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1. Introduction

This notebook  continues  the notebooksemg1.nb, emg2.nb.   We consider here those pairs of sub-

spheres of the Möbius space S3 not treated in these notebooks; the titles of sections 2 - 5 show the 

pairings considered here. Pairs of  spheres are treated in the notebook  emg1.nb,  and pairs of circles in  

emg2.nb.  The last section treats some examples of geodesics in the space of 0-spheres. In this section 

some concepts of Lie algebras are needed. They  are contained in the package liealgsh.m, added to 

elmoeb.zip.   The calculations and examples illustrate and complete the presentation of the subject in 

our book [O-S], Section 2.7, or the paper [ S4].  There one finds the foundations of elementary Möbius  

geometry in terms of  linear algebra. See also the Introductions to the notebooks mentioned above.
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2.   Spheres and circles
 A pair (S, C), consisting of a sphere S and a circle C of the 3-dimensional Euclidean space or the 3-

dimensional sphere,  is defined up to a Möbius transform by exactly a single invariant, if C is not con-

tained in S ("general position"). It is easy to show that all pairs (S, C) with C⊂S are Möbius equivalent; 

indeed, this follows from the transitivity of the action of the Möbius group of the sphere S2 .on the 

manifold of all circles contained in S2.  In the first subsection we calculate this invariant moebsc, then 

we give some examples, and finally we derive an expression of moebsc in terms of Euclidean invariants 

of the pair (S,C). 

2.1 Definition of the Invariant moebsc

2.2  Examples

2.2.1 Inclusion: rank 2

2.2..2 Example 1. Tangent Pairs

2.2.3 Example 2. Bundle of Tangent Circles

2.2.4 Example 3.  Circle and Sphere  Rosette

2.2.5 Test of the Conformity

2.2..6 Intersecting Pairs

2.2.7 Orthogonal Intersections

2.2.8 Disjoint Pairs

2.3  Euclidean Interpretation of moebsc

2.3.1 A General Formula

2.3.2 Evaluation of moebsc

2.3.3 The Invariant moebsc and the Mutual Position

2.3.4 Plane and Circle

3.  Spheres and Point Pairs
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In this Section we consider pairs { S0, S2},  S0 ={pt[a],pt[b]}, a≠b, a 0-sphere (point pair) and a sphere S2 

and find the corresponding Möbius invariants.

3.1.  Point Pairs as 0-Spheres

3.1.1  An Adapted Frame

3.1.2  Test  of vspacepp

 3.1.3  Examples

3.1.4  Random Test

3.2. The Invariant moebspp and the Mutual Position

3.2.1. The Definition

3.2.2. The Mutual Position

3.3. An Expression of the Invariant moebspp in Euclidean Terms

3.3.1. The result

3.3.2. Test

3.3.3.  Sphere 

3.3.4. Random Test in Dimension 5, i.e. dim = 7, ind = 1

3.4. Orthogonality

4.  Circles and Point Pairs 
In this section we consider pairs (C, pp) consisting of a Circle C = S1

1 and a point pair pp = (a1,a2) = S2
0 

contained in the Euclidean 3-space or the 3-sphere. Such a pair is said to be in general position, if the 

union C⋃pp is not contained in a 2-sphere.  Then its mutual position is defined up to Möbius equiva-

lence by two invariants, which we are going to calculate. We study the relation between the values of 

these invariants and the geometry of the pair. In the last subsection we find formulas expressing the 

invariants in terms of the Euclidean invariants of the pairs. 

4.1. The Invariants
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4.2. Examples

4.2.1. Pairs not in General Position

4.2.2. Pairs in General Position

4.2.3. The Circle may be a Line

4.2.4. One Eigenvalue 0

4.2.5. Standard Unit Circle and Random Point Pairs

4.2.6. The Eigenspheres of the Random Pair

4.3. The Separation Property

4.4. Two Associated Spheres Belonging to a Pair (S1
1, S2

0)

4.5. Möbius Invariants Expressed by Euclidean Invariants

In this subsection we will express the determinant and the trace of ppcpp[(C,pp)] by Euclidean invari-

ants of the configuration obtaining formulas similar, but more complicated, to the Coxeter distance of 

two spheres. The calculations show very well the excellent performance of Mathematica in doing 

symbolical simplifications. 

4.5.1. Adaption of the Euclidean Coordinates to the Point Pair

4.5.2. Adaption of the Euclidean Coordinates to the Circle

4.5.3. Calculation of the invarints

4.5.4. Invariant Angles

4.5.5. Control, OK! 

5.  Point Quadruples
We consider pairs of  0-spheres, i.e. point quadruple {{a1,a2},{b1,b2}}.  Since each point quadruple 

belongs to a sphere, we could consider spherical Möbius geometry: dim = 4, but for later applications 

we will continue with dim =5 here. Since the Möbius group of the sphere coincides with the broken 

linear transformations in one complex variable of the Riemann sphere, and this is the projective com-

plex line, an invariant of the quadruple coincides with the complex cross ratio, the basic invariant of 

complex projective geometry. Historically,  the Möbius group has been found by Möbius in this impor-

tant context. We considered the original complex Möbius group, and its relation to the 2-dimensional 
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real case, in the notebook [RS]. Here we are interested more in the real situation, for later application in 

differential geometry. Therefore we will apply the general method of Möbius invariants for pairs of 

subspheres also in the lowest dimension. Since the cross ratio is a complex number we may expect to 

obtain two real invariants describing the mutual position of two point pairs in the Möbius space. 

5.1. A complete invariant system

5.2. Throws

5.2.1. Definition of a throw and the matrix pppts

5.2.2. The eigenvalue 1

 5.2.3. The other eigenvalues

5.2.4. The eigenspheres

5.3. Four points on the standard unit circle

5.3.1. Two Point Pairs

5.3.2.The orthogonal case

5.3.3. Two Point Pairs on the Line. Another Approach

6.  Geodesics in the Space of 0-Spheres

6.1.  Introduction

6.2.  Spacelike geodesics

6.3.  Timelike geodesics

6.4. Isotropic geodesics
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