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INTRODUCTION

In the last years E. Cartan's method of moving frames has been

d i s c u s s e d  s e v e r a l  t i m e s ,  c o m p a r e  Y .  B  o s s a r d  I l l ,  G .  R .  J e n s e n  [ 3 ] ,
R .  S u l a n k e  a n d  A .  S v e c  [ 5 ]  ( w i t h a m o r e c o m p l e t e b i b l i o g r a p h y ) .

The paper [5] contains an immersion theorem (Satz 3.2) which al lows to

derive global existence and equivalence theorems tbr immersions in

homogeneous spaces. Our aim here is to prove such a theorem for

immersions of constant type of compact and simply connected manifolds.

In Section I we review the results of [5] applied in the following. Section 2

contains the proof of a local equivalence theorem of E. Cartan within the

framework of the theory of G,l/-structures developed in [5]. In Section

3 we give a global version of this theorem under certain additional

assumptions, the necessity of which is indicated by some simple examples.

Finally, the last Section 4 contains a simple and direct proof of the

homogeneity theorem of E. Cartan.

This paper contains no examples. The results in [2],  [3],  [4] con-

cerning immersions in concrete homogeneous spaces can easily be inter-



preted in the terms of G..H-structures. Thus they contr ibute a lot of ex-
amples to the method described here.

I.  G. A-STRUCTURES

In the fol lowing we tacit ly assume that al l  manifolds, maps. bundles,
and actions'under consideration are of a sufficiently high class of differ-
entiability, say C- for simplicity.

Let Xn = G' /  H'- z denote the homogeneous space under con-
sideration; the Lie group G acts transitively on Xn , and H is the
isotropy group of the point xo € Xn. By 3'0 we denote the class of al l
immersions /:  Y^ - Xn, m f ixed. Ym variable, but always assumed
to be connected. The principal f ibre bundle n: G - G / H induces the
bundle of frames of order 0 over Y^ '.

f e t o  p f o :  E o ( f l .

The Maurer - Cartan structure form

the Lie algebra g of G, defined by

T G - g  o n

( 2 ) t € T s G  7 +  a ( g , t ) : =  ( i [ , - , ) " t t ) e  s ,

induces the structure form of order 0 -o: TE, -g on .Eo, -0 ': f 
*,,s.

The structure E,(Ym,-o) is cal led the G,H-structure of order 0
induced by ,f € 3 0; it has the properties required in the following

Definit ion 1.1. Let H c G be a closed Lie subgroup of the Lie
group G. A pair [E(Y^ ,p, H), ussl is cal led a G, H-stntcture over Ym

if the following conditions are fulfilled:

L p'. E -> Ym is a principal fibre bundle with the structure group

H over the connected manifold Y^ :

2. r,oo: TE - g is a g-valued l-form on

Ad denotes the adjoint representation of G:

f

E
Û

I
n lf 'o i

;^

denotes the action of H on E, then

(3 )  l i - o  =  Ad  (h )  
"  a :o  (h  €  n ;

3 .  f o r e a c h  / € b ,  b  t h e L i e a l g e b r a o f  H ,  o n e h a s

(4) l . . ; ,ot l) :  A,

where Z is the fundamental vector field on E corresponding to A;

4. the fol lowing structure equation holds true:

( 5 )  d - o : - j t - 0 , o o I ;

5. for 7'  q--+ g / 11 and ao one has

( 6 )  r a n k n c u o ( z ) : m ,  z e  E .

For shortness we simply write E(Y^ , ao ) for a G, H-structure, and

Eo: EsA for the G,.F/-structure induced by f.  That EoU) satisf ies

the condit ions 1-4 is a direct consequence of i ts definit ion. We recal l  that

the action of H on the bundle space n'. c -, G / H is defined by

( h , d €  H X  G  - ,  h X  g : :  g h -  L  e  G .

G

t _
l "

x n = G / H .

G with values

of type Ad I FI, where

7 1 r : z e E r - h X z e E

From the commutat ive d iagram ( l )  and n o  Lr :  I ro  o  we deduce

( 9 )  T o Q ) = d t ; '  o d f t n ( d p o ) r ,  w i t h  g : f k ) ,  v : p o Q ) -

Since (dp/, is surject ive, we obtain for the image

Im 0o e) = dts t 1lm o{ ),

(7 )

To prove Condition 5 let us first introduce the canonical form

( 8 ) 0 o ( z )  : :  T r  o  u o Q \ :  T z @ ) -  g / b .

(  l 0 )

a n d ( 6 ) f o l l o w s f r o m r a n k d , f r = m - H e r e a n d i n t h e f o l l o w i n g w e i d e n t i f y

the vector spaces

( l  l )  s  / b  :  T e G  /  T r H :  r r o f  n

via the canonical isomorphism corresponding to 7t ' .  g= TrG -  T*o.  Con-
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sequently, the linear isotropy

act ion o f  H over  g l l l

(  l2 )  h  e  H r - *  (d lo) " '  :

(13)  Ad (B  mod I r ) '=  (Ad &) (B) )  mod b ,  B  e

Obviously, the map from E into the Grassmannian

( 1 4 )  z € E  r * l m  0 o k ) e  G ^ ( u Z q y

is an I/-invariant, which means that

( l S 1  I m g o @ x  z )  =  A ' d  ( h )  -  l m 0 o ( z ) ,

where A'd (h) now denotes the action of H
G ̂ ( .s /  11).

An isomorphism $: E-- E of principal .H-bundles is said to be an
isomorphism of the G, H-stntctures d( f, oo ) on ErV, 6o) if it fulfils
g-ao:  o0.  Now we can formulate  the fo l lowing theorem which is  a
special case of the ' Immersionstheorem' 

3.2 proved in [5]:

Theorem 1.1.  Let  Ym be s imply  connected and E(ym,  o0)  a
G,H-stn tc ture over  Ym. For  f ixed e lements  ( to ,go)€ Ex G there
ex i s t s  a  un ique  immers ion  f :  E -G  suc l t  t l t a t  f t i o l =go ,  i  i s  t he
inducing map of thc immersion f: Ym .-, G / H defined b1,

(  l6 )  f (y )  : :  \GQD, z  €  p-  |  (y ) ,

independent of the choice of z, and one has E(y^, -0) = Eou). The
isomorphism classes of G, H-structures over simply connected manifolds
are in a natural 1-l correspondence with the G-equivalence classes of the
immersions of these maniJblds into G / H by.f r- Eo(l). |

Remark l -  In  the paper  [5 ] ,  we unfor tunate ly  ca l led E(y^ ,  -o)  a
g,f/-structure; but this may be misleading, since bv (3) i t  is clear that the
struCture depends on the embedding of H in G.

Remark 2. In [5] we treated the existence problem more general ly,
omitt ing the assumption of simple connectedness. In this case we get a

representation is identified with the induced

A d f t ) e G L ( s / b ) .

g ,  h  e  H .

man i f o l d  G^ (s /  L l )

i nduced  by  (  12 )  on

smallest covering q, V - Y such that the lifted G,//-structure F( V, Jr;:

= q*(E(Y, <,. lo)) can be real ized by an immersion 7t V - G / H; 7 is

defined up to G-equivalence.

Now we are going to describe E. Cartan's reduction procedure. From
( I 5 ) we see that Im 0o (z ) runs over an ,F/-orbit in the Grassmann manifold

G^.n = G^(r l /  b)  i f  z  runs through a f iber  o f  Eo.  Thus we obta in  the

intr insical ly defined map

(  1 7 ) I t :  y  €  Y m  - *  T r  ( y )  . :  H  '  l m  ? o Q )  e  G ^ . n  /  H ,  p s ? ) :  , .

I f  the act ion o f  H over  G^.n is  regular ,  i .e . ,  i f  there ex is ts  a  (un ique)

dif ferentiable structure on Gm.n I H such that the canonical map q:

G^,n -  G^,n l  H is  a  submers ion,  then i t  can eas i ly  be shown that  the

c o r r e s p o n d e n c e  f e  & o - ^ y t = ^ t t ( n e C - ( Y ^ , G ^ . n / i l  i s  a  G -

invar iant  o f  the immers ion f ,  compare det ln i t ion 1 .2  in  [5 ] ;  indeed,  as a

sect ion o f  the t r iv ia l  bundle  Y^ x  (G^,n /H)  i t  is  a  geometr ic  ob ject

over Y^ , and by i ts definit ion the condit ions

1 I \ 1 8 "  f l -  l ' U ) '  ' Y t @ * f l  =  9 * ^ l L U )

are fulf i l ted for each ge G ancl each dif feomorphism g: Y - V; here

denotes g  *F : :  F  '  g -  |  for  every  F:  Y^ n  Zk .

Unfor tunate ly ,  the act ion o f  H on G^,n fa i ls  to  be regular  in  the

general case. So we are forced to impose restr ict ions to the class of

immersions under consideration. Let us consider a general l l -manifold

B' ' t  of class C*, and let A q- BN denote an ff- invariant submanifold.

The action of H on A is said to be normal if it is regular, and if there

ex is ts  a  sect ion s :  A /  H -  A such that  every  po in t  a  =  s(a) ,  ae A /  H,

has the same isot ropy subgroup HLgH.  I f  such a sect ion is  chosen,  the

elernents st i l  are cal led the normal forms for the action of H on A.

and sG / H) is the manifold of normal forms.

I t  can eas i ly  be proved (compare Lemma 2.1 o f  [5 ] )  that  a  normal

submani fo ld  A is  d i f feomorphic  to  (A /H)  x  H /  HL.  In  [5 ]  we d iscussed

the problem of the existence of suff iciently large normal submanifolds

for  the act ion o f  I {  on G  ̂ .n .  I f  H is  compact ,  they a lways ex is t ,  but
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practically they exist for all important classical geometries. An important

example with noncompact ^F/ is the Mobius geometry (conformal geometry

of Sn), which is treated by E.Cartan's method in the paper [41. A de-

scription of E. Cartan's reduction procedure in the general case was

given by G.  R.  Jensen [3 ] ,  but  i t  i s  on ly  loca l ,  not  formulated wi th in

the framework of fibre bundles, and the choice of normal forms remains

quite arbitrary.

Definit ion 1.2. Let IA,s] be a normal f f- invariant submanifold of

G^,n with f ixed nonnal forms sG /A. An immersion f e 3 o, or a

G,l l-structure E,(Y^, @o ) respectively, is said to be of t l tpe A i f

I m 0 o Q ) € A  f o r  a l l  z e  E o .

defined to be

The first order reduction of Eo is

( 1 8 )  E t  : =  { z  e  E o  I  I m  0 o Q ) e  s ( A  /  m } ,

( 1 9 )  o l r : u o l T E ,  p r : : p l E t .

In  [5 ]  we proved (Satz  4 .2) :

Theorem 1.2.

(a) Let E,(Ym, @o) be a G, H-stntcture of tvpe A. Then

Er (Ym, .o )  w  de f i ned  by  (18 ) ,  ( 19 )  i s  a  G ,Hr - s t ruc tu re .

(b) ff E0(Y,{,;o ) = EotV, iro) are isomorphic as G, H-stntctures,

then their reductions are isomorphic as G,Ht-structures, and conversely:

( 2 0 )  E , ( Y , @ o )  -  E o { V , i o )  *  E J Y , . r )  =  E r t V , 3 ; .

(c) Assume Eo = EoA, f of type A, ancl put i r ,: f lE r'(compare
( l ) ) .  Then

( 2 1 )  y  e  Y ^  - '  f t ( y ) : =  f r { 4 n r € G  /  H ,  z e  p r r 0 ) ,

by E.  Car tan t l l .  To descr ibe the genera l  s tep of  th is  procedure

explicitly let us assume that we already performed k reductions. Thus

we obtained:

( A )  A  s e q u e n c e  o f  n o r m a l t y p e s  [ / x , s r ]  o f  o r d e r  t r ,  ] . :  1 , . . ' , k ,

w i t h  A :  A ,  a n d

( 2 2 1  8 o  f  8 r ( , 4 ,  )  2 .  .  . 2  8 o ( A k ) ;

(B)  a  sequence of  c losed L ie  subgroups H) ,9  G,  t r :  0 ,  -  .  ,k ,

wi th  H^t -  H^*  r .  d im H^)  d im lL1^*  , ,  H0 :  H,  and the cor responding

sequence of homogeneous spaces

(23)  X l^  '=  C /  H^,  d im F1^ :  r  -  t t . , t

with canonical G-project ions

(24)  0^ :  sH^.  X l^  - -  sHx-  1  €  XI l l ' ;

(C) a sequence of canonical reductions for the

E o ( Y ,  o : o )  o f  t y p e  A r ,

( 2 5 1  E r c  E o _ t  c  .  . . c  E r C  E o ,  @ A  =  c l o  I I E ^ ,  P x :  P s  l f ^ ,

Eo: EoU), the corresponding immersions

Y^ - x:x, fo : f,

and,  i f

( 26 )

such that

(21)

( D )
order I.

fulfil

(28 )

where

Ex we

(2e)

l ^ . - 1 = 0 ^ o / ^ ,  X : 1 ,  " , k '

L e t  0 ^  , =  t r ^  o  @ I :  T E ^  *  t l  /  I ) r

I t  depends on the ( t r  + I  ) - jets of

G. -/1-structures

be the canonical form of

f,  compare (9). The 0r

/ ^ '

rr independent of the choice of
immersion L, Y^ -, G / iIr of

Xl' := G / H r; the immersions f,7
only if the corresponding immersions

, e  n r r 0 ) c E ,  a n d  d e f i n e s  a n

Ym into the homogeneous space

of type A are G-equivalent if and

f t .  f  ,  are G-equivalent. I

P 1 '

have

9 ^ _ ,  I T E ^ =  0 ^  o  0 ^ ,

g / h^ * r l  /  t) ,r_ r is the canonical map. By the definit ion of

Theorem 1.2 is the f irst step of the reduction procedure introduced
I m 0 ^ _ r ( f t  x  z ) :  I m  0 ^ - r ( z ) ,  z e  E ^ ,  h e  H ^ ,



such that

(30)
z  €  E ^ ,  p ^ ( z ) :  L

is a well defined smooth G-invariant of the immersion f e 3 \(1r).
From (28) and (30) one can deduce that al l  invariants Iu, p( ). ,  are

included in ?^.

Our task is now to describe the next reduction step Et > Et *t .
Let  us  f i rs t  in t roduce a base (Xr)  o f  g  adapted to  the f lag (br )^=, . . . . . *

of subalgebras, i.e. such that

( 3 1 ) 4 ^ * t ' '  ' X , e b ^ '

Applying the summation convention we write

(32) o r :  X I a ' ,  I : 1 , . . . , r ,

where the <':I are l-forms on E^, and

(33) 0 ^ :  X r u i ,  i :  l ,  .  .  ,  f l | , ,

is the canonical form of E^, X,: r^(X,) e 9 / I)r.  By (6) we may assume

that the vectors X,e g and the normal form ir of At are chosen in

such a manner that

( 3 4 )  e L Q ) ^ . . . ^ t s m ( z ) * O  f o r a l l  z e E r .  \

Then the same is true for each reduction E^, ).  > l .  Since the vert ical

tangential spaces of .E^ are defined by

(3s) t € T v r , - ,  r a ' ( Z , t ) :  0 ,  i :  l ,  . .  . , f l ) . ,

t h e  f o r m s  ( a " ( z ) ,  a =  1 , . . . , f f i )  t ' s ' ( z ) ,  v :  f l k  +  1 , .  . . , r )  f o r m  a

basis of (TzEk)*, and we obtain for al l  z e Er' .

( 3 6 )  o s * ( z ) =  b ' r o ( z ) u " ( z ) ,  a =  I , . . . , m ,  K :  m  +  1 , .  . . , f l k .

I t  can easi ly be seen that the matrix (b'*oQ\) is the matrix of the

coordinates of lm?oQ) in the natural chart of G^.nr defined on the

open and dense set of all those rn -dimensional subspaces of ,t / b * which

are projected bi ject ively on the l inear hul l  gl(Xt X*). Taking into

account  (28) ,  (19)  we conc lude:  The G- invar iant  7 ,  o f  order  X(  k  has

the components

( 3 7 )  b ' * o k ) =  b ' *  o ( y ) ,  z e  p ; L L v \ ,  K :  m  +  1 , .  . . , f l x - r .

Therefore, in order to define the types A t * , .  of order k + l ,  we have

only  to  cons ider  the coef f ic ients  b ' *o  wi th  rc  )  no_r ,  and to invest igate

the action

b ' *  o ( z )  t -  b ' *  o l h  x  z ) ,  z  e  E k ,  h  e  H k ,
( 3 8 )

K = f t k _ ,  i  I . . . . , n k -

The other coeff icients being constant along the f ibres can be divided into

two disjoint subsets: those which are the same constants for al l  immersions

of the class E@t) defining the type Ak, and the others characterizing

the  no rma l  f o rm  o f  Im?o_ r ( z )  on  Ak  /Hk_L  depend ing  on  ye  Y^

in general and defining G-invariant functions of the immersion. Let us

assume that after we had perforrned the tr-th reduction we obtained pr

C-invariant functions c'(z') ,  !o = 0 < pl <

( 3 9 )  c ' ( h  x  z ) :  c ' ( z )  f o r  h  c -  H ^ .  z  e  E ^ ,  r ,  (  l r r  j

they are called differential invariants of order < X for the immersions

f  €  i  kGk) .  We cons ider  the i r  d i f ferent ia ls ,  which as a  consequence of
(39) ,  decompose in  the fo l lowing way:

( 4 0 )  d c '  :  b ' o Q ) u " ( z ) ,  u =  1 , . . . , F k .

I n  gene ra l ,  t he  b ' o (hX  z )  w i l l  depend  on  he  Ho :

1 a l )  ( b , o Q ) ) F - ' ( b ' o ( h X  z ) 7 ,  z e E o ,  h e H k ;

but since the dc' for p a 1,rr_, have already been considered performing

the foregoing reductions we obtain

( 4 2 )  b ' o ( t X z ) = b ' o ( z )  f o r  , { F k - r ,  z € E o ,  h e H o ,

and we only have to consider the coeff icients (41) of the decomposit ions

l x :  y  €  Y m  r '  I m  0  ̂ _ , ( z )  e  s ^ ( . 4 ^  /  H  ̂ _  L ) ,
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of  the new invar iants ,  i .e .  we may assume Ft  ,  t  
(  z (  pr*  in  (41) .  Now

let us distinguish the following four cases:

1.  The s imul taneous act ion o f  HE g iven by (38)  and (41)  is  not

tr ivial,  and we can f ind some norrnal submanifolds lA o , , .  sk * I  I  of this

action - then we repeat the procedure described in Theorem 1.2, and
g e t  E o r . H k * ,  a n d  n e w  i n v a r i a n t s  c ' ,  u -  t J k +  l , .  . . , l J k r t .

2 .  The act ion o f  Hk in  (38)  or  (41)  is  not  t r iv ia l ,  but  i t  i s  imposs ib le

to t ind appropriate normal invariant subsets for this act ion. This case can
be excluded i f  Hk is compact. Otherwise we can try to t ind regular in-
variant submanifolds of the action and to proceed as described in G . R .

J e n s e n  [ 3 ] .

3 .  Suppose d im. f1*  >  0 ,  and the act ion (38) ,  (41)  o f  Hk to  be
t r iv ia l .  Then the coef f ic ients  b ,b '  enter ing in  (38) ,  (41)  def ine new
differential invariants of order k + I,  say cu, t tp I  u ( !r  * r .  Put
E o r r :  E k ,  H o * r :  H k ,  a k * t :  a k ,  a n d  c o n s i d e r  t h e  a c t i o n  ( 4 1 )  o n

the new coeff icientt b'o, l tk { y( l ,r t  r  [ .  I t  this is not tr ivial,  we come

back to the cases I or 2. I f  i t  is tr ivial.  we again take their dif ferentials

and repeat the consideration as lortg as we get dif ferential invariants of

h igher  orders  which are funct iona l ly  in f lspendent  o f  the invar iants  obta ined

before, i .e. as long as

this we obtain in the next sections equivalence theorems for immersions
of Frenet type.

4.  we have d imHo:  g .  Then the bundle  Ek has d iscrete  f ib res.
It  is cal led the bundle of canonical frames of the immersion f ,  and A o is
called a canonical type. We define:

Definit ion 1.3. Let f  e 3r(Ar) be an immersion of a canonical
type Ak. f  is cal led Hn-orientable i f  the connected components EI,,
o f  Ek cover  Ym s imply .  i .e .  i f  pk l  E; , t  is  a  d i f feomorphism of  E l , )
on Y^ . I t  is cal led Ho-oriented i f  i t  is Ho-oientable and i f  one of the
E[')  is dist inguished.

For  an Ho-or iented immers ion l -€  3  k(A)  we have a un ique g lobal
s e c t i o n  ) , e  Y ^  r - z ( 1 , ) € E o ,  - : ( p t , l f f . r y - t ,  w h i c h  d e f i n e s  a  l -
form on Ym with values in g: the canonical structure form ak t:  ,*.k,
and a un iquely  def ined imnrers ion of  y , ,  in to  G,  namely

(46)  F:  v  e  Y^ r -  f r t r l - r ) )  €  G.

The mapping F is cal led the canonical moving frame of the r1o-oriented
immersion f.  Two r?o-oriented immersions | 7e & y'Arr) are said to
be Hu-orientecl ecluivalerzt i f  there exist a g€. G ancl a dif feomorphism
g: Y - Y such that for the corresponding canonical frames we have

( 4 1 )  F :  L r , ,  F  , ,  9 -  
L

Now one easi ly proves

Theorem 1.3. Tvto Hr-oriented irnmersiorzs f,7 of the canonical
type Ak are Hr-oriantcd equivalent if and onty if there exists a diffeo-
morphism g: Y^ - V'' suclt that for the correspctnding canonical
structure forms the conclitiort 7o : g*oo ltolds true.

Proof. The necessity of the condit ion fol lows from o: F"ru) and
the le f t  invar iance of  the s t ructure form u)  o f  G.  Converse ly ,  i r  f ,7
a re  f 1 * -o r i en ted ,  we  have  E t  :  H t x  Ym ,  E r :  Ekx  V , " ,  and  t he  l -
form o k, o k _: 

g*o k, defines the structure forms -0, 6o on the frame
bundles Eo.  Er  un iquely  by the t ransformat ion (3)  wi th  h  e  Hr .  Thus

r a n k  ( d c ' 1 . . -  . ,  (  r a n k  ( d c ' l .  .  ;, \ F L  ' \ ! . 1 _ .  t

here the c'  are considered as functions on Y^ . Since for al l  L the

rank cannot exceed ff i ,  we f inal ly get after a f ini te number of steps

that

( 4 3  )

(44)

and

r a n k ( d c ' l  -  =  r a n k ( d c ' ), \ p 1 ,  u * F L r l

( 4 5 )  H , . n r =  H r , .

T h e n  t h e  G , H , . - s t r u c t u r e  E r . ( Y m , - t \  i s

f rames of  /e  i  LGL) .  I t  murst  be remarked

one,  and that  i t  can fa i l  in  cer ta in  po in ts  or

cal led the bundle of Frenet

that  condi t ion (44)  is  a  loca l

subsets  o f  Y ' '  Exc lud ine


