HUMBOLDT-UNIVERSITÄT ZU BERLIN Institut für Mathematik C. Wendl, S. Dwivedi, O. Müller

Differentialgeometrie I

WiSe 2021–22

Problem Set 12

To be discussed: 9.02.2022

Problem 1

Prove that in local coordinates on some open subset \mathcal{U} of a pseudo-Riemannian 2-manifold (Σ, g) , the Riemann tensor $R \in \Gamma(T_3^1 \Sigma)$ is determined on \mathcal{U} by the component R_{1122} .

Problem 2

The Ricci tensor $\operatorname{Ric} \in \Gamma(T_2^0 M)$ can be defined on a Riemannian *n*-manifold (M, g) by

$$\operatorname{Ric}(Y,Z) := \sum_{j=1}^{n} \langle e_j, R(e_j,Y)Z \rangle = \sum_{j=1}^{n} \operatorname{Riem}(e_j,e_j,Y,Z) \in \mathbb{R}, \quad \text{for } Y,Z \in T_pM, \quad (1)$$

where e_1, \ldots, e_n is any choice of orthonormal basis of T_pM at a point $p \in M$. The following sequence of exercises is aimed showing that this definition does not depend on the choice of basis e_1, \ldots, e_n , and also generalizing it to the pseudo-Riemannian case:

- (a) Use the Einstein summation convention to give a one-line proof that tr(AB) = tr(BA) for all pairs of square matrices A and B.
- (b) Define tr(A) for any linear map $A: V \to V$ on a finite-dimensional vector space V. (There is only one reasonable definition. Show that it is independent of choices.)
- (c) Show that $\operatorname{Ric}(Y, Z)$ according to (1) is the trace of the linear map $T_pM \to T_pM$: $X \mapsto R(X, Y)Z$.
- (d) If (M, g) is a pseudo-Riemannian manifold, then the trace in part (c) can be taken as a definition of Ric, but the formula (1) is not quite right if g is indefinite. Fix it.
- (e) Show that in local coordinates, the components $R_{k\ell}$ of Ric are given by $R_{k\ell} = R^i_{ik\ell}$.

The trick used above to turn a type (1,3) tensor into a type (0,2) tensor is called *contraction*. One can contract further to define the *scalar curvature*, a function Scal : $M \to \mathbb{R}$ that, on a Riemannian manifold (M, g), can be written as

$$\operatorname{Scal}(p) := \sum_{j=1}^{n} \operatorname{Ric}(e_j, e_j) = \sum_{j,k=1}^{n} \operatorname{Riem}(e_j, e_j, e_k, e_k) \in \mathbb{R},$$
(2)

where $e_1, \ldots, e_n \in T_p M$ again denotes an orthonormal basis.

- (f) Show that (2) is independent of the choice of orthonormal basis $e_1, \ldots, e_n \in T_pM$ by reinterpreting it as a contraction (i.e. trace) of the tensor $\operatorname{Ric}^{\sharp} \in \Gamma(T_1^1M)$ defined via the relation $\langle Y, \operatorname{Ric}^{\sharp}(Z) \rangle = \operatorname{Ric}(Y, Z)$.
- (g) Taking the trace in part (f) as a general definition of Scal : $M \to \mathbb{R}$ for pseudo-Riemannian manifolds (M, g), rewrite (2) so that it is also valid when g is indefinite.
- (h) Show that in local coordinates, Scal = $g^{k\ell} R^i_{ik\ell}$.
- (i) Prove that if dim M = 2, then $R \in \Gamma(T_3^1 M)$ is fully determined by Scal : $M \to \mathbb{R}$. Hint: Use Problem 1 in well-chosen coordinates near a given point $p \in M$.
- (j) Show that on a Riemannian 2-manifold, Scal is twice the Gaussian curvature K_G .

Problem 3

Prove: A closed surface Σ in Euclidean \mathbb{R}^3 cannot have $K_G \leq 0$ everywhere. Hint: For some R > 0, Σ must lie inside the closed ball of radius R and touch its boundary tangentially at some point.

Problem 4

Prove that for the hyperboloid $H := \{x^2 + y^2 - z^2 = 1\}$ in Euclidean \mathbb{R}^3 , $K_G(p) = -\frac{1}{|p|^4}$. Hint: This can be a horrible computation, but it doesn't have to be. For instance, there are some obvious isometries that make it sufficient to consider a point of the form $(r, 0, z) \in H$ with $r^2 - z^2 = 1$, which is the intersection of the smooth curves $\alpha(t) = (\cosh t, 0, \sinh t)$ and $\beta(t) = (r \cos t, r \sin t, z)$ in H. Since H is a level set of $f(x, y, z) = x^2 + y^2 - z^2$, there is a unit normal vector field of the form $\nu = g \cdot \nabla f$ for some function $g : H \to (0, \infty)$. Try to convince yourself without any calculations that the curves α and β are tangent to the principal directions. Then consider the following: if you know $\gamma(t) \in H$ satisfies $\frac{d}{dt}\nu(\gamma(t)) = \lambda\dot{\gamma}(t)$ for some $\lambda \in \mathbb{R}$, what happens if you take the inner product of both sides with $\dot{\gamma}(t)$? Write $\nu = g \cdot \nabla f$ and use this observation to compute the two principal curvatures at (r, 0, z). You will need to write down the function g for this, but you should not need to differentiate it.

Final remark: It's also possible there's an easier way to do this that I haven't thought of.

Problem 5

In Problem 5 on the take-home midterm, we established that the geodesic curves on the Poincaré half-plane (\mathbb{H}, h) , defined as $\mathbb{H} := \{(x, y) \in \mathbb{R}^2 \mid y > 0\}$ with $h := \frac{1}{y^2}(dx^2 + dy^2)$, are the vertical lines and the semicircles that meet the x-axis orthogonally.

- (a) Write down the Riemannian volume form on (\mathbb{H}, h) , and show that any region of the form $[a, b] \times [c, \infty) \subset \mathbb{H}$ for $-\infty < a < b < \infty$ and c > 0 has finite area, while regions of the form $[a, b] \times (0, c] \subset \mathbb{H}$ have infinite area.
- (b) By drawing pictures, show that the sum of the angles in a geodesic triangle in (\mathbb{H}, h) can be arbitrarily small. (By "geodesic triangle" we mean a compact region in \mathbb{H} bounded by three geodesic segments.)
- (c) Pretend for the moment that you don't know (\mathbb{H}, h) is isometric to the hyperbolic plane, and compute its Gaussian curvature. Note: Since (\mathbb{H}, h) is not given as a submanifold of \mathbb{R}^3 , one should define $K_G : \mathbb{H} \to \mathbb{R}$ in this case as the unique function satisfying $R(X, Y)Z = -K_G \operatorname{dvol}(X, Y)JZ$.

Problem 6

Suppose $\pi : E \to M$ is a complex line bundle with a bundle metric \langle , \rangle , so it has structure group U(1). Since U(1) is abelian, we showed in lecture that any metric connection ∇ on $E \to M$ gives rise to a globally-defined imaginary-valued curvature 2-form $F \in \Omega^2(M, \mathfrak{u}(1)) = \Omega^2(M, i\mathbb{R})$, which matches dA_α on $\mathcal{U}_\alpha \subset M$ for any U(1)-compatible local trivialization $\Phi_\alpha : E|_{\mathcal{U}_\alpha} \to \mathcal{U}_\alpha \times \mathbb{C}$ with connection 1-form $A_\alpha \in \Omega^1(M, \mathfrak{u}(1))$. Show that if $\widehat{\nabla}$ is a second metric connection on $E \to M$ with curvature 2-form $\widehat{F} \in \Omega^2(M, \mathfrak{u}(1))$, then $\widehat{F} - F$ is exact. The cohomology class $c_1(E) := \left[-\frac{1}{2\pi i}F\right] \in H^2_{\mathrm{dR}}(M)$ is thus independent of the choice of connection; it is known as the first Chern class of E.

Hint: The two connections differ by a bililinear bundle map $B: TM \oplus E \to E$ satisfying $B(X, v) = \widehat{\nabla}_X v - \nabla_X v$. Reinterpret this as an End(E)-valued 1-form, and then as a complex-valued 1-form, using the fact that fibers of E are 1-dimensional.