Differentialgeometrie I
WiSe 2021-22

Problem Set 11

To be discussed: 2.02.2022

Problem 1

This is essentially a repeat of Problem Set $5 \# 1$, but using concepts and terminology that we did not yet have at our disposal back then. Any nowhere-vanishing 1-form $\alpha \in \Omega^{1}(M)$ on a 3 -manifold M defines a 2 -dimensional distribution $\xi \subset T M$ by $\xi_{p}:=\operatorname{ker} \alpha_{p} \subset T_{p} M$.
(a) Deduce from the Frobenius theorem that ξ is an integrable distribution if and only if $\left.d \alpha\right|_{\xi}$ vanishes, and that the latter is also equivalent to the condition $\alpha \wedge d \alpha \equiv 0$.
(b) Show that for $\alpha=f(x) d y+g(x) d z \in \Omega^{1}\left(\mathbb{R}^{3}\right)$ with smooth functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$, ξ is integrable if and only if the vector $\left(f^{\prime}(x), g^{\prime}(x)\right) \in \mathbb{R}^{2}$ is a scalar multiple of $(f(x), g(x))$ for each x, and in this case, one can also write $\xi=\operatorname{ker}(A d y+B d z)$ for some constants $A, B \in \mathbb{R}$. (The integral submanifolds are then easy to find: they form a family of parallel planes in \mathbb{R}^{3}.)

Problem 2

An integrable k-dimensional distribution $\xi \subset T M$ on an n-manifold M determines a foliation of M, which one thinks of as a decomposition of M into a smooth family of disjoint integral submanifolds: every point in M belongs to a unique leaf of the foliation, meaning a maximal connected subset $L \subset M$ of the form $L=f(\Sigma)$ where Σ is a k-manifold and $i: \Sigma \rightarrow M$ is an injective immersion satisfying $\operatorname{im}\left(T_{p} f\right)=\xi_{p}$ for all $p \in \Sigma$.
Consider the integrable 1-dimensional distribution ξ on $\mathbb{T}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$ defined by $\xi=$ $\operatorname{ker}(a d x+b d y)$ for some constant $(a, b) \in \mathbb{R}^{2} \backslash\{0\}$, where x, y are the usual coordinates on \mathbb{R}^{2}, whose coordinate differentials descend to closed (but not exact) 1-forms on the quotient \mathbb{T}^{2}. Show that the leaves of the resulting foliation on \mathbb{T}^{2} can be described as follows:
(a) If $a / b \in \mathbb{Q}$ or $b=0$, they are compact submanifolds diffeomorphic to S^{1}.
(b) Otherwise, they are images of injective immersions $\mathbb{R} \rightarrow \mathbb{T}^{2}$ and are dense in \mathbb{T}^{2}. (The latter implies that they cannot be submanifolds.)

Problem 3

Suppose $\ell \rightarrow S^{1}$ is a non-orientable real line bundle over S^{1} (as for instance in Problem Set $8 \# 6)$. Find a path $\gamma:[0,1] \rightarrow S^{1}$ with $\gamma(0)=\gamma(1)=: p$ such that the parallel transport $P_{\gamma}^{t}: \ell_{p} \rightarrow \ell_{p}$ cannot be the identity map for any choice of connection ∇.

Problem 4

Suppose ∇ is a flat connection on a vector bundle $E \rightarrow M$.
(a) Show that for any smooth map $f: N \rightarrow M$, the pullback of ∇ to a connection on $f^{*} E \rightarrow N$ is also flat.
(b) Show that if $\left\{\gamma_{s}:[0,1] \rightarrow M\right\}_{s \in[0,1]}$ is a smooth family of paths with fixed end points $\gamma_{s}(0)=p$ and $\gamma_{s}(1)=q$ for all $s \in[0,1]$, then the two parallel transport maps $P_{\gamma_{0}}^{1}, P_{\gamma_{1}}^{1}: E_{p} \rightarrow E_{q}$ are the same.
Hint: Write $h(s, t):=\gamma_{s}(t)$ and use the fact that the pullback connection on $h^{*} E \rightarrow$
$[0,1] \times[0,1]$ is also flat. Can you construct global flat sections of $h^{*} E$? What will they look like on the subsets $[0,1] \times\{0\}$ and $[0,1] \times\{1\}$? 1

Problem 5

For a connection ∇ on a vector bundle $E \rightarrow M$, verify the following properties of the Riemann tensor that were stated in lecture:
(a) The map $R(X, Y) v=\nabla_{X} \nabla_{Y} v-\nabla_{Y} \nabla_{X} v-\nabla_{[X, Y]} v$ is $C^{\infty-\text { linear with respect to }}$ each of $X, Y \in \mathfrak{X}(M)$ and $v \in \Gamma(E)$.
(b) The components $R^{a}{ }_{j k b}$ of R with respect to a chart for M and frame for E over some subset $\mathcal{U} \subset M$ are related to the Christoffel symbols $\Gamma_{j k}^{a}$ by

$$
R^{a}{ }_{j k b}=\partial_{j} \Gamma_{k b}^{a}-\partial_{k} \Gamma_{j b}^{a}+\Gamma_{j c}^{a} \Gamma_{k b}^{c}-\Gamma_{k c}^{a} \Gamma_{j b}^{c} .
$$

Problem 6

Show that if ∇ is compatible with a bundle metric \langle,$\rangle on E \rightarrow M$, then the Riemann tensor satisfies the antisymmetry relation

$$
\langle R(X, Y) v, w\rangle+\langle v, R(X, Y) w\rangle=0 .
$$

Hint: Given $X, Y \in \mathfrak{X}(M)$ and $v, w \in \Gamma(E)$, compute $\left(\mathcal{L}_{X} \mathcal{L}_{Y}-\mathcal{L}_{Y} \mathcal{L}_{X}-\mathcal{L}_{[X, Y]}\right)(\langle v, w\rangle)$.

Problem 7

For a connection ∇ on the bundle $\pi: E \rightarrow M$, prove:
(a) For any $v \in \Gamma(E)=\Omega^{0}(M, E)$ and $X, Y \in T_{p} M$ at a point $p \in M, d_{\nabla}^{2} v:=d_{\nabla}\left(d_{\nabla} v\right) \in$ $\Omega^{2}(M, E)$ satisfies $\left(d_{\nabla}^{2} v\right)(X, Y)=R(X, Y) v$.
(b) The connection ∇ is flat if and only if the covariant exterior derivative operators $d_{\nabla}: \Omega^{k}(M, E) \rightarrow \Omega^{k+1}(M, E)$ for all $k \geqslant 0$ satisfy $d_{\nabla} \circ d_{\nabla}=0$.

Problem 8

Suppose $\pi: E \rightarrow M$ has structure group $G \subset \mathrm{GL}(m, \mathbb{F})$ with Lie algebra $\mathfrak{g} \subset \mathbb{F}^{m \times m}, \nabla$ is a G-compatible connection, $\Phi_{\alpha}: E \mathcal{U}_{\alpha} \rightarrow \mathcal{U}_{\alpha} \times \mathbb{F}^{m}$ is a G-compatible local trivialization and $A_{\alpha} \in \Omega^{1}\left(\mathcal{U}_{\alpha}, \mathfrak{g}\right)$ is the corresponding connection 1-form, satisfying the formula $\left(\nabla_{X} v\right)_{\alpha}=$ $\mathcal{L}_{X} v_{\alpha}+A_{\alpha}(X) v_{\alpha}$ for $X \in \mathfrak{X}\left(\mathcal{U}_{\alpha}\right)$ and $v \in \Gamma\left(\left.E\right|_{\mathcal{U}_{\alpha}}\right)$. We define the local curvature 2form $F_{\alpha} \in \Omega^{2}\left(\mathcal{U}_{\alpha}, \mathbb{F}^{m \times m}\right)$ in terms of the curvature 2 -form $\Omega_{K} \in \Omega^{2}(M, \operatorname{End}(E))$ by $\left(\Omega_{K}(X, Y) v\right)_{\alpha}=F_{\alpha}(X, Y) v_{\alpha}$.
(a) Prove the formula $F_{\alpha}(X, Y)=d A_{\alpha}(X, Y)+\left[A_{\alpha}(X), A_{\alpha}(Y)\right]$, where the bracket on the right hand side denotes the matrix commutator $[\mathbf{A}, \mathbf{B}]:=\mathbf{A B}-\mathbf{B A}$. Hint: Use the Riemann tensor as a stand-in for Ω_{K}.
(b) If $\Phi_{\beta}:\left.E\right|_{\mathcal{U}_{\beta}} \rightarrow \mathcal{U}_{\beta} \times \mathbb{F}^{m}$ is a second trivialization related to Φ_{α} by the transition map $g=g_{\beta \alpha}: \mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta} \rightarrow G$, show that $F_{\beta}(X, Y)=g F_{\alpha}(X, Y) g^{-1}$.
(c) Show that if G is abelian, then $F_{\alpha}=d A_{\alpha}$ and it is independent of the choice of trivialization, thus defining a global 2-form $F \in \Omega^{2}(M, \mathfrak{g})$. (It is sometimes also called the curvature 2 -form of ∇.)

[^0]
[^0]: ${ }^{1}$ For the purposes of Problem 4 , you are safe in pretending that $[0,1] \times[0,1]$ is a smooth manifold, rather than something exotic like a "manifold with boundary and corners". If this worries you, assume that the family of paths $\gamma_{s}:[0,1] \rightarrow M$ is defined for $s \in \mathbb{R}$ instead of just $s \in[0,1]$; this does not change the situation in any significant way.

