at conditions on mode! (3) implying quan-
titative continuity properties of solution sets with respect to the metric dx.
Our main result (Theorem 2.5) extends our earlier work (Theorem 4.3 in [6])
for the linear-quadratic case (i.e. g convex quadratic, h linear and X con-
vex polyhedral) considerably. It provides conditions implying upper Holder
continuity of solution sets at the original measure p with some rate that
depends essentially on the data g, h and X. Our stability results are com-
plemented by several examples illustrating their validity and limitations.

Our results allow applications to exponential bounds or convergence
rates for solutions in case of nonparametric estimations of the (unknown)

measure . We do not pursue these ideas here and refer instead to Section
5 in [6] and to [5].

2 Quantitative Stability

We study the behaviour of the solution set ¥(u) of the stochastic program
(3) when perturbing the original probability distribution y in the metric
space (P(R*),dk). In addition to the general assumptions on g, h,p and
X in Section 1, we assume throughout that u € P(R®) is r-concave for
some r € (—o00,00]. This implies that F, is quasi-concave (cf. Appendix
A) and, hence, that (3) has both a convex objective function and a convex
constraint set. Since perturbations of (3) may be nonconvex, we also need
concepts of localized solutions. Given ¥V C IR™, we put for each v € P(RR?)

pv(v) = inf{g(z) |z € X NclV,F, (h(z)) 2 p}
Uy(v) = {zeXndV|g()=ev()}

where clV denotes the closure of V. Later the set V plays the role of an
open neighbourhood to ¥(u). Consistently with our previous notation, we

have ¥(v) = Uy (v) if ¥(v) C V. Now we are ready to state our first
stability result.

Proposition 2.1 In addition to the general assumptions, let ¥(u) be non-
empty and bounded, and V C IR™ be an open, bounded neighbourhood of
U(p). Furthermore, assume that there exists an & € X with F,(h(Z)) > p
(Slater condition). Then, the set-valued mapping ¥y from (P(IR*),dk)
to R™ is upper semicontinuous at u, i.e., for any € > 0 there exists

§ = 6(e) > 0 such that sup d(z,¥(u)) < e holds whenever dg(u, v) < 4.
€Ty (v)

Furthermore, there exist constants L > 0,1 > 0 such that ¥y (v) is a
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nonempty set of local minimizers to the perturbed problem, and it holds
that

lo(p) — ev(¥)] £ Ldk(p,v) whenever dx(p,v) < 1.

Proof: Apply Corollary 3.7 in [13] withd = 1, Hy(z)={¢ € R* | h(z) 2 &}
(CB € Rm),pl =D. a

In the next step of our stabilty analysis we 'il]tel"l(-i to quantify .the Sf:n;:—
continuity behaviour of ¥, i.e., to derive an explicit representatmxz_‘ of toe
function () (e.g. d(g) = (¢/C)* with some consta‘nts k> 0 s?.ud ’ > ‘).
The following example illustrates the fact that this quantifying requires

further assumptions.

= = = [0 1/2] x IR, g(xl,xz) =
Example 2.2 In (3) put m = 2,s = 1,X = [0, (¢
zy, h(zy, @) = —xgq +2y +1/2, Y(z1,72) € R?, andge IN, p=1/2, and
1 be the uniform distribution on [0,1], i.e.,

0, £€<0
Fﬂ(§)= 5 y §€ [0$ 1]
1, é€>1

Then the assumptions of Proposition 2.1 are satisfied, and \-Ifl(p) = {_(10, 0)}.
Consider the sequence (pn) of uniform distributions on [—n ,1~1ril I nzi
IN. Then the constraint F, (z1,22)) = plz's equz"u?ient to w1 +n 2' x5
and it holds that ¥(un) = {0} X [-n=@)7", n=(07]. Hence, we obtain

—(2¢)"!
sup d(z, ¥(p) = sup [zll=mn (20)”"  and
€Y (un) z€T(pn) .
di (i, bn) = SUP |Fu(€) = Fun ()| =n""
¢ER

k
Since ¢ € IN was arbitrary, there is no rate k> 0 such that 6(e) = (¢/C)
for some C > 0.

A similar example with X = {(z1,22) € R? |'..":§“’r 'S_ z1 < 1/—21}, h(zl,lxz) =
z1+1/2 and the sequence (fin) of uniform distributions on [n~1, 1407, n €
IN, leads to the same effect. . i
The following reduction argument decomposes the (l)rlgmal problem (3)
into two auxiliary problems and provides some insight into .the structulre oi
the solution set to (3). It also leads us closer to the essential properiflesbf:u
g,h and X needed for quantitative stability and extends Lemma 4.1 in [6].
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Lemma 2.3 In addition to the general assumptions, let v € P(IR*) and
V C R™ be convexr and bounded. Then we have

wy(v) = inf{ry(y) |y € Yv, F,(y) > p} and ¥y (v) = ov(Yv (v)),

where
Yv = {yeR®|3ze XnclV with h(z) > y},
Yv(v) = argmin{nv(y) |y €Yy, (y) 2 p},
mv(y) = inf{g(z) |z € X NeclV, h(z) >y},
ov(y) = argmin{g(z)|z € XnNclV, h(z) >y} (y € Yv).

Moreover, my is convex on the closed convex set Yy = domoy.

Proof:
Since the constraint set {x € X NclV | E,(h(z)) > p} is compact, the set
Uy (v) is nonempty. Let ¢ € Uy (v). Then

ev(v) = g(z) = mv(h(z)) > inf{my(y) | y € Yy, Fu(y) > p}.

Conversely, let y € Yy with F,(y) > p. Since oy (y) is nonempty, there
exists ¢ € oy(y). Hence z € X NeclV and F,(h(z)) > F.(y) > p, thus
mv(y) = 9(x) 2 v (v). This implies

ey(v) = inf{ry(y) |y €Yy, F.(y) >p} and
g(z) = wy(h(z)) Vz € Ty (v),

and hence ¥y (v) = oy (Yy (v)). The convexity properties of Yy and my are
immediate. The closedness of Yy follows from the compactness of X NclV.
O

The lemma suggests to study the stability behaviour of ¥y at u by looking
at the stability properties of two programs that are different by nature. The
first program contains the somewhat simpler chance constraint F,(y) > p
and its decisions belong to the support of the measure v, while the second
one is a convex parametric program having a finite-dimensional parameter
in the right-hand side of a constraint. Later we impose conditions implying
that the solution set Yy (u) is a singleton and a quadratic growth condition
holds near Yy (u). We conclude Holder stability of Yy at p and combine
this with Hélder or (even) Lipschitz stability results of the solution set map-
ping oy of the convex parametric program in order to obtain quantitative
stability of Wy. After the view of our strategy, we first recall some stability
results for the convex parametric program

min{g(z) |z € X NclV,h(z) > y}.
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Proposition 2.4 In addition to the general assumptions, let V. C R™ be
conver and bounded, and Yy, my and oy be defined as in Lemma 2.3.
a) Let the following conditions be satisfied at some § € Yv:

(i) There exists an element T € X N clV such that h(Z) > § holds com-
ponentwise (Slater condition).

(i1) There exist constants ¢ > 0, k > 1 and an open, conver and bounded
set Vi containing ov () such that g(z) = mv(7) + cd(z,ov(@))F for
alz e X NelVncVy with h(z) > § (growth condition of order k).

Then oy is upper Hélder continuous at § with rate k=1, i.e., there exist
constants L > 0, 6 > 0 such that

sup d(z,ov(@) < Lly—gl~ foryeYy and [ly -7l <&
z€ov (y)

b) Let g be convex quadratic, h be linear, X be convex polyhedral and clV
be a polytope. Then oy is Hausdorff Lipschitz continuous on the convex
polyhedral set domoy = Yv, te, there evist a constant L > 0 such that
dy(ov(v),ov(@) < Ly —il|l for all y, i € Yy (du denoting the Hausdorff
distance on subsets of IR™ ).

Proof:

For b), apply Theorem 4.2 in [8]. For a), note that the set-valued mapping
yi M(y) = {z € XNV | h(z) 2 y} with closed convex graph is pseudo-
Lipschitzian at each pair (y,2), z € M(y), y € Yv (12]. Then Theorem 2.2
in [7] applies and provides that for U := Vp NV the solution set mapping
op is upper Holder continuous at § with rate k=1. Since oy (7) is contained
in Vp and oy is upper semicontinuous at ¥, we have that oy (y) € Vo for all
y close to §. Hence, ov(y) = oy(y) for all y € Yy close to . O

Complementing part a), we note that in our applications the set V' is an
open neighbourhood of oy (7) for some specific § € Yy. Hence, the set Vp in
(ii) may be chosen as a subset of V. In this case, oy () is contained in V' for
all y close to § and the proposition provides Holder or Lipschitz continuity
results for y — o(y) = argmin {g(z) |z € X, h(z) > y} = ov(y) at J.
Growth conditions of the type used in (ii) are discussed in Section 4 of
[9]. Corollary 16 of [9] states that growth conditions of some order k > 1
are available in case that the constraint set can be described by finitely
many analytic functions and that the objective function is analytic as well.
For more specific models, it is possible to characterize the growth order
k more explicitly. For instance, in case of a quadratic objective function

Stability of Solutions to Chance Constrained Stochastic Programs 101

and.polyhedral constraints one has k = 2 (Corollary 12 in [9] and Lemma
4.1 in [6]). Another instance with convex quadratic objective and (finitely
many) quadratic constraints can be derived from Theorem 11 in [9] usin

the technique in the proof of Lemma 4.1 in [6]. :

. (I;I;xt we state our main result on quantitative stability of solution sets
o (3).

Theorem 2.5 In addition to the general assumptions, assume that

(i) W(u) is nonempty, and there exists an open, convex and bounded set
V' containing ¥ (u);

(i) there exists an & € X such that F,(h(Z)) > p (Slater condition);
(1) U(p) Nargmin{g(z) |z € X} =0 (strict complementarity);

(v) F, is strongly convex on some open, convez neighbourhood U of Yy (1)
where r € (—00,0) is chosen such that u is r-concave;

(v) ov is upper Holder continuous at some § € Yy (u) with rate k=1 for
some k > 1.

Then there exist constants L > 0 and § > O such that

-1
xei’uvp(y) d(z, ¥(w)) < Ldg(u, )™ whenever dg(u,v) <S$,

i.e., Yy is upper Holder continuous at 3 it
' @ with rate (2k as a set-valued
mapping from (P(IR®),dk) to R™). S e

Proof:
With the notations from Lemma 2.3 we consider the problem
min{ry (y) | y € Yv, Fu(y) > p}
or, equivalently, with b(y) := F//(y) — p"
min{ry (y) | y € Yy, b(y) < 0}. 4)

grom Lemma 2.3 we know for the solution set Yy () of this problem that
(u) = @y (u) = ov(Yv(p)). Let ys € Yy (u) and 2« € ov(ys). Then we

have . € V, h(z4) > y, and

b(R(AZ + (1 = N)zu)) = F(h(AZ + (1 — N)zy)) — p”
FEAMZ) + (1 = Mh(zs)) = p"

AEL(R(Z)) —p") + (1 = N)(F] (h(zx)) — p")
AFL(M(E)) —p") <0

IAIA A
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for all A € (0,1]. Here we used the concavity of the components of h, the
monotonicity of F,, and the r-concavity of u. Now, we select A € (0,1] such
that A& + (1 — Az, € V and, hence §:=h(Az+ (1 - A)z.) belongs to Yv
and has the property b(f) < 0. This Slater condition implies the existence
of a Kuhn-Tucker multiplier Ax =0 for yy in (4) such that

v (ya) = min{my(y) + Mb(y) |y € Yo} and Aeb(ys) = 0.

In case A, = 0, this would imply y« € argmin {7v(y) |y € Yv} and, hence,
we obtain for zs € ov(ys) € ¥(p) C V that

g(zs) = inf{g(z)|zeX AclV, h(z) > v} = Tv(¥x)
inf{my(y) |y €eYv} = inf{g(z) |z € X NclV}
inf{g(x) |z € X}

which contradicts (44i). Here we have used that any minimizer £ € X N cV
of g has the property g(#) > myv(h(&)) = TV (y«) = 9(zx) and that x.
belongs to the open set Vs

Thus A, > 0 and 7y + Ab i8 gtrongly convex on Yy N U by (). This
implies that y. is the unique minimizer of 7Ty + A\,b and that there exists a
constant p > 0 such that

plly — vell® < v () + Mb(y) — TV (v) (5)

forally e Yy NU.

Let 8o € (0,p) and v € P(IR?) such that dgc(,v) < 6. Then the
constraint set {y € Yv | F,(y) = p} I8 contained in {y € Yv | F.(y) 2
p — 6o} and the latter set is bounded. Indeed, supposing unboundedness,
there would exist a sequence (yn) such that yn € Yv, Fu(yn) 2 P — da
and |lya| — oo. Hence, there is a sequence (zn) in X N ¢lV such that
h(zy) > yn and, since each component of h is bounded on bounded sets,
each component of yn is bounded from above. On the other hand, the
condition Fj,(yn) = p—0 >0, for each n € IN, implies all components of
y, to be bounded from below due to F), being a distribution function. This
contradicts ||yall — o0

Now, we appeal to Corollary 3.7 of [13] applied to problem (4) with
an open bounded neighbourhood that contains the set {y € Yv | Fuly) =
p— 60} and conclude that the solution set mapping Yy () is upper semicon-
tinuous at p (as a mapping from (P(R®),dk) to IR®). Hence, there exists
a constant & € (0,8) such that the perturbed solution set Yy (v) is con-
tained in the neighbourhood U of Yy (1) = {y«} whenever v € P(IR*) with

dK(p,, 1/) < 4.
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With the notations from Lemma 2.3 and usi
. . using that ¥{u) =
obtain for any v € P(IR?) with dg (u,v) < 6, g€ (1) = ov(y«) we

sup d(.’L‘,\I/ I =
z€¥v (v) ( )) zeavs'('l}%(u))d(xiav(y*))
< L sup L
yE€Yv (v) ”y # ” ! (6)

where L i.s the Holder constant of oy from (v). Since Yy (v) C Yy NU, we
may continue the estimate using (5) and obtain - ,

sup d(z, ¥(u))

<€y (v)

< L sup 07 (rvi) + Mubl) — v ()

= LT s fov() = )+ M) - Py

< Lpmew™ Jup lov() = el) + M(FL) - Fr ()]0
P

< Lok yesi}lvlzu)[lwv(V) — (W)

FXlr (0 = 80) L Fu(y) — F, ()]
< Lp*(2lc)v (L + Alr|(p — 50)T_1)dK(I»L, V)](zk)—l’

where L > 0 is the constant from Propositi
position 2.1 and we used that F(y) <
p" for any y € Yy (v) and that the inequality M

ju” = 7| < | max{ur, o Y~ o

holds for any u,v € (0,1]. This completes the proof. a

Corollary 2.6 Adopt the settin, )
0] : g of the previous theorem, but r -
dition (v) by the stronger assumption , eplace con

(v’) ov is Hausdorff Hélder continuous at some § € Yy (u) with rate k.

Then Wy is Hausdorff Holder continuous at p with rate (2k)~L.
Proof:
The only change in the proof of the theorem concerns the estimate
dp(Ty (v), T(w)) = du(ov(Yv (1)) ov(va)) < L sup ly—uaf*".
yEYy (v)

The rest of the proof remains unchanged. |
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Corollary 2.7 Let g be convex quadratic, h be linear, X be convex poly-
hedral and assume that W(p) is nonempty and bounded. Moreover, let the
conditions (i), (i), (iv) of Theorem 2.5 be satisfied. Then, for any open
convez bounded neighbourhood V of W(pu) the closure eV of which is poly-
hedral, the set-valued mapping Yy is H ausdorff Holder continuous at p with

rate 1/2.

Proof:
Let V be open, convex, bounded and such that it contains ¥(p) and its clo-

sure is polyhedral. Then oy is Hausdorff Lipschitz continuous on domoy =
Yy (Proposition 2.4) and, hence, the result is a consequence of Corollary

2.6 (for k=1). 0O

Corollary 2.7 essentially recovers Theorem 4.3 in [6] in a slightly improved
formulation. In particular, it provides Hausdorff Holder stability of (global)
solution sets in case that X is bounded.

The conditions (i)-(iv) imposed in Theorem 2.5 concern the original
problem (3). Conditions (i) and (iii) reflect the significance of an appro-
priate choice of the probability level p. They represent natural conditions
from a modelling point of view. The strong convexity condition (@) of Fj;
forms a local property around the singleton Yy (p) = {y.}. Since condition
(ii3) implies that F,(y«) = p, asufficient condition for (iv) is the strong con-
vexity of Fj, on any convex bounded subset of the interior of the support of
pt. Although no general result in this direction is available so far, it is worth
noting that the uniform distribution on rectangles and the one-dimensional
normal distribution satisfy this sufficient condition for (). Condition (v)
contains in a condensed form the assumptions on the (deterministic) data

g, h and X of (3).
The following example shows that the result of Corollary 2.7 is lost if

(iv) is violated.

Example 2.8 In (8) put m = s = 2, g(xy,x2) = T1 + T2 h(zy,x2) =
(z1,72), X = [0, 12, p=1/4 and p € P(IR?) be the uniform distribution
on the triangle conv{(1,0),(0,1), (1,1)}. The distribution function F,, of i
has the following form

else

1 , T1,122>1
(ml—i—xz—l)z , x;+zp>1and z1,22 € [0,1],
Fu(z1,22) = x? , zp>1landz1 € [0, 1],
z3 , xy>landze € [0,1]
b ]
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Hence, F, is constant on the line se
; ! gments {(Z1, 0.112
with a € [0, 1] (see Fig. 1). {(z1,x2) € [0,1)% | 21 + 22 = a}

F_‘lghure 1: Dis.tribution function F, for the uniform distribution on the
Eg t upper triangle conv {(1,0), (0,1),(1,1)} (left) and distribution func-
ion F,,, (A = 0.5) for the perturbed measure. The level lines Fy,(z1, x2) =

and F,, (z1,22) = p are indicated on both graphs. HER BT

Thgefore, F[ is not strongly convex on any convex subset of the interior
;f Ffor any r < 0, aithor.mgh @ 18 r-concave for any such v (cf. Appendic
T;}. urthermore, one easily checks that all the remaining assumptions of
: weorem 2.5 are satisfied. We have W(p) = {(x1,32) € [0,1)* | &1 + 23 =
/2}. and @(u) = 3/2. Let ji be the uniform distribution on [1/2,1]* and
;ﬂ}:}.m.der the P\?Tﬁﬂ.’f‘b&d probability measures py = (1 — X)p + M, A € [0,1]
ch(az Ze)Obt()L\ZZ(\I/(H)AL;:\ J{C(3/4, 3/4)} (emphasized points in Fig. 1) and
SN = W, it) < A for each A € (0,1]. Evidentl
U(u) for each X € (0,1], but i B sl S

V() ¥ () = sup o= (3/4,3/4) = v2/4 VA e (0,1],

and indeed the result of Corollary 2.7 gets lost.

The.ne?(t result. seems to support the conjecture that the upper Holder

golntmuxty rat'e in Theorem 2.5 might be improved. However, in Example
} 0,. we provide a counterexample showing that the rates in Theorem 2.5

and its corollaries are the best possible. ‘

i}ropositdign 2.9 A;iopt the setting of Theorem 2.5 and let s = 1 (the case
a one-dimensional random variable). Then, Uy i 6 )
e tn wate f. Y en, Uy is upper Holder contin-
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Proof: . N
Referring back to the proof of Theorem 2.5, we see that (y« being a mini-

mizer of (4))
my(y) 2 v (y) Yy €Yy, b(y) <0. (7)

From the strict complementarity (A« > 0) it follows that b(y. ) = 0. For
the 'Slater point’ § € Yy with b(§) < 0, one may suppose w1thouF tl:;ss
of generality that §j > y. due to the one-dimensionality of the y-variables
assumed above. Then the convexity of b implies

by) 0 = y =y« (8)

and, furthermore, Ty (§) > my(ys) due to (7). Consequently, v (y) 2
mv(ys) for all y >y, y € Yy by convexity of 7v. Nowl, there must exist
some y' € Yy such that ¥ <y, and 7y (') < v (y), since otherwise one
would arrive at y. € argmin{my(y) | ¥ € Yy} contradlctm'g assumption
(ii3) of Theorem 2.5 (see proof). Finally, we consid(/ar an arbitrary y G'YV
with y > y.. From the convexity of 7y and from y' <y. <y, one derives

that

Y—Ys , , Y=Y
) = v Y Ty Y
Y — Yx ’ y*_y,

which gives

L
M(y—y*) Yy e Yv,y > v

mv(y) = Tv(ys) + ey

Now, (8) allows to write this as
wv(y) = v (ys) +plly — wll Vy € Yy, b(y) <0

with some p > 0. Using this global linear growth of my in contragt to its
local quadratic growth in (5), one may directly apply Theorem 2.2 in [7] to
the parametrization of problem (4)

min{my(y) |y € Yy, bu(y) <0}, bu(y) :=F(y) —p" (9)

accompanied by the same upper-semicontinuity argument as in the.a proof of
Theorem 2.5 (following (5)), Hence, Yv(+) is upper Lipschitz continuous a&]t
p. Appealing to (v), the result follows from (6).
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In the last proposition, the one-dimensionality of the random variable was
substantially exploited. Below, we construct a two-dimensional counterex-
ample showing that, in general, one cannot expect a Lipschitz-like behavior
of the solution set under the assumptions of Corollary 2.7, hence the result
stated there is sharp. This example even lives in the class of probability
measures having a density and a (globally) Lipschitzian distribution func-
tion (both the original and the perturbed measures). It has to be noted that
such a counterexample is easily constructed in a non-probabilistic setting.
To find a counterexample, where in particular assumptions (%i) and (iv)
have to be fulfilled, requires a more sophisticated construction. The details
of verification in this example are therefore left to the Appendix B.

Example 2.10 In (3) put m = s = 2, h(z1,22) = (21, 22), glxy,29) =
x1+xy, X = [0,1]% p is the uniform distribution on X and p = 1/4. Then,
Fu(-’b'l,.'l.'g) = T1Ty (fO‘J" (‘Tls :rﬂ) €X), lII(P',) = {(05! 05)} ?“é argmin {g(.’!‘) |
z € X} ={(0,0)}, u is an r-concave measure for r < 0 and o1 ds strongly
convez on an open convex neighbourhood of W(u). Finally, there exists a
Slater point (e.g. & = (1,1)), hence, all assumptions of Corollary 2.7 are
satisfied. We define a perturbed measure v, € P(IR?) depending on & > 0
via the following density:

( l—¢ (x1,72) € A:=[0,a.] x [0, a]
ne(21) (x1,22) € B := [a,, be] x [0, a.]
775(932) (1131,152) €C:= [0>a€] X [ae,be]
Fe(zy, @) = ¢ 1 (z1,22) € D := (be, 1] x [0, ac)
1 (z1,22) € E :=[0,a¢] x (b, 1]
5%271}_;8-—4_1—“&)-;_5 (x1,22) € F := (ae, 1] X (ae, 1]
L 0 (1, x2) ¢ X
Here,
G = 2\/%_8’ be =ae(1+\/E), Ce =a5(1—\/E),
1
ne(t) = 1(2a, —1)7 (t € [ae, be)-

First, the correctness of the definition has to be checked: it is easily seen,
that for € < 9/25, it holds that 0.5 < a, < b, < 1, that n, is well-defined
and non-negative on [ae,be| and that f. is non-negative on the domains A
and F. It is shown in Appendiz B, that the integral of f. over X equals one
for all these e-values, hence the f. may be indeed considered as densities
for perturbed probability measures, and evidently, for € | 0, the fe converge
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Figure 2: Partition of the unit square in the counterexample.' The curve
represents the level line of the unperturbed probabilistic @nstrmnt, and ifhe
dot corresponds to the optimal solution. After perturbation, the Ievel’lme
is deformed such as to contain a linear piece which becomes the optimal

solution set then.

pointwise towards the density f (being the characteristic function of X) of

the original measure p. .
In Appendiz B, the following relations are verified:

|Fy — Fy.lloo < pe  for some p>0 and alle < gg (10)
U, = [(Ceybe), (bes Ce)] (line segment in Fig. 2) (11)
From (11) it follows that
1—+1—¢
A (T(w), ¥(ve)) = (0.5,0.5) = (besce)ll = \| =3 —7—

In particular, one has liﬁ)l dp (¥ (p), ¥(v.)) = 0, hence, for each open neigh-
g

bourhood V of () it holds that ¥y (ve) = ¥ (ve) with sujﬁcientdy small €.
Supposed the stability result of Corollary 2.7 would hold with rate 1. Then,

for € < min{8/p, €0}, (10) would yield the contradiction

LEVIZE (), %(0) = dar (W), B ()

IA

L|IF, — Fy,llo < Le.
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Figure 3: Perturbed density f. viewed at from the right upper angle of the
unit square

Appendix A: r-Concave Probability Measures

Here we introduce the notion of an r-concave probability measure for some
r € [—00,00] and discuss some essential properties. We start with the
definition of the generalized mean function m, on R4 x Ry x [0, 1]:

(Aa™ + (1 =NV if e (0,00)
or r€(—00,0),ab>0

0 if ab=0,7¢€ (—-00,0
mr(a, b, )\) S5 a)\bl_)\ i r=0 ( ) (12)
max{a, b} if 7r=o00
min{a, b} if r=—00

The measure u € P(IR®) is called r-concave ([2]) for some r € [—o0, 00], if
the inequality

W(AByL + (1 — M) B2) = my (u(B1), u(Bz2); A) (13)
holds for all A € [0,1] and all convex subsets By, By of R®. For r =0 and
r = —oo, k is also called logarithmic concave and quasi-concave, respec-

tively ([10]). Since my(a, b; A) is increasing in r if all the other variables are
fixed, the sets M, (IR®) of all r-concave probability measures are increasing
if r is decreasing, i.e., we have for all —oo < r; < ry < 0o that

M-o(I%) 2 My, (IR°) 2 My, (IR°) 2 Moo(IR?). (14)

For the particular case of cells B = y + R%, y € R®, and for r € (—o0,0)
the inequality implies that the distribution function F, has the property
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that the extended real-valued function F] is convex on IR®. Moreover, (13)

and (14) imply that F, is quasi-concave on IR®.

A useful criterion for r-concavity is known from 2], 3], (10] (for r = 0)
and [11]. It says that a measure it € P(IR®) is r-concave for some 7 €
(=00, 571 if p has a density fy such that

fu(dy + (1=-N9) = 'mr(s)(fu(y)a Fu(@); A)s

holds for all X € [0,1] and y,§ € IR where r(s) =r(1 —rs)~!. For example,
the uniform distribution (on any bounded convex subset of IR*), the (non-
degenerate) multivariate normal distribution, the Dirichlet distribution, the
multivariate Student and Pareto distributions belong to M,.(IR*) for some
r € (—o0,00] {(ct. [2], [11]). For more information on all this, proofs and

details we refer to Chapter 4 of [11].

Appendix B: Verification of Example 2.10

Estimation of the maximal difference between F, and F,, (see
(10))
We assume that € < 9/25 according to the remarks in Example 2.10.

ad A: Over A, both F, and F,, have constant densities, hence the maximal
deviation occurs at the right upper corner (e, ae):

|Fu—F. s = F(ae, ac) — Fu,(ae,ac) = a2 —ag(1—¢) (15)

€
< f < 3/4.
4(1—5)‘5 or £€<3/

ad B: For (x1,z2) € B one has

Foenz) = wai=o)+ [ [ne@dedes
0 ae
1 o

- (v sl

T2
= (16)

+(h= o)
For zi € [ae, be| it follows

L >

()
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where equality occurs exactly at z; = b.. C
1 = 0e. Cons )
holds that . Consequently, due to z3 > 0, it

Fy(z1,x2) — Fy (z1,22) = (17)

>0 ((131,.'132) eB
=0 (z1,z2) € B and
zy=beorz; =0

= S S
Ta | T1 4(7:{]?!;_:61)

In particular, the maximal deviation over B computes as the maximum of
the': above (nonnegative) difference. This maximum is assumed over B at the
point (1/+/1 ——1/2,ac), and it realizes the value (1—+/1 —¢£)/(2(1—¢))
which for € = 0 equals zero and the derivative w.r.t. e of which e ualsj
1/4 at € =0. Thus, there exists an £; with ¢

|Fu—F, B <e fore<e. (18)

ad C: symmetric with B
ad D: For (z;,22) € D the definition of the density and (17) imply:

Fu(z1,20) — F (z1,29) = z122 — (F, (be, 22) + (21 — be)2)
= I1x2 — bE.’L‘z - (xl - be)mz =0.

ad E: symmetric with D. In particular, F, d F, inci
T , F, and F,_ coincide on D and E

Figure 4: Graph of F,, — F,, (left) and marginal _ .
pertiBed meadiEe U . u (left) rginal density (right) for the
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ad F: For (z1,2) € F, one gets
Fu(z1,23) — B (21,%2) =
F,(z1,ae) + F,(ac,z2) — F,(ae,0e) + (z1 — ac)(z2 —ae) —
F,.(z1,ae) — Fu, (ae, z2) + Fu. (ae, ae) — pe(®1 — ac)(x2 — ae),

where p. briefly denotes the constant density of Ve on F: By comparléo]g
of terms located on top of each other, the previous estimations on AB,C,

and E provide:
\Fu — Fu. |5 <341 - pe| fore< min{3/4,¢€1}

Since pe <1 and by 1 —po =0 along with (dpe/de)(0) = —1, one arrives
at (1—pe) < 2¢ for € <eéa. ‘Consequently,

| Fu — F, & <5¢ fore<es:= min{3/4, €1, €2} (19)

ad (w1,x2) ¢ X: We distinguish the four cases ;3 <0 or a2 <l{):t:*cl i—hi
and T € [0,1], zp > 1 and 1 € [0,1], 1 > 1 and.u:lg > 1. Ex.p oiting ‘
fact that both the original and the perturbed densities are zero h.ert?,‘ on_c
concludes that Fj, = F,, in the first case and that Fy,(z, mg)—Ff,‘ (1, .Lg). =
Fyu(1,z2) — F (L, x3) in the second case, wher‘e now thfe results co‘ncirn:‘lllg)
the regions D and F' may be applied. The third case is symm».:-:ilzrlc o the
second one. Finally, we have F, = F,, in the fouﬁ:.h case again, unceﬁ\.a\re
know that F,_ (1,1) = 1. This last property wguid sunult‘.flu:eousiy clor; .1 m
that v is a probability measure for all admissible £ < 9/25. Indeed, from
the previous representations it follows that

F,.(1,1) = F,.(1,a¢) + Fu.(ae, 1) - F.(ae, ac) + pe(l — ‘7'6)2
g  B(l—¢) —4\/1—5(1_a X
= 2a€_(1—5)a€+-__—____—_-(2\/T——e—-1)2 E
= —-1/4+ 5/4 = 1a
Summarizing, the combination of the estimations (15), (18) and (19) leads
to 1. with p="5 and €p = min{es, 9/25}.

Characterization of the perturbed chance constraint (see (11))

In order to verify (11), we define the continuous function

L t € (0, ¢ U [be, 0)
o(t) = { %0, —t te€ [ce,be)

1
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the graph of which is the thick line joined with the curve over E and D
in Fig. 2. We claim that F, (z1,22) = p = 0.25 Y(z1,22) € X N Gph¥.
By bece = 0.25, one gets x3 = 8(x1) = (4z1)~! > b for z; < ¢ and
analogously zo = 6(z;) < ¢ for 1 > b.. Consequently, for such 1, the
(z1,22) € X N Gphé belong to the regions D or E, where, according to
the previous section F, and F,, coincide. Therefore, these points fulfill:
Fy (x1,22) = 122 = 216(z1) = 0.25.

In the case z; € [ce, be] the (z1,22) € X NGphé belong to the regions
C or B. For (z1,z3) € B one has according to (16):

Fu;(m17x2) = F,,E ($1,0(CE1)) = Fl/s(xla 20/5 —_ xl)
%, — % oy
= e W B g9,

W= —=1) T 4(2a, — 1)

The case (z1,z2) € C follows analogously for symmetry reasons.

For (z1,z2) € X \ Gphé the strict positivity of the density (or alter-
natively the previous statements on F,,) imply that F,,_(z1,z2) > 0.25 for
(z1,z2) € XNintepi (interior of the epigraph), whereas Fy,_(z1,z2) < 0.25
for (z1,22) € X\epif. Summarizing, one obtains that the perturbed chance
constraint X N{(x1,zq) | F,,(z1,2z2) > 0.25} coincides with X Nepif. This
immediately entails the correctness of the representation of the perturbed
solution set in (11), since the line segment mentioned there has the same
direction as the level sets of the linear goal function g.

Properties of the approximating densities and distribution func-
tions

According to the definition of the perturbed density, the maximum deviation
between perturbed and original density occurs (among others) at the point
(be, 0) where it calculates as

_ 2V
S (L—E)?
This shows that, for € | 0, the densities converge uniformly with rate 1/2.
Concerning the perturbed distribution functions, it is important to note
that they are globally Lipschitzian as is the original distribution func-
tion. This follows from the perturbed marginal densities being bounded
(cf. Proposition 3.8 in [14]). Indeed, for an admissible value of € > 0, an
upper bound of the marginal density (which is the same for z; and zo due
to symmetry) is given by (1/4)ac(2ac — be)% + (1 — ac)pe. This is the peak-
value of the curvilinear part of the perturbed marginal density illustrated
in Fig. 4 which for € | 0 converges towards one.

Ne(be) — 1
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Abstract

In r.l‘us paper, we investigate stochastic decision process as dy-
namic model with a discrete time. The one-stage loss function ?n
the model is non-negative and unbounded. [n these re'-te’arch 3
we need‘ to show that there exist an optimal value and‘an o i‘:
mal policy, However, in many cases, it seems to he d.iﬂicultpt
fsihow directly the existence of them. Thus, we introduce a modi{-)
fuefc:?;';nis( (;iual iorm ) of t.he dynamic model, in which a reward
b lgo ;etnh { L]he conjugate.( Fenchel ) function of logs fune-
pos sh at t 1e we’a.k duaht:y holds under some conditions.
reover, if loss function in the primal model is convex and lower
semicontinuous, we show that the strong duality holds.

f( eywords and phrases: dynamic programming, Fenchel’s inequal-
ity, dual space, conjugate function, '

1 Introduction

inveT:]'e dygamic Programming problems with an infinite horizon have been
stigated by many authors. Much of the earlier works of this area were




