Differentialgeometrie I WiSe 2021–22

Problem Set 11

To be discussed: 2.02.2022

Problem 1

This is essentially a repeat of Problem Set 5 #1, but using concepts and terminology that we did not yet have at our disposal back then. Any nowhere-vanishing 1-form $\alpha \in \Omega^1(M)$ on a 3-manifold M defines a 2-dimensional distribution $\xi \subset TM$ by $\xi_p := \ker \alpha_p \subset T_pM$.

- (a) Deduce from the Frobenius theorem that ξ is an integrable distribution if and only if $d\alpha|_{\xi}$ vanishes, and that the latter is also equivalent to the condition $\alpha \wedge d\alpha \equiv 0$.
- (b) Show that for $\alpha = f(x) dy + g(x) dz \in \Omega^1(\mathbb{R}^3)$ with smooth functions $f, g : \mathbb{R} \to \mathbb{R}$, ξ is integrable if and only if the vector $(f'(x), g'(x)) \in \mathbb{R}^2$ is a scalar multiple of (f(x), g(x)) for each x, and in this case, one can also write $\xi = \ker(A dy + B dz)$ for some constants $A, B \in \mathbb{R}$. (The integral submanifolds are then easy to find: they form a family of parallel planes in \mathbb{R}^3 .)

Problem 2

An integrable k-dimensional distribution $\xi \subset TM$ on an n-manifold M determines a foliation of M, which one thinks of as a decomposition of M into a smooth family of disjoint integral submanifolds: every point in M belongs to a unique leaf of the foliation, meaning a maximal connected subset $L \subset M$ of the form $L = f(\Sigma)$ where Σ is a k-manifold and $i: \Sigma \to M$ is an injective immersion satisfying $\operatorname{im}(T_p f) = \xi_p$ for all $p \in \Sigma$. Consider the integrable 1-dimensional distribution ξ on $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$ defined by $\xi = \ker(a\,dx + b\,dy)$ for some constant $(a,b) \in \mathbb{R}^2 \setminus \{0\}$, where x,y are the usual coordinates on \mathbb{R}^2 , whose coordinate differentials descend to closed (but not exact) 1-forms on the quotient \mathbb{T}^2 . Show that the leaves of the resulting foliation on \mathbb{T}^2 can be described as follows:

- (a) If $a/b \in \mathbb{Q}$ or b = 0, they are compact submanifolds diffeomorphic to S^1 .
- (b) Otherwise, they are images of injective immersions $\mathbb{R} \to \mathbb{T}^2$ and are dense in \mathbb{T}^2 . (The latter implies that they cannot be submanifolds.)

Problem 3

Suppose $\ell \to S^1$ is a non-orientable real line bundle over S^1 (as for instance in Problem Set 8 #6). Find a path $\gamma:[0,1] \to S^1$ with $\gamma(0) = \gamma(1) =: p$ such that the parallel transport $P_{\gamma}^t: \ell_p \to \ell_p$ cannot be the identity map for any choice of connection ∇ .

Problem 4

Suppose ∇ is a flat connection on a vector bundle $E \to M$.

- (a) Show that for any smooth map $f: N \to M$, the pullback of ∇ to a connection on $f^*E \to N$ is also flat.
- (b) Show that if $\{\gamma_s: [0,1] \to M\}_{s \in [0,1]}$ is a smooth family of paths with fixed end points $\gamma_s(0) = p$ and $\gamma_s(1) = q$ for all $s \in [0,1]$, then the two parallel transport maps $P_{\gamma_0}^1, P_{\gamma_1}^1: E_p \to E_q$ are the same.

Hint: Write $h(s,t) := \gamma_s(t)$ and use the fact that the pullback connection on $h^*E \to \infty$

 $[0,1] \times [0,1]$ is also flat. Can you construct global flat sections of h^*E ? What will they look like on the subsets $[0,1] \times \{0\}$ and $[0,1] \times \{1\}$?

Problem 5

For a connection ∇ on a vector bundle $E \to M$, verify the following properties of the Riemann tensor that were stated in lecture:

- (a) The map $R(X,Y)v = \nabla_X \nabla_Y v \nabla_Y \nabla_X v \nabla_{[X,Y]} v$ is C^{∞} -linear with respect to each of $X,Y \in \mathfrak{X}(M)$ and $v \in \Gamma(E)$.
- (b) The components R^a_{jkb} of R with respect to a chart for M and frame for E over some subset $\mathcal{U} \subset M$ are related to the Christoffel symbols Γ^a_{jk} by

$$R^{a}_{jkb} = \partial_{j}\Gamma^{a}_{kb} - \partial_{k}\Gamma^{a}_{jb} + \Gamma^{a}_{jc}\Gamma^{c}_{kb} - \Gamma^{a}_{kc}\Gamma^{c}_{jb}.$$

Problem 6

Show that if ∇ is compatible with a bundle metric \langle , \rangle on $E \to M$, then the Riemann tensor satisfies the antisymmetry relation

$$\langle R(X,Y)v,w\rangle + \langle v,R(X,Y)w\rangle = 0.$$

Hint: Given $X, Y \in \mathfrak{X}(M)$ and $v, w \in \Gamma(E)$, compute $(\mathcal{L}_X \mathcal{L}_Y - \mathcal{L}_Y \mathcal{L}_X - \mathcal{L}_{[X,Y]})$ $(\langle v, w \rangle)$.

Problem 7

For a connection ∇ on the bundle $\pi: E \to M$, prove:

- (a) For any $v \in \Gamma(E) = \Omega^0(M, E)$ and $X, Y \in T_pM$ at a point $p \in M$, $d^2_{\nabla}v := d_{\nabla}(d_{\nabla}v) \in \Omega^2(M, E)$ satisfies $(d^2_{\nabla}v)(X, Y) = R(X, Y)v$.
- (b) The connection ∇ is flat if and only if the covariant exterior derivative operators $d_{\nabla}: \Omega^k(M, E) \to \Omega^{k+1}(M, E)$ for all $k \geq 0$ satisfy $d_{\nabla} \circ d_{\nabla} = 0$.

Problem 8

Suppose $\pi: E \to M$ has structure group $G \subset \operatorname{GL}(m, \mathbb{F})$ with Lie algebra $\mathfrak{g} \subset \mathbb{F}^{m \times m}$, ∇ is a G-compatible connection, $\Phi_{\alpha}: E|_{\mathcal{U}_{\alpha}} \to \mathcal{U}_{\alpha} \times \mathbb{F}^{m}$ is a G-compatible local trivialization and $A_{\alpha} \in \Omega^{1}(\mathcal{U}_{\alpha}, \mathfrak{g})$ is the corresponding connection 1-form, satisfying the formula $(\nabla_{X}v)_{\alpha} = \mathcal{L}_{X}v_{\alpha} + A_{\alpha}(X)v_{\alpha}$ for $X \in \mathfrak{X}(\mathcal{U}_{\alpha})$ and $v \in \Gamma(E|_{\mathcal{U}_{\alpha}})$. We define the local curvature 2-form $F_{\alpha} \in \Omega^{2}(\mathcal{U}_{\alpha}, \mathbb{F}^{m \times m})$ in terms of the curvature 2-form $\Omega_{K} \in \Omega^{2}(M, \operatorname{End}(E))$ by $(\Omega_{K}(X,Y)v)_{\alpha} = F_{\alpha}(X,Y)v_{\alpha}$.

- (a) Prove the formula $F_{\alpha}(X,Y) = dA_{\alpha}(X,Y) + [A_{\alpha}(X), A_{\alpha}(Y)]$, where the bracket on the right hand side denotes the matrix commutator $[\mathbf{A}, \mathbf{B}] := \mathbf{A}\mathbf{B} \mathbf{B}\mathbf{A}$. Hint: Use the Riemann tensor as a stand-in for Ω_K .
- (b) If $\Phi_{\beta}: E|_{\mathcal{U}_{\beta}} \to \mathcal{U}_{\beta} \times \mathbb{F}^{m}$ is a second trivialization related to Φ_{α} by the transition map $g = g_{\beta\alpha}: \mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta} \to G$, show that $F_{\beta}(X,Y) = gF_{\alpha}(X,Y)g^{-1}$.
- (c) Show that if G is abelian, then $F_{\alpha} = dA_{\alpha}$ and it is independent of the choice of trivialization, thus defining a global 2-form $F \in \Omega^2(M, \mathfrak{g})$. (It is sometimes also called the *curvature* 2-form of ∇ .)

¹For the purposes of Problem 4, you are safe in pretending that $[0,1] \times [0,1]$ is a smooth manifold, rather than something exotic like a "manifold with boundary and corners". If this worries you, assume that the family of paths $\gamma_s : [0,1] \to M$ is defined for $s \in \mathbb{R}$ instead of just $s \in [0,1]$; this does not change the situation in any significant way.