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Applications

Set up

X0 Weinstein domain with contact boundary (Y , ξ = kerα).

Λ ⊂ Y single Legendrian sphere.

C set of Reeb chords of Λ including the empty Reeb chord e

LHA(Λ) := words of Reeb chords in C.

dLHAc :=
∑

|c|=|bj |+1

nc;b1...bmb1...bm

with
nc;b1...bm := #MY

Λ (c1; b1...bm)/R ∈ Z.

LHA(Λ) is a unital algebra with 1 corresponding to the empty
Reeb chord e.
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Applications

Main Theorem

Theorem

Let X be the Weinstein domain resulting from attaching a handle
to X0 along Λ. If there exists a Reeb chord c ∈ LHA(Λ) such that
dLHAc = 1, then

SH(X ) ∼= SH(X0).

Recall the main result of the paper:
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Applications

Definition of M(Λ)

Definition

Let M(Λ) be a left-right LHA(Λ)-module generated by

1 hat-decorated Reeb chords ĉ with c ∈ C, |ĉ | = |c |+ 1

2 x auxiliary variable with |x | = 0.

Let dM : M(Λ) −→ M(Λ) defined by:

1 on coefficients c ∈ LHA(Λ): dMc := dLHAc .

2 dM ĉ := xc − cx − S(dMc) where S : LHO+(Λ) −→ L̂HO
+

(Λ)
as in the definition of LHHo :

S(c1...ck) := ĉ1c2...ck+(−1)|c1|c1ĉ2...ck+...+(−1)|c1...ck−1|c1...ĉk .

3 dMx = 0.
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Mcyc(Λ)

Mcyc(Λ) := M(Λ)/∼ with

c1...cmâb1...bk ∼ (−1)|c|·|âb|âb1...bkc1...cm,

ci , bj ∈ C for i = 1, ...,m, j = 1, ..., k and a ∈ C or â = x .

Mcyc(Λ) is a K-module and dM descends to Mcyc(Λ).

Lemma

1 d2
M = 0.

2 The homology of (Mcyc(Λ), dM) is isomorphic to the
homology of (LHHo(Λ), dHo).

3 The isomorphism is given by x 7−→ τ ,
c1...cjxcj+1...cm 7−→ c1...cj−1čjcj+1...cm and
c1...cj−1ĉjcj+1...cm 7−→ c1...cj−1ĉjcj+1...cm.
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Applications

Mcyc(Λ)

Mcyc(Λ) := M(Λ)/∼ with
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Mcyc(Λ) is a K-module and dM descends to Mcyc(Λ).

Lemma

1 d2
M = 0.

2 The homology of (Mcyc(Λ), dM) is isomorphic to the
homology of (LHHo(Λ), dHo).

3 The isomorphism is given by x 7−→ τ ,
c1...cjxcj+1...cm 7−→ c1...cj−1čjcj+1...cm and
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Pushing Λ

Obtain Λ′ by pushing Λ along Reeb flow:

f Morse function on Λ.

Reeb chords from Λ to Λ′: ∀ chords c of Λ
a ĉ , x and y corresponding to minimum and maximum of f .
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FH(L, L′)

L ⊂W Lagrangian n-plane looking like Λ× (−∞, 0] in negative
end.

Extend f to a Morse function on L with exactly one maximum. L′

shift of L given by f =⇒ L ∩ L′ consists of one transverse double
point z .

Definition

FH(L, L′) left LHA(Λ)-module and right LHA(Λ′)-module
generated by:

1 mixed Reeb chords starting on Λ and ending on Λ′.

2 z = L ∩ L′.
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dFH

Define differential dFH by:

1 On mixed Reeb chords ĉ : dFH counts holmophic disks in the
symplectisation of Λ with boundary in Λ ∪ Λ′, one positive
pucture at ĉ and one negative puncture.

2 On z : dFH counts holomorphic disks in W with positive
puncture z and one mixed negative puncture.

3 On coefficients: dFH = dLHA

It holds:
dFHz = y .
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Applications

Proof of Main Theorem

Since LHA(Λ) ' LHA(Λ′) =⇒ FH(L, L′) is quasi-isomorphic to
M(Λ).

Proof.

Let c ∈ LHA(Λ) such that dLHAc = 1 and w a cycle in FH(L, L′)
=⇒ dFHcw = w .
=⇒ The homology of FH(L, L′) is trivial. The homology of M(Λ)
and hence also of Mcyc(Λ) is also trivial.
Lemma =⇒ LHHo is trivial.
Surgery exact triangle =⇒

SH(X ) ∼= SH(X0).
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Applications

Constructing exotic Weinstein structures on T ∗Sn

Consider X0 := B2n with ∂B2n = S2n−1 and Λ ⊂ S2n−1 Legendrian
sphere. Assume:

Λ regularly homotopic to Legendrian unknot ΛU .

Λ topologically trivial.

tb(Λ) = (−1)n−1.

Then attaching a handle along Λ gives a Weinstein manifold
diffeomorphic to T ∗Sn.
Idea: Find such a Λ with a Reeb chord c and dLHAc = 1 =⇒
symplectic homology vanishes.
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Applications

Reeb chords

ΛT satisfies all conditions if n > 2.

All Reeb chords mentioned give rise to Morse-Bott manifolds
Sn−2 of Reeb chords. Using Morse functions gives Reeb
chords: a, bmin

k , bmax
k for k = 1, 2; cmin, cmax , emin

j , emax
j for

j = 1, 2, 3.

Gradings:

|a| = |bmax
k | = |cmax | = n − 1

|emax
j | = n − 2

|bmin
k | = |cmin| = 1

|emin
j | = 0.
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db = 1

bmin
k correspond to local minima of the height function =⇒ Morse

flow lines from the endpoints end in the cusp edges.
Result by Ekholm: dLHAb

min
k = 1.

=⇒ Attaching a sphere to ΛT constructs an exotic Weinstein
structure on T ∗Sn.
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