(1) In Lecture 3, we saw the theorem of Hofer-Wysocki-Zehnder that for any Reeb orbit \(\gamma : S^1 \to M \) in a contact 3-manifold \((M, \xi = \ker \alpha)\), with asymptotic operator \(A_\gamma \) and trivialisation \(\tau \) of \(\gamma^* \xi \to S^1 \), the function
\[
\sigma(A_\gamma) : \lambda \mapsto \text{wind}^\tau(\lambda) := \text{wind}^\tau(f) \text{ for any nontrivial } f \in \ker(A_\gamma - \lambda)
\]
is well defined, monotone increasing, and attains every value in \(\mathbb{Z} \) exactly twice (counting multiplicity of eigenvalues).

(a) Verify that the above theorem holds for the \(L^2 \)-symmetric operator
\[
A := -J_0 \frac{d}{dt} - c : C^\infty(S^1, \mathbb{R}^2) \to C^\infty(S^1, \mathbb{R}^2),
\]
where \(J_0 \) denotes the standard complex structure on \(\mathbb{R}^2 = \mathbb{C} \) and \(c \in \mathbb{R} \) is any constant. (The general case can be derived from this using a deformation argument.)

(b) If \(\gamma(t) = \gamma_0(kt) \) for another Reeb orbit \(\gamma_0 : S^1 \to M \), then the \(k \)-fold cover of each eigenfunction of \(A_{\gamma_0} \) is an eigenfunction of \(A_\gamma \). Assuming \(\tau \) is the pullback under \(S^1 \to S^1 : t \mapsto kt \) of a trivialisation of \(\gamma_0^* \xi \to S^1 \), show that a nontrivial eigenfunction \(f \) of \(A_\gamma \) is a \(k \)-fold cover if and only if \(\text{wind}^\tau(f) \) is divisible by \(k \).

(c) Assume \(\gamma_0 \) is an embedded orbit that is \(k \)-fold covered by \(\gamma \), and \(\tau \) is defined by pulling back a trivialisation of \(\gamma_0^* \xi \to S^1 \). Show that for any nontrivial eigenfunction \(f \) of \(A_\gamma \),
\[
\text{cov}(f) := \max\{k \in \mathbb{N} \mid f \text{ is a } k \text{-fold cover}\} = \gcd(k, \text{wind}^\tau(f)).
\]

(d) Show that if \(\gamma \) is a Reeb orbit that has even Conley-Zehnder index, then so does every multiple cover \(\gamma^k \) of \(\gamma \).

(2) Assume \(\gamma : S^1 \to M \) is a nondegenerate Reeb orbit in a contact 3-manifold \((M, \xi = \ker \alpha)\), with covering multiplicity
\[
\text{cov}(\gamma) = \max \{k \in \mathbb{N} \mid \gamma(t + 1/k) = \gamma(t) \text{ for all } t \in S^1\}.
\]
Given \(J \in \mathcal{J}(\alpha) \), let \(u_\gamma : \mathbb{R} \times S^1 \to \mathbb{R} \times M \) denote the associated \(J \)-holomorphic orbit cylinder.

(a) Show that \(c_N(u_\gamma) = -p(\gamma) \), where \(p(\gamma) \in \{0, 1\} \) is the parity of the Conley-Zehnder index of \(\gamma \).

(b) Show that \(u_\gamma \ast u_\gamma = -\text{cov}(\gamma) \cdot p(\gamma) \).

(c) Deduce from part (b) that if \(u^k \) denotes a \(k \)-fold cover of a given asymptotically cylindrical \(J \)-holomorphic curve \(u \), it is \textit{not} generally true that \(u^k \ast v^\ell = k\ell(u \ast v) \).

\textbf{Remark:} One can show however that in general,
\[
u^k \ast v^\ell \geq k\ell(u \ast v).
\]

(d) \((*)\) Use the adjunction formula to show the following: if \(\gamma \) is a multiple cover of a Reeb orbit with even Conley-Zehnder index, and \(J' \) is an arbitrary almost complex structure on \(\mathbb{R} \times M \) that is compatible with \(d(e^t \alpha) \) and belongs to \(\mathcal{J}(\alpha) \) outside a compact subset, then there is no simple \(J' \)-holomorphic curve homotopic to \(u_\gamma \) through asymptotically cylindrical maps.