are sald to be Hy~oriented equivalent if there exist a g« G and

a difieomorphism ¢: I — I sueh that for the corresponding
canonical frawes we have
4

(47) i’ = Lgo?o {Q. .

How one easlly proves

Theoren ie3s Two H,~oriented immersions £, £ of the canonieal
type A, are Hy~oriented equivalent if and only if there exlsts
a diffeomorphism ¢t Y — ¥ suchtthat for the corresponding

canoniwal structure forms the condition &, = ¢"oj holds true.

Proofe The necessity of vhe condition follows from o = P™¥..
and the leit invariance of the structure form ., of Ge Conversely,
if £,  are Hy~oriented, we have L, = I« Ym, *k = Ty Ym and

the i=form oy, Or. = @~ Gk' defines the structure forms - 4, afk

k
on the frame bundles F,, Ek uniquely by the transformation (3)
with he»Hk. Thus theoren 1,5 is a direet consequence of the
immersion theorem 4.2 of [5] if we define the isomorphism ¢
of the G,H~structures by

(48) z = hxz(y)e Eka—-» 2z 1= h«3(o(y))e gk’ h - H‘k' o

We recall that the type A, in the case 4 is deflned by a
certain submanifold S(Ak/ﬁk-i)ﬂfGm(ﬁﬁ/fékhﬁ). From (34) and
the definition of o, we obtain |

(49) o ly) = X0 (F) TR o eee 0D £ 00
Therefore theofem 47 impiies the following

Corollary 's4e Let Y" be simply connected, and ctTY" — -,

be a |~form on Y' with values in . e a) The neeessary and
sufficient conditions that there exist® an immersion

£2 Y* — X® = G/H of the canonical type A, such that o

becomes the canonleal structure form ¢ = O under an appropri=

ete orientation of £ are the followings




1o do = = [o 01/2,
2. rank o(y) = n for all ve Y2 and In o(y) = sk(Ak/Hk-s)°
b) Fach YO which adnits an H -oricntable imersion f£31 YT — X2

of type A, must be parallelizable, C

The stotement b) follows Irom the fact that by (49) (6&),

% = Tgpeps Ty 185 @ globally defimed cobasis over Y=,

e remark that in Lthe case w = 1 the first condition io
trivielly fulfilled. For example, in the theorg of gcneric
curves It i — T2 in the euclidean space PB conditions 7. and

2+ reduce to the well known shepe of the ratrix in the Frenet

forrmulas:t
/0 0 0 0 \
. p ;
(50) o= E c © a Ko © \ & "?(5). k> 0,
i O ko 0 -G !
’;g O O ~ g « O ;i

If £ is en inmersion of a canonical type, but not i ~orientable,
onc has to pass to an approprisbe covering gt ¥ — ¥ and to
consider the immersion £ = foqt ¥ — ¥, As Y one can take one
of the connected componcnts of Ek, or the universal covering of
Y. T“hen the (non oricnted) equivalence of immersions ¥ —» X5
reduced to the equivalence of K, -oricnted immersions ¥ — X2,
in the ccnonieal case 4, -

>
is

Definition 241. Let a class - (4 o) OFf immersions f: " — e/H

of a certain type Aq-of order ¢ be givene. An immcrsion T ¢ Q—(Aq)

is called pegular of order < ¢ (with rank N)if at each point

ye Y2 one has

(51) rank (de’)

It}

'

) rank (de') , = Ne
- q“"} ‘ﬁ‘, “’q
Clearly we have O - N ' ‘

Definition 242, An immersion f ¢ gch) is said to be of a

Frenet type of order < q if it is regular of order =« g, and




if qu1 = Hq, i.ee if the actions (28), (41) of Hq are trivial

for ze Eq, he ﬁq.

Remark, If Hq is not conneected it nay happen that only the
connected cpmponent?(Hq)o of the unity acts trivially, i,.e.
that the coefficients are constant only on the eonnscted eompo=
nents of the fibees, but that it is impossible to reduce & to

q
(Hq)o globally. In this case one has to introduce Hq-orientations

and to pass to an appropriate covering Yofy as it was done at
the end of section 1. For the following we assume that this is
carried out if necessary. Obviously such a reduction is always
possible if Y is simply connected, or if the considerations

are local,

Theorem 2,1, If féﬁ%ﬁ(Aq) is of Frenet type of order g, then
it is also of Frenet type of order g+7 (with A

consequently, for all higher orders q'> §.

Proof. The differential invariants of order g+t are 1) the

coefficients b'“a, % = Tgeeey My W =N _+/jeasey N_, and

Q1 q*
2) the coefficients b, v = Bgeq * fovees Hyy in the decompo=

sitions (40). Indeed, since by assumption we have H = Hq, all

g+
these coefficients are constant along the fibees of Eq. Let ¢
be one of the invariants of order g+ 1. From the implieite

funetion theorem one easily deduces the following well known

Lemma 24, Let o, ¢S5 Ym’*??R.. Q= 1peeey Wy be real functions

such that for a point ybanm we have a neighborhood U ¢ Y, y = U,
with

(52) rank(dc, ¢ jeecey ac) = renk(de 'yeee, ac = m,
Then there existse neighborhood V ¢ Y, Yo« Vy and a smooth
function ¥ defined on an open set ¥ xi&“ such that

(53) ciV = F(cd ‘v.-oo, GNIV)Q L




(1) the coefficients 5™ , a=1,....m, k=n
and

(2) the coefficients b¥,, wv= Hg o1 +1,... s by in the de-
compositions (40). Indeed, since by assumption we have Hq+1 = Hq,
all these coefficients are constant along the fibres of Eq. Let ¢ be one
of the invariants of order ¢+ 1. From the implicit function theorem

one easily deduces the following well-known

Lemma 2.1. Let c¢,c?: Y™ >R, p=1,...,N, be real functions
such that for a point ¥y € Y™ we have a neighbourhood US Y, Yo € U,
with

(52) rank (de, del, ..., de) = rank (de!, ..., de¥) = N.

Then there exist a neighbourhocod V' € Y, ¥y €V, and a smooth func-
tion F defined on an open set W S R¥ such that

(53) clV=Fectiv,...,cNiv.a
We have to show that for every y € Y™ the coefficients ¢, in
de(z) = ¢ (2)w*(z)

are constant along the fibres. By assumption (51) we find a neighbourhood
UCY of y= ¥, and N differential invariants ¢® of order < g such
that the conditions of Lemma 2.1 are fulfilled. It follows that c¢(y)=
= Fcl(y, ..., M) for yeV. The pullbacks of these functions
give c(z)= F(c'(z),...,c¢V(z)). Deriving these equations we obtain

(54) de(z) = ca(z)w“(z) = apF(c"(z))c"a(z)w"‘(z).

Since the ¢”(z) are differential invariants of order < ¢ the ¢”(2), ¢” _(2)
are constant along the fibres (by Hq+1 = Hq). Therefore the ca(z)=
= bp F(c¥(2))c” (z) have the same property. Thus we can consider them
as functions on VS Y™

(55 c, )= apF(c"(y))c"“(y) =H_(c*(), v=1,...,N,

since the c”a(y) being ditferential invariants of order < g+ 1 are

functions of the ¢, may be, on a smuller neighbourhood V, c vy,
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y€V,. Differentiating (55) we obtain dc (v) as a linear expression in
de?(y). from which (51) follows with Moyt instead of My Since all the
new coefficients of order ¢ + 2 are constant along the fibres and functions

1 N , : ave - - —
of ¢*,..., ¢V, we obviously have Aq” —Aq and Hq+2_Hq+1 =
= Hq.l

We call the order of the immersion f the smallest integer ¢ for
which definition 2.2 is fulfilled.

Theorem 2.2. Let f, 76 T\'(Aq) be immersions of the same Frenet
type of order q and rank N, and ¢: Y™ - Y™ a diffeomorphism with
the property

(56) «p*(?"):c”. v:I,...,uq*x.

To every choice y,zy,z, with y €Y, z,€ P, Yy c E, z,€
S E,; ! (g C Ea7 there exist open neighbourhoods V.,V with y, €
evaey, ;0 = ¢y )E VT Y such that flv, fl V are G-equivalent.
There exist exactly one g€ G with

(57) vy = 1,fV)  and flzg)=g- fizy)

Remark. Of course, if 7 Y™ - G/H is any immersion G-equivalent
to f, then f€ R(Aq) and (56) is fulfilled. Thus the assumptions of
Theorem 2.2 are necessary.

Proof of Theorem 2.2. To prove Theorem 2.2 it suffices to prove the
corresponding local isomorphism of the corresponding G, H_-structures
Eq,Eq. We shall characterize the graphs of the local isomorphisms F:

Eq | V= Eq | v by an involutive distribution on a certain submanifold
W< Eq X Eq which we are going to construct now. First we define a
subset W, CYxyY by (3, 1) € W, if and only if there exist neigh-

bourhoods U. U, ye U, ;e U, and a diffeomorphism ¢, : U~ U

such that

GB) L@ D=t iU, o=,

Lemma 2.2. The sct W, CyxY isa (2m— N)-dimensional sub-
~ 695 -




manifold of Y X Y. It contains a connected component which is projected
onto Y andonto Y.

Proof. We consider an arbitrary pair (yo,;o)e W,. Diminishing U
if necessary, we can assume that N of the differential invariants c*

v< Hg> say cl, .., are functionally independent on U. We state

that WO N (UX ) is defined by the system

3

(59) o= c'B), GMEUX T, wv=1,... N

Indeed, (58) implies (59) for all (y, ;) € W,. To prove the converse let
us apply Lemma 2.1. We get functions F° (if necessary diminishing U
again) such that for ye U

(60) c’y=Feetyy, .. .,cNyy, a=1,...

‘“q+l‘
Furthermore we have
Z”lfj=c"ogp&1 =F°(cloup&1,..,,cNo¢‘1),
and we conclude
6D OV =FUEO) VO, =1, . yeD

with the same functions F° as in (59). In particular, the ?1, - ,?N
are a maximal system of independent invariants on U. From this we

obtain: All Q»,;)e U X 17, which satisfy (59) also satisfy the system
(62)  cTON=c"B), o=1,...,u, .

Cbviously, the system (59)is of rank N on U X U. It defines a (2m — N)-
dimensional topological submanifold W, CUx U containing W0 N
N (UX U). On the other hand, every solution WYy of (59) is

contained in W,: We can assume that a chart $(;): (;“(;))ER”’
is chosen, the first N coordinate functions of which are ;" =?"(;),
v=1,....,N. Then (59) reduces to »*=c*(y). Choosing m — N
arbitrary real functions a®(y), p > N, such that

det (3,¢",8,a°)y)# 0, a(y)=r"(,),
we define a diffeomorphism v, of a certain neighbourhood U1 cu,
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v, € U, on a neighbourhood (71 C (7, ;1 € (71, by

¢, yEU, >y = §Het),a? () € C71-
By definition we have ?"(nplw)): c’(y) and gpl(y1)= ;x’ and, since
(59) implies (62). we obtain . y)e WO' The last statement of Lemma
2.2 follows from the fact that the graph {(y,¢(»))|y € Y} of the given

diffeomorphism ¢ is connected and defines the desired connected
component of W,.B

Let us now consider the connected component constructed in Lemma
2.2 and denote it by W, again. We summarize the properties of W,
needed in the following:

1. W, C Yx Y is a connected submanifold of ¥ X ¥ of dimension
2m — N, the manifold topology of which coincides with its relative
topology.

2. W, contains the graph of the given diffeomorphism ¢: Y - Y.
3. For (y,;)e WO condition (62) is fulfilled.

Now f:= p, X Eq: Eq X Eq > YX Y defines a principal fibre
bundle with the structure group Hq X Hq over Y X Y, the action of
Hq X Hq being defined by

(63) (hl,hz)X(zl,22)=(hlle,h2><zz).

By W let us denote the restriction of this bundle to W,. Obviously,
we have

(64) dimW=2(m+r—nq)~N

(remember  dim Hq =r-n, ).  The projections pry: Eq X Eq - Eq,

pry: Eq X Eq - Eq and the embedding « W~ Eq X Eq induce the 1-
forms with values in g:
— * ~_ * =
(65) 0=prjw,, 0=prjw, on EqXEq,
(66) T=1%0, T=1"0 on W.

Lemma 2.3. For we W we define
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(67)  te€D,: —teT W and T(t)=r(t).

Then

(a) the correspondence w e W +— Dw < Tw W defines a distribution
on W for which the projections

~

68)  pr, 1D, D, ~T,E. pr,ID,:D,~TE, w=(72),
are linear isomorphisms. This implies

(69) dime=m+r-nq.

(b) The distribution D is involutive.

Proof. Let w, (zo,zo)ew and (yo.;0)={3(w0). We take a

~

neighbourhood U X U of {(3p+¥y) as in Lemma 2.2. Considering the
differential invariants c¢”, ¢” as functions on Eq and Eq, respectively,

we obtain that Wn g~ 1(UX 17) is characterized by the system Z"(?‘)=
=c¢¥(z), v=1,...,N. Therefore on W|UX U the equations

(70 de¥(t) = de¥*(t), w=1,...,N, (€T W,
are valid. Assume that in the decompositions

(71) dc”(z) = ¢” (D)w™(2), v=1,...,N,

we have (enumerating the w® in an appropriate manner):
(72) det (c”“(z))aéO, v,u=1,..., N

Since the ¢”  are invariants of order < ¢+ 1, the analogous relation
holds true for c“u(z). By an elementary consideration one proves that
the forms

del, . o de, WML 0, W LW,
(73) 11
~ ~ ~n ~
wN+17 ‘wm’ w , w’

make up a basis of T; W for each we W|UX U. Now we will show
that D c T, W isdefined by the m — N+ r — n, independent 1-forms
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w? —w? =0, wk-wk=0,

(74)

p=N+1,...,m, k=nq+l

Indeed. if we decompose T-71=0 with respect to the adapted basis
(31) of g, we obtain (74) as a consequence of (67). Conversely, let (74)
be fulfilled. Then (71) and the fact that ¢”_(z) = ¢*_(z) forall (z,2)€ W
yield together with the first series of (74):

(75) ¥ () @H(t) — wh(t) =0
for all te TWW satisfying (74), compare (70). From (72) we get
(76) OHD) —wh()=0, p=1,...,N
Since on W the differential invariants fulfil ¢*(Z) = ¢¥(z), (z,2)€ W, we
finally obtain using (74) and (76):

WA () =TF (DB = ¢ (2)w® (1) = wX(1)
for k=m+1,... Mg These equations together with (74) and (76)

imply 7(t)=7(t), ie. t€D_. Therefore (64) implies (69). To prove
(68) it suffices to show that e.g. pr, |D, is surjective. Since the w?,
a=1,....m, w* k= n, + 1,...,r, make up a coframe field on Eq,

we can express the values dc”(t) for each t€ Tqu by (71). Then the
vector s € T W with the components dc"(s) = dc”(t), @P(s) = wP(s) =
= w(t), wk(s)= wk(s) = wk(t) (with abuse of notations) is contained

in D, and projected on t.

The involutivity of the system is a direct consequence of the structure
equations which are preserved under inducing:

dT-n=—T @A =- 3G T -7

Now we can finish the proof of Theorem 2.2. First we remark that
the distribution D is Hq-invariant under the diagonal action
W= (z,;)eEqX Eq > hX w=
(77) ~ ~
=(h><z,h><z)EEq><Eq, hqu.
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Thii easily follows froLn Property 2, Definition 1.1, of the G, Hq -structure:
ar(r— 1)= Ad (h) o (r— 7). Furthermore, from Condition 3 of the same
definition we~obtain for each A € l)q and the corresponding fundamental
vector field A4:

5"(A~)= wP(A)=0 for p=1... N,
(78) ~, o~ ~

wk(A):wk(A‘) for k:nq+],...,r.
Therefore /T(w) S DW, and the integral curves of A are integral curves
of the distribution D. It follows that the integral manifolds of D are
invariant under the action (77) restricted to the connected component of
unity (Hq)04 Now we take a point vy, € ¥ and put Yo =wlyy). By

Property 2 of W, we have ()’(),;0)6 W,. For any wy = (205’;0)6

Eﬁ‘l(yo,;o) we obtain a maximal connected integral manifold M =
= MWo of D with w, €M. From (68) we see that pr, [M is a sub-

mersion, and, since dim D = dim Dq‘ a local diffeomorphism. Let us put
(79) M= olH M.

Then M is an eventually non-connected integral manifold of D, since
the action of Hq is tangential to D. M is projected by pr; onan open
submanifold of Eq invgriant under the action of Hq. since pr; oo =
=7, °pr.- As wy €M, we find an open neighbourhood V of y, =
=p,° B(wy) such that Eq |V = pq‘l(V) < pr, (M). From Lemma 2.3
we obtain that, for sufficiently small V, the manifold M N pr, I(Eq |V
is the graph of a diffeomorphism F: Eq | V- Eq | V. where V=
=p,° BM N prl‘l(Eq | V)); indeed. from the invariance property of M
we get: if w=(z, Fz))e M, then aw)=(hXz hXI(z))eM. and
this yields F(hX z) = h X F(z). Therefore F is an isomorphism of
Eq | V' onto Eq | V. Theorem 1.1 implies now Theorem 2.2. Obviously,

~

g is uniquely determined by the second condition (57).8

- 700 -

3. A GLOBAL VERSION OF THE EQUIVALENCE THEOREM

The following simple example shows that Theorem 2.2 fails to hold
true in the global case, even if Y™ is supposed to be simply connected:
Take two open geodesic balls on the sphere S? of radius 1; they are
equivalent if and only if their radii coincide. But each diffeomorphism ¢:
Y2 > Y2 of the geodesic balls fulfills (56). The compactness of Y, Y
alone does not suffice either to ensure the global equivalence of two
immersions f, 7 satisfying the assumptions of Theorem 2.2: Take the circle
f: S' c E? ofradius 1 in the euclidean plane and consider the twofold
covering f: Y!' -~ S!. Clearly, f and f are not equivalent, but all the
assumptions of Theorem 2.2 are fulfilled. Now we prove:

Theorem 3.1. Let the assumptions and notations be the same as in
Theorem 2.2. Assume further Y™ to be simply connected and compact,
and the structure group Hq be compact too. Then f and [ are equiv-
alent.

Proof. First we remark that the manifolds W,, W constructed in
the proof of Theorem 2.2 are compact: W, asa connected component of
the solution of (62) is a closed subset of the compact manifold Y X Y,
hence compact, and the compactness of the structure group Hq implies
the compactness of W. Now we take the (not necessarily connected)
integral manifold M through wy = (20,50) as defined in the proof of
Theorem 2.2. We shall prove that it is projected by pr; |W onto Eq.
Since it is invariant under the diagonal action of Hq, it suffices to prove
the following: Let vy(s), dy/dt+# 0, be a regular smooth path joining
z, with an arbitrary point z, of the connected component of Eq
containing z,. Then there exists an integral curve w(¢) of D over
¥(t). To verity this we first remark that for each z € Eq the set W, :=
= (pr | W)~ Y(z) is a closed and therefore compact submanifold of W
with dimension m — N + r — n, (sce (64) and take into account Lemma
2.3, which implies that pr, [ W is a submersion). Again from Lemma 2.3
we conclude, that D induces a field of directions on (pr, | W)~ L(y).
This set carries a natural manifold structure of a manifold with a boundary
consisting of  (pr l(20) U prl"l(zl)) N W. The compactness of WW)
allows to apply the wusual continuation arguments showing that the
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integral curve starting in w; ends in W, ; we remark that the directions
1

of the field are transversal to the manifolds Wy(r)'

Now M is a principal ﬁbre bundle with the structure group Hq. The
projection B|M: M~ Y X Y maps M onan m-dimensional submanifold
Zm c Yx Y. Since pr, |M isa submersion, the projection p,: zm >
S Y™ s a submersion too, and therefore Z™ is a covering manifold.
From the definition of M follows B(M)= g(M)= Z™, and since M
is connected as 2 maximal integral manifold, Z™ is connected, too. Since
Y™ s simply connected, Z™ is the graph of a globally defined diffeo-
m0~rphism Fy: Y~ )7, and M is the graph of an isomorphism £ Eq -
- Eq. Now Theorem 1.1 implies our statement.

Corollary 3.1. Let the same assumptions as in Theorem 3.1 be
fulfilled with the exception of the simple connectedness of Y. Then there
exists a g€ G such that AYmy = Ig o fLY™).

Proof. All the consideration up to the last one of the foregoing proof
remain valid, but now Z™ is a covering of Y and of Y. We lift the
G, Hq-structure Eq over Y to Z™ - From a local consideration it is cle:ir
that this lift can be identified with M, and its structure form with 7| TM.
Analogously we get ;IM lifting Eq()?. c;q) to M. Now by definition of
M we have ?I M = 1| M. Thus both lifts give the same G, Hq -structure
over Z™ . On the other hand, the immersions fo p, | Z™ and fo p, | Zzm
induce this G,Hq-structure. Thus both immersions are equivalent. This

yields I(fp,(Z™ ) = L(AY™) = fi¥™).0

4. THE HOMOGENEITY THEOREM

In the last section we will give a simple and direct proof of the well-
known homogeneity theorem, (compare [2], section 132, [3}, .12, [5],
Theorem 4.4).

Theorem 4.1. Let f€ B(Aq) be an immersion with the following
property: For the canonical form Gq all the coefficients b"‘a, o=
=1,....,m k=m+1,....n_, (compare (36)), are constant. Then it

q
is a Frenet tvpe immersion of order < q with rank 0. There exists a

- 1702 -

unique connected Lie subgroup K & G, the Lie algebra t of which is
defined as a subalgebra of g by

(80) w"(g) — b w*(g)= 0. K=m+ 1,...,nq,

(81) dimf=r7nq+m,

such that f(Y™) is G-equivalent to an open submanifold of the orbit
Kx, & X7,

(82) KxozK/KﬂH.

Proof. The first statement is obvious, since we have dc” =0 for
all  G-invariants, and b"‘Q = const. by the assumption, which implies

HqH =Hq. Since fq: Yym - G/Hq is an immersion, fq: Eq—»G
must be an immersion, too. Therefore we have dim dfq(Tqu) =
=r—n, + m. On the other hand we consider the distribution defined by
(80) on G. It has the same dimension (81), is left invariant, since the b'*
are constant, and it is involutive: Indeed, there exists an integral manifolg
of dimension r — n, + m in the neighbourhood of a point g= f (zy)
of G, and the left invariance implies the global involutivity. Thu[; the
integral manifold through e is a connected Lie subgroup K & G (not
necessarily closed). Taking a connected component E’ of E_ we see
-1 A ’ . . 9
that Lg f(Eq)Q K as an open submanifold. Since Y™ is connected
we have pq(E;) = Y™, and we obtajn

-1 _ -1 iy U7
(83) =1 p By =m0 Ly ‘fq(Eq)San(e)

as an open submanifold. The canonical projection n: G/Hq -~ G/H
now yields

'/‘(\ Dy 3 = 71 — ’. —_—
ly " om jq(Y) l, AY)YCS (K Hq)—Kxo

as an open submanifold.ll

Corollary 4.1. If under the assumptions of Theorem 4.1 Y™ s
compact, the image of f is the whole orbit f(Y™) = le.

Proof. Clearly, AY™) is open and compact. hence closed. Kx,
connected implies the statement.ll
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ISOMETRIC ACTIONS WITH ISOTROPY SUBGROUPS OF MAXIMAL
RANK ON RIEMANNIAN MANIFOLDS

J. SZENTHE

In studying differentiable actions of compact Lie groups important
basic results are obtained by introducing an invariant Riemannian metric
and thus rendering the action isometric. In fact, this way to any given orbit
an open invariant neighbourhood can be produced which is the union of
orbits having isotropy type equal to or greater than the given one. Thus
are the fundamental facts derived concerning the local behaviour of
differentiable actions of compact Lie groups. It seems therefore justified
to abide by the surroundings of Riemannian geometry and to try to find
some results concerning the global behaviour of actions too this way. For
the global behaviour of actions the maximal ones among the above
mentioned open invariant neighbourhoods of a given orbit seem to be
decisive. Since such a maximal neighbourhood is bounded by the cut locus
of the given orbit, first cut loci of orbits are studied in entire generality.
Then the simple case is examined when the isotropy subgroups are of
maximal rank and the Riemannian manifold has non-positive sectional
curvature everywhere. A more detailed presentation containing proofs will
appear elsewhere.
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