Applications

Felix Noetzel

13.07 .2020

Set up

- X_{0} Weinstein domain with contact boundary ($\left.Y, \xi=k e r \alpha\right)$.

Set up

- X_{0} Weinstein domain with contact boundary ($\left.Y, \xi=k e r \alpha\right)$.

■ $\wedge \subset Y$ single Legendrian sphere

Set up

- X_{0} Weinstein domain with contact boundary ($\left.Y, \xi=k e r \alpha\right)$.
- $\wedge \subset Y$ single Legendrian sphere.
$■ \mathcal{C}$ set of Reeb chords of Λ including the empty Reeb chord e

Set up

- X_{0} Weinstein domain with contact boundary ($\left.Y, \xi=k e r \alpha\right)$.
- $\wedge \subset Y$ single Legendrian sphere
$■ \mathcal{C}$ set of Reeb chords of Λ including the empty Reeb chord e
- LHA(Λ) $:=$ words of Reeb chords in \mathcal{C}.

$$
d_{L H A} C:=\sum_{|c|=\left|b_{j}\right|+1} n_{c ; b_{1} \ldots b_{m}} b_{1} \ldots b_{m}
$$

with

$$
n_{c ; b_{1} \ldots b_{m}}:=\# \mathcal{M}_{\Lambda}^{Y}\left(c_{1} ; b_{1} \ldots b_{m}\right) / \mathbb{R} \in \mathbb{Z}
$$

$\operatorname{LHA}(\Lambda)$ is a unital algebra with 1 corresponding to the empty Reeb chord e.

Main Theorem

Theorem

Let X be the Weinstein domain resulting from attaching a handle to X_{0} along Λ. If there exists a Reeb chord $c \in L H A(\Lambda)$ such that $d_{L H A} C=1$, then
$S \mathbb{H}(X) \cong S \mathbb{H}\left(X_{0}\right)$.

Main Theorem

Theorem

Let X be the Weinstein domain resulting from attaching a handle to X_{0} along Λ. If there exists a Reeb chord $c \in L H A(\Lambda)$ such that $d_{L H A} C=1$, then

$S \mathbb{H}(X) \cong S \mathbb{H}\left(X_{0}\right)$.

Recall the main result of the paper:

Definition of $M(\wedge)$

Definition

Let $M(\Lambda)$ be a left-right $L H A(\Lambda)$-module generated by
1 hat-decorated Reeb chords \hat{c} with $c \in \mathcal{C},|\hat{c}|=|c|+1$
$2 x$ auxiliary variable with $|x|=0$.

Definition of $M(\Lambda)$

Definition

Let $M(\Lambda)$ be a left-right $L H A(\Lambda)$-module generated by
1 hat-decorated Reeb chords \hat{c} with $c \in \mathcal{C},|\hat{c}|=|c|+1$
$2 x$ auxiliary variable with $|x|=0$.
Let $d_{M}: M(\Lambda) \longrightarrow M(\Lambda)$ defined by:
1 on coefficients $c \in L H A(\Lambda): d_{M} c:=d_{L H A} c$.

Definition of $M(\Lambda)$

Definition

Let $M(\Lambda)$ be a left-right $L H A(\Lambda)$-module generated by
1 hat-decorated Reeb chords \hat{c} with $c \in \mathcal{C},|\hat{c}|=|c|+1$
$2 x$ auxiliary variable with $|x|=0$.
Let $d_{M}: M(\Lambda) \longrightarrow M(\Lambda)$ defined by:
1 on coefficients $c \in L H A(\Lambda): d_{M} c:=d_{L H A} c$.
$2 d_{M} \hat{c}:=x c-c x-S\left(d_{M} c\right)$ where $S: L H O^{+}(\Lambda) \longrightarrow \widehat{L H O}^{+}(\Lambda)$ as in the definition of $L H^{H o}$:

$$
S\left(c_{1} \ldots c_{k}\right):=\hat{c}_{1} c_{2} \ldots c_{k}+(-1)^{\left|c_{1}\right|} c_{1} \hat{c}_{2} \ldots c_{k}+\ldots+(-1)^{\left|c_{1} \ldots c_{k-1}\right|} c_{1} \ldots \hat{c}_{k} .
$$

Definition of $M(\Lambda)$

Definition

Let $M(\Lambda)$ be a left-right $L H A(\Lambda)$-module generated by
1 hat-decorated Reeb chords \hat{c} with $c \in \mathcal{C},|\hat{c}|=|c|+1$
$2 x$ auxiliary variable with $|x|=0$.
Let $d_{M}: M(\Lambda) \longrightarrow M(\Lambda)$ defined by:
1 on coefficients $c \in L H A(\Lambda): d_{M} c:=d_{L H A} c$.
$2 d_{M} \hat{c}:=x c-c x-S\left(d_{M} c\right)$ where $S: L H O^{+}(\Lambda) \longrightarrow \widehat{L H O}^{+}(\Lambda)$ as in the definition of $L H^{H o}$:

$$
S\left(c_{1} \ldots c_{k}\right):=\hat{c}_{1} c_{2} \ldots c_{k}+(-1)^{\left|c_{1}\right|} c_{1} \hat{c}_{2} \ldots c_{k}+\ldots+(-1)^{\left|c_{1} \ldots c_{k-1}\right|} c_{1} \ldots \hat{c}_{k} .
$$

$3 \quad d_{M} X=0$.

$M^{\text {cyc }}(\Lambda)$

$M^{c y c}(\Lambda):=M(\Lambda) / \sim$ with

$$
c_{1} \ldots c_{m} \hat{a} b_{1} \ldots b_{k} \sim(-1)^{|c| \cdot|\hat{a} b|} \hat{a} b_{1} \ldots b_{k} c_{1} \ldots c_{m},
$$

$c_{i}, b_{j} \in \mathcal{C}$ for $i=1, \ldots, m, j=1, \ldots, k$ and $a \in \mathcal{C}$ or $\hat{a}=x$.

$M^{\text {cyc }}(\Lambda)$

$M^{c y c}(\Lambda):=M(\Lambda) / \sim$ with

$$
c_{1} \ldots c_{m} \hat{a} b_{1} \ldots b_{k} \sim(-1)^{|c| \cdot|\hat{a} b|} \hat{a} b_{1} \ldots b_{k} c_{1} \ldots c_{m},
$$

$c_{i}, b_{j} \in \mathcal{C}$ for $i=1, \ldots, m, j=1, \ldots, k$ and $a \in \mathcal{C}$ or $\hat{a}=x$. $M^{c y c}(\Lambda)$ is a \mathbb{K}-module and d_{M} descends to $M^{c y c}(\Lambda)$.

$M^{\text {cyc }}(\Lambda)$

$M^{c y c}(\Lambda):=M(\Lambda) / \sim$ with

$$
c_{1} \ldots c_{m} \hat{a} b_{1} \ldots b_{k} \sim(-1)^{|c| \cdot|\hat{a} b|} \hat{a} b_{1} \ldots b_{k} c_{1} \ldots c_{m},
$$

$c_{i}, b_{j} \in \mathcal{C}$ for $i=1, \ldots, m, j=1, \ldots, k$ and $a \in \mathcal{C}$ or $\hat{a}=x$. $M^{c y c}(\Lambda)$ is a \mathbb{K}-module and d_{M} descends to $M^{c y c}(\Lambda)$.

Lemma

$1 d_{M}^{2}=0$.

$M^{c y c}(\Lambda)$

$M^{c y c}(\Lambda):=M(\Lambda) / \sim$ with

$$
c_{1} \ldots c_{m} \hat{a} b_{1} \ldots b_{k} \sim(-1)^{|c| \cdot|\hat{a} b|} \hat{a} b_{1} \ldots b_{k} c_{1} \ldots c_{m},
$$

$c_{i}, b_{j} \in \mathcal{C}$ for $i=1, \ldots, m, j=1, \ldots, k$ and $a \in \mathcal{C}$ or $\hat{a}=x$. $M^{c y c}(\Lambda)$ is a \mathbb{K}-module and d_{M} descends to $M^{c y c}(\Lambda)$.

Lemma

$1 d_{M}^{2}=0$.
2 The homology of $\left(M^{c y c}(\Lambda), d_{M}\right)$ is isomorphic to the homology of $\left(L H^{H o}(\Lambda), d_{H_{o}}\right)$.

$M^{c y c}(\Lambda)$

$M^{c y c}(\Lambda):=M(\Lambda) / \sim$ with

$$
c_{1} \ldots c_{m} \hat{a} b_{1} \ldots b_{k} \sim(-1)^{|c| \cdot|\hat{a} b|} \hat{a} b_{1} \ldots b_{k} c_{1} \ldots c_{m},
$$

$c_{i}, b_{j} \in \mathcal{C}$ for $i=1, \ldots, m, j=1, \ldots, k$ and $a \in \mathcal{C}$ or $\hat{a}=x$. $M^{c y c}(\Lambda)$ is a \mathbb{K}-module and d_{M} descends to $M^{c y c}(\Lambda)$.

Lemma

$1 d_{M}^{2}=0$.
2 The homology of $\left(M^{c y c}(\Lambda), d_{M}\right)$ is isomorphic to the homology of $\left(L H^{H o}(\Lambda), d_{H o}\right)$.
3 The isomorphism is given by $x \longmapsto \tau$,

$$
\begin{aligned}
& c_{1} \ldots c_{j} x c_{j+1} \ldots c_{m} \longmapsto c_{1} \ldots c_{j-1} \check{c}_{j} c_{j+1} \ldots c_{m} \text { and } \\
& c_{1} \ldots c_{j-1} \hat{c}_{j} c_{j+1} \ldots c_{m} \longmapsto c_{1} \ldots c_{j-1} \hat{c}_{j} c_{j+1} \ldots c_{m} .
\end{aligned}
$$

Pushing \wedge

Obtain Λ^{\prime} by pushing Λ along Reeb flow:

f Morse function on Λ.

Pushing \wedge

Obtain Λ^{\prime} by pushing Λ along Reeb flow:

f Morse function on Λ. Reeb chords from Λ to $\Lambda^{\prime}: \forall$ chords c of Λ a \hat{c}, x and y corresponding to minimum and maximum of f.

$F H\left(L, L^{\prime}\right)$

$L \subset W$ Lagrangian n-plane looking like $\Lambda \times(-\infty, 0]$ in negative end.

$F H\left(L, L^{\prime}\right)$

$L \subset W$ Lagrangian n-plane looking like $\Lambda \times(-\infty, 0]$ in negative end.
Extend f to a Morse function on L with exactly one maximum. L^{\prime} shift of L given by $f \Longrightarrow L \cap L^{\prime}$ consists of one transverse double point z.

$F H\left(L, L^{\prime}\right)$

$L \subset W$ Lagrangian n-plane looking like $\Lambda \times(-\infty, 0]$ in negative end.
Extend f to a Morse function on L with exactly one maximum. L^{\prime} shift of L given by $f \Longrightarrow L \cap L^{\prime}$ consists of one transverse double point z.

Definition

$F H\left(L, L^{\prime}\right)$ left $L H A(\Lambda)$-module and right $L H A\left(\Lambda^{\prime}\right)$-module generated by:

1 mixed Reeb chords starting on Λ and ending on Λ^{\prime}.
$2 z=L \cap L^{\prime}$.
$d_{F H}$

Define differential $d_{F H}$ by:
1 On mixed Reeb chords \hat{c} : $d_{F H}$ counts holmophic disks in the symplectisation of Λ with boundary in $\Lambda \cup \Lambda^{\prime}$, one positive pucture at \hat{c} and one negative puncture.

Define differential $d_{F H}$ by:
1 On mixed Reeb chords \hat{c} : $d_{F H}$ counts holmophic disks in the symplectisation of Λ with boundary in $\Lambda \cup \Lambda^{\prime}$, one positive pucture at \hat{c} and one negative puncture.
2 On $z: d_{F H}$ counts holomorphic disks in W with positive puncture z and one mixed negative puncture.

Define differential $d_{F H}$ by:
1 On mixed Reeb chords \hat{c} : $d_{F H}$ counts holmophic disks in the symplectisation of Λ with boundary in $\Lambda \cup \Lambda^{\prime}$, one positive pucture at \hat{c} and one negative puncture.
2 On z: $d_{F H}$ counts holomorphic disks in W with positive puncture z and one mixed negative puncture.
3 On coefficients: $d_{F H}=d_{L H A}$

Define differential $d_{F H}$ by:
1 On mixed Reeb chords \hat{c} : $d_{F H}$ counts holmophic disks in the symplectisation of Λ with boundary in $\Lambda \cup \Lambda^{\prime}$, one positive pucture at \hat{c} and one negative puncture.
2 On z: $d_{F H}$ counts holomorphic disks in W with positive puncture z and one mixed negative puncture.
3 On coefficients: $d_{F H}=d_{L H A}$

Define differential $d_{F H}$ by:
1 On mixed Reeb chords \hat{c} : $d_{F H}$ counts holmophic disks in the symplectisation of Λ with boundary in $\Lambda \cup \Lambda^{\prime}$, one positive pucture at \hat{c} and one negative puncture.
2 On $z: d_{F H}$ counts holomorphic disks in W with positive puncture z and one mixed negative puncture.
3 On coefficients: $d_{F H}=d_{L H A}$
It holds:

$$
d_{F H} z=y .
$$

Proof of Main Theorem

Since $L H A(\Lambda) \simeq L H A\left(\Lambda^{\prime}\right) \Longrightarrow F H\left(L, L^{\prime}\right)$ is quasi-isomorphic to $M(\Lambda)$.

Proof of Main Theorem

Since $L H A(\Lambda) \simeq L H A\left(\Lambda^{\prime}\right) \Longrightarrow F H\left(L, L^{\prime}\right)$ is quasi-isomorphic to $M(\Lambda)$.

Proof.

Let $c \in L H A(\Lambda)$ such that $d_{L H A} c=1$ and w a cycle in $F H\left(L, L^{\prime}\right)$

Proof of Main Theorem

Since $L H A(\Lambda) \simeq L H A\left(\Lambda^{\prime}\right) \Longrightarrow F H\left(L, L^{\prime}\right)$ is quasi-isomorphic to $M(\Lambda)$.

Proof.

Let $c \in L H A(\Lambda)$ such that $d_{L H A} c=1$ and w a cycle in $F H\left(L, L^{\prime}\right)$
$\Longrightarrow d_{F H} C W=w$.
\Longrightarrow The homology of $F H\left(L, L^{\prime}\right)$ is trivial.

Proof of Main Theorem

Since $L H A(\Lambda) \simeq L H A\left(\Lambda^{\prime}\right) \Longrightarrow F H\left(L, L^{\prime}\right)$ is quasi-isomorphic to $M(\Lambda)$.

Proof.

Let $c \in L H A(\Lambda)$ such that $d_{L H A} c=1$ and w a cycle in $F H\left(L, L^{\prime}\right)$
$\Longrightarrow d_{F H} C W=w$.
\Longrightarrow The homology of $F H\left(L, L^{\prime}\right)$ is trivial. The homology of $M(\Lambda)$ and hence also of $M^{c y c}(\Lambda)$ is also trivial.

Proof of Main Theorem

Since $L H A(\Lambda) \simeq L H A\left(\Lambda^{\prime}\right) \Longrightarrow F H\left(L, L^{\prime}\right)$ is quasi-isomorphic to $M(\Lambda)$.

Proof.

Let $c \in L H A(\Lambda)$ such that $d_{L H A} c=1$ and w a cycle in $F H\left(L, L^{\prime}\right)$
$\Longrightarrow d_{F H} C W=w$.
\Longrightarrow The homology of $F H\left(L, L^{\prime}\right)$ is trivial. The homology of $M(\Lambda)$ and hence also of $M^{c y c}(\Lambda)$ is also trivial.
Lemma $\Longrightarrow L \mathbb{H}^{H o}$ is trivial.

Proof of Main Theorem

Since $L H A(\Lambda) \simeq L H A\left(\Lambda^{\prime}\right) \Longrightarrow F H\left(L, L^{\prime}\right)$ is quasi-isomorphic to $M(\Lambda)$.

Proof.

Let $c \in L H A(\Lambda)$ such that $d_{L H A} c=1$ and w a cycle in $F H\left(L, L^{\prime}\right)$
$\Longrightarrow d_{\text {FH }} C W=w$.
\Longrightarrow The homology of $F H\left(L, L^{\prime}\right)$ is trivial. The homology of $M(\Lambda)$ and hence also of $M^{c y c}(\Lambda)$ is also trivial.
Lemma $\Longrightarrow L \mathbb{H}^{H o}$ is trivial.
Surgery exact triangle \Longrightarrow

$$
S \mathbb{H}(X) \cong S \mathbb{H}\left(X_{0}\right)
$$

Constructing exotic Weinstein structures on $T^{*} S^{n}$

Consider $X_{0}:=B^{2 n}$ with $\partial B^{2 n}=S^{2 n-1}$ and $\Lambda \subset S^{2 n-1}$ Legendrian sphere. Assume:

Constructing exotic Weinstein structures on $T^{*} S^{n}$

Consider $X_{0}:=B^{2 n}$ with $\partial B^{2 n}=S^{2 n-1}$ and $\Lambda \subset S^{2 n-1}$ Legendrian sphere. Assume:

- Λ regularly homotopic to Legendrian unknot Λ_{U}.
- Λ topologically trivial.

■ $t b(\Lambda)=(-1)^{n-1}$.

Constructing exotic Weinstein structures on $T^{*} S^{n}$

Consider $X_{0}:=B^{2 n}$ with $\partial B^{2 n}=S^{2 n-1}$ and $\Lambda \subset S^{2 n-1}$ Legendrian sphere. Assume:

- Λ regularly homotopic to Legendrian unknot Λ_{U}.
- Λ topologically trivial.
- $t b(\Lambda)=(-1)^{n-1}$.

Then attaching a handle along Λ gives a Weinstein manifold diffeomorphic to $T^{*} S^{n}$.

Constructing exotic Weinstein structures on $T^{*} S^{n}$

Consider $X_{0}:=B^{2 n}$ with $\partial B^{2 n}=S^{2 n-1}$ and $\Lambda \subset S^{2 n-1}$ Legendrian sphere. Assume:

■ Λ regularly homotopic to Legendrian unknot Λ_{U}.

- Λ topologically trivial.
- $t b(\Lambda)=(-1)^{n-1}$.

Then attaching a handle along Λ gives a Weinstein manifold diffeomorphic to $T^{*} S^{n}$. Idea: Find such a Λ with a Reeb chord c and $d_{L H A} C=1 \Longrightarrow$ symplectic homology vanishes.

Example

Figure 9. The Legendrian sphere Λ_{T}. The lower picture shows the front of Λ_{T} by showing its intersection with any 2 -plane spanned by a unit vector $\theta \in \mathbb{R}^{n-1}$ and a unit vector in the z-direction. The upper two pictures indicates how Reeb chords arise.

Reeb chords

- Λ_{T} satisfies all conditions if $n>2$.

Reeb chords

- Λ_{T} satisfies all conditions if $n>2$.
- All Reeb chords mentioned give rise to Morse-Bott manifolds S^{n-2} of Reeb chords. Using Morse functions gives Reeb chords: $a, b_{k}^{\min }, b_{k}^{\max }$ for $k=1,2 ; c^{\text {min }}, c^{\text {max }}, e_{j}^{\min }, e_{j}^{\max }$ for $j=1,2,3$.

Reeb chords

- Λ_{T} satisfies all conditions if $n>2$.
- All Reeb chords mentioned give rise to Morse-Bott manifolds S^{n-2} of Reeb chords. Using Morse functions gives Reeb chords: $a, b_{k}^{\min }, b_{k}^{\text {max }}$ for $k=1,2 ; c^{\text {min }}, c^{\text {max }}, e_{j}^{\min }, e_{j}^{\max }$ for $j=1,2,3$.
- Gradings:

$$
\begin{aligned}
|a| & =\left|b_{k}^{\max }\right|=\left|c^{\max }\right|=n-1 \\
\left|e_{j}^{\max }\right| & =n-2 \\
\left|b_{k}^{\min }\right| & =\left|c^{\min }\right|=1 \\
\left|e_{j}^{\min }\right| & =0 .
\end{aligned}
$$

Figure 11. Rigid flow trees giving $d b_{k}^{\text {min }}=1$

Figure 11. Rigid flow trees giving $d b_{k}^{\min }=1$
$b_{k}^{\text {min }}$ correspond to local minima of the height function \Longrightarrow Morse flow lines from the endpoints end in the cusp edges.

Figure 11. Rigid flow trees giving $d b_{k}^{\min }=1$
$b_{k}^{\text {min }}$ correspond to local minima of the height function \Longrightarrow Morse flow lines from the endpoints end in the cusp edges.
Result by Ekholm: $d_{L H A} b_{k}^{\min }=1$.

Figure 11. Rigid flow trees giving $d b_{k}^{\min }=1$
$b_{k}^{\text {min }}$ correspond to local minima of the height function \Longrightarrow Morse flow lines from the endpoints end in the cusp edges.
Result by Ekholm: $d_{L H A} b_{k}^{\min }=1$.
\Longrightarrow Attaching a sphere to Λ_{T} constructs an exotic Weinstein structure on $T^{*} S^{n}$.

