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Summary

In this notebook we develop some linear algebraic tools which can be applied to calculations in 

any dimension, and to creating graphics in the two- and three-dimensional case. The notebook 

contains new modules implementing spheres  as objects of Euclidean and Riemannian spheri-

cal geometry. As an application the construction and plotting of a sphere through four points in 

the Euclidean 3-space is given. Furthermore, it contains a recursive definition of the generalized 

geographical parameter representations of n-spheres in the (n+1)-dimensional Euclidean space. 

Some concepts needed in Möbius geometry, the conformal geometry of the n-sphere, are intro-

duced in Euclidean terms. These concepts are: stereographic projection, its inversion, and 

reflections at hyperspheres (also called inversions). A version of Erhard Schmidt's orthogonaliza-

tion: esorthonorm, is introduced in section 2; it has some other features as  the function Orthogo-

nalize now built-in Mathematica.

Keywords

vector objects, random vectors, rank, orthoframes, unit vectors, norming, cross product, nullvec-

tor,  standard base, hyperplanes, stereographic projection, inverse stereographic projection, 

spheres, spheres through four points, hyperspheres,  parameter representation for n-spheres, 

inversion at hyperspheres, torus, geodesics on the flat torus, spiral, spiral group, spiral cylinder, 

Erhard Schmidt's othogonalization, orthogonal complement.

Version

This notebook is a new version of the notebook eusphere.nb,  first published  in the item [2]  in 

MathSource. The same is true for the accompanying package euvec.m. In the new version  the 

pacckages vectorcalc.m and euvec.m together replace the old package euvec.m.  The package 

vectorcalc.m contains mainly concepts belonging to affine geometry,  while the metric concepts 

are gathered within the new euvec.m, which needs vectorcalc.m.  Since these packages contain 

the most important procedures used in this and other notebooks, published first in the  item 

Spheres, and the contents as well as some names have been changed, the two versions should 

not be mixed.   The notebook has been developed with Mathematica v. 4.2 and is revised now, as 

version 5,  with Mathematica v. 7.0. The actual versions of the notebook and the packages  may 

be downloaded from my homepage. 
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■ Introduction

Initialization

The operation of this section are necessary only at the first use of this notebook on your com-

puter.  If this is done once, and if the conditions of the subsection "The needed packages" are 

fulfilled, you may start calling the initialization as described in the next subsection. 

■ Preparation

■ Initialization

■  The usages 

■ Comparison of some new defined with similar built-in functions

1 The vector space. Basic operations

Summary

In this section we declare vector objects, fix the dimension dim of the vector space, control the 

linear operations and discuss the Euclidean scalar product which is the Dot product of Mathe-

matica applied to vector objects.  The cross product is applied to find the equation of the hyper-

plane through n points in general position.

■ 1.1 Vector objects. The dimension 

■ 1.2  The Cross product 

■ 1.3 Hyperplanes through n points: Hesse*s normal form
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2 Erhard Schmidt's orthogonalization

Summary 

The orthogonalization procedure esorthonorm  is contained in the package euvec.m. It follows 

Erhard Schmidt's orthogonalization, the only difference to which is that the given vector 

sequence m_List needs not to be linearly independent.  If a vector linearly depends on the 

foregoing vectors, esorthonorm generates the zero vector and eliminates it.  Like Erhard 

Schmidt's orthogonalization it is independant of the dimension; it may be applied to infinite 

dimensional spaces with a positive semidefinite scalar product, too. The numerical behavior of 

esorthonorm can be influenced by the option neglect, which sets the parameter of Chop.  We 

describe the Module esorthonorm in the first subsection. After some simple tests we apply it to 

find the Legendre polynomials. We compare the action of the function esorthonotm with the 

built-in function Orthogonalize. The last subsection is devoted to find an orthonormal basis of 

the orthogonal complement of a subspace of a finite dimensional Euclidean vector space.

■ 2.1 The procedure esorthonorm

■  2.2 The Legendre polynomials  generated by esorthonorm and by 

Orthogonalize

■ 2.3  The Euclidean orthogonal complement

3 Euclidean representations of spheres

Summary

In 3.1 we recursively define a parameter representation of the n-dimensional unit sphere. Sub-

section 3.2 contains parameter representations for arbitrary hyperspheres, and, for n=3, plot 

commands for spheres or simple parts of them. Finally, in subsection 3, we construct modules 

for calculating center, radius and therewith the sphere through four points of the 3-space in 

general position.

■ 3.1 A parameter representation of the unit n-sphere Sn

■ 3.2 The standard parameter representations of spheres in E 3 and of 

hyperspheres in E n 
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■ 3.3 Cirles in the Euclidean plane

■ 3.4 Center and radius of the hypersphere  in E n through n+1 points

■ 3.5  Parameter representations of spheres in the 3-sphere S3

4 Stereographic projection

Summary

We want to visualize the geometry of the 3-sphere S3. By stereographic pro-

jection we go to the Euclidean 3-space E3. Then we apply the 3D-graphics 

tools of Mathematica. For this and other applications we construct a mod-

ule for  the stereographic projection in  dimension n,  and another for its 

inversion. We show that these maps are conformal, and preserve k-spheres. 

The maps are applied to study spheres and tori in S3 and E3.

■ 4.1  Definition of the general stereographic projection

■ 4.2 The inverse stereographic projection

■ 4.3 Properties of the stereographic projection

■  4.3.1 Invariance of k-spheres

■ 4.3.2 Conformity

■ 4.4 Example: Tori. Geodesics on the flat torus

5 Inversions at  hyperspheres

Summary

Spherical reflections are fundamental in Möbius geometry: every Möbius transformation is a 

finite product of  "Inversions" ( = spherical reflections). They appear also in complex function  
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theory as the simplest conformal maps not being isometries (= motions). We construct a mod-

ule for the spherical reflection in n dimension, and show the basic properties of these maps: 

they map circles in lines or circle, generally k-dimensional subspheres into k-planes or k-sub-

spheres, and are conformal. Since inversions map the infinite outer region of  a sphere onto the 

inner region, and the infinite point to the center of the sphere, these maps may be used to

visualize the behavior of figures or functions at  infinity. An example is the image of the spriral 

cylinder constructed in subsection 5.4.

■ 5.1 Spherical reflections

■ 5.2 Planes and spheres are transformed into planes or spheres

■ 5.3 Conformity

■ 5.4 Spirals, spiral cylinder and their inversions
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