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Abstract

In this paper we give a complete detailed proof of the fundamental
theorem for curves in the Euclidean n-space En. As an application we
find all curves with constant curvatures in En.

1 Introduction

The existence- and uniqueness theorem for a curve whose curvatures are
given as functions of its arclength is the key tool for the curve theory in
elementary Euclidean differential geometry. Unfortunately, I don’t know a
textbook that contains the necessary conceptual framework and a precise
complete proof. For understanding the programs developed under St. Wol-
fram’s Mathematica in my notebook [8] and the corresponding Mathematica
packages such a theoretical background is useful, if not necessary. This is
the reason for writing this paper, which may be read independently of the
mentioned Mathematica tools. The notebook contains programs for the cal-
culation of the Euclidean invariants of curves in arbitrary dimension and for
graphical presentations in dimensions 2 and 3. Together with the needed
packages it can be downloaded from my homepage.
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2 Basic Definitions
We consider curves in the n-dimensional Euclidean space En, given by pa-
rameter representations

x : t ∈ I 7−→ x(t) = (x1(t), x2(t), . . . , xn(t)) ∈ En, (1)

where the xi(t) are the components of the radius vector x(t) with respect
to a fixed orthonormal frame of En with the fixed origin o. Here I ⊂ R
denotes an open interval which may be infinite. The vector function x(t) is
assumed to be smooth, i. e. its components are sufficiently often continu-
ously differentiable: all its derivatives which appear in our formulas exist, are
continuous, and continuously differentiable once more. For the curve theory
in En it suffices that the parameter representations are n times continuously
differentiable.

Definition 1. Two parameter representations (1) and y(s), s ∈ I1, are said
to be equivalent, if there exists a parameter transformation, i.e. a smooth
bijective function

s ∈ I1 7−→ t(s) ∈ I with dt/ds(s) ̸= 0 for all s ∈ I1

such that
y(s) = x(t(s)). (2)

One easily sees that (2) defines an equivalence relation in the class of all
smooth parameter representations in En. The corresponding equivalence
classes are called smooth curves. If in (2) instead of dt/ds(s) ̸= 0 is re-
quired dt/ds(s) > 0, the corresponding equivalence classes are named ori-
ented smooth curves. A point x(t) of the curve is said to be regular if the
tangent vector dx/dt(t) ̸= o is well defined, and singular else. 2

Clearly, equivalent parameter representations have the same image, whose
points are understood as the points of the curve. From the definition is clear
by the chain rule:

dy/ds = (dx/dt)(dt/ds) (3)

that the regularity of the point of the curve does not depend on the chosen
parameter representation. We always assume that all points of the curve are
regular if speaking about regular curves; if there appear singularities, we have
to restrict on regular parts of the curve. Singularities must be considered in
particular.
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Definition 2. Let x = x(t) ∈ En be a point of the curve represented by
the smooth parameter representation (1). The k-th osculating space of the
curve at the point x is defined as the linear hull of the first k derivatives of
x = x(t) at the point x;

Tx,k := span(x′,x′′, . . . ,x(k))x=x(t). (4)

The point is said to be k-flat if there exists a k, k = 1, 2, . . . , n− 1, with the
property

dimTx,k = k = dimTx,k+1.

The osculating k-plane is defined as the Euclidean k-plane spanned by the
point x(t) and the vector space Tx(t),k. 2

The first osculating space is the tangent space of the curve at x denoted
by Tx := Tx,1. Clearly, the osculating spaces form a flag of subspaces of En:

Tx ⊂ Tx,2 ⊂ . . . ⊂ Tx,n ⊂ En.

Formally, definition (4) depends on the parameter representation of the curve.
Using the chain rule and the product rule of the derivation one obtaines
recursively starting with (3):

d2y
ds2

= d2x
dt2

( dt
ds
)2 + dx

dt
d2t
ds2

,
d3y
ds3

= d3x
dt3

( dt
ds
)3 + 3d2x

dt2
dt
ds

d2t
ds2

+ dx
dt

d3t
ds3

,

. . . . . . . . . . . . . . .
dky
dsk

= dkx
dtk

( dt
ds
)k modTx,k−1,

where modTx,k−1 means that the equality holds up to addition of a vector
w ∈ Tx,k−1. These equations imply the first statement of

Proposition 1. The osculating spaces Tx,l of a smooth regular curve in En

don’t depend on its parameter representation. They correspond equivariantly
to the curve, that means: If g ∈ A(n) is an affine transformation of the space
En one has

Tgx,l = dg(Tx,l), (5)

dg denoting the corresponding linear transformation. If all points of the curve
are k-flat (1 ≤ k ≤ n) the curve is contained in a k-dimensional subspace of
En and not in a subspace of lower dimension.
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P r o o f. The equivariance (5) follows easily by deriving the affine trans-
formation g. We define the k-vector

Πk(t) := x′(t) ∧ x′′(t) ∧ . . . ∧ x(k)(t).

Since Πk(t0) vanishes if and only if its factors are linearily dependent it fol-
lows that a point x(t0) is k-flat if Πk(t0) ̸= 0 and Πk+1(t0) = 0 are fulfilled.
Furthermore, at points with Πk(t) ̸= 0 the k-th osculating space is charac-
terised by

Tx,k = {z|Πk(t) ∧ z = 0} with x = x(t).

Now assume that all points of the curve are k-flat. Deriving Πk(t) using the
product rule one obtains by the properies of the ∧-product:

dΠk

dt
= x′ ∧ x′′ ∧ . . . ∧ x(k−1) ∧ x(k+1).

Since by our assumption the vector x(k+1) belongs to Tx,k it follows: there
exists a real function λ(t) such that the differential equation

dΠk

dt
= Πk(t)λ(t) (6)

is satisfied. Now we remember the

Lemma 2. If all tangent vectors of a parameter representation y(t) satisfy
the equation

y′ = yλ(t), (7)

then the curve is a line: there exists a function µ(t) > 0 such that y(t) =
y0µ(t), y0 a constant vector.

P r o o f. If the statement is true, we have

y′(t) = y0µ
′(t) = yλ(t) = y0µ(t)λ(t).

Thus, solving the differential equation µ′ = µλ(t), we obtain

µ(t) = e
∫

λ(t)dt .

Now defining w(t) := w0µ(t) for any constant vector w0 one easily verifies
that w(t) is a solution of (7) too. Choosing the starting value w0 = y(t0)
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one concludes by the uniqueness theorem for the solutions of differential
equations y(t) = w(t), what proves the lemma. 2

Remark. The parameter transformation s = µ(t) gives the usual repre-
sentation y(s) = y0s of a line throug the origin.

Now we return to the proof of Proposition 1. Applying Lemma 2 and (6)
to the k-vector Πk(t) we conclude Πk(t) = Πk(t0)µ(t) ̸= 0. Since proportional
k-vectors define the same subspace, all derivatives up to order k ≥ 1 of the
parameter representation x(t) for all values t ∈ I belong to the fixed vector
subspace W k defined by Πk(t0). We consider a vector of the orthogonal
complement v ∈ W⊥. Deriving we obtain

d⟨x(t),v⟩/dt = ⟨x′(t),v⟩ = 0.

It follows ⟨x(t),vκ⟩ = aκ are constants for a basis (vκ) of W⊥: The parameter
representation of the curve satisfies the linear system

⟨x(t),vκ⟩ = aκ, κ = k + 1, . . . , n,

and the curve belongs to the subspace spanned by one of its points and the
space W k. Since Πk(t0) ̸= 0, the first k derivatives are linearily independent,
thus the curve may not lie in a subspace of lower dimension. 2.

3 The Frenet Frame
The concepts and results of the previous section are valid for real affine
spaces; considering W⊥ as a subspace of the dual vector space the scalar
psoduct used there is well defined. Now we will prove the existence and
uniqueness of a Frenet frame, that is a certain family of orthonormal bases
(ei(t)), i = 1, . . . , n, attached to the points x(t) of the curve. Here the
positive definite scalar product of the Euclidean space becomes essential.
Interpreting the parameter t as the time and the parameter representation as
a physical motion one sometimes speaks about a moving frame. For proving
the existence of Frenet frames we need the following concept which also
belongs to affine geometry:

Definition 3. A curve with the parameter representation x(t) ∈ En is said
to be generally curved if at all of its points one has

dimTx,n−1 = n− 1. (8)

2
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Clearly, by Proposition 1, this property does not depend on the param-
eter representation of the curve; geometrically it means that the curve even
locally, in small neighbourhoods of its points, may not lie in a k-dimensional
subspace with k < n− 1; the case k = n− 1 is admitted.

Proposition 3. Let x(t) ∈ En be a parameter representation of a generally
curved oriented curve in the n-dimensional oriented Euclidean space. Then
there exists a uniquely defined orthonormal, positively oriented, moving frame
(ei(t)), i = 1, . . . , n, with the following properties:

span(e1(t), . . . , ek(t)) = (Tx,k)x=x(t), k = 1, . . . , n− 1, (9)

⟨x(k)(t), ek(t)⟩ > 0, k = 1, . . . , n− 1. (10)

The moving frame (ei(t)) is independent of the parameter representation and
equivariantly associated to the curve: Is g ∈ E(n) an Euclidean orientation
preserving motion and (êi(t)) the moving frame associated to the curve x̂(t) =
gx(t), one has

(êi(t)) = (dg(ei(t))), (11)

where dg denotes the differential of g.

P r o o f. The first vector of the Frenet frame must be the normed tangent
vector: e1 = x′/|x′|; indeed, a generally curved curve must be regular, the
vectors ±e1 are the only unit vectors in the tangent space, and since the curve
is oriented it follows from (10) that e1 is uniquely defined. Assume that the
orthonormed vector sequence (ei(t)), i = 1, . . . ,m, m < n− 1, satisfying (9)
and (10) for k ≤ m exists and is uniquely defined. Since m < n− 1 and the
curve is generally curved we have

dimTx,m+1 = dimTx,m + 1 = m+ 1. (12)

Therefore the orthogonal complement of Tx,m in Tx,m+1 is one-dimensional,
thus its unit basis vector em+1(t) is uniquely defined up to sign. By (12),
the derivative x(m+1)(t) can not lie in Tx,m, it follows ⟨x(m+1)(t), em+1(t)⟩ ̸=
0, and the next vector em+1(t) is uniquely defined by condition (10). We
remark that the construction coincides with E. Schmidt’s orthogonalization,
see e.g. [5], Proposition 6.2.2. Finally, since the moving frame is required
to be positively oriented, the last vector en(t) must be the cross product of
the sequence (ei(t)), i = 1, . . . , n − 1. This follows from the properties of
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the cross product, see e.g. [5], Proposition 6.3.2. Thus the existence and
uniqueness of a moving frame with the required properties is proved. The
whole construction depends only on the osculating spaces; by Proposition 1
and (5) the last two statements follow. 2

Definition 4. The uniquely define moving frame (ei(t)), i = 1, . . . , n, of a
generally curved curve described in Proposition 3 is named the Frenet frame
of the curve. 2

Remark. Considering the action of the Euclidean group E(n) on the points
space En speaking about frames one has to add the point x(t) to the vector
frame. Let zo := (o;a1, . . . ,an) be the fixed orthonormal frame consisting
of the origin and the orthonormed basis vectors on the axes of the given
coordinate system. Then the map

g ∈ E(n) 7−→ z(g) = gzo := (go; dg(a1), . . . , dg(an)) (13)

is a bijection which allows to identify the group space E(n) with the space of
all orthonormed frames z = (x; e1, . . . , en). Since E(n) acts transitively on
En with the isotropy group SO(n) of the origin o (remember: we consider
orientation preserving motions only) we may identify En with the coset space
E(n)/SO(n). The canonical projection then appears as the map

z = (x; e1, . . . , en) ∈ E(n) 7−→ x ∈ En. (14)

The Frenet frame of a curve in En is a canonically defined equivariant lift of
the curve in the Euclidean space to a curve in the group space allowing to
apply the rich structure of the Lie group E(n) to Euclidean curve theory. This
is an elementary example of E. Cartan’s general method in the differential
geometry of homogeneous spaces, see E. Cartan [1], see also R. Sulanke [6]
with hints to further literature.

4 The Frenet Formulas
The Frenet formulas show the decomposition of the first derivatives of the
components of the Frenet frame at the point x = x(t) with respect to the
Frenet frame (ei(t)) itself. Of course, these derivatives depend on the para-
meter. Therefore the first step is to overcome this difficulty by introducing a
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distinguished natural, that means invariant parameter: the arclength of the
curve; a parameter s is called an arclength of the regular curve, if for the
norm of the tangential vector

|dx
ds

(s)| = 1 for all s ∈ I1 (15)

is satisfied.

Proposition 4. Any regular curve in the n-dimensional Euclidean space pos-
sesses parameter representations x = x(s) with an arclength s as parameter.
An arclength of an oriented curve is uniquely defined up to an additive con-
stant. It is invariant under Euclidean transformations.

P r o o f. Taking the norm on both sides of (3) we obtain the condition

1 = |dy
ds

| = |dx
dt

| dt
ds

. (16)

Here we used dt/ds > 0 considering orientation preserving parameter trans-
formations only. Starting with an arbitrary parameter t of the curve we
define the parameter s by

ds

dt
= |dx

dt
|, (17)

s(t) =
∫ t

t0
|dx
dt

|dt.

Obviously, s(t) is a strictly monotonically increasing function uniquely de-
fined up to an additive constant as the indefinite integral of (17). Inserting
the inverse function t = t(s) into the original parameter representation and
calculating the norm shows that (16) is fulfilled. The invariance statement
follows immediately by the invariance of the Euclidean norm. Onviously,
setting ŝ = −s, the parameter ŝ also is an arclength corresponding to the
inverse orientation of the curve. 2

Proposition 5. Assume that x = x(s) ∈ En is a parameter representation
of a generally curved curve with arclength s. Then the following derivation
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equations are valid:

dx
ds

= e1,
de1

ds
= e2k1,

de2

ds
= −e1k1 + e3k2,

. . . . . . . . . . . . . . . . . . . . . ,
den−1

ds
= −en−2kn−2 + enkn−1,

den

ds
= −en−1kn−1.

(18)

P r o o f. The first equation follows from the definition of the arclength.
The orthonormality of the Frenet frame implies

0 =
d⟨ei, ej⟩

ds
= ⟨dei

ds
, ej⟩+ ⟨ei,

dej

ds
⟩. (19)

Therefore the coefficient matrix of the decomposition of the derivatives dei/ds
is skew symmetric. On the other hand, since ei ∈ Tx,i, its derivative must
lie in Tx,i+1, and the shape (18) of the coefficient matrix follows by (9). 2

Definition 5. Equations (18) are named the Frenet formulas of the gener-
ally curved curve. The coefficient

ki(s) = ⟨dei

ds
, ei+1⟩, i = 1, . . . , n− 1, (20)

is named the i-th curvature of the curve at the point x(s). In case of the
plane we have only one curvature; we write k = k(s). In case of the three-
dimensional space we have besides of the curvature k = k1 still the second
curvature τ = k2, in this case named the torsion of the curve. 2

Proposition 6. The curvatures ki(s) of a generally curved curve in En are
invariant under Euclidean orientation preserving motions. They are func-
tions of the points of the curve satisfying

kj(s) > 0 for j = 1, . . . , n− 2. (21)

The curve lies in a hyperplane of En if and only if kn−1(s) = 0 for all s ∈ I.

P r o o f. . The invariance statement follows directly from the equvariance
of the Frenet frame, proved in Proposition 4, since derivation permutes with
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Euclidean motions being linear transformations. For the arclength the only
possible orientation preserving transformations of the arclength parameter
are ŝ = s+ a with a constant. It follows

ê1(ŝ) =
dy(ŝ)

dŝ
=

dx(s+ a)

ds

ds

dŝ
=

dx(s+ a)

ds
= e1(s+ a).

The same considerations for the derivatives of êj(ŝ) = ej(s+ a) (see Propo-
sition 3) show k̂j(ŝ) = kj(s+a): the curvatures depend only on the points of
the curve, and not on the parameter representation. Now, by Proposition 3
the decomposition of ej with respect to the derivatives of x satisfies by (9)
and (10):

ej =
j∑

i=1

x(i)λi,j, λj,j > 0 for j = 1, . . . , n− 1, (22)

⟨ej,x
(i)⟩ = 0 for i = 1, . . . , j − 1 (23)

Deriving (22) it follows

dej

ds
= x(j+1)λj,j + oj,

where oj denotes a linear combination of derivatives of x up to order j. Now,
applying (22) for j + 1 and (23), we obtain

kj = ⟨dej

ds
, ej+1⟩ = ⟨x(j+1), ej+1⟩λj,j = λj,jλj+1,j+1 > 0 for j = 1, . . . , n− 2.

(24)
The last statement follows immediately by Proposition 1 and the following

Lemma 7. A point x(s) ∈ En of a generally curved curve is (n − 1)-flat if
and only if kn−1(s) = 0.

P r o o f. Deriving (22) for j = n − 1 we conclude using (9) and the Frenet
formulas:

kn−1(s) = 0 ⇐⇒ den−1

ds
∈ Tx(s),n−1 ⇐⇒ x(n)(s) ∈ Tx(s),n−1.

Because for a generally curved curve we have for all of its points

dimTx,j = j for j = 1, . . . , n− 1, (25)
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the statement follows.22
For a geometric interpretation of the curvatures we interpret s as a time

parameter. Then the point x moves with constant velocity 1 along the curve.
The approximation of second order

x(s+∆s) = x(s) + e1(s)∆s+ e2(s)k1(s)(∆s)2/2 +O(∆s)3 (26)

shows that k1 determines how fast the curve deviates from its tangent in
the near of the point x(s). The j-th osculating plane let be oriented by the
vector sequence (e1, . . . , ej). Thus ej is the normal vector of the (j − 1)-th
osculating space in Tx,j, j > 1. Therefore the expression

|dej

ds
| =

√
k2
j−1 + k2

j , (ko = kn := 0),

measures the change velocity of the j−1-th osculating space, which is always
positive for generally curved curves and j ≤ n − 1. The vanishing of kn−1

for all s means the osculating hyperplane is constant; kn−1 > 0 means that
the osculating hyperplane moves up in the sense of en; it moves down in case
kn−1 < 0. Remember that en is uniquely defined by the oriented curve and
the orientation of En. One says that the curve turns right in the first case,
and left in case kn−1 < 0.

5 The Fundamental Theorem
Now we are going to prove the following proposition, usually named the
Fundamental Theorem of Curve Theory, since it characterizes the curve up
to Euclidean motions, i.e. up to its position in the space.

Theorem 8. Let ki(s), s = 1, . . . , n−1, s ∈ I, be smooth functions satisfying
(21). Then there exists a generally curved curve with parameter representa-
tion x(s) ∈ En such that s is an arclength parameter and the given func-
tions ki(s) are its curvatures. Two oriented curves in the Euclidean space
En having the same curvature functions are congruent under an orientation
preserving motion.

P r o o f. We consider the Frenet formulas (18) as a system of linear dif-
ferental equations of first order for the moving frame (x; e1, . . . , en). It splits
in the last n equations for the vectors (ei) of the frame and the firat equation
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for the point x which can be solved by an integration, if e1(s) is known. The
general existence and uniqueness theorem for systems of linear differential
equations, see e.g. E. Kamke [3], §V.19, admits to formulate:

Lemma 9. For any family of starting conditions

x(s0) = x0, ei(s0) = ai for i = 1, . . . , n (27)

there exists a uniquely defined solution of (18) defined for all s ∈ I. 2

Since the matrix of the linear system for the ei is skew symmetric, equa-
tion (19) holds true, thus the scalar products of the solution vectors are
constant. Starting with an orthonormal frame (ai) the solution (ei(s)) is an
orthonormal moving frame of the curve with the parameter representation
x(s) obtained by integrating the first equation of the system (18) with the
first starting condition (27). By the first equation (18) it follows that the
curve is regular and s an arclength parameter. We show that equation (9)
is satisfied (with t replaced by s). Indeed, equation (22) is fulfilled for j = 1
with λ1,1 = 1. Therefore (9) and (22) are satisfied for j = 1. By induction,
assuming that both equations are true for the positive integer j < n− 1 we
show that they are valid for j + 1 too. Using (9) and (22) for j we have

ej = x(j)λjj modTx,j−1, λjj > 0.

Deriving this equation and applying the Frenet formula and the induction
assumption we conclude

dej

ds
+ ej−1kj−1 = ej+1kj = x(j+1)λj,j modTx,j.

Taking the scalar product with ej+1 and noticing that by the induction as-
sumption equation (9) for j the vector ej+1 is orthogonal to Tx,j we obtain

kj = ⟨x(j+1), ej+1⟩λjj > 0 for j < n− 1.

It follows ⟨x(j+1), ej+1⟩ = λjj/kj > 0 for j+1 < n: ej+1 is the j+1-th vector
of the Frenet frame of the curve x = x(s); the n-th vector of the Frenet
frame is uniquely defined as the cross product of the others. Therefore the
solution gives the Frenet frame of the curve x(s); it is generally curved and
the given functions ki(s) are its curvatures by Propositions 5 and 6: the
existence statement is proved.
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To prove the uniqueness assume that y(s) is another generally curved
curve with the same curvature functions ki(s),s ∈ I its arclength. Let (ci(s))
be its Frenet frame and set

y0 = y(s0), bi = ci(s0) for i = 1, . . . , n.

From linear algebra it is well known that there exists a uniquely defined
orientation preserving transformation g ∈ E(n) such that for ai = ei(s0)

g(x0) = y0, dg(ai) = bi for i = 1, . . . , n

are satisfied. We consider the curve z(s) = g(x(s)). Since arclength and
curvatures are invariant and the Frene frame is equivariantly attached to
the curve, the Frenet franme of z(s) is the image of the Frenet frame of
x(s); it satisfies the Frenet formulas with the same starting conditions like
y(s). Thus we conclude by the uniqueness of the solutions, see Lemma 9,
the equality gx(s) = y(s) what remained to be shown. 2

6 Curves of Constant Curvatures
The next proposition describes the relation between curves of constant cur-
vatures and orbits of 1-parameter subgroups of the motion group. More
generally, the statement is valid for any class of curves in a homogeneous
space, for which a complete system of invariants exists.

Proposition 10. Any generally curved orbit of a 1-parameter subgroup g(t) ∈
E(n), t ∈ R, is a curve of constant curvatures ki(t) = const., i = 1, . . . , n−1.
Conversely, any generally curved curve of constant curvatures is a part of
such an orbit.

P r o o f. Let x(t) = g(t)x0 be such an orbit. Since

g(s)x(t) = g(s)g(t)x0 = g(s+ t)x0 = x(s+ t), s, t ∈ R,

the subgroup acts transitively on the orbit. Since it belongs to the motion
group, the curvatures must be constant. Conversely, consider a generally
curved curve x(t) ∈ En of constant curvatures, and let

z(t) = (x(t); e1(t), . . . , en(t))
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be its Frenet frame. By the Fundamental Theorem we may assume that the
curve and its Frenet frame are defined for all t ∈ R. Since the motion group
acts simply transitively on the manifold of all positively oriented orthonormal
frames, there exists a uniquely defined orientation preserving element g(t) ∈
E(n) with z(t) = g(t)z(0). Fixing for the moment t = s and consider the
curve y(t) := g(s)x(t). Since the curvatures are invariant, it has the same
constant curvatures as x(t). The Frenet frames are equivariantly associated
to the curves; therefore the Frenet frame of y(t) is g(s)z(t). This Frenet
frame is the solution of the Frenet formulas with start condition g(s)z(0).
On the other hand, the frame h(t) := z(s + t) has the same property, and
from the uniqueness statement of the Fundamental Theorem it follows

z(s+ t) = g(s+ t)z(0) = g(s)z(t) = g(s)g(t)z(0).

Since the action on the frames is simply transitively, we conclude:

g(s+ t) = g(s)g(t), (28)

g(t) is a 1-parameter subgroup of the motion group, and x(t) = g(t)x(0) is
its orbit. 2

In the second part of the proof of Proposition 10 speaking about Frenet
frames we implicitely assumed that t is the arclength of the curve. From (28)
it follows that the function

s ∈ R 7−→ g(s) ∈ E(n)

is a homomorphism of the additive group of R onto a 1-parameter subgroup
of E(n); a parameter representation of the subgroup satisfying (28) we name
a homomorphism parameter. For any constant a ∈ R, a ̸= 0, also the pa-
rameter transformation ŝ = as, ĝ(ŝ) = g(as), yields an homomorphism onto
the same 1-parameter subgroup. Thus, considering an orbit x(t) = g(t)x0 of
a 1-parameter subgroup we always may assume that t is the arclength on the
orbit: indeed, differentiating g(s)x(t) = x(s+ t) with respect to t we obtain
for the tangential vector

dg(s)(
dx(t)

dt
) =

dx(s+ t)

dt
.

Since the differential of a motion is an orthonormal transformation of the
Euclidean vector space it follows

|dx(t)
dt

| = a = const., a > 0,

14



and the transformation (17) gives that s(t) = at at the same time is the
arclength of the orbit and a homomorphism parameter. In the following we
always assume that the parameter on the orbit is its arclength.

Clearly, since the motion group of the Euclidean spaces Ek ⊂ En, k < n,
are subgroups E(k) ⊂ E(n) in a natural way, the orbits of 1-parameter sub-
groups of E(k) are also such orbits in dimension n. By Proposition 1, equation
(5), the k-th osculating spaces of the curves are equivariantly associated to
the curve, the orbit property of a curve implies that all points of an orbit are
k-flat if one point of the orbit has this property. By Proposition 1, the k-flat
orbits are those which belong to a k-dimensional subspace of En but not to
a subspace of lower dimension. The constant rank of the maximal osculating
spaces of the orbit is called the rank of the orbit. Obviously, this rank also is
a property of the corresponding 1-parameter subgroup. We may find all the
orbits of 1-parameter subgroups of E(n) step by step finding at every step
in Ek the orbits of rank k, these are the generally curved curves of constant
curvatures with highest curvature kk−1 ̸= 0. Clearly, for k = 1 the line E1

itself is such an orbit. For the plane E2 besides of the lines also the circles
of radius r > 0 are curves of constant curvature k = 1/r as easily can be
proved establishing the Frenet formulas for the circles. As we shall show in
the example below, in the 3-space E3 the helices are the orbits of rank 3.

The Fundamental Theorem yields a classification of all generally curved
curves by their curvatures. Using Proposition 10 we may find a classification
of the 1 -parameter subgroups of the motion group with respect to conjuga-
tion: two elements or subgroups of a group are conjugated, g ∼= γ, if there
exists an element a ∈ G such that γ = aga−1. Now let x(t) = g(t)x0 ∈ En be
an orbit of a 1-parameter subgroup of the motion group with rank n. Then
its curvatures are constant fulfilling kn−1 ̸= 0. Let y(t) be any curve with the
same constant curvatures. By Proposition 10 there exists a uniquely defined
1-parameter subgroup γ(t) of E(n) such that y(t) = γ(t)y0. Let z0, w0 be the
Frenet frames of the curves at the points x0,y0 respectively. Denote by a
the uniquely defined motion with w0 = az0. Then the curves ax(t),y(t) are
solution of the Frenet formulas with the same constant curvatures and the
same starting conditions. By the uniqueness of the solutions they coincide.
We conclude for the corresponding moving frames:

az(t) = ag(t)a−1w0 = γ(t)w0.

It follows γ(t) = ag(t)a−1, the subgroups are conjugated. Summarizing we
formulate
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Proposition 11. Let C = (C(k1, . . . , kn−1)) be a representing family of curves
of constant curvatures ki > 0 for i = 1, . . . , n−2, kn−1 ̸= 0, of rank n. Denote
by H(k1, . . . , kn−1) the 1-parameter subgroup corresponding to C(k1, . . . , kn−1).
Then any 1-parameter subgroup of rank n is conjugated to a subgroup of the
family H. 2

We emphasize that as a rule the family H contains conjugated subgroups
with distinct curvature parameters. In the plane we have only two classes of
conjugated 1-parameter subgroups: the parallel transformations generating
the lines, and the rotations, generating the circles. In the next example we
discuss the 1-parameter subgroups of rank 3 in the Euclidean group E(3).

Example. Let (o;a1,a2,a3) be a fixed orthonormal frame in the Eu-
clidean space E3. We consider the group of rotations in the x1, x2-plane:

γ(t)x := a1(x1 cos(t)− x2 sin(t)) + a2(x1 sin(t) + x2 cos(t)) + a3x3, (29)

where xi denote the coordinates of x with respect to the fixed frame. Its
fixed points are the points of the x3-axis, and its 1-dimensional orbits are the
circles with centers on the x3-axis in planes parallel to the x1, x2-plane. Since,
as remarked above, the oriented circles are curves having arbitrary constant
curvatures k = 1/r ̸= 0, the rotation group γ(t) is the only 1-parameter
Euclidean subgroup of rank 2 up to conjugation.

The only 1-parameter subgroups of rank 1 are the translation groups, for
example

gb(t)x := x+ a3bt, b ∈ R, b ̸= 0. (30)

Its orbits are the parallels to the x3-axis. Clearly the groups γ, gb commute:

γ(t)gb(s) = gb(s)γ(t), s, t ∈ R.

Therefore the composition of both is a 1-parameter group again, the group
of screw motions

hb(t) := gb(t)γ(t). (31)

The orbits of hb(t) of a point of the x3-axis is the x3-axis itself, and the orbits
of all other points are helices with the x3-axis as axis, for example the orbits
of points x = o+ a1a, a > 0, of the positive x2-axis:

hb(t)(a1a) = a1a cos(t) + a2a sin(t) + a3bt. (32)
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This is a family of orbits of rank 3 depending on two parameters a > 0, b ̸= 0.
The corresponding family of 1-parameter subgroups depends on one param-
eter b only. The curvature and the torsion of the helix (32) can easily be
calculated as

k1 =
a

a2 + b2
, k2 =

b

a2 + b2
, (33)

see e. g. A. Gray [2],section 7.5, or my notebook [8], section 3.3.2. The
system (33) has the uniquely defined inversion

a =
k1

k2
1 + k2

2

, b =
k2

k2
1 + k2

2

, (34)

which shows that any pair of curvatures (k1, k2) with k1 > 0, k2 ̸= 0 appears
as the curvatures of one of the helices (32). Applying Proposition 11 we
conclude:Any 1-parameter Euclidean motion group of rank 3 is conjugated to
a group hb(t) of screw motions of the family (31). 2

In my notebook [8] one also finds the calculation and description of the
curves of constant curvatures of rank 4 in the 4-dimensional Euclidean space.
We summarize here the results; later we describe a representing family for
the curves of constant curvatures of rank n in the n-dimensional Euclidean
space. As a special case of Proposition 13 below we have: Any 1-parameter
subgroup of the Euclidean group E(4) of rank 4 is conjugated to one of the
family

ga(t) =


cos(t) − sin(t) 0 0
sin(t) cos(t) 0 0
0 0 cos(at) − sin(at)
0 0 sin(at) cos(at)

 , t ∈ R, a ̸= 0. (35)

The orbits of the points (r, 0, R, 0) generate a representing family of the
curves of constant curvatures of rank 4:

cc(a, r, R)(t) = (r cos(t), r sin(t), R cos(at), R sin(at)),
r, R > 0, a ̸= 0, 1,−1.

(36)

Obviously, the curve cc(a, r, R) lies on the torus

torus(r, R)(u, v) = (r cos(u), r sin(u), R cos(v), R sin(v)) (37)

being an orbit of a 2-dimensional subgroup of the motion group containing
ga(t). These tori lie in hyperspheres of radii

√
r2 +R2 the stereographic
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projection of which transforms the tori into tori of the Euclidean 3-space and
the curves cc(a, r, R) into isogonal trajectories of the generator s of the tori
(the coordinate lines u = u0 resp. v = v0). Indeed, we have

Lemma 12. The curve of constant curvatures cc(a, r, R) intersects the gen-
erating circles v = v0 of the torus(r, R) under a constant angle α with

cos(α) =
r√

r2 + a2R2
.

2

For the proof it suffices to remark that the motions ga(t) preserve the
generating circle families and the angles. The formula for cos(α) follows by
aťsimple calulation.

Since stereographic projections are conformal maps transforming k-spheres,
in particular circles, and tori not containing the projection center into k-
spheres respectively tori of the Euclidean space we may give conformal im-
mages of the curves cc(a, r, R) on the torus(r, R). In the notebook [8] we use
the graphics tools of Mathematica to show pictures of the curves obtained
this way, see Abbildung 1. The orbits are closed if and only if a is a rational
number. The closed orbit 1 has the parameters

a = 5/3, r = 1/2, R =
√
3/2.

The curvatures of the curve cc(a, r, R) are calculated in [8]:

k1 =

√
r2 + a4R2

r2 + a2R2
, k2 =

arR|a2 − 1|
(r2 + a2R2)

√
r2 + a4R2

, k3 =
a√

r2 + a4R2
. (38)

In case of a2 = 1 the orbit is of rank 2, i.e. a circle, and these cases as well
as a = 0 have to be excluded in formula (36).

For treating the n-dimensional case we need the elements of Lie the-
ory and a bit more linear algebra. An elementary approach to Lie theory
one finds in many textbooks, e.g. in our book R. Sulanke, P. Wintgen [7].
To the Euclidean group E(n) and to the orthogonal group O(n) belong the
corresponding Lie algebras e(n) and o(n). With respect to n-dimensional or-
thonormal frames the orthogonal Lie algebra consists of all skew symmetric
matrices of order n. The 1-parameter subgroups of a Lie group G correspond
bijectively to the 1-dimenional linear subspaces of the associated Lie algebra
g; there exists a map, generalizing the exponential map

exp : A ∈ g 7−→ expA ∈ G
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Figure 1: Conformal image of a curve with constant curvatures in E4.

such that any 1-parameter subgroup can be represented in the form

g(t) = exp(tA) for certain A ∈ g. (39)

For matrix representations of Lie algebras the function exp can be written
as the matrix series

exp(tA) =
∞∑
ν=0

tνAν

ν!
,

uniformly and absolutly converging in all arguments t, A. Therefore one
obtains the generating element A of the 1 parameter subgroup g(t) as the
derivative

A =
dg(t)

dt
|t=0.

19



For example, the generating element of the group (35) is

A =


0 −1 0 0
1 0 0 0
0 0 0 −a
0 0 a 0

 (40)

Analogously to (18),(19) it follows that the skew symmetric matrices form
the Lie algebra of the orthogonal group. The Frenet formulas yield a uniquely
defined map of the curve into the Euclidean Lie algebra e(n) consisting of all
square (n+ 1)-matrices with the block structure

X(a, A) =

(
0 0
a A

)
with a ∈ Rn, A ∈ o(n), (41)

i. e. A skew symmetric. Representing the points of En as column (n + 1)-
vectors with first element 1 and the vectors as column (n + 1)-vectors with
first element 0:

x=̂

(
1
xi

)
, a=̂

(
0
ai

)
,

where xi respectively ai, i = 1, . . . , n, are the Cartesian coordinates of the
point x ∈ En and the vector a ∈ V n with respect to a fixed orthonormal
frame, the Euclidean group is linearely represented by the block matrices

g=̂

(
1 0
b B

)
, g ∈ E(n), b ∈ Rn, B ∈ O(n). (42)

Now we remember that a linear endomorphism A of the Euclidean vector
space V n is named skew symmetric if

⟨Ax,y⟩+ ⟨x, Ay⟩ = 0 for all x,y ∈ V n

is satisfied and mention the following result of linear algebra, the proof of
which may be found e.g. in the book A. I. Maltzev [4], section V.6, p.186:

Proposition 13. For every skew symmetric operator B of the Euclidean vec-
tor soace V n there exists a decomposition of V n in a direct sum of pairwise
orthogonal under B invariant subspaces

V n = W (a1)⊕W (a2)⊕ . . .⊕W (ak)⊕W 0 (43)
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where W (ai) are 2-dimensional, and in an appropriately adapted orthonor-
mal basis the restrictions of B have the matrix

B|W (ai)
=̂

(
0 −ai
ai 0

)
, ai ∈ R, ai ̸= 0, (44)

and B|W 0
is the null operator. Moreover, the orthonormal positively oriented

basis may be enumerated in such a way that

a1 ≥ a2 ≥ . . . ≥ ak−1 ≥ |ak| (45)

is satisfied. 2

Now we are going to classify the 1-parameter subgroups of the Euclidean
group. We first show

Proposition 14. Let g(t) = exp(tX) ∈ E(n), n even, be a 1-parameter sub-
group of the Euclidean group for which the generating element X = X(b, B)
has a non degenerated orthogonal part B, i. e. n = 2k in the decomposition
(43) and W 0 the null space. Then g(t) has a fixed point.

P r o o f. The method for finding fixed points of a 1-parameter transformation
group exp(tX) is to calculate the kernel of the generator X. The solution of(

0 0
b B

)(
1
x

)
=

(
0
o

)

is the uniquely defined point (1,−B−1b), since B has rank n. Inserting the
solution into the exponential formula for g(t) proves the statement. 2

Corollary 15. Any 1-parameter transformation group g(t) = exp(tX(b, B))
with rankB = n of the Euclidean space En, n = 2k, is conjugated to a
subgroup with a matrix representation

g(t)=̂


D(a1t) 0 . . . 0

0 D(a2t) 0 0
... . . . ...
0 . . . 0 D(akt)

 , (46)

where the diagonal blocks denote the rotation matrix

D(ajt) =

(
cos(ajt) − sin(ajt)
sin(ajt) cos(ajt)

)
, t ∈ R, (47)

and the aj satisfy (45) with 2k = n.
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P r o o f. We take the uniquely defined fixed point as the origion. Since then
g(t)o = o, we omit the first row and the first column of the matrix and
write down only the transformation for the vector coordinates coinciding
with that of the point coordinates. Applying Proposition 14 we get in any of
the components appearing in (43) (with W 00o) the corresponding rotation
group, and (47) follows.2

Now generalizing the 4-dimensional case one easily proves

Corollary 16. Any curve of constant curvatures of rank n = 2k in the Eu-
clidean space En is congruent to a curve with the parameter representation

x(t) =


D(a1t) 0 . . . 0

0 D(a2t) 0 0
... . . . ...
0 . . . 0 D(akt)





r1
0
r2
0
...
rk
0


, t ∈ R, (48)

with a1 = 1 and the aj satisfying (43). 2

Since the homomorphism parameter is defined up to a constant parameter
only we may assume a1 = 1. Since any orbit of a subgroup with rankB < n
belongs to a hyperplane it may not be a curve with rank n. Therefore we
may apply Corollary 15 for the generating group of the curve of constant
curvatures of maximal rank. We remark that not all the curves (48) have
maximal rank; if ai = ai+1 for at least one i the rank diminishes.

For the case of odd dimensions one obtaines

Corollary 17. The curves with constant curvatures of maximal rank n =
2k + 1 in the odd-dimensional Eucldean space En are orbits of 1-parameter
subgroups having a matrix representation of the form

h(t)=̂

 1 0 0
0 g(t) 0
bt 0 1

 , b ̸= 0, (49)

where g(t) denotes a block with shape (46) and the ai satisfa the conditions
mentioned in Corollary 16. As starting points x0 of the orbits one may take
the points with coordinates (r1, 0, r2,=, . . . , rk, 0, 0), rj > 0 for j = 1 . . . , k.
2
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For the prove we remark that the vector part always leaves a 1-dimensional
subspace invariant. We span it by the origin and the vector en of the or-
thonormal frame. Since the curve has maximal rank we have b ̸= 0 and the
statement follows. We leave the details to the reader. Clearly, the helices
result in the case n = 3.
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