
are sald to be }ir.-g**g*3g$*g$*3193! if there exist a S i. G and

a cLiffeonrorpirisn g s T -,:t sush thst for th.e oorrespondt,ng

eanantsal frasres we have

t47> ii s Lro"iro

i{ow one easily picovss 
13

= '1

a

*{reogqnJr *F* lftryo llponlented. lffinersions f, f of, the sa$onisaL

tfrye 43, are Hg-orientea equlvaJ.ent lf anC only lf there ed.ets

a &tffeomorphlsm q I ym -7 te eushtthat for the e onrespondls.g

canonlral struoture fo:lms the eondl"ticn dj. = tp*ok hoLd.s tnre.

Proof. fhe necesslty of uhe soed.itron foliows from s' = F{,.,,

ernd. th,e left inva:riarroe of the st:ru,eture foml ',,.' of G. Conversely,

*i f I f are llg*oriented., we h,ave Ek = Ilk - Ya, Ek = i{k* Yo't, and.

tlre ,t-foru sk, dL = cpo(i,of d,eflnes the strucbure forms , ,lt, 'k

o$ the frar*e bund.les Qgr % rrnlquely by the trensforsetion ( 3)

with h * IIr-. Sbue theores ', .7 is a d.fur.est eonsequenge of th.e
l{.

iruniersion theonem 4.2 of t5l lf we defJ-ne the isomorTlhj.se A

of the GlHO-sf,ruet1res by

(4S) & * b.rz(y) e E"n ,* a != h"- A(q(y))e f;O, h '{ llgr $:

TIe reoalL that tbe t;pe Ak In the ease 4 is

oertaLn subxilanlfol-d. *(A,"/qFi ) r G*( ,', / i:1s_,, ).

the defrnltlon of, sk we obtaLn

(49) ou(r) = xror(r) with o' ,\ r r. .. #(y)

Therefore theofem ,rl lnpli.es the f,oLlovrlng

CgFrlLgqf -.ril.......tg tet Tn be stuply eonneotedr and ottlre

be a 'i -forn on Te wl.th values fn , ,., r a) fhe neoessaa?

sxrffLelent cond-itions tha.t there exLstt an J.mnrerslon

fr gIIt -- 3n a g/E of the canonical Wpe Ak sush that 6

becomes the eanonj,sal, etructu:re form o = ok und.er an appnopris

ate orientation of f are the followingr

d.eflned. by a

Fron (3tl) and

*0 .

_* ,]*;

and.



rtr* ds * - [o, 6_1,/2,

2: rank o(y) = it for aLL ),q yll e.nd Im o(y) * sn(Ay'T{r--, ).

b) fle.eh YB vrhj-eh ar*n!.ts an H1--ooientabJ,e lro:er$J.on fl Y's --* XP

of tflpe Ak geust be parallel,i.zab1e. ii

'Iire ste.teraent b) foliows r::on tire fEict thcrt by (49) (oe),

{E = 'l 
, r r, xrr is a globalI"y d.efirred. cobasis ovsr Y[.

if'c rsnark thet ln l",}re case il = '1 th* first eona-j-tion ts

trivis.lly ft*filleC.. For exampJ"e, in th.e theoxp of gcne:ric

cunr€,$ fr iit ...^a V7 in t}:.e eucL*rl.een stace T:7 cond-itions 'l 
. end.

2. reCuce to the weLl isrown shape of the natrJ-x i"n the Frenet

formrlast

(50) s s

0so
0 -lco"t 0
jCO'  f i  _ r tCf

0 ,, .  ( I '  0

,0

( t '

l l

\C I

1
I

;
I

. i  . . r .G) ,  lc

i

If f is &n Lnr:nerslon of a canonieaL truer but not }$-o:rientable,
on,; h.as to pass to f;.rr appropriate covering qs y --4 [ anci to
consL*er the iruiLcrsi*n. f s fsq.l T -*, Jln. .A.s Y on"e can tatrce oae
of the gonneoteci cofipCIncats of 31n, or the unl,versal coverlng of
Yr ?b,cr t}"re (non oriunted) equlvalence of iis;*erslous T ---:) ?in is
ssduceii to i;ire equivelence of li1--oricnted imscrsl.ons f *a $n,
ln 'bhe c:nonieal" ease 4.

2) An *,qu:ivatenee tbeorea for lrc':ersions of Frenet [Jpe

Hpfi4Sipn "Z.Jr T,et a class , (Aq.) of Linmersions fr T* = G/TI

of a ceri;ain t;?e Oq of crde:r q. be givenr An tnrnr6sslon f i * (Aq)

is calted gstr+l+E .g*_q$,ge.q * q. (nitir qepl{ l.{)ff at E*ach polnt

yii fe one has

(: l) rank ( dc' ) , rr s ranrlc ( clc': *q"+ ,
Cleerly we have O

It$flnLtiqn,,.2.fu, An immension f i: f (Aq) ls seid to b'e of a

Srenet tlrye of order * rJ" if tt is regula:r.of orrl.e:r * er and,

)r.,,' trq 
= I{.



Lf *n* = Eq, l.ee if the eetlons (rS), (4i ) of *g are trlrrial

for g,e E^, h r: ?i^.
\{- t{

Renarkr If *n is not connected. tt tray happen that only the

connested epqponentg(Hqlo of the unity aets trlvlally, t,€.

that the coeffioients are eonetant onLy on the gonneete6 oo&po=

nents of tbe flbuesr but tleat tt J.s irpossible to reduce Uq to
(*n)o 63'oba11y. In thls case one has to Lrrtroduce l[n-,gF{g+Fatig+q

and. to pass to an approprlate coveri:rg i of T as it was d.one at

the end of sectton '1 . For the followl.ng we Lssume that thls is

saffted' out lf neeessarifr ObvlousJ.y sush a reduction ts always

posslb3'e if y is sinply connected, or tf the consld,erations

&re Local.

Theqr-eu.?rrn. If f s -+ (Aq) ls of Frenet type of ord.er gr then

lt is also of Frenet tJpe of order q+ f (wlth Oq,* T = On) r snd

conseguently, for all lulgber onlers gt .> t.

hoof . the d.tfferentlal iavarlarrts of orci.er q+l are r) 6re

coeff tc ients btoo, u = '11 rrr l  mr "r(  = *q-1 * f l  . . .1 *q, af i f ,

?) tbe eoeffteients b* g, v' = Fq-' + 4rf .., [q., ln the decompo=

sttions (40). Ind.eecl., since by assun{ltion we harre Sn*.t = Hq, all

thess coefftcl,ents are constant al.ong the fibnes of }Jn. Let o

be one of the Lnvarlants of ord.er e*"rr Fron the inpJ"tolte

firnctLon theorem one easl.ly d.educee tlre followLag we1l hro$rn

Ire,qpq .?r r.. Let g, c{ I Ye f l{1. , \-, = .X' ... p ifr be real frrnsttons

zueh that for a potnt Xo € Ta vre have a nel6bborhood. U e y, ;l'o r, U,

wLth

$2, ranx((d-cr de"'r.o.r acs) = : lank(d.o'rr.rr l  4"1{) = }T.

[1hen there exlstsa neig]rborhood. V q y, yo * v, and. & ffirooth

functlon F defLned. on an open set ti',r L; it\* such that

t l$t) c lT s F(cn lvr . . . ,  
"s lv) .



( l )  t h e  c o e f f l c i e n t s  b ' * o ,  a :  1 , .  . ,  f f i ,  *  :  r q _  I  +  l ,  .  . ,  n o ,

and

(2)  the coef f ic ients  b 'o ,  ,  -  l to_ I  +  I  ,  , l rn ,  in  the de-

composi t ions (40) .  Indeed,  s ince by assumpt ion we have Hq*t :  Hq,

al l  these coeff icients are constant along the f ibres of Eq. Let c be one

of the invariants of order q + l .  From the implici t  function theorem

one easi ly deduces the fol lowing well-known

Lemma 2.1.  Let  c ,  Ce ' .  Y^ -  R,  p  = l ,  .  .  ,  N,  be rea l  funct ions
such that for a point y0 Q Ym we havc a neighbourhood U q Y, y0 e U,
with

(s  2) r a n k  ( c l c ,  d c l , .  . . , d c N  )  =  r a n k  ( d c l , . . . ,  d c d )  =  r V .

y e Vt .  D i f ferent ia t ing (55)  we obta in  dco0)  as a  l inear  express ion in
dc ' (y) ,  f rom which (51)  fo l lows wi th  Fq*  L  ins tead of  t to .  S ince a l l  the

nerv coeff icients of order q + 2 are constant along the f ibres and functions

o f  c r , . . . , c , v .  w e o b v i o r - r s l y h a v e  A q * t : A ,  a n d  H q t z = H q * t :
:  H n ' l

We cal l  t l te order of the immersion f the smallest integer q for
which def in i t ion 2 .2  is  fu l f i l led.

Theorem 2.2. Let f ,  /e :vtAn) be immersions of the sarne Frenet

type of order q and rank N, and 'p: Ym - Ym a diffeomorphismwith

the property

( 5 6 1  g * t 7 ' )  :  c " u  :  l ,  .  .  .  ,  l J q  +  r .

To every choice ) 'g, Z o, z o wit l t

. i ; t ( p ( ) ' o ) l c E q  t h c r e  e x i s t  o p e n

e  V g Y ,  i o  =  v t t r l e  V g V  s u c h

There exist exactlt' one g e G wirlt

VVt = ts / I t , )  anct  iGol  = s  .  i1o) .

Remark.  O1 'course,  i f  f :  Y"  -  G /1 /  is  any immers ion G-equiva lent

to  f ,  then /e  i (Ar )  and (56)  is  fu l f i l led.  Thus the assumpt ions of

Theorem 2.2 are necessary.

Proof of Theorem 2.2. To prove Theorem 2.2 i t  suff ices to prove the

corresponding local isomorphism of the corresponding G, Hn-structures

E- .E- .  We shal l  character ize the graphs of  the loca l  isomoiph isms F:q q

E^ l  V  -  E^ l /  by  an  i nvo lu t i ve  d i s t r i bu t i on  on  a  ce r ta i n  subman i f o l dq  q '

W I E^ x E^ which we are going to construct now. First we define aq q

s u b s e t  W o g Y x V  b y  ( t ' , 1 ) . W ,  i f  a n d o n l y i f  t h e r e e x i s t n e i g h -

bou rhoods  U .U ,  y  €  ( J ,  i . 0 ,  and  a  d i f f eomorph i sm g , , :  U  -  A

such that

( 5 8 )  v i G ' l t l = c o l ( / ,  o =  I  l r q . t L .

l*mma 2.2. The sat Wn Q Y x V is a (2m - Il)-dimensional sub-
-  69-5 -

V, and a smooth func-

that

the coeff icien ts C o in

d c ( . 2 ) :  c o ( z ) u " ( z )

are constant along the f ibres. By assumption (51) we f ind a neighbourhood
U e- Y of .J, '  :  . ,0 and N dif ferential invariants cp of order ( q such

that the condit ions of Lemma 2.1 are fulf i l led. I t  fol lows that c(1,) :

:  F(c l (J , ) ,  .  .  .  ,cdO' ) )  for  y  e  V.  The pu l lbacks of  these funct ions
g ive c(z)  :  F(cL (z) ,  .  .  .  ,  cN \ t ) ) .  Der iv ing these equat ions we obta in

Then there exist a neighbourhood V I Y, yo e

t ion F defined on an oDen set W q RN such

(  s3 ) c l V :  F ( c l  l V , . . . , c N  1 V y . l

We have to show that for everv v e Ym

(54)

) , 0 € Y ,  z o € p i  l { l n ) .  E n , 7 o .

neigltbourhoods V, V with ],0 €

tha t  f lV .  f lV  a re  G-equ iva len t .

( 5 7  )

d c ( z )  :  c  o ( z ) < ' s "  
( z S  :  d  o F ( c ' ( z ) ) c p  o k ) o . t "  

( z ) .

Since the c ' (z )  are  d i f ferent ia l  invar iants  o f  order  (  q  the c ' (z ) ,  cp o(z)
are constant along the f ibres (by Hq* t 

= Hn). Therefore the c,(z):
:  0pF(c ' (z ) )cpoQ) have the same proper ty .  Thus we can cons ider  them

as functions on V C Ym :

(ss) c o 9 ) :  d o F ( c ' ( y ) ) c p o ( y ) :  H o k ' O t \ ) ,  u :  1 , .  , N ,

since the ce o() ')  being dif ferential invariants of order ( g + I are

functions of the c' ,  may be. on a smaller neighbourhood V't  q V',

- 69,1



manifold of Y x V. tt contains a connected component which is projected
onto Y and onto V.

Proof .  We cons ider  an arb i t rary  pa i r  Oo, i , )e-  Wo.  Dimin ish ing U
if necessary, w€ can assume that /v of the differential invariants cr,
u< t t ( t ,  say cr , .  . .  ,cN,  are funct iona l ly  independent  on U.  We s ta te

that Wo n (Ux tq is defined by the system

( 5 9 )  7 ' G l =  c ' ( j ) ,  r l , l ) e U x  l ,  v :  1 , . . . , . l y ' .

lndeed, (58) implies (59) for al l  ro, i)e wo. To prove the converse let
us apply Lemma 2.1. we get functions Fo ( i f  necessary diminishing u
again) such that for y e U

( 6 0 ) c o u ) :  F o ( c t 0 ) , .  . . , c N  ( y ) ) ,  o :  1 , . ' F q + L '

o  g - r ) ,

, l J q + r ,  V t U ,

Furthermore we have

7 "  l 0 :  c o  o  g i '  =  F o k t  o , p i r , , c N

, T t c i l ) ,  o :  l , .

with the same functions Fo as in (59). In part icular. the 7t ,  .  .  .  ,7N
are a maximal system of independent invariants on 0. From this we
obtain: Al l  ty,Vl€ {/x C, which satisfy (59) also satisfy the system

(62)  , "  ( .y )  =  co ( ,1) ,  o  :  l

cbviousiy, the system (59) is of rank N on u x U. I t  defines a (2m - N)-
dimensional topological submanifold W, 9 U x t containing Wo n
^(Ux i f .  On the other  hand,  every  so lu t ion 0r , l )  o f  (59 j  is

conta ined in  Wn:  We can assume that  a  char t  i tV l :6" f | l )e  R^
is chosen, the first N coordinate functions of which are i, :7,(V),

u =  1 , . . . . , N .  T h e n  ( 5 9 )  r e d u c e s  t o  i ' :  c ' ( - y ) .  C h o o s i n g  m  -  N
arbitrary real functions cpty), p ) N, such that

d e t  ( d o c ' , d o o o  ) ( / l ) +  0 ,  a p ( ! y ) = V r ( ] r ) ,

we define a dif feomorphisnr gr of a certain neighbourhood urq (/ ,

_ 6 9 6 _

y r e  U ,  o n a n e i g h b o u r h o o d  i r c A ,  i r e 0 r ,  A y

e t ,  y  e  u r  ? - i :  i - t r c u 0 ) , a p A ) ) .  r t r .

By def in i t ion we have l '@t |u) ) :  c '0)  and gr0)  =  i '  and,  s ince
(59;  lmpl ies  (62) .  we obta in  ( !  1 ,  /  1)  e  W o.  The las t  s ta tement  o f  Lemma
2.2 fol lows from the fact that the graph {Lv,gODi y e Y} of the given

diffeomorphism g is connected and defines the desired connected
component  o f  Wo. l

Let us now consider the connected component constructed in Lemma
2.2 and denote it by W0 again. We summarize the properties of W0

needed in the fol lowing:

l .  W o g Y x V  i s a c o n n e c t e d s u b m a n i f o l d o f  Y x  7 o f  d i m e n s i o n
2m - N, the manifold topology of which coincides with i ts relat ive
topology.

2. Wo contains the graph of the given dif feomorphism 9: Y - V.

3 .  For  t .v , i le  Wo condi t ion (62)  is  fu l f i l led.

N o w  A : = p ^ x i ^ ,  E - x E - - Y x V  d e f i n e s  a  p r i n c i p a l  f i b r eq  ' q  q  q

bundle with the structure group Hq x Ha over Y x Y. the action of
H. x H- being defined by

q L l

( 6 3 )  ( h L , h ) ) x  ( z t , 1 2 ) =  ( h r x  z , h r x  z r ) .

By W let us denote the restr ict ion of this bundle to Wo. Obviously,
vrc have

and we conclude

(61) 7" t i l  = r;" (7t (i),

( 6 4 )  d i m W : 2 ( m +  r -  n ) -  t \ , 1

(remember dim Hn: r -  nn). The project ions prt :
-  . -  : ,  ;p-rz :  Lq X L.o  -  Lo and the embedding u l l '  Eo X Eo

forms with values in g:

E  x E  + f
q  q  c '

induce the l-

(6s  )

(66)

o  :  p r l u o ,

T :  L * o ,

o = prl<,. :_ on E Xr t q

7 : f i  o n  w .

E.q '

Lemma 2.3. For w € W we define

- 6 9 7 -



(67)

Then

(68)

( 7  t )

we have

(72)

t € D  :

p r ,  lD ' ' .  Dn  -  T rEo ,  p r z

are linear isomorphisms. This implies

( 6 9 )  d i m D , r : m + r - r q .

(b) The distribution D is involutive.

Proof .  Let  wn :  (2n,7 ;  e  W and (yo, lo)  :  p(wo ) .  We take a
v & u u

neighbourhood Ux U o j  ( l 'o . ,yo)  as in  Lemma 2.2.  Cons ider ing the

differential invariants c'  ,7'  as functions on En and Eq, respectively,

we obta in  that  W.  P- tg lx  t )  is  characrer ized by the system 7 ' t7) :
:  c ' ( z ) ,  v =  1 , . . . , , V .  T h e r e f o r e  o n  W I U  x  7  t h e e q u a t i o n s

( 1 0 ) d c ' ( t ) :  d 7 ' ( t ) ,  u =  1 , . . . , . l y ' ,  t e T * W ,

are val id. Assume that in the decomposit ions

] c  -  ( r P  :  0 ,  ; k  -  0 ) k  : 0 ,

p : N  +  1 , . . . ) m ,  k : n r *

Indeed. i f  we decompose r - r  :  0 with respect to the adapted basis
(31)  o f  g ,  we obta in  (74)  as a  consequence of  (67) .  Converse ly ,  le t  (74)

be fu l f i l led.  Then (7  I  )  and the fact  that  c  'o ( r )  :7 '  
"G)  

for  a l l  O,7)  e  W

yield together with the first series of (74):

c ' r ( z  ) ( o P ( t ;  -  o ) P  ( t ) )  :  0

t e TwW satisfying (74), compare (70). From (72) we get

J u t t )  - o ) t t ( t ) :  0 ,  F :  1 , , N .

Since on l l  the dif ferential invariants fulf i l  7 'Gl: c '(z), Q,7)e l '1, we

f ina l ly  obta in  us ing (74)  and (76) :

i - ( t )  - 7 "  
o f 7 l 6 " ( t )  

:  c  *  
o ( z ) . p o ( t )  

:  < , : * ( t )

f o r  K :  m  +  1 . .  . . , n q .  T h e s e  e q u a t i o n s  t o g e t h e r  w i t h  ( 7 4 )  a n d  ( 7 6 )

imply  7( t l  =  r ( t ) .  i .e .  t  e  Dw.  Therefore (64)  impl ies  (69) .  To prove

(68) i t  suff ices to show that e.g. pr, I  D* is surject ive. Since the eo,

a =  I  , . . . , m ,  , ' s k ,  k =  n o  +  1 , .  . . , t ,  m a k e  u p  a  c o f r a m e  f i e l d  o n  E o ,

we can express the values dc'(t)  for each t € T,Eq by (71). Then the

vec to r  s  e  T *W w i th  t he  componen ts  dc ' ( s ) :  dc ' ( t ) ,  J ' ( * ) :  6 ;P (s ) :

:  tsp ( t ) ,  J t ( r )  :  .k (s) :  < . . re( t )  (w i th  abuse of  notat ions)  is  conta ined

in D. and projected on t.

The involut ivi ty of the system is a direct consequence of the structure

equations which are preserved under inducing:

dG -  r ) :  -  I  t r7 ,7 l -  v , r l )  =  -  I  r t7 .7  -  , l -  l r  -7 ,  r l r ' r

Now we .un nnirtt- the proof of ffr.orJrn 2.2. Firstwe remark that
the distribution D is Ho-invariant under the diagonal action

€  t  €  T n W  a n d  7 ( t ) :

(a) the correspondence w e W t-

on ll for which the projections

D g_ T l,t/ defines a distribution

w = (2 ,7 ) ,

(7 +1

(7  s )

for all

( 76 )

a , :
n

t  1 1 \

=

D -  T-E
w z q

d c '  ( z )  =  c '  o ( z )  < ' t "  ( z ) ,  u  =  |  ,  .

(enumerating the u)o

de t  ( c ' uQ) )  +  0 , l r !

an appropriate manner):

=  l ,  . . r , V .

Since the c'^ are invariants of order ( q + I,  the analogous relat ion
c

holds true for c'uQ). By an elementary consideration one proves that

the forms

d c 1 , . . . , d r N ,  e N * 1 ,  , e ^ ,  , r ) ' e " ,  . , e r ,
(73\

; / r y ' + 1 ,  . . . , i r ^ ,  i t n o " ,  . , J '

make up a basis of f IW for each w € I l  I  U x C. Now we wrl l  show

that  Dw gT^,W is  def ined by the m -  N *  r  -  no independent  l - forms
w : ( z . 7 l e t  x E  r - + h x w =q q

( l t x  z , h x ; ) €  E q x  E q ,  h e H n

- 6 9 U - - 6 9 9 -



( 7 8 )

(79)

This easi ly fol lows from Property 2, Definit ion l . l ,  of the G, Hn -structure:

af{7 - r) :  Ad Or) , ,  (7 - r).  Furthermore, from Condit ion 3 of the same

definit ion we obtain for each A € 11o and the corresponding fundamental

vector field tr,

3 .  A GLOBAL VERSION OF THE EQUIVALENCE THEOREM

The fol lowing simple example shows that Theorem 2.2 fai ls to hold

true in the global case, even i f  Y' '  is supposed to be simply connected:

Take two open geodesic bal ls on the sphere S'2 of radius l ;  they are
equivalent i f  and only i f  their radi i  coincide. But each dif feomorphism 9:
Y2 -  V2 of  the geodes ic  ba l ls  fu l f i l l s  (56) .  The compactness of  Y,V

alone does not suff ice either to ensure the global equivalence of two
imrners ions f ,7  sat is fy ing the assumpt ions of  Theorem 2.2:Take the c i rc ie

f ' .  Sr c E2 of radius I in the eucl idean plane and consider the twofold

covering 7, 7t -. t t .  Clearly, f  and 7 ^t" not equivalent, but al l  the

assumpt ions of  Theorem 2.2 are tu l f i l led.  Now we prove:

Theorem 3.1. Let t l te assumptions and notat ions be the same as in

Theorem 2.).  Assttme further Y^ to be sirnplv connected and compact,

and the .ttntctLtre group Ho be cornpact too. Then f and 7 orc equiv-

alent.

Proof .  F i rs t  we remark that  the nran i fo lds  Wo,W const ructed in

the proof  o f  Theorem l .J  are compact :  l l lo  as a  connected component  o f

the so lu t ion o f  (6 .1)  is  a  c losed subset  o f  the compact  mani fo ld  Y x  V,

hence compact, and the compactl tess of the structure group H 
o implies

t lre compactncss of W. Now we take the (not necessari ly connected)

integral rnanifold Ft through ruo : tzo,7o ) as defined in the proof of

Theorem 2.2.  We shal l  prove that  i t  i s  pro jected by pr , l14 onto Eq.

Since i t  is invariant under the diagonal act ion of Hn, i t  suff ices to prove

the to l lowing:  Let  ^y( t ) ,  d1 /  d t *  0 ,  be a  regular  smooth path jo in ing

zo wi th  an arb i t rary  po in t  zL o f  the connected component  o f  E

conta in ing 20.  Then there ex is ts  an in tegra l  curve w( . t )  o f  D ou. l
^ t ( t ) .  To ver i ty  th is  we f i rs t  remark that  lo r  each z  e  E,  the set  | | r t :

: :  (pr, I  W) r tz) is a closed and t l terefore compact subnrar"r i fold of W

wi t l r  d imension f f i  - ; \ , /  |  r  -  nn (sce (64)  and take in to  account  Lcmma

1.3,  which i rnp l ies  that  pr r  I  W is  a  submers ion) .  Again  f rom Lemma 2.3

we conc lude,  that  D induces a f ie ld  o f  d i rec t ions on (pr r  I  W)-  |  Q) .
Th is  set  car r ies  a  natura l  mani fo ld  s t ructure o f  a  mani fo ld  wi th  a  boundary

c o n s i s t i n g  o f  ( p r r  l ( z o ) U  p r r r l z r ) ) n  w .  T h e  c o m p a c t n e s s  o f  W t u l

a l lows to  apply  the usual  cont inuat ion argurnents  showing that  the

a P ( A ) =  < ^ r o { A 1 :  g

6k  G l :  - k  (Z )

f o r  p :  l ,  , N ,

f o r  k : n n  +  1 , .  , r .

Therefore Z@)€ D*, ancl the integral curves of I  are integral curves

of the distr ibution D. I t  fol lows that the integral nranifolds of D are

invariant under the action (77) restr icted to the connected component of

un i t y  (Hq )0 .  Now we  take  a  po in t  y0e  Y  and  pu t  l s :  V j , r ) .  By

P r o p e r t y  2  o f  W 0  w e h a v e  ( 1 , , , , i b ) e W 0 .  F o r a n y  w r : ( z o , 7 o ) e

€ p-  1  
Os, ls )  we obta in  a  maximal  connected in tegra l  mani fo ld  M -

-  M  o f  D  w i t h  w o e  M .  F r o m  ( 6 8 )  w e  s e e  t h a t  p r r l M  i s  a  s u b -
! t o

mers ion,  and,  s ince d im D*:  d im Do,  a  loca l  d i f feomorphism.  Let  us pLr t

M:  a(H l i l l .q

Then M is an eventual ly non-connected integral manifold of D, since

the action of H, is tangential to D. &1 is projected by pr, on an open

submanifold of En invariant under the action of Ho. since ptt ,  ah :

=  71,  a  pr1.  As woe M,  we f ind an open ne ighbourhood V o1 '  -1 ,0  :

:  p q  o  9 @ o )  s u c h  t h a t  E q l V :  p ; t ( n q p r r ( M ) .  F r o m  L e m m a  1 . 3

we obta in  that ,  for  suf f ic ient ly  smal l  V,  the mani fo ld  IVI  o  pr r  r {nn l  V)

i s  t he  g raph  o f  a  d i f f eomorph i sm F :  Eo l  V  - '  Eu l7 ,  whe re  V :
: pq o AW o prl  t(F:q I V)):_ indeed. from the invariance property of IVI

we  ge t :  i f  1 , s :  ( 2 ,  FG) )e  f u | .  t hen  ao (w) :  ( l tX  z .hx  f ; \ z l ) e  w | .  and

this yields F(h x z) = h x F(zl.  Tlterefore F is an isomorphism of
, :

Eq l  V  on to  Eq  I  V .  Theo rem l . l  imp l i es  now  Theo rem 1 .2 .  Obv ious l y ,

g  is  un iquely  determined by the second condi t ion (57) . f
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integral curye starting in w0 ends in , r rt

of the field are transversal to the manifolds l/

we remark that the direct ions

1 (  r ) '

Now M is a principal fibre bundle with the structure group Hn. The

pro ject ion 9 l fu l :  M-  YX V maps i l l  onan m-d imensional  submani fo ld

Z^  c  Yx  V .  S ince  p r r l f u I  i s  a  submers ion ,  t he  p ro jec t i on  P1 "  Zm '

-,  Y^ is a submersion too, and therefore Zm is a covering manifold'

From the definit ion of tn fol lows 0(M) : p{fu|\ :  Z^ , and since M

is connected as a maximal integral manifold, Zm is connected, too' Since

Ym is simply connected, Z^ is the graph of a global ly defined dif feo-

morphism Fo' Y- V, and fu is the graph of an isomorphism F: Eo'

t  E Now Theorem I  .  I  impl ies  our  s ta tement . l
q

Corol lary 3.1. Let the same assumptions as in Theorem 3.1 be

fulfilled with the exception of the simple connectedness of Y' Then there

e x i s t s a  g e  G  s u c h t h a t  f f f ^ ) : l e . f ( Y ^ ) -

Proof. Al l  the consideration up to the last one of the foregoing proof

remain val id, but now Zm is a covering of Y and of V '  We l i f t  the

G. H --structure E - over ) '  to Zm . From a local consideration i t  is clear

in" intr ,tr, .un Ul iOentified with tu1. and its structure form with r I TiVl '

Analogous ly  we eet  7 l tu l  l i f t ing EotV,J ;  to ,M.  Now by def in i t ion o f

fu we have 7l U : r l  M. Thus both l i f ts give the same G, Ho-structure

ove r  Zm.  On  the  o the rhand ,  t he  immers ions  / "  p r lZ^  and  f  "  p r lZ^

induce this G,Ho-structure. Thus both immersions are equivalent '  This

y i e l ds  l r ( f@t (z^  t ) )  =  l 16Ym D  :7 tV^  ) . t

4. THE HOMOGENEITY THEOREN'I

In the last section we wil l  give a simple and direct proof of the well-

known homogenei ty  theorem,  (compare [2 ] ,  sect ion 132,  [3 ] ,  I .12,  [5 ] ,

Theorem 4.4).

Theorem 4.1. Let f € E1#.) be an irnmersion with the following

property: For the canonical lbrm 0o all the coefficientt b'*o, Q:

-  1 , .  . . , m ,  K :  m  +  1 , .  . . , n q ,  ( c o m p a r e  ( 3 6 ) ) ,  a r e  c o n s t a n t '  T h e n  i t

is a Frenet type immersion of order < q with rank 0. There exists a

unique connected Lie subgroup K g- G, the Lie

deJined as a subalgebra of I by

( 8 0 )

algebra t of which is

,  ,  f t ^ ,
q

a * @ )  - b ' " ^ < 1 " { g ) :  9 .  K :  m  I

( 8 1 )  d i m t = r - r n * * ,

sttch that f(Y^ ) is G-equivalent to an open submanifold of the orbit
K x o 9 X n ,

( 8 2  ) Kxo -  K /  K a H.

Proof. The f int statement is obvious. since we have dc' :  0 for

a l l  G- invar iants ,  and b ' *o= const .  by  the assumpt ion,  which impl ies

H q ,  t :  H o .  S i n c e  f n ,  Y ^  -  G  /  H q  i s  a n  i m m e r s i o n ,  f  o :  
E o ' G

must  be an immers ion,  too.  Therefore we have d im d/o  {TrEn\ :
:  r  -  nn I  m.  On the other  hand we cons ider  the d is t r ibut ion def ined by
(80)  on G.  I t  has the same d imension (81) ,  is  le f t  invar iant ,  s ince the b ' *

are constant. and i t  is involut ive: Incleed, there exists an integral manifol l

o f  d imension r  -  nn I  m in  the ne ighbourhood of  a  po in t  g :  fn(zo)
of G. and the left  invariance implies the global involut ivi ty. Thus the

in tegra l  mani fo ld  through e is  a  connected L ie  subgroup K q G (not

necessari ly closed). Taking a connected component E; of En we see

that  L ;  L  
fG; )  q  K as an open submani fo ld .  S ince Ym is  connected

w e  h a v e  P . , ( E ^ ) :  Y m ,  a n d  w e  o b t a i n' q  q

( 8 3 )  t - r f ( f l =  t ' L f  D  ( E ' t - n ,  7 - r i  r E ' \ 9 K n  r e l
I ' q  I  " q  ' q  q '  q  E ' q  q  q

as an open submani fo ld .  The canonica l  pro ject ion q :  G /  Ho *  G /  H

now y ie lds

, r t ,  n  l n t Y l =  t r ' f l Y t c = r 1 \ K .  H r ) =  K x o

as an open submani fo ld . l

Corol lary 4.1. I f  under the assttmptions of Theorem 4.1 Ym ls

compact, the image of f  is the whole orbit  f(Y^ )= Kxt.

Proof .  C lear ly ,  f (Y^ )  is  open and compact .  hence c losed.  K* ,

connec ted  imp l i es  t he  s ta temen t . I
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C O L L O S U I A  M A T H E M A T I C A  S O C I E T A T I S  I A r u O S  B O L Y A I
3 I .  D I F F E R E N T I A L  G E O M E T R Y ,  B U D A P E S T  ( H U N G A R Y ) ,  t 9 7 9 .

ISOMETRIC  ACTIONS WITH ISOTROPY

R A N K  O N  R I E M A N N I A N  M A N I F O L D S

J .  S Z E N T H E

SUBGROUPS OF  MAXIMAL

In studying dif ferentiable actions of compact Lie groups important

basic results are obtained by introducing an invariant Riemannian metric

and thus rendering the action isometric. In fact, this way to any given orbit
an open invariant neighbourhood can be produced which is the union of
orbits having isotropy type equal to or greater than the given one. Thus
are the fundamental facts derived concerning the local behaviour of
dif ferentiable actions of compact Lie groups. I t  seems therefore just i f ied

to abide by the surroundings of Riemannian geometry and to try to f ind

some results concerning the global behaviour of act ions too this way. For
the global behaviour of act ions the maximal ones among the above

mentioned open invariant neighbourhoods of a given orbit  seem to be

decisive. Since such a maximal neighbourhood is bounded by the cut locus

of the given orbit ,  t l rst cut loci of orbits are studied in entire general i ty.

Then the simple case is examined when the isotropy subgroups are of

maximal rank and the Riemannian manifold has non-posit ive sectional

curvature everywhere. A more detai led presentation containing proofs wil l

appear elsewhere.
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