Applications

Felix Noetzel

13.07.2020

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• X_0 Weinstein domain with contact boundary $(Y, \xi = ker\alpha)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

X₀ Weinstein domain with contact boundary (Y, ξ = kerα).
Λ ⊂ Y single Legendrian sphere.

- X_0 Weinstein domain with contact boundary $(Y, \xi = ker\alpha)$.
- $\Lambda \subset Y$ single Legendrian sphere.
- C set of Reeb chords of Λ including the empty Reeb chord e

- X_0 Weinstein domain with contact boundary $(Y, \xi = ker\alpha)$.
- $\Lambda \subset Y$ single Legendrian sphere.
- C set of Reeb chords of Λ including the empty Reeb chord e
- $LHA(\Lambda) :=$ words of Reeb chords in C.

$$d_{LHA}c := \sum_{|c|=|b_j|+1} n_{c;b_1\dots b_m} b_1\dots b_m$$

with

$$n_{c;b_1...b_m} := \# \mathcal{M}^Y_{\Lambda}(c_1; b_1...b_m) / \mathbb{R} \in \mathbb{Z}.$$

 $LHA(\Lambda)$ is a unital algebra with 1 corresponding to the empty Reeb chord *e*.

Main Theorem

Theorem

Let X be the Weinstein domain resulting from attaching a handle to X_0 along Λ . If there exists a Reeb chord $c \in LHA(\Lambda)$ such that $d_{LHA}c = 1$, then

 $S\mathbb{H}(X)\cong S\mathbb{H}(X_0).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Main Theorem

Theorem

Let X be the Weinstein domain resulting from attaching a handle to X_0 along Λ . If there exists a Reeb chord $c \in LHA(\Lambda)$ such that $d_{LHA}c = 1$, then

 $S\mathbb{H}(X)\cong S\mathbb{H}(X_0).$

Recall the main result of the paper:

Definition

Let $M(\Lambda)$ be a left-right $LHA(\Lambda)$ -module generated by

1 hat-decorated Reeb chords \hat{c} with $c \in \mathcal{C}$, $|\hat{c}| = |c| + 1$

2 x auxiliary variable with |x| = 0.

Definition

Let $M(\Lambda)$ be a left-right $LHA(\Lambda)$ -module generated by

1 hat-decorated Reeb chords \hat{c} with $c \in \mathcal{C}$, $|\hat{c}| = |c| + 1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

2 x auxiliary variable with |x| = 0.

Let $d_M : M(\Lambda) \longrightarrow M(\Lambda)$ defined by:

1 on coefficients $c \in LHA(\Lambda)$: $d_M c := d_{LHA}c$.

Definition

- Let $M(\Lambda)$ be a left-right $LHA(\Lambda)$ -module generated by
 - 1 hat-decorated Reeb chords \hat{c} with $c \in \mathcal{C}$, $|\hat{c}| = |c| + 1$
 - **2** x auxiliary variable with |x| = 0.

Let $d_M : M(\Lambda) \longrightarrow M(\Lambda)$ defined by:

- 1 on coefficients $c \in LHA(\Lambda)$: $d_M c := d_{LHA}c$.
- 2 $d_M \hat{c} := xc cx S(d_M c)$ where $S : LHO^+(\Lambda) \longrightarrow \widehat{LHO}^+(\Lambda)$ as in the definition of LH^{Ho} :

$$S(c_1...c_k) := \hat{c}_1 c_2...c_k + (-1)^{|c_1|} c_1 \hat{c}_2...c_k + ... + (-1)^{|c_1...c_{k-1}|} c_1...\hat{c}_k.$$

Definition

- Let $M(\Lambda)$ be a left-right $LHA(\Lambda)$ -module generated by
 - 1 hat-decorated Reeb chords \hat{c} with $c \in \mathcal{C}$, $|\hat{c}| = |c| + 1$
 - **2** x auxiliary variable with |x| = 0.

Let $d_M : M(\Lambda) \longrightarrow M(\Lambda)$ defined by:

- 1 on coefficients $c \in LHA(\Lambda)$: $d_M c := d_{LHA}c$.
- 2 $d_M \hat{c} := xc cx S(d_M c)$ where $S : LHO^+(\Lambda) \longrightarrow \widehat{LHO}^+(\Lambda)$ as in the definition of LH^{Ho} :

$$S(c_1...c_k):=\hat{c}_1c_2...c_k+(-1)^{|c_1|}c_1\hat{c}_2...c_k+...+(-1)^{|c_1...c_{k-1}|}c_1...\hat{c}_k.$$

A D N A 目 N A E N A E N A B N A C N

3 $d_M x = 0.$

.

$$M^{cyc}(\Lambda)$$

 $M^{cyc}(\Lambda) := M(\Lambda)/_{\sim}$ with $c_1...c_m \hat{a}b_1...b_k \sim (-1)^{|c|\cdot|\hat{a}b|} \hat{a}b_1...b_k c_1...c_m,$ $c_i, b_j \in \mathcal{C}$ for i = 1, ..., m, j = 1, ..., k and $a \in \mathcal{C}$ or $\hat{a} = x.$

$$M^{cyc}(\Lambda)$$

$$\begin{split} M^{cyc}(\Lambda) &:= M(\Lambda)/_{\sim} \text{ with} \\ & c_1...c_m \hat{a} b_1...b_k \sim (-1)^{|c| \cdot |\hat{a}b|} \hat{a} b_1...b_k c_1...c_m, \\ & c_i, b_j \in \mathcal{C} \text{ for } i = 1, ..., m, j = 1, ..., k \text{ and } a \in \mathcal{C} \text{ or } \hat{a} = x. \\ & M^{cyc}(\Lambda) \text{ is a } \mathbb{K}\text{-module and } d_M \text{ descends to } M^{cyc}(\Lambda). \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$M^{cyc}(\Lambda)$$

$$\begin{split} M^{cyc}(\Lambda) &:= M(\Lambda)/_{\sim} \text{ with} \\ c_1...c_m \hat{a}b_1...b_k \sim (-1)^{|c|\cdot|\hat{a}b|} \hat{a}b_1...b_k c_1...c_m, \\ c_i, b_j \in \mathcal{C} \text{ for } i = 1, ..., m, j = 1, ..., k \text{ and } a \in \mathcal{C} \text{ or } \hat{a} = x. \\ M^{cyc}(\Lambda) \text{ is a } \mathbb{K}\text{-module and } d_M \text{ descends to } M^{cyc}(\Lambda). \end{split}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ●

Lemma

1
$$d_M^2 = 0.$$

$$M^{cyc}(\Lambda)$$

$$M^{cyc}(\Lambda) := M(\Lambda)/_{\sim}$$
 with
 $c_1...c_m\hat{a}b_1...b_k \sim (-1)^{|c|\cdot|\hat{a}b|}\hat{a}b_1...b_kc_1...c_m,$
 $c_i, b_j \in \mathcal{C}$ for $i = 1, ..., m, j = 1, ..., k$ and $a \in \mathcal{C}$ or $\hat{a} = x.$

 $M^{cyc}(\Lambda)$ is a K-module and d_M descends to $M^{cyc}(\Lambda)$.

Lemma

- 1 $d_M^2 = 0.$
- **2** The homology of $(M^{cyc}(\Lambda), d_M)$ is isomorphic to the homology of $(LH^{Ho}(\Lambda), d_{Ho})$.

$$M^{cyc}(\Lambda)$$

$$M^{cyc}(\Lambda) := M(\Lambda)/_{\sim}$$
 with
 $c_1...c_m \hat{a}b_1...b_k \sim (-1)^{|c|\cdot|\hat{a}b|} \hat{a}b_1...b_k c_1...c_m,$
 $c_i, b_j \in \mathcal{C}$ for $i = 1, ..., m, j = 1, ..., k$ and $a \in \mathcal{C}$ or $\hat{a} = x.$

 $M^{cyc}(\Lambda)$ is a \mathbb{K} -module and d_M descends to $M^{cyc}(\Lambda)$.

Lemma

- 1 $d_M^2 = 0.$
- 2 The homology of (M^{cyc}(Λ), d_M) is isomorphic to the homology of (LH^{Ho}(Λ), d_{Ho}).

3 The isomorphism is given by
$$x \mapsto \tau$$
,
 $c_1...c_jxc_{j+1}...c_m \mapsto c_1...c_{j-1}\check{c}_jc_{j+1}...c_m$ and
 $c_1...c_{j-1}\hat{c}_jc_{j+1}...c_m \mapsto c_1...c_{j-1}\hat{c}_jc_{j+1}...c_m$.

Pushing Λ

Obtain Λ' by pushing Λ along Reeb flow:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

f Morse function on Λ .

Pushing Λ

Obtain Λ' by pushing Λ along Reeb flow:

f Morse function on Λ . Reeb chords from Λ to Λ' : \forall chords *c* of Λ a \hat{c} , *x* and *y* corresponding to minimum and maximum of *f*.

イロト 不得 トイヨト イヨト

FH(L, L')

 $L \subset W$ Lagrangian *n*-plane looking like $\Lambda \times (-\infty, 0]$ in negative end.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

FH(L, L')

 $L \subset W$ Lagrangian *n*-plane looking like $\Lambda \times (-\infty, 0]$ in negative end.

Extend f to a Morse function on L with exactly one maximum. L' shift of L given by $f \Longrightarrow L \cap L'$ consists of one transverse double point z.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

FH(L, L')

 $L \subset W$ Lagrangian *n*-plane looking like $\Lambda \times (-\infty, 0]$ in negative end.

Extend f to a Morse function on L with exactly one maximum. L' shift of L given by $f \Longrightarrow L \cap L'$ consists of one transverse double point z.

A D N A 目 N A E N A E N A B N A C N

Definition

FH(L, L') left $LHA(\Lambda)$ -module and right $LHA(\Lambda')$ -module generated by:

1 mixed Reeb chords starting on Λ and ending on Λ' .

$$2 \quad z = L \cap L'.$$

Define differential d_{FH} by:

1 On mixed Reeb chords \hat{c} : d_{FH} counts holmophic disks in the symplectisation of Λ with boundary in $\Lambda \cup \Lambda'$, one positive pucture at \hat{c} and one negative puncture.

Define differential d_{FH} by:

1 On mixed Reeb chords \hat{c} : d_{FH} counts holmophic disks in the symplectisation of Λ with boundary in $\Lambda \cup \Lambda'$, one positive pucture at \hat{c} and one negative puncture.

2 On *z*: *d_{FH}* counts holomorphic disks in *W* with positive puncture *z* and one mixed negative puncture.

Define differential d_{FH} by:

1 On mixed Reeb chords \hat{c} : d_{FH} counts holmophic disks in the symplectisation of Λ with boundary in $\Lambda \cup \Lambda'$, one positive pucture at \hat{c} and one negative puncture.

- 2 On *z*: *d_{FH}* counts holomorphic disks in *W* with positive puncture *z* and one mixed negative puncture.
- 3 On coefficients: $d_{FH} = d_{LHA}$

Define differential d_{FH} by:

1 On mixed Reeb chords \hat{c} : d_{FH} counts holmophic disks in the symplectisation of Λ with boundary in $\Lambda \cup \Lambda'$, one positive pucture at \hat{c} and one negative puncture.

- 2 On *z*: *d_{FH}* counts holomorphic disks in *W* with positive puncture *z* and one mixed negative puncture.
- 3 On coefficients: $d_{FH} = d_{LHA}$

Define differential d_{FH} by:

- **1** On mixed Reeb chords \hat{c} : d_{FH} counts holmophic disks in the symplectisation of Λ with boundary in $\Lambda \cup \Lambda'$, one positive pucture at \hat{c} and one negative puncture.
- 2 On *z*: *d_{FH}* counts holomorphic disks in *W* with positive puncture *z* and one mixed negative puncture.
- 3 On coefficients: $d_{FH} = d_{LHA}$

It holds:

$$d_{FH}z = y.$$

Since $LHA(\Lambda) \simeq LHA(\Lambda') \Longrightarrow FH(L, L')$ is quasi-isomorphic to $M(\Lambda)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Since $LHA(\Lambda) \simeq LHA(\Lambda') \Longrightarrow FH(L, L')$ is quasi-isomorphic to $M(\Lambda)$.

Proof.

Let $c \in LHA(\Lambda)$ such that $d_{LHA}c = 1$ and w a cycle in FH(L, L')

Since $LHA(\Lambda) \simeq LHA(\Lambda') \Longrightarrow FH(L, L')$ is quasi-isomorphic to $M(\Lambda)$.

Proof.

Let $c \in LHA(\Lambda)$ such that $d_{LHA}c = 1$ and w a cycle in FH(L, L')

- $\implies d_{FH}cw = w.$
- \implies The homology of FH(L, L') is trivial.

Since $LHA(\Lambda) \simeq LHA(\Lambda') \Longrightarrow FH(L, L')$ is quasi-isomorphic to $M(\Lambda)$.

Proof.

Let $c \in LHA(\Lambda)$ such that $d_{LHA}c = 1$ and w a cycle in FH(L, L')

 $\implies d_{FH}cw = w.$

 \implies The homology of FH(L, L') is trivial. The homology of $M(\Lambda)$ and hence also of $M^{cyc}(\Lambda)$ is also trivial.

Since $LHA(\Lambda) \simeq LHA(\Lambda') \Longrightarrow FH(L, L')$ is quasi-isomorphic to $M(\Lambda)$.

Proof.

Let $c \in LHA(\Lambda)$ such that $d_{LHA}c = 1$ and w a cycle in FH(L, L')

 $\implies d_{FH}cw = w.$

 \implies The homology of FH(L, L') is trivial. The homology of $M(\Lambda)$ and hence also of $M^{cyc}(\Lambda)$ is also trivial.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lemma $\implies L\mathbb{H}^{Ho}$ is trivial.

Since $LHA(\Lambda) \simeq LHA(\Lambda') \Longrightarrow FH(L, L')$ is quasi-isomorphic to $M(\Lambda)$.

Proof.

Let $c \in LHA(\Lambda)$ such that $d_{LHA}c = 1$ and w a cycle in FH(L, L')

 $\implies d_{FH}cw = w.$

 \implies The homology of FH(L, L') is trivial. The homology of $M(\Lambda)$ and hence also of $M^{cyc}(\Lambda)$ is also trivial.

Lemma $\implies L \mathbb{H}^{Ho}$ is trivial.

Surgery exact triangle \Longrightarrow

 $S\mathbb{H}(X)\cong S\mathbb{H}(X_0).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Consider $X_0 := B^{2n}$ with $\partial B^{2n} = S^{2n-1}$ and $\Lambda \subset S^{2n-1}$ Legendrian sphere. Assume:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Consider $X_0 := B^{2n}$ with $\partial B^{2n} = S^{2n-1}$ and $\Lambda \subset S^{2n-1}$ Legendrian sphere. Assume:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- A regularly homotopic to Legendrian unknot Λ_U .
- Λ topologically trivial.

•
$$tb(\Lambda) = (-1)^{n-1}$$
.

Consider $X_0 := B^{2n}$ with $\partial B^{2n} = S^{2n-1}$ and $\Lambda \subset S^{2n-1}$ Legendrian sphere. Assume:

- A regularly homotopic to Legendrian unknot Λ_U .
- Λ topologically trivial.
- $tb(\Lambda) = (-1)^{n-1}$.

Then attaching a handle along Λ gives a Weinstein manifold diffeomorphic to T^*S^n .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Consider $X_0 := B^{2n}$ with $\partial B^{2n} = S^{2n-1}$ and $\Lambda \subset S^{2n-1}$ Legendrian sphere. Assume:

• A regularly homotopic to Legendrian unknot Λ_U .

- Λ topologically trivial.
- $tb(\Lambda) = (-1)^{n-1}$.

Then attaching a handle along Λ gives a Weinstein manifold diffeomorphic to T^*S^n .

Idea: Find such a Λ with a Reeb chord c and $d_{LHA}c = 1 \implies$ symplectic homology vanishes.

Example

Figure 9. The Legendrian sphere Λ_T . The lower picture shows the front of Λ_T by showing its intersection with any 2–plane spanned by a unit vector $\theta \in \mathbb{R}^{n-1}$ and a unit vector in the *z*-direction. The upper two pictures indicates how Reeb chords arise.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Reeb chords

• Λ_T satisfies all conditions if n > 2.

Reeb chords

- Λ_T satisfies all conditions if n > 2.
- All Reeb chords mentioned give rise to Morse-Bott manifolds S^{n-2} of Reeb chords. Using Morse functions gives Reeb chords: *a*, b_k^{min} , b_k^{max} for k = 1, 2; c^{min} , c^{max} , e_j^{min} , e_j^{max} for j = 1, 2, 3.

Reeb chords

- Λ_T satisfies all conditions if n > 2.
- All Reeb chords mentioned give rise to Morse-Bott manifolds S^{n-2} of Reeb chords. Using Morse functions gives Reeb chords: *a*, b_k^{min} , b_k^{max} for k = 1, 2; c^{min} , c^{max} , e_j^{min} , e_j^{max} for j = 1, 2, 3.
- Gradings:

$$|a| = |b_k^{max}| = |c^{max}| = n - 1$$

 $|e_j^{max}| = n - 2$
 $|b_k^{min}| = |c^{min}| = 1$
 $|e_j^{min}| = 0.$

Figure 11. Rigid flow trees giving $db_k^{\min} = 1$

(ロ)、(型)、(E)、(E)、 E) のQ(()

$$db = 1$$

Figure 11. Rigid flow trees giving $db_k^{\min} = 1$

 b_k^{min} correspond to local minima of the height function \implies Morse flow lines from the endpoints end in the cusp edges.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$db = 1$$

Figure 11. Rigid flow trees giving $db_k^{\min} = 1$

 b_k^{min} correspond to local minima of the height function \implies Morse flow lines from the endpoints end in the cusp edges. Result by Ekholm: $d_{LHA}b_k^{min} = 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$db = 1$$

Figure 11. Rigid flow trees giving $db_k^{\min} = 1$

 b_k^{min} correspond to local minima of the height function \implies Morse flow lines from the endpoints end in the cusp edges. Result by Ekholm: $d_{LHA}b_k^{min} = 1$. \implies Attaching a sphere to Λ_T constructs an exotic Weinstein structure on T^*S^n .