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ON E. CARTAN'S METHOD OF MOVING FRAMES

R. SULANKE

INTRODUCTION

In the last years E. Cartan’s method of moving frames has been
discussed several times, compare Y. Bossard [1], G.R. Jensen [3],
R. Sulanke and A. Svec [S] (with a more complete bibliography).
The paper [S] contains an immersion theorem (Satz 3.2) which allows to
derive global existence and equivalence theorems for immersions in
homogeneous spaces. Our aim here is to prove such a theorem for
immersions of constant type of compact and simply connected manifolds.
In Section 1 we review the results of [5] applied in the following. Section 2
contains the proof of a local equivalence theorem of E. Cartan within the
framework of the theory of G, H-structures developed in [S]. In Section
3 we give a global version of this theorem under certain additional
assumptions, the necessity of which is indicated by some simple examples.
Finally, the last Section 4 contains a simple and direct proof of the
homogeneity theorem of E. Cartan.

This paper contains no examples. The results in [2], [3], [4] con-
cerning immersions in concrete homogeneous spaces can easily be inter-
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preted in the terms of G, H-structures. Thus they contribute a lot of ex-
amples to the method described here.

1. G,H-STRUCTURES

In the following we tacitly assume that all manifolds, maps, bundles,
and actions-under consideration are of a sufficiently high class of differ-
entiability, say C_ for simplicity.

Let X" =G"/H"™" denote the homogeneous space under con-
sideration; the Lie group G acts transitively on X", and H is the
isotropy group of the point x, € X", By §, we denote the class of all
immersions f: Y™ - X", m fixed, Y™ variable, but always assumed
to be connected. The principal fibre bundle #: G- G/ H induces the
bundle of frames of order 0 over Y™:

f
E, G
) f€F,— Ey=Eyp.  Po| |7
ym f X"=G/H.

The Maurer — Cartan structure form w: 7G >g on G with values in
the Lie algebra g of G, defined by

- -1
) (€ T,G i wig,1) = (dL; ) (D eg,

induces the structure form of order O wy: TE) »g on EO, W, = f*w.
The structure EO(Y”‘,wO) is called the G, H-structure of order 0O
induced by f€ §,; it has the properties required in the following

Definition 1.1. Let HC G be a closed Lie subgroup of the Lie
group G. A pair [E(Y™,p,H), w,] is called a G, H-structure over Y™
if the following conditions are fulfilled:

1. p: E~> Y™ s a principal fibre bundle with the structure group
H over the connected manifold Y™,

2. wy: TE~g isa g-valued I-form on E of type Ad|H, where
Ad denotes the adjoint representation of G: if Yy ZEE—hXzE E
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denotes the action of H on E, then

3) Ypwy = Ad (R) 0 wy (he H),
3. foreach A €L, b the Lie algebra of H, one has

) w(A) =4,

where A is the fundamental vector field on E corresponding to A;

4. the following structure equation holds true:
1
(5) dwo =-5 [wo,wo];
5. for m: 9> 9/b and w, one has

(6) rank 7o wy(z) = m, zE€FE.

For shortness we simply write E(Y™, w,) fora G, H-structure, and
E, = E,(f) for the G, H-structure induced by f. That E,(f) satisfies
the conditions 1-4 is a direct consequence of its definition. We recall that
the action of H on the bundle space m: G- G/H is defined by

0] (h,g)€EHX G+ hX g:=gh~ ! €G.

To prove Condition 5 let us first introduce the canonical form

(8) 0y(z):=mo wy(2): TZ(E)~> g/.

From the commutative diagram (1) and 7o Lg = lg om we deduce

9 0,(z) = di; b o df, o (dpy),, with g=f), »=p,.
Since (dpg), Is surjective, we obtain for the image

(10) Im 6, (z) = dI;~ ' (Im df)),

and (6) follows from rank dfy = m. Here and in the following we identify

the vector spaces

1y g/b=TeG/TeHETxOX”
via the canonical isomorphism corresponding to 7. 9= T7,G ~ TXO. Con-
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sequently, the linear isotropy representation is identified with the induced
action of H over g/}

(12) h€H i (dl), = Ad(h)€GL (3/1b),

(13) Ad (B mod b :=(Ad (h)(B)) mod Yy, BE€g, heH.
Obviously, the map from £ into the Grassmannian manifold G, (a/h)
(14) z€E—Imb,(z)e G, (8/h)

is an H-invariant, which means that

(15) Im6,(h X z) = Ad (h) - Im §(2),

where Ad (h) now denotes the action of H induced by (12) on
G, (3/D).

An isomorphism ¢: £ E of principal H-bundles is said to be an
i‘sorizorphism of the G, H-structures E(Y, w,) on E(Y, JO) if it fulfils
sp*wo = w,. Now we can formulate the following theorem which is a
special case of the Immersionstheorem’ 3.2 proved in [5]:

Theorem 1.1. Let Y™ be simply connected and E(Y™, wy) a
G, H-structure over Y™, Ff)r fixed elements (25.80) € EX G there
exists a unique immersion f: E- G such that f(zo): 8> f is the
inducing map of the immersion f. Y™ > G/ H defined by

(16) f):=n(f(z)), zep ',

independent of the choice of z, and one has E(Y™, wy) = E (). The
isomorphism classes of G, H-structures over simply connected manifolds
are in a natural 1-1 correspondence with the G-equivalence classes of the
immersions of these manifolds into G/H by fr— E,(f).1

Remark 1. In the paper [5], we unfortunately called E(Y™, w;,) a
8, H-structure; but this may be misleading, since by (3) it is clear that the
structure depends on the embedding of H in G.

Remark 2. In [5] we treated the existence problem more generally,
omitting the assumption of simple connectedness. In this case we get a
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smallest covering ¢: Y > Y such that the lifted G, H-structure E(?, 50)=

= q*(E(Y, wy)) can be realized by an immersion FY-G/H;, T is
defined up to G-equivalence.

Now we are going to describe E. Cartan’s reduction procedure. From
(15) we see that Im 8,(z) runs over an H-orbit in the Grassmann manifold
van = G, (§/b) if z runs through a fiber of £,. Thus we obtain the
intrinsically defined map

(17 Y VE ym |—>'yl(y) :=H~lm90(z)€ Gm’n/H, po(z)=y.

If the action of H over G,  isregular, ie.. if there exists a (unique)
differentiable structure on G, /H such that the canonical map gq:
Gm.,I - Gm'n /' H is a submersion, then it can easily be shown that the
correspondence f€ RO =y, =7NE c_(ym, Gm‘,,l /HY is a G-
invariant of the immersion f, compare definition 1.2 in [S]; indeed, as a
section of the trivial bundle Y™ X (Gm,n / H) it is a geometric object

over Y™ and by its definition the conditions
N o N=70 rehH=e7 0

are fulfilled for each g€ G and each diffeomorphism ¢: ¥ ~ Y. here
denotes ¢ F:= F o~ ' forevery F: Y™ - Zk,

Unfortunately, the action of H on Gm,n fails to be regular in the
general case. So we are forced to impose restrictions to the class of
immersions under consideration. Let us consider a general H-manifold
BY ofclass C_, and let A S BY denote an H-invariant submanifold.
The action of H on A is said to be normal if it is regular, and if there
exists a section s: 4/ H —~ A such that every point a= sa), a€ A/H,
has the same isotropy subgroup H, € H. If such a section is chosen, the
elements s(a) are called the normal forms for the action of H on A,
and s(A4 / H) is the manifold of normal forms.

It can easily be proved (compare Lemma 2.1 of [S]) that a normal
submanifold A4 is diffeomorphic to (4 /H) X H/H . In[5] we discussed
the problem of the existence of sufficiently large normal submanifolds
for the action of H on G, . If H is compact, they always exist, but
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practically they exist for all important classical geometries. An important
example with noncompact H is the Mobius geometry (conformal geometry
of S7), which is treated by E. Cartan’s method in the paper [4]. A de-
scription of E. Cartan’s reduction procedure in the general case was
given by G.R. Jensen [3], but it is only local, not formulated within
the framework of fibre bundles, and the choice of normal forms remains
quite arbitrary.

Definition 1.2. Let {A,s] be a normal H-invariant submanifoid of

G, , Wwith fixed normal forms s(4/H). Animmersion f€ & ,, ora

G, H-structure  E (Y™, w,) respectively, is said to be of rype A4 if
Im 90 (zyeA for all ze EO. The first order reduction of EO is
defined to be

(18) El ={ze £yl Imb,(z) e s4/ M},
19 w =w | TE,, p, =plE|.
In (5] we proved (Satz 4.2):

Theorem 1.2.

(a) Let EO(Y’",wO) be a G, H-structure of type A. Then
El(Y’" , wy) as defined by (18), (19) is a G, H -structure.

(b) If EO(Y, wy) = bN‘O(?, [50) are isomorphic as G, H-structures,
then their reductions are isomorphic as G, H1 -structures, and conversely.

20)  Ey(Y,w)~Ey(Y, o)) — E (Y, w)~E (¥, &)

(c) Assume Ej = E (), f of type A, and put fl = fAIE1 \(compare
(1)). Then

@1 YEY" > £l :=f(2)H €EG/H, z€p '),
is independent of the choice of zEpl‘l(y)C E,, and defines an
immersion  f,: Yym - G/H of Y™ into the homogeneous space
X:‘ 1= G/Hl; the immersions f,j~” of type A are G-equivalent if and
only if the corresponding immersions f1’71 are G-equivalent. i

Theorem 1.2 is the first step of the reduction procedure introduced
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by E. Cartan [2]. To describe the general step of this procedure
explicitly let us assume that we already performed & reductions. Thus
we obtained:

(A) A sequence of normal types (A4,,s,] oforder A, A=1,...,k,
with A = A1 and
(22) EOQRI(AI)Q...QS',C(A,C);

(B) a sequence of closed Lie subgroups H, € G, A=0,...,k
with H}\ 2 H)\Jr L+ dim H, > dim H)\+ 1 H0 = H, and the corresponding

sequence of homogeneous spaces
(23) X :=G/H, dimH, =r-n,
with canonical G-projections
n

(24)  B,: gH, € XN —gH, | € XY

(C) a sequence of canonical reductions for the G, H-structures
E (Y, wy) of type Ay:
(25) E,CE _,C...CECE,, w, =wylTE,, p, =py | E,,

and, if &, = Ej(f), the corresponding immersions

(26)  fo Y" =X fy =1
such that
Q7N fi 1=B°f, A=1....k

(D) Let 6, :=m o w,: TE, - g/h, be the canonical form of

order \. It depends on the (A + l)jets of f, compare (9). The 6,
fulfit

(28) 0, (\TE, =8, 06,.

where B)\: g/b, >89/, , is the canonical map. By the definition of

EA we have

(29) Imé v1(h><z)=lm6}_l(z), zeE, heH,

A A A
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such that

Y VE YY" —1Imé6, ()es, (A4, /H, _ ),
(30)
ZEE;\’ p)\(z)=}’,
is a well defined smooth G-invariant of the immersion f€§,(4,).
From (28) and (30) one can deduce that all invariants Y, k< A, are
included in 1,.

Our task is now to describe the next reduction step £, — E, ;.
Let us first introduce a base (X;) of g adapted to the flag (5,),_,
of subalgebras, i.e. such that

Gl X, ,,.....X, €5

ny,+ 1’
Applying the summation convention we write

(32) w, =X, I=1,...r,

1

where the ' are 1-forms on E}\, and

33) 8, =Xw. i=1,...,n

BN (N

is the canonical form of E,, X,. =m (X;)€8/h,. By (6) we may assume
that the vectors X;€g and the normal form s, of Al are chosen in
such a manner that

1

(34) wl@A.. . Aw™@)#0 forall z€E,. \

Then the same is true for each reduction EA, A > 1. Since the vertical
tangential spaces of E, are defined by

(35) te Ty, = w'z,t)=0, i=1,...,n,

the forms (w®*(z), a=1,...,m; w"z), v=n,+1,...,r) form a
basis of (TzEk)*, and we obtain for all z€ £, :

36) w*(z) = b"‘a(z)w"‘(z), a=1,...,m, k=m+1,...,n.
It can easily be seen that the matrix (b"‘a(z)) is the matrix of the

coordinates of Im8,(z) in the natural chart of Gm‘nk defined on the
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open and dense set of all those m-dimensional subspaces of 4/ b, which
are projected bijectively on the linear hull #(X,,..., X, ). Takinginto
account (28), (29) we conclude: The G-invariant <y, of order A< k has
the components

(37 b (z)=0b" (), z€p t), k=m+1l,....n .

Therefore, in order to define the types Ay, oforder £+ 1, we have
only to consider the coefficients b"‘a with k> n, . and toinvestigate
the action

b ()= b (hXz), z€E he H

k> k>

(38)

k=n,_, +1,...,n.

The other coefficients being constant along the fibres can be divided into
two disjoint subsets: those which are the same constants for all immersions
of the class F(A,) defining the type A, and the others characterizing
the normal form of Im#@, ,(z) on A, /H, | dependingon y& Y™
in general and defining G-invariant functions of the immersion. Let us
assume that after we had performed the A-th reduction we obtained pu,
G-invariant functions ¢”(z), py = 0< <<y, with

(39) c’(hXz)y=c"z) for heH,, z€E,, v<upy;

they are called differential invariants of order < N for the immersions
fe€&,(4,). We consider their differentials, which as a consequence of
(39), decompose in the following way:

(40) de” = b* (2)w%(z), v=1,..., 4.
In general, the b” (A X z) will depend on he H:
(41 (b () —~ (b* (WX z)), z€E,, heH:

but since the dc” for » <, | have already been considered performing
the foregoing reductions we obtain

(42) bl (hXz)=1b"(z) for v<upy, ze £, /zEHk,

-1

and we only have to consider the coefficients (41) of the decompositions
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of the new invariants, i.e. we may assume My <wv<upy, in (41). Now

1
let us distinguish the following four cases:

1. The simultaneous action of H, given by (38) and (41) is not

trivial, and we can find some normal submanifolds [A4,,.s,, ] of this
action — then we repeat the procedure described in Theorem 1.2, and
get EkH,HkH and new invariants c¢¥, T P T

2. The action of H, in(38)or (41)is not trivial, but it is impossible
to find appropriate normal invariant subsets for this action. This case can
be excluded if H, is compact. Otherwise we can try to find regular in-
variant submanifolds of the action and to proceed as described in G.R.
Jensen [3].

3. Suppose dim f, >0, and the action (38), (41) of H, to be
trivial. Then the coefficients b,5" entering in (38), (41) define new
differential invariants of order k& + 1, say «c¢*, M <v<p,, . Put
E,.=E. H =H,6 v, = w, . and consider the action (41) on
the new coefficients 5", pu, <wv<u, . If thisis not trivial, we come
back to the cases 1 or 2. If it is trivial. we again take their differentials
and repeat the consideration as long as we get differential invariants of
higher orders which are functionally independent of the invariants obtained

before, i.e. as long as

v v .
(43) rank (dc )V<#L < rank (dc )"<”1.H'
here the ¢” are considered as functions on Y™. Since for all L the
rank cannot exceed m, we finally get after a finite number of steps
that

(44) rank (de*), o, = rank (de”), ., = .
and
(45) H,,=4.

Then the G, H, -structure EL(Y’" sw; ) is called the bundle of Frenet
frames of f€ ,‘s-L(AL ). It must be remarked that condition (44) is a local
one, and that it can fail in certain points or subsets of Y™ . Excluding
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this we obtain in the next sections equivalence theorems for immersions
of Frenet type.

4. We have dim H, = 0. Then the bundle E, has discrete fibres.
It is called the bundle of canonical frames of the immersion f, and Ag s
called a canonical type. We define:

Definition 1.3. Let f€ #,(4,) be an immersion of a canonical
type A,. f is called H, -orientable if the connected components E,i”
of E, cover Y™ simply. ie. if p, {E,E“ is a diffeomorphism of £,
on Y™. Itis called H, -oriented if it is H, -orientable and if one of the
EL® s distinguished.

For an H -oriented immersion f€ ﬁk(Ak) we have a unique global
section  y € Y™ 200 €E,, z=(p |E{?) ', which defines a 1-
form on Y™ with valuesin g: the canonical structure form 0, i=2%w
and a uniquely defined immersion of Y™ into G, namely

Kk’

(46) Fiyey™ — f(z(v)EG.

The mapping F is called the canonical moving frame of the H, -oriented
immersion f. Two Hk-oriented immersions f, f€ S’k(Ak) are said to
be H, -oriented equivalent if there exist a g€ G and a diffeomorphism
¢ Y Y such that for the corresponding canonical frames we have

47) F:Lgumwl.
Now one easily proves

Theorem 1.3. Two H -oriented immersions f,f of the canonical
type A, are H_ _-oriented equivalent if and only if there exists a diffeo-
morphism  @: Y™ - Y™ such that for the corresponding canonical
Structure forms the condition gk = p%0, holds true.

Proof. The necessity of the condition follows from o= F*w and
the left invariance of the structure form w of G. Conversely, if f,jN'
are Hk-oriinted, we have Ek =H XY™, Ek =£E, X )7'", and the 1I-
form Oy 0k~= 90, . defines the structure forms Wy, ojk on the frame
bundles £ . £, uniquely by the transformation (3) with he H, . Thus
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