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Set up

m Xy Weinstein domain with contact boundary (Y, § = kera).
m A\ C Y single Legendrian sphere.

m C set of Reeb chords of A including the empty Reeb chord e
m LHA(A) := words of Reeb chords in C.

d[_HAC = E nc;bl...bmblmbm
lel=[bj|+1

with
Neiby . by = #MX(CU bl...bm)/R c 7.

LHA(A) is a unital algebra with 1 corresponding to the empty
Reeb chord e.
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to Xo along N. If there exists a Reeb chord ¢ € LHA(N) such that
dipac = 1, then

SH(X) 2 SH(Xo).
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Main Theorem

Theorem

Let X be the Weinstein domain resulting from attaching a handle
to Xo along N. If there exists a Reeb chord ¢ € LHA(N) such that
dipac = 1, then

SH(X) = SH(Xo).

Recall the main result of the paper:

SH(X) SH(Xo)

~

LHH(A)
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Definition of M(A)

Let M(A) be a left-right LHA(A)-module generated by
hat-decorated Reeb chords ¢ with c € C, |€| = |c| + 1

x auxiliary variable with |x| = 0.

Let dy : M(N) — M(A) defined by:
on coefficients ¢ € LHA(A): dpyc := dipac.

—+
dyé = xc — cx — S(dpc) where S : LHO(A) — LHO (A)
as in the definition of LH"°:

S(Cl...Ck) = 61C2...Ck+(—1)|cl‘C162...Ck—}—...—i—(—l)‘cl"'ck*l‘C1...6k.

dyx = 0.
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M<(A)

MY<(A) == M(A)/. with

C1...Cm§b1...bk ~ (—1)‘C|'|ab‘§b1...bkC1...Cm,

c,bjeCfori=1,..m j=1,...kandacCori=x.
M<(A) is a K-module and dp descends to MY(A).

d3 =0.

The homology of (M<<(N), dp) is isomorphic to the
homology of (LHM°(N), dys).

The isomorphism is given by x — T,
C1...GiXCj41...Cm —> C1...¢j—1&jCjy1...Cmy and
C1...Cj_16jCj+1...Cm — C1...CJ'_1(’ijj+1...Cm.
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Pushing A

Obtain A’ by pushing A along Reeb flow:

f Morse function on A. Reeb chords from A to A’: V chords ¢ of A
a ¢, x and y corresponding to minimum and maximum of f.
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FH(L, L")

L C W Lagrangian n-plane looking like A x (—o0, 0] in negative

end.
Extend f to a Morse function on L with exactly one maximum. L’

shift of L given by f = LN L’ consists of one transverse double
point z.
FH(L, L") left LHA(A)-module and right LHA(A')-module
generated by:
mixed Reeb chords starting on A and ending on A’.
z=LNnL.
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drH

Define differential dry by:

On mixed Reeb chords &: dry counts holmophic disks in the
symplectisation of A with boundary in AU A’, one positive
pucture at ¢ and one negative puncture.

On z: dpy counts holomorphic disks in W with positive
puncture z and one mixed negative puncture.

On coefficients: dey = diHa
It holds:
drnz = y.
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Proof of Main Theorem

Since LHA(N) ~ LHA(N') = FH(L, L) is quasi-isomorphic to
M(N).

Let ¢ € LHA(A) such that djyac =1 and w a cycle in FH(L, L")
— dpycw = w.

— The homology of FH(L,L’) is trivial. The homology of M(A)
and hence also of M¥¢(A) is also trivial.

Lemma = LH" is trivial.

Surgery exact triangle =

SH(X) 2 SH(Xo).



Applications

Constructing exotic Weinstein structures on T*S”

Consider Xp := B2" with 9B?" = §?"~! and A C 5?"~! Legendrian
sphere. Assume:



Applications

Constructing exotic Weinstein structures on T*S”

Consider Xp := B2" with 9B?" = §?"~! and A C 5?"~! Legendrian
sphere. Assume:

m A regularly homotopic to Legendrian unknot Ay.
m A topologically trivial.
m th(A) = (—-1)""L.



Applications

Constructing exotic Weinstein structures on T*S”

Consider Xp := B2" with 9B?" = §?"~! and A C 5?"~! Legendrian
sphere. Assume:

m A regularly homotopic to Legendrian unknot Ay.

m A topologically trivial.

m th(A) = (—-1)""L.
Then attaching a handle along A gives a Weinstein manifold
diffeomorphic to T*S".



Applications

Constructing exotic Weinstein structures on T*S”

Consider Xp := B2" with 9B?" = §?"~! and A C 5?"~! Legendrian
sphere. Assume:

m A regularly homotopic to Legendrian unknot Ay.

m A topologically trivial.

m th(A) = (—-1)""L.
Then attaching a handle along A gives a Weinstein manifold
diffeomorphic to T*S".

Idea: Find such a A with a Reeb chord ¢ and djyac =1 —
symplectic homology vanishes.
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Example

Xg

Figure 9. The Legendrian sphere A7 . The lower picture shows the front of
At by showing its int ion with any 2—plane spanned by a unit vector
6 € R""! and a unit vector in the z—direction. The upper two pictures
indicates how Reeb chords arise.
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Reeb chords

m A7 satisfies all conditions if n > 2.

m All Reeb chords mentioned give rise to Morse-Bott manifolds
52 of Reeb chords. Using Morse functlons gives Reeb

chords: a, b’”’” b#x for k =1,2; ™", ™M, ejf”i”, J’""”X for
j=1,2,3.
m Gradings:
la| = |b®[ = |c™|=n—1
|emaX| n— 2
B = Je™| =1

e = 0.
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db=1

Xg

Figure 11. Rigid flow trees giving (//72‘in =1

bn correspond to local minima of the height function => Morse
flow lines from the endpoints end in the cusp edges.

Result by Ekholm: dj a0 = 1.

= Attaching a sphere to A1 constructs an exotic Weinstein
structure on T*S".



