The Legendrian Homology Algebra, Three Differentials and Linearization

Klaus Mohnke

June 29, 2020

The Legendrian Homology Algebra

(Y, ξ) contact manifold, α contact form, R Reeb vector field.

The Legendrian Homology Algebra

(Y, ξ) contact manifold, α contact form, R Reeb vector field. $\Lambda_{1}, \ldots, \Lambda_{k} \subset Y$ disjoint Legendrian spheres.

The Legendrian Homology Algebra

(Y, ξ) contact manifold, α contact form, R Reeb vector field. $\Lambda_{1}, \ldots, \Lambda_{k} \subset Y$ disjoint Legendrian spheres.

Non-degeneracy assumptions:

The Legendrian Homology Algebra

(Y, ξ) contact manifold, α contact form, R Reeb vector field.
$\Lambda_{1}, \ldots, \Lambda_{k} \subset Y$ disjoint Legendrian spheres.
Non-degeneracy assumptions:
R : closed Reeb orbits are non-degenerate: $\gamma:[0, T] \rightarrow Y$ closed flow-line of $R, T>0, \gamma(0)=\gamma(T)$,

$$
\operatorname{det}\left(\left.d_{\gamma(0)} \Phi_{T}^{R}\right|_{\xi_{\gamma(0)}} \mathrm{id}_{I_{\bar{\prime}} \tilde{\zeta}_{\gamma(0)}}\right) \neq 0 .
$$

$\Lambda_{1}, \ldots, \Lambda_{k}:$ Reeb chords are non-degenerate: $\gamma:[0, T] \rightarrow Y \quad T>0$ flow-line of $R, \gamma(0) \in \Lambda_{j_{0}}, \gamma(T) \in \Lambda_{j_{1}}$. Then

$$
d_{\gamma(0)} \Phi_{T}^{R}\left(T_{\gamma(0)} \wedge_{j_{0}}\right) \pitchfork T_{\gamma(T)} \wedge_{j_{1}} .
$$

The Legendrian Homology Algebra

(Y, ξ) contact manifold, α contact form, R Reeb vector field.
$\Lambda_{1}, \ldots, \Lambda_{k} \subset Y$ disjoint Legendrian spheres.
Non-degeneracy assumptions:
R : closed Reeb orbits are non-degenerate: $\gamma:[0, T] \rightarrow Y$ closed flow-line of $R, T>0, \gamma(0)=\gamma(T)$,

$$
\operatorname{det}\left(d_{\gamma(0)} \Phi_{T}^{R}-\mathrm{id}_{T_{\gamma(0)} Y}\right) \neq 0 .
$$

$\Lambda_{1}, \ldots, \Lambda_{k}:$ Reeb chords are non-degenerate: $\gamma:[0, T] \rightarrow Y$ flow-line of $R, \gamma(0) \in \Lambda_{j_{0}}, \gamma(T) \in \Lambda_{j_{1}}$. Then

$$
d_{\gamma(0)} \Phi_{T}^{R}\left(T_{\gamma(0)} \Lambda_{j_{0}}\right) \pitchfork T_{\gamma(T)} \Lambda_{j_{1}} .
$$

\Rightarrow closed Reeb orbits and Reeb chords are isolated.

The Legendrian Homology Algebra

 Maslov class assumption:
The Legendrian Homology Algebra

Maslov class assumption:
For any complex structure J on ξ we can choose a nowhere vanishing alternating \mathbb{C}-multilinear $\varphi: \Lambda^{n-1} \xi \rightarrow \mathbb{C}$ such that

$$
\varphi\left(\left(T \Lambda_{j}\right)^{k}\right) \in \mathbb{R} .
$$

for all $j=1, \ldots, k$.

The Legendrian Homology Algebra

Maslov class assumption:
For any complex structure J on ξ we can choose a nowhere vanishing alternating \mathbb{C}-multilinear $\varphi: \Lambda^{n-1} \xi \rightarrow \mathbb{C}$ such that

$$
\varphi\left(\left(T \Lambda_{j}\right)^{k}\right) \in \mathbb{R} .
$$

for all $j=1, \ldots, k$.
$\mathcal{C}_{i j} \ldots$ set of all Reeb chords connecting $\stackrel{\Lambda_{i}^{\prime}}{ } \Lambda_{j}$ and $\mathscr{\ell}_{j}$
$\mathcal{C}_{i}:=\mathcal{C}_{i i} \amalg\left\{e_{i}\right\}, \mathcal{C}:=\coprod_{i, j} \mathcal{C}_{i j} \backslash\left\{e_{i}\right\}$

The Legendrian Homology Algebra

Maslov class assumption:
For any complex structure J on ξ we can choose a nowhere vanishing alternating \mathbb{C}-multilinear $\varphi: \Lambda^{n-1} \xi \rightarrow \mathbb{C}$ such that

$$
\varphi\left(\left(T \Lambda_{j}\right)^{k}\right) \in \mathbb{R}
$$

for all $j=1, \ldots, k$.
$\mathcal{C}_{i j \ldots}$ set of all Reeb chords connecting $\stackrel{\Lambda_{i}}{\ell_{i}}$ and $\stackrel{\Lambda_{j}}{\Lambda_{j}}$
$\mathcal{C}_{i}:=\mathcal{C}_{i i} \amalg\left\{e_{i}\right\}, \mathcal{C}:=\coprod_{i, j} \mathcal{C}_{i j} \backslash\left\{e_{i}\right\}$
φ defines for any closed Reeb orbit and any Reeb chord c a grading $|c| \in \mathbb{Z}$. We set $\left|e_{i}\right|=0$

The Legendrian Homology Algebra

Maslov class assumption:
For any complex structure J on ξ we can choose a nowhere vanishing alternating \mathbb{C}-multilinear $\varphi: \Lambda^{n-1} \xi \rightarrow \mathbb{C}$ such that

$$
\varphi\left(\left(T \Lambda_{j}\right)^{k}\right) \in \mathbb{R}
$$

for all $j=1, \ldots, k$.
$\mathcal{C}_{i j} \ldots$ set of all Reeb chords connecting \mathcal{C}_{i} and \mathcal{C}_{j}
$\mathcal{C}_{i}:=\mathcal{C}_{i i} \amalg\left\{e_{i}\right\}, \mathcal{C}:=\coprod_{i, j} \mathcal{C}_{i j} \backslash\left\{e_{i}\right\}$
φ defines for any closed Reeb orbit and any Reeb chord c a grading $|c| \in \mathbb{Z}$. We set $\left|e_{i}\right|=0$ and define a \mathbb{K}-algebra

$$
R:=\operatorname{span}_{\mathbb{K}}\left(e_{1}, \ldots, e_{k}\right) ; \quad e_{i} \cdot e_{j}=\delta_{i j} e_{i}
$$

The Legendrian Homology Algebra

Maslov class assumption:
For any complex structure J on ξ we can choose a nowhere vanishing alternating \mathbb{C}-multilinear $\varphi: \Lambda^{n-1} \xi \rightarrow \mathbb{C}$ such that

$$
\varphi\left(\left(T \Lambda_{j}\right)^{k}\right) \in \mathbb{R}
$$

for all $j=1, \ldots, k$.
$\mathcal{C}_{i j} \ldots$ set of all Reeb chords connecting \mathcal{C}_{i} and \mathcal{C}_{j}
$\mathcal{C}_{i}:=\mathcal{C}_{i i} \amalg\left\{e_{i}\right\}, \mathcal{C}:=\coprod_{i, j} \mathcal{C}_{i j} \backslash\left\{e_{i}\right\}$
φ defines for any closed Reeb orbit and any Reeb chord c a grading $|c| \in \mathbb{Z}$. We set $\left|e_{i}\right|=0$ and define a \mathbb{K}-algebra

$$
R:=\operatorname{span}_{\mathbb{K}}\left(e_{1}, \ldots, e_{k}\right) ; \quad e_{i} \cdot e_{j}=\delta_{i j}
$$

$\mathbb{K}\langle\mathcal{C}\rangle$ is a left-right R-module via

$$
\begin{aligned}
& e_{i} \cdot c=\delta_{i j} c \text { for } c \in \mathcal{C}_{\ell_{j}} \\
& c \cdot e_{i}=\delta_{i j} c \text { for } c \in \mathcal{C}_{j \ell}
\end{aligned}
$$

The Legendrian Homology Algebra

The Legendrian homology algebra is defined as

$$
\begin{aligned}
L H A(\Lambda) & :=R \oplus \mathbb{K}\langle\mathcal{C}\rangle \oplus \mathbb{K}\langle\mathcal{C}\rangle \otimes_{R} \mathbb{K}\langle\mathcal{C}\rangle \oplus \mathbb{K}\langle\mathcal{C}\rangle \otimes_{R} \mathbb{K}\langle\mathcal{C}\rangle \otimes_{R} \mathbb{K}\langle\mathcal{C}\rangle \oplus \ldots \\
& \left.=\mathbb{K}\left\langle c_{1} c_{2} \ldots c_{R}\right| \ell, i_{1}, \ldots, i_{\ell+1} \in \mathbb{N}, c_{i} \in \mathcal{C}_{j_{i+1}, j_{i}} \text { for } i=1, \ldots, \ell\right\rangle
\end{aligned}
$$

The Legendrian Homology Algebra

The Legendrian homology algebra is defined as

$$
\begin{aligned}
L H A(\Lambda) & :=R \oplus \mathbb{K}\langle\mathcal{C}\rangle \oplus \mathbb{K}\langle\mathcal{C}\rangle \otimes_{R} \mathbb{K}\langle\mathcal{C}\rangle \oplus \mathbb{K}\langle\mathcal{C}\rangle \otimes_{R} \mathbb{K}\langle\mathcal{C}\rangle \otimes_{R} \mathbb{K}\langle\mathcal{C}\rangle \oplus \ldots \\
& \left.=\mathbb{K}\left\langle c_{1} c_{2} \ldots c_{k}\right| \ell, i_{1}, \ldots, i_{\ell+1} \in \mathbb{N}, c_{i} \in \mathcal{C}_{j_{i+1}, j_{i}} \text { for } i=1, \ldots, \ell\right\rangle
\end{aligned}
$$

$c_{1} \ldots c_{k}$ satisfying condition are called linearly composable.

The Legendrian Homology Algebra

The Legendrian homology algebra is defined as

$$
\begin{aligned}
L H A(\Lambda) & :=R \oplus \mathbb{K}\langle\mathcal{C}\rangle \oplus \mathbb{K}\langle\mathcal{C}\rangle \otimes_{R} \mathbb{K}\langle\mathcal{C}\rangle \oplus \mathbb{K}\langle\mathcal{C}\rangle \otimes_{R} \mathbb{K}\langle\mathcal{C}\rangle \otimes_{R} \mathbb{K}\langle\mathcal{C}\rangle \oplus \ldots \\
& \left.=\mathbb{K}\left\langle c_{1} c_{2} \ldots c_{k}\right| \ell, i_{1}, \ldots, i_{\ell+1} \in \mathbb{N}, c_{i} \in \mathcal{C}_{j_{i+1}, j_{i}} \text { for } i=1, \ldots, \ell\right\rangle
\end{aligned}
$$

$c_{1} \ldots c_{k}$ satisfying condition are called linearly composable.
Choose generic compatible almost complex structure J on $\mathbb{R} \times Y$. The differential $d: \operatorname{LHA}(\Lambda) \rightarrow \operatorname{LHA}(\Lambda)$ is defined on chords $c \in \mathcal{C}$ via

$$
d_{L H A C}:=\sum_{|c|=\sum\left|b_{j}\right|+1} \underbrace{n_{c ; b_{1} \ldots b_{m}} b_{1} \ldots b_{m}}_{\epsilon \mathbb{Z}}
$$

where

$$
n_{c ; b_{1} \ldots b_{m}}=\hat{\sharp} \mathcal{M}_{\Lambda}^{Y}\left(c ; b_{1}, \ldots, b_{m}\right) / \mathbb{R}
$$

$d_{\text {LHA }}\left(e_{i}\right)=0$, and extended to $\operatorname{LHA}(\Lambda)$ using the graded Leibniz rule.

The Legendrian Homology Algebra

The Legendrian homology algebra is defined as

$$
\begin{aligned}
L H A(\Lambda) & :=R \oplus \mathbb{K}\langle\mathcal{C}\rangle \oplus \mathbb{K}\langle\mathcal{C}\rangle \otimes_{R} \mathbb{K}\langle\mathcal{C}\rangle \oplus \mathbb{K}\langle\mathcal{C}\rangle \otimes_{R} \mathbb{K}\langle\mathcal{C}\rangle \otimes_{R} \mathbb{K}\langle\mathcal{C}\rangle \oplus \ldots \\
& \left.=\mathbb{K}\left\langle c_{1} c_{2} \ldots c_{k}\right| \ell, i_{1}, \ldots, i_{\ell+1} \in \mathbb{N}, c_{i} \in \mathcal{C}_{j_{i+1}, j_{i}} \text { for } i=1, \ldots, \ell\right\rangle
\end{aligned}
$$

$c_{1} \ldots c_{k}$ satisfying condition are called linearly composable.
Choose generic compatible almost complex structure J on $\mathbb{R} \times Y$. The differential $d: \operatorname{LHA}(\Lambda) \rightarrow \operatorname{LHA}(\Lambda)$ is defined on chords $c \in \mathcal{C}$ via

$$
d_{L H A C}:=\sum_{|c|=\sum\left|b_{j}\right|+1} n_{c ; b_{1} \ldots b_{m}} b_{1} \ldots b_{m}
$$

where

$$
n_{c ; b_{1} \ldots b_{m}}=\hat{\sharp} \mathcal{M}_{\Lambda}^{Y}\left(c ; b_{1}, \ldots, b_{m}\right) / \mathbb{R}
$$

$d_{\text {LHA }}\left(e_{i}\right)=0$, and extended to $\operatorname{LHA}(\Lambda)$ using the graded Leibniz rule.
$d_{L H A}$ is correctly defined: If $n_{c ; b_{1} \ldots b_{m}} \neq 0$ then $b_{1} \ldots b_{m}$ are linearly decomposable.

$$
\mathcal{M}_{\Lambda}^{Y}\left(c ; b_{1}, \ldots, b_{m}\right)
$$

$\angle \mathbb{H} A(\Lambda)$ and $L \mathbb{H} A\left(\Lambda_{i}, \Lambda\right)$

We denote by $L H A\left(\Lambda_{i} ; \Lambda\right)$ the differential graded subalgebra of $\operatorname{LHA}(\Lambda)$ of words which begin and end on Λ_{i}.

$\operatorname{LH} A(\Lambda)$ and $L \mathbb{H} A\left(\Lambda_{i}, \Lambda\right)$

We denote by $L H A\left(\Lambda_{i} ; \Lambda\right)$ the differential graded subalgebra of $L H A(\Lambda)$ of words which begin and end on Λ_{i}.

Proposition 4.3.: $d_{\text {LHA }}^{2}=0$. The homologies
$\operatorname{LH} A(\Lambda):=H_{*}\left(L H A(\Lambda), d_{L H A}\right) \quad$ and $\quad L \mathbb{H} A\left(\Lambda_{i} ; \Lambda\right):=H_{*}\left(L H A\left(\Lambda_{i} \Lambda\right), d_{L 1}\right.$
are independent of all choices (α, J, \ldots) and Legendrian isotopy invariants.

Setup

- $(\bar{X}, \omega, Z) \ldots$ Liouville domain, $\bar{X}_{0} \subset \operatorname{int} \bar{X}$ subdomain such that Z points outward at $Y_{0}=\partial \bar{X}_{0}$;
- $\bar{W}:=\bar{X} \backslash \operatorname{int} \bar{X}_{0} \ldots$ Liouville cobordism, $\partial_{-} \bar{W}=Y_{0}, \partial_{+} \bar{W}=Y:=\partial \bar{X}$;
- $W, X, X_{0} \ldots$ completions of $\bar{W}, \bar{X}, \bar{X}_{0}$
- $L \subset W$...exact Lagrangian cobordism between Legendrians $\Lambda_{-} \subset Y_{0}$ and $\Lambda_{+} \subset Y$.
Define homomorphism $F_{L}^{W}: \operatorname{LHA}\left(\Lambda_{+}\right) \rightarrow L H A\left(\Lambda_{-}\right)$on chords $c \in \mathcal{C}\left(\Lambda_{+}\right)$

$$
F_{L}^{W}(c):=\sum_{|c|=\sum\left|b_{j}\right|} m_{c ; b_{1} \ldots b_{m}} b_{1} \ldots b_{m}
$$

where

$$
m_{c ; b_{1} \ldots b_{m}}=\hat{\sharp} \mathcal{M}_{L}^{W}\left(c ; b_{1}, \ldots, b_{m}\right),
$$

where $b_{1}, \ldots, b_{m} \in \mathcal{C}\left(\Lambda_{-}\right)$.

Proposition 4.4: (1) F_{L}^{W} is a homomorphism of graded algebras which is independent up to chain homotopy of all choices.
(2) If $L=\coprod_{j=0}^{k} L_{k}$ and $L_{j} \cap \partial_{+} \bar{W}=\emptyset$ for $j>0$ $F_{L}^{W}\left(L H A\left(\Lambda_{+}\right)\right) \subset L H A\left(\Lambda_{0-} ; \Lambda_{-}\right)$.

Proposition 4.4: (1) F_{L}^{W} is a homomorphism of graded algebras which is independent up to chain homotopy of all choices.
(2) If $L=\coprod_{j=0}^{k} L_{k}$ and $L_{j} \cap \partial_{+} \bar{W}=\emptyset$ for $j>0$ $F_{L}^{W}\left(L H A\left(\Lambda_{+}\right)\right) \subset L H A\left(\Lambda_{0-} ; \Lambda_{-}\right)$.
$\Lambda_{0-}:=L_{0} \cap \partial_{-} \bar{W}$
In particular, F_{L}^{W} induces homomorphism

$$
f_{L}^{W}: \operatorname{LH} A\left(\Lambda_{+}\right) \rightarrow \operatorname{LH} A\left(\Lambda_{0_{-}} ; \Lambda_{-}\right)
$$

Deformations $L \mathbb{H} A(\wedge ; q)$

Choose 0 -cycle q representing a homology class $\mathbf{q} \in H_{0}(\Lambda)$:

Deformations $L \mathbb{H} A(\wedge ; q)$

Choose 0 -cycle q representing a homology class $\mathbf{q} \in H_{0}(\Lambda)$: Choose a finite set of points on Λ, at most one onm each connected component.
Assumption: The endpoints of the Reeb orbits and q are disjoint.

Deformations $L \mathbb{H} A(\wedge ; q)$

Choose 0 -cycle q representing a homology class $\mathbf{q} \in H_{0}(\Lambda)$: Choose a finite set of points on Λ, at most one onm each connected component.
Assumption: The endpoints of the Reeb orbits and q are disjoint.
Define

$$
L H A(\Lambda ; \mathbf{q}):=R \oplus \mathbb{K}\langle\mathcal{C} \cup\{q\}\rangle \oplus \mathbb{K}\langle\mathcal{C} \cup\{q\}\rangle \otimes_{R} \mathbb{K}\langle\mathcal{C} \cup\{q\}\rangle \oplus \ldots
$$

Deformations $L \mathbb{H} A(\wedge ; q)$

Choose 0 -cycle q representing a homology class $\mathbf{q} \in H_{0}(\Lambda)$: Choose a finite set of points on Λ, at most one onm each connected component.
Assumption: The endpoints of the Reeb orbits and q are disjoint.
Define

$$
\operatorname{LHA}(\Lambda ; \mathbf{q}):=R \oplus \mathbb{K}\langle\mathcal{C} \cup\{q\}\rangle \oplus \mathbb{K}\langle\mathcal{C} \cup\{q\}\rangle \otimes_{R} \mathbb{K}\langle\mathcal{C} \cup\{q\}\rangle \oplus \ldots
$$

where q is an element of degree $n-2$.

Deformations $L \mathbb{H} A(\wedge ; q)$

Choose 0 -cycle q representing a homology class $\mathbf{q} \in H_{0}(\Lambda)$:
Choose a finite set of points on Λ, at most one on each connected component.
Assumption: The endpoints of the Reeb orbits and q are disjoint.
Define

$$
L H A(\Lambda ; \mathbf{q}):=R \oplus \mathbb{K}\langle\mathcal{C} \cup\{q\}\rangle \oplus \mathbb{K}\langle\mathcal{C} \cup\{q\}\rangle \otimes_{R} \mathbb{K}\langle\mathcal{C} \cup\{q\}\rangle
$$ where q is an element of degree $n-2$.

The differential $d_{L H A ; q}$ is defined on a chord $c \in \mathcal{C}(\Lambda)$ via

$$
d_{L H A ; q} c:=\sum_{|c|=\sum\left|b_{j}\right|+1+k(n-2) ; k=k_{0}+\ldots+k_{m}} \underbrace{n_{c ; b_{1} \ldots b_{m} ; k_{0}, \ldots, k_{m}} q^{k_{0}} b_{1} q^{k_{1}} \ldots q^{k_{m}} q^{k_{m}}}_{\in \mathbb{Z}}
$$

where
$n_{c ; b_{1} \ldots b_{m} ; k_{0}, \ldots, k_{m}}=\hat{\sharp}(e v_{k}^{-1}(\underbrace{q \times \ldots \times q}) / \mathbb{R} \subset \mathcal{M}_{\Lambda}^{Y}\left(c ; b_{1}, \ldots, b_{m} ; k_{0}, \ldots, k_{m}\right) / 1$ $d_{L H A ; q} q=0$ and extend it to all words using graded Leibniz rule.

$\operatorname{LH} A(\Lambda ; q)$

Proposition 4.5: $\quad d_{L H A ; q}^{2}=0$. The homology

$$
\operatorname{LH} A(\Lambda ; q)=H_{*}\left(L H A(\wedge ; q), d_{L H A ; q}\right)
$$

is independent of all choices (including representative q) and Legendrian isotopy invariant up to isomorphisms preserving q.

$L \mathbb{H} A(\Lambda ; q)$

Proposition 4.5: $\quad d_{L H A ; q}^{2}=0$. The homology

$$
L \mathbb{H} A(\Lambda ; q)=H_{*}\left(L H A(\Lambda ; q), d_{L H A ; q}\right)
$$

is independent of all choices (including representative q) and Legendrian isotopy invariant up to isomorphisms preserving q. $\Lambda \subset Y$ connected Legendrian submanifold, $q \in \Lambda . \Lambda_{f} \subset Y \backslash \Lambda$ small Legendrian unknot, $\operatorname{lk}\left(\Lambda, \Lambda_{f}\right)= \pm 1$.

$L \mathbb{H} A(\Lambda ; q)$

Proposition 4.5: $\quad d_{L H A ; q}^{2}=0$. The homology

$$
L \mathbb{H} A(\Lambda ; q)=H_{*}\left(L H A(\Lambda ; q), d_{L H A ; q}\right)
$$

is independent of all choices (including representative q) and Legendrian isotopy invariant up to isomorphisms preserving q.
$\Lambda \subset Y$ connected Legendrian submanifold, $q \in \Lambda . \Lambda_{f} \subset Y \backslash \Lambda$ small Legendrian unknot, $\operatorname{lk}\left(\Lambda, \Lambda_{f}\right)= \pm 1$.
$A=\mathbb{K}\left\langle b_{1} q^{k_{1}} b_{2} \ldots b_{m} q\right\rangle \subset\left(L H A(\Lambda ; q), d_{L H A ; q}\right)$ unital subalgebra. Define

$$
B:=A /\left(q^{2}\right)
$$

$d_{L H A ; q}$ descends to d_{B} on B.

$L \mathbb{H} A(\Lambda ; q)$

Proposition 4.5: $\quad d_{L H A ; q}^{2}=0$. The homology

$$
L \mathbb{H} A(\Lambda ; q)=H_{*}\left(L H A(\Lambda ; q), d_{L H A ; q}\right)
$$

is independent of all choices (including representative q) and Legendrian isotopy invariant up to isomorphisms preserving q.
$\Lambda \subset Y$ connected Legendrian submanifold, $q \in \Lambda . \Lambda_{f} \subset Y \backslash \Lambda$ small Legendrian unknot, $\operatorname{lk}\left(\Lambda, \Lambda_{f}\right)= \pm 1$.
$A=\mathbb{K}\left\langle b_{1} q^{k_{1}} b_{2} \ldots b_{m} q\right\rangle \subset\left(L H A(\Lambda ; q), d_{L H A ; q}\right)$ unital subalgebra. Define

$$
B:=A /\left(q^{2}\right)
$$

$d_{L H A ; q}$ descends to d_{B} on B.
Proposition 4.6: $L \mathbb{H} A\left(\Lambda_{f} ; \wedge \cup \Lambda_{f}\right) \cong H_{*}\left(B, d_{B}\right)$

The Cyclic Complex $L H^{c y c}(\Lambda)$
$L H O(\Lambda) \subset L H A(\Lambda) .$. subalgebra of cyclically composable monomials, $d_{L H O}=\left.d_{\text {LHA }}\right|_{L H O(\Lambda)}$.

The Cyclic Complex $L H^{c y c}(\Lambda)$

$L H O(\Lambda) \subset L H A(\Lambda \ldots$..subalgebra of cyclically composable $\begin{aligned} & \text { monomials, } d_{L H O}=\left.d_{L H A}\right|_{L H O}(\Lambda) . \\ & L H O^{+}(\Lambda):=\operatorname{LHO}(\Lambda) / R\end{aligned} \quad \operatorname{LHO}(\Lambda)=\underset{i}{\oplus} L H A\left(\Lambda_{i}, \Lambda\right)$

The Cyclic Complex $L H^{c y c}(\Lambda)$

$L H O(\Lambda) \subset L H A(\Lambda \ldots$..subalgebra of cyclically composable monomials, $d_{L H O}=\left.d_{L H A}\right|_{L H O(\Lambda)}$.
$L H O^{+}(\Lambda):=L H O(\Lambda) / R$
$P: \mathrm{LHO}^{+}(\Lambda) \rightarrow \mathrm{LHO}^{+}(\Lambda)$ induced by

$$
P\left(c_{1} c_{2} \ldots c_{\ell}\right)=(-1)^{\left|c_{1}\right|\left(\left|c_{2}\right|+\ldots+\left|c_{\ell}\right|\right)} c_{2} \ldots c_{\ell} c_{1} .
$$

The Cyclic Complex $L H^{c y c}(\Lambda)$

$L H O(\Lambda) \subset L H A(\Lambda \ldots$..subalgebra of cyclically composable monomials, $d_{L H O}=\left.d_{L H A}\right|_{L H O(\Lambda)}$.
$L H O^{+}(\Lambda):=L H O(\Lambda) / R$
$P: \mathrm{LHO}^{+}(\Lambda) \rightarrow \mathrm{LHO}^{+}(\Lambda)$ induced by

$$
P\left(c_{1} c_{2} \ldots c_{\ell}\right)=(-1)^{\left|c_{1}\right|\left(\left|c_{2}\right|+\ldots+\left|c_{\ell}\right|\right)} c_{2} \ldots c_{\ell} c_{1} .
$$

$L H O^{c y c}(\Lambda)=L H O^{+}(\Lambda) / \mathrm{im}(1-P), d_{c y c}$ induced differential.

The Cyclic Complex $L H^{c y c}(\Lambda)$

$L H O(\Lambda) \subset L H A(\Lambda \ldots$..subalgebra of cyclically composable monomials, $d_{L H O}=\left.d_{L H A}\right|_{L H O}(\Lambda)$.
$L H O^{+}(\Lambda):=L H O(\Lambda) / R$
$P: \mathrm{LHO}^{+}(\Lambda) \rightarrow \mathrm{LHO}^{+}(\Lambda)$ induced by

$$
P\left(c_{1} c_{2} \ldots c_{\ell}\right)=(-1)^{\left|c_{1}\right|\left(\left|c_{2}\right|+\ldots+\left|c_{\ell}\right|\right)} c_{2} \ldots c_{\ell} c_{1} .
$$

$L H \emptyset^{\text {cyc }}(\Lambda)=L H O^{+}(\Lambda) / \mathrm{im}(1-P), d_{c y c}$ induced differential.
$L H \phi^{c y c}$ is not an algebra. If $w=c_{1} \ldots c_{\ell} \in L H O^{+}(\Lambda)$ we denote $(w) \in L H \varnothing^{c y c}(\Lambda)$ and the multiplicity of (w) is the largest $k \in \mathbb{N}$ such that $(w)=\left(v^{k}\right)$ for some $v \in L H O^{+}(\Lambda)$.
Proposition 4.7: $d_{c y c}^{2}=0$ and

$$
L \mathbb{H}^{c y c}(\Lambda)=H_{*}\left(L H^{c y c}(\Lambda), d_{c y c}\right)
$$

is independent of all choices and is Legendrian isotopy invariant of Λ.

The Complex $\mathrm{LH}^{\mathrm{H}_{0+}}$

$$
=\angle 40^{+}(1)
$$

$$
L H^{H_{0}+}(\Lambda):=\widehat{\angle H O^{+}}(\Lambda) \oplus \widehat{L H O}^{+}(\Lambda)
$$

with grading shift $\widehat{L H O}^{+}(\Lambda)=L H O^{+}(\Lambda)[1]$.

The Complex $\mathrm{LH}^{\mathrm{H}_{0+}}$

$$
L H^{H_{0+}}(\Lambda):=L H O^{+}(\Lambda) \oplus \widehat{L H O}^{+}(\Lambda)
$$

with grading shift $\widehat{L H O}^{+}(\Lambda)=L H O^{+}(\Lambda)[1]$.
For $w=c_{1} \ldots c_{\ell} \in L H O^{+}(\Lambda)$ we denote by $\check{w}:=\check{c}_{1} \ldots c_{\ell} \in L H O^{+}(\Lambda)$ and $\hat{w}:=\hat{c}_{1} c_{2} \ldots c_{\ell} \in \widehat{L H O}^{+}(\Lambda)$ the corresponding monomials.

The Complex $\mathrm{LH}^{\mathrm{H}_{0+}}$

$$
L H^{H_{0}^{+}}(\Lambda):=L H O^{+}(\Lambda) \oplus \widehat{L H O}^{+}(\Lambda)
$$

with grading shift $\widehat{L H O}^{+}(\Lambda)=L H O^{+}(\Lambda)[1]$.
For $w=c_{1} \ldots c_{\ell} \in L H O^{+}(\Lambda)$ we denote by $w:=c_{1} \ldots c_{\ell} \in L H O^{+}(\Lambda)$ and $\hat{w}:=\hat{c}_{1} c_{2} \ldots c_{\ell} \in \widehat{L H O}^{+}(\Lambda)$ the corresponding monomials.
Define $S: \mathrm{LHO}^{+}(\Lambda) \rightarrow \widehat{\mathrm{LHO}}^{+}(\Lambda)$ via
$S\left(c_{1} \ldots c_{\ell}\right):=\hat{c}_{1} c_{2} \ldots c_{\ell}+(-1)^{\left|c_{1}\right|} c_{1} \hat{c}_{2} \ldots c_{\ell}+\ldots+(-1)^{\left|c_{1} \ldots c_{\ell-1}\right|} c_{1} \ldots \hat{c}_{\ell}$.

The Complex $\mathrm{LH}^{\mathrm{H}_{0+}}$

$$
L H^{H_{0+}}(\Lambda):=L H O^{+}(\Lambda) \oplus \widehat{L H O}^{+}(\Lambda)
$$

with grading shift $\widehat{L H O}^{+}(\Lambda)=L H O^{+}(\Lambda)[1]$.
For $w=c_{1} \ldots c_{\ell} \in L H O^{+}(\Lambda)$ we denote by $w:=c_{1} \ldots c_{\ell} \in L H O^{+}(\Lambda)$ and $\hat{w}:=\hat{c}_{1} c_{2} \ldots c_{\ell} \in \widehat{L H O}^{+}(\Lambda)$ the corresponding monomials.
Define $S: \mathrm{LHO}^{+}(\Lambda) \rightarrow \widehat{\mathrm{LHO}}^{+}(\Lambda)$ via
$S\left(c_{1} \ldots c_{\ell}\right):=\hat{c}_{1} c_{2} \ldots c_{\ell}+(-1)^{\mid c_{1}} c_{1} \hat{c}_{2} \ldots c_{\ell}+\ldots+(-1)^{\mid c_{1} \ldots c_{\ell-1}} c_{1} \ldots \hat{c}_{\ell}$.
The differential $d_{H_{0+}}: L H^{H_{0+}} \rightarrow L H^{H_{0+}}$ is given by

$$
d_{\mathrm{H}_{0+}}:=\left(\begin{array}{cc}
\check{d}_{\mathrm{LHO}^{+}} & d_{\mathrm{MH}_{\mathrm{O}^{+}}} \\
0 & \hat{d}_{\mathrm{LHO}}
\end{array}\right)
$$

The Complex $\mathrm{LH}^{\mathrm{H}_{0+}}$

$$
L H^{H_{0}^{+}}(\Lambda):=L H O^{+}(\Lambda) \oplus \widehat{L H O}^{+}(\Lambda)
$$

with grading shift $\widehat{L H O}^{+}(\Lambda)=L H O^{+}(\Lambda)[1]$.
For $w=c_{1} \ldots c_{\ell} \in L H O^{+}(\Lambda)$ we denote by $w:=c_{1} \ldots c_{\ell} \in L H O^{+}(\Lambda)$ and $\hat{w}:=\hat{c}_{1} c_{2} \ldots c_{\ell} \in \widehat{L H O}^{+}(\Lambda)$ the corresponding monomials.
Define $S: \mathrm{LHO}^{+}(\Lambda) \rightarrow \widehat{\mathrm{LHO}}^{+}(\Lambda)$ via
$S\left(c_{1} \ldots c_{\ell}\right):=\hat{c}_{1} c_{2} \ldots c_{\ell}+(-1)^{\mid c_{1}} c_{1} \hat{c}_{2} \ldots c_{\ell}+\ldots+(-1)^{\mid c_{1} \ldots c_{\ell-1}} c_{1} \ldots \hat{c}_{\ell}$.
The differential $d_{H_{0+}}: L H^{H_{0+}} \rightarrow: L H^{H_{0+}}$ is given by

$$
d_{H_{0+}}:=\left(\begin{array}{cc}
\check{d}_{L H O^{+}} & d_{M \mathrm{dHO}_{0+}} \\
0 & \hat{d}_{L H O^{+}}
\end{array}\right)
$$

with

$$
\hat{d}_{L H O^{+}}\left(\hat{c} w^{\prime}\right)=S\left(d_{L H O^{+}} c\right) w^{\prime}+(-1)^{|c|+1} \hat{c}\left(d_{L H O^{+}} w^{\prime}\right)
$$

for a chord c and $w^{\prime} \in \operatorname{LHA}(\Lambda)$ such that $c w^{\prime} \in L H O^{+}(\Lambda)$

The Complex $\mathrm{LH}^{\mathrm{H}_{0+}}$

$$
L H^{H_{0+}}(\Lambda):=L H O^{+}(\Lambda) \oplus \widehat{L H O}^{+}(\Lambda)
$$

with grading shift $\widehat{L H O}^{+}(\Lambda)=L H O^{+}(\Lambda)[1]$.
For $w=c_{1} \ldots c_{\ell} \in L H O^{+}(\Lambda)$ we denote by $w:=c_{1} \ldots c_{\ell} \in L H O^{+}(\Lambda)$ and $\hat{w}:=\hat{c}_{1} c_{2} \ldots c_{\ell} \in \widehat{L H O}^{+}(\Lambda)$ the corresponding monomials.
Define $S: \mathrm{LHO}^{+}(\Lambda) \rightarrow \widehat{\mathrm{LHO}}^{+}(\Lambda)$ via
$S\left(c_{1} \ldots c_{\ell}\right):=\hat{c}_{1} c_{2} \ldots c_{\ell}+(-1)^{\mid c_{1}} c_{1} \hat{c}_{2} \ldots c_{\ell}+\ldots+(-1)^{\mid c_{1} \ldots c_{\ell-1}} c_{1} \ldots \hat{c}_{\ell}$.
The differential $d_{H_{0+}}: L H^{H_{0+}} \rightarrow: L H^{H_{0+}}$ is given by

$$
d_{\mathrm{H}_{0+}}:=\left(\begin{array}{cc}
d_{\mathrm{LHO}^{+}} & d_{\mathrm{MH}_{\mathrm{O}^{+}}} \\
0 & \hat{d}_{\mathrm{LHO}}
\end{array}\right)
$$

with

$$
\hat{d}_{L H O^{+}}\left(\hat{c} w^{\prime}\right)=S\left(d_{L H O^{+}} c\right) w^{\prime}+(-1)^{|c|+1} \hat{c}\left(d_{L H O^{+}} w^{\prime}\right)
$$

for a chord c and $w^{\prime} \in L H A(\Lambda)$ such that $c w^{\prime} \in L H O^{+}(\Lambda)$ and $\omega=c_{1} \ldots c_{e}$

$$
d_{M H_{0+}}(\hat{w})=\hat{c}_{1} c_{2} \ldots c_{\ell}-c_{1} c_{2} \ldots \hat{c}_{\ell}
$$

Pmporition 4.8: $\quad \alpha_{h_{0}+}^{2}=0$

$$
\left.L H^{H_{6}+}(\Lambda):=H_{a}\left(L H^{H_{1}+}(1), d_{f_{\text {ot }}}\right)\right)
$$

in indyp't of all chaics \& a Regendrian ishory invaicel.
Propoitan 4.97 exad hiagel

$$
L_{H 1}{ }^{\text {Cyd }}(1) \xrightarrow{(-2)} L_{1} \operatorname{cgd}^{\text {cg }}(\lambda)
$$

$10)^{\top} L H^{H_{0}+}(1)^{〔 1]}$
? dead
depues!

