Background material for Lecture 5

Open book decompositions of 3-manifolds
Background material for Lecture 5

Open book decompositions of 3-manifolds

Consider $\pi : M \setminus B \to S^1$ such that:

- $B \subset M$ is an oriented link ("binding")
- $M \setminus B \xrightarrow{\pi} S^1$ is a fibration (fibres = "pages"),

\[
\text{nbhd}(B) \cong \bigsqcup (S^1 \times \mathbb{D}^2) \xrightarrow{\pi} S^1 \\
(\theta, (r, \phi)) \mapsto \phi
\]
Background material for Lecture 5

Open book decompositions of 3-manifolds

Consider $\pi : M \setminus B \to S^1$ such that:

- $B \subset M$ is an oriented link ("binding")
- $M \setminus B \overset{\pi}{\longrightarrow} S^1$ is a fibration (fibres = "pages"),

$$\text{nbhd}(B) \cong \bigsqcup (S^1 \times \mathbb{D}^2) \overset{\pi}{\longrightarrow} S^1$$

$(\theta, (r, \phi)) \mapsto \phi$

Hence:

$M \cong (\text{mapping torus}) \cup (\text{solid tori})$
Open book decompositions of 3-manifolds

Consider $\pi : M \setminus B \to S^1$ such that:

- $B \subset M$ is an oriented link ("binding")
- $M \setminus B \xrightarrow{\pi} S^1$ is a fibration (fibres = "pages")

\[
\text{nbhd}(B) \cong \bigsqcup (S^1 \times \mathbb{D}^2) \xrightarrow{\pi} S^1 \\
(\theta, (r, \phi)) \mapsto \phi
\]

Hence:

$M \cong (\text{mapping torus}) \cup (\text{solid tori})$

\[S^3 = \mathbb{R}^3 \cup \{\infty\} \quad \text{and} \quad S^1 \times S^2\]
The Giroux correspondence

A contact structure ξ is **supported** by an open book $\pi : M \setminus B \to S^1$ if $\xi = \ker \alpha$ for some contact form α such that

$\alpha|_{TB} > 0$ and $d\alpha|_{\text{pages}} > 0$.
The Giroux correspondence

A contact structure ξ is supported by an open book $\pi : M \setminus B \to S^1$ if $\xi = \ker \alpha$ for some contact form α such that

$$\alpha|_{TB} > 0 \quad \text{and} \quad d\alpha|_{\text{pages}} > 0.$$

Equivalently:

$$B = \bigsqcup (\text{Reeb orbits}) \quad \text{and} \quad R_\alpha \pitchfork \text{pages}.$$
The Giroux correspondence

A contact structure ξ is supported by an open book $\pi : M \setminus B \to S^1$ if $\xi = \ker \alpha$ for some contact form α such that

$$\alpha|_{TB} > 0 \quad \text{and} \quad d\alpha|_{\text{pages}} > 0.$$

Equivalently:

$$B = \coprod (\text{Reeb orbits}) \quad \text{and} \quad R_\alpha \pitchfork \text{pages}.$$

Thurston-Winkelnkemper:

$$\{\text{OBDs}\} \longrightarrow \{\text{ctct strs}\}/\text{isotopy}$$
The Giroux correspondence

A contact structure ξ is **supported** by an open book $\pi : M \setminus B \to S^1$ if $\xi = \ker \alpha$ for some contact form α such that

$$\alpha|_{TB} > 0 \quad \text{and} \quad d\alpha|_{\text{pages}} > 0.$$

Equivalently:

$$B = \coprod (\text{Reeb orbits}) \quad \text{and} \quad R_{\alpha} \pitchfork \text{pages}.$$

Thurston-Winkelnkemper:\n
$$\{\text{OBDs}\} \longrightarrow \{\text{ctct strs}\}/\text{isotopy}$$

Giroux:\n
$$\{\text{ctct strs}\}/\text{isotopy} \overset{1:1}{\longleftrightarrow} \{\text{OBDs}\}/\text{stabilisation}$$
Bordered Lefschetz fibrations

Lefschetz fibration $W^4 \xrightarrow{\pi} \mathbb{D}^2$ with interior critical points and fibres with boundary:
Bordered Lefschetz fibrations

Lefschetz fibration $W^4 \xrightarrow{\pi} \mathbb{D}^2$ with interior critical points and fibres with boundary:
Bordered Lefschetz fibrations

Lefschetz fibration $W^4 \xrightarrow{\pi} \mathbb{D}^2$ with interior critical points and fibres with boundary:
Bordered Lefschetz fibrations

Lefschetz fibration $W^4 \xrightarrow{\pi} \mathbb{D}^2$ with interior critical points and fibres with boundary:
Bordered Lefschetz fibrations

Lefschetz fibration $W^4 \xrightarrow{\pi} \mathbb{D}^2$ with interior critical points and fibres with boundary:
Bordered Lefschetz fibrations

Lefschetz fibration $W^4 \xrightarrow{\pi} \mathbb{D}^2$ with interior critical points and fibres with boundary:
Bordered Lefschetz fibrations

Lefschetz fibration \(W^4 \xrightarrow{\pi} \mathbb{D}^2 \) with interior critical points and fibres with boundary:
Bordered Lefschetz fibrations

Lefschetz fibration $W^4 \xrightarrow{\pi} \mathbb{D}^2$ with interior critical points and fibres with boundary:
Bordered Lefschetz fibrations

Lefschetz fibration $W^4 \xrightarrow{\pi} \mathbb{D}^2$ with interior critical points and fibres with boundary:

W has boundary and corners: smooth faces

$$\partial W = \partial_v W \cup \partial_h W,$$

where

$$\partial_v W := \pi^{-1}(\partial \mathbb{D}^2) \xrightarrow{\text{fibration}} \partial \mathbb{D}^2 = S^1,$$

and

$$\partial_h W := \bigcup_{z \in \mathbb{D}^2} \partial \left(\pi^{-1}(z) \right) \cong \coprod (S^1 \times \mathbb{D}^2)$$
Bordered Lefschetz fibrations

Lefschetz fibration $W^4 \xrightarrow{\pi} \mathbb{D}^2$ with interior critical points and fibres with boundary:

W has boundary and corners: smooth faces

$$\partial W = \partial_v W \cup \partial_h W,$$

where

$$\partial_v W := \pi^{-1}(\partial \mathbb{D}^2) \xrightarrow{\text{fibration}} \partial \mathbb{D}^2 = S^1,$$

and

$$\partial_h W := \bigcup_{z \in \mathbb{D}^2} \partial (\pi^{-1}(z)) \cong \coprod (S^1 \times \mathbb{D}^2)$$

$\implies \partial W$ inherits an open book.
Theorem
Any bordered Lefschetz fibration $W \xrightarrow{\pi} D^2$ admits (canonically up to deformation) a symplectic form ω such that fibres are symplectic and (W, ω) has convex boundary (M, ξ) supported by the induced open book.
Theorem

Any bordered Lefschetz fibration $W \xrightarrow{\pi} \mathbb{D}^2$ admits (canonically up to deformation) a symplectic form ω such that fibres are symplectic and (W, ω) has convex boundary (M, ξ) supported by the induced open book.

If no irreducible components of singular fibres are closed (i.e. $W \xrightarrow{\pi} \mathbb{D}^2$ is “allowable”), then one can make (W, ω) a Stein filling of (M, ξ).

![Diagram](image-url)
Theorem

Any bordered Lefschetz fibration $W \xrightarrow{\pi} \mathbb{D}^2$ admits (canonically up to deformation) a symplectic form ω such that fibres are symplectic and (W, ω) has convex boundary (M, ξ) supported by the induced open book.

If no irreducible components of singular fibres are closed (i.e. $W \xrightarrow{\pi} \mathbb{D}^2$ is “allowable”), then one can make (W, ω) a Stein filling of (M, ξ).

Proposition

The monodromy of the open book on ∂W is a composition of positive Dehn twists, one for each critical point of $W \xrightarrow{\pi} \mathbb{D}^2$.