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Problem 1
Prove that in local coordinates on some open subset U of a pseudo-Riemannian 2-manifold
pΣ, gq, the Riemann tensor R P ΓpT 1

3Σq is determined on U by the component R1122.

Problem 2
The Ricci tensor Ric P ΓpT 0

2Mq can be defined on a Riemannian n-manifold pM, gq by

RicpY,Zq :�
ņ

j�1

xej , Rpej , Y qZy �
ņ

j�1

Riempej , ej , Y, Zq P R, for Y, Z P TpM, (1)

where e1, . . . , en is any choice of orthonormal basis of TpM at a point p P M . The following
sequence of exercises is aimed showing that this definition does not depend on the choice
of basis e1, . . . , en, and also generalizing it to the pseudo-Riemannian case:

(a) Use the Einstein summation convention to give a one-line proof that trpABq �
trpBAq for all pairs of square matrices A and B.

(b) Define trpAq for any linear map A : V Ñ V on a finite-dimensional vector space V .
(There is only one reasonable definition. Show that it is independent of choices.)

(c) Show that RicpY,Zq according to (1) is the trace of the linear map TpM Ñ TpM :
X ÞÑ RpX,Y qZ.

(d) If pM, gq is a pseudo-Riemannian manifold, then the trace in part (c) can be taken
as a definition of Ric, but the formula (1) is not quite right if g is indefinite. Fix it.

(e) Show that in local coordinates, the components Rkℓ of Ric are given by Rkℓ � Ri
ikℓ.

The trick used above to turn a type p1, 3q tensor into a type p0, 2q tensor is called con-
traction. One can contract further to define the scalar curvature, a function Scal : M Ñ R
that, on a Riemannian manifold pM, gq, can be written as

Scalppq :�
ņ

j�1

Ricpej , ejq �
ņ

j,k�1

Riempej , ej , ek, ekq P R, (2)

where e1, . . . , en P TpM again denotes an orthonormal basis.

(f) Show that (2) is independent of the choice of orthonormal basis e1, . . . , en P TpM
by reinterpreting it as a contraction (i.e. trace) of the tensor Ric7 P ΓpT 1

1Mq defined
via the relation xY,Ric7pZqy � RicpY,Zq.

(g) Taking the trace in part (f) as a general definition of Scal : M Ñ R for pseudo-
Riemannian manifolds pM, gq, rewrite (2) so that it is also valid when g is indefinite.

(h) Show that in local coordinates, Scal � gkℓRi
ikℓ.

(i) Prove that if dimM � 2, then R P ΓpT 1
3Mq is fully determined by Scal : M Ñ R.

Hint: Use Problem 1 in well-chosen coordinates near a given point p P M .

(j) Show that on a Riemannian 2-manifold, Scal is twice the Gaussian curvature KG.
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Problem 3
Prove: A closed surface Σ in Euclidean R3 cannot have KG ¤ 0 everywhere.
Hint: For some R ¡ 0, Σ must lie inside the closed ball of radius R and touch its boundary
tangentially at some point.

Problem 4

Prove that for the hyperboloid H :� tx2 � y2 � z2 � 1u in Euclidean R3, KGppq � �
1

|p|4
.

Hint: This can be a horrible computation, but it doesn’t have to be. For instance, there are
some obvious isometries that make it sufficient to consider a point of the form pr, 0, zq P H
with r2 � z2 � 1, which is the intersection of the smooth curves αptq � pcosh t, 0, sinh tq
and βptq � pr cos t, r sin t, zq in H. Since H is a level set of fpx, y, zq � x2 � y2 � z2, there
is a unit normal vector field of the form ν � g � ∇f for some function g : H Ñ p0,8q.
Try to convince yourself without any calculations that the curves α and β are tangent
to the principal directions. Then consider the following: if you know γptq P H satisfies
d
dtνpγptqq � λ 9γptq for some λ P R, what happens if you take the inner product of both
sides with 9γptq? Write ν � g �∇f and use this observation to compute the two principal
curvatures at pr, 0, zq. You will need to write down the function g for this, but you should
not need to differentiate it.
Final remark: It’s also possible there’s an easier way to do this that I haven’t thought of.

Problem 5
In Problem 5 on the take-home midterm, we established that the geodesic curves on the
Poincaré half-plane pH, hq, defined as H :� tpx, yq P R2 | y ¡ 0u with h :� 1

y2
pdx2 � dy2q,

are the vertical lines and the semicircles that meet the x-axis orthogonally.

(a) Write down the Riemannian volume form on pH, hq, and show that any region of the
form ra, bs� rc,8q � H for �8   a   b   8 and c ¡ 0 has finite area, while regions
of the form ra, bs � p0, cs � H have infinite area.

(b) By drawing pictures, show that the sum of the angles in a geodesic triangle in pH, hq
can be arbitrarily small. (By “geodesic triangle” we mean a compact region in H
bounded by three geodesic segments.)

(c) Pretend for the moment that you don’t know pH, hq is isometric to the hyperbolic
plane, and compute its Gaussian curvature.
Note: Since pH, hq is not given as a submanifold of R3, one should define KG : H Ñ R
in this case as the unique function satisfying RpX,Y qZ � �KG dvolpX,Y qJZ.

Problem 6
Suppose π : E Ñ M is a complex line bundle with a bundle metric x , y, so it has
structure group Up1q. Since Up1q is abelian, we showed in lecture that any metric connec-
tion ∇ on E Ñ M gives rise to a globally-defined imaginary-valued curvature 2-form
F P Ω2pM, up1qq � Ω2pM, iRq, which matches dAα on Uα � M for any Up1q-compatible
local trivialization Φα : E|Uα Ñ Uα � C with connection 1-form Aα P Ω1pM, up1qq. Show
that if p∇ is a second metric connection on E Ñ M with curvature 2-form pF P Ω2pM, up1qq,
then pF � F is exact. The cohomology class c1pEq :�

�
� 1

2πiF
�
P H2

dRpMq is thus indepen-
dent of the choice of connection; it is known as the first Chern class of E.
Hint: The two connections differ by a bililinear bundle map B : TM ` E Ñ E satisfy-
ing BpX, vq � p∇Xv �∇Xv. Reinterpret this as an EndpEq-valued 1-form, and then as a
complex-valued 1-form, using the fact that fibers of E are 1-dimensional.
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