Differentialgeometrie I
WiSe 2021-22

Problem Set 12

To be discussed: 9.02.2022

Problem 1

Prove that in local coordinates on some open subset \mathcal{U} of a pseudo-Riemannian 2-manifold (Σ, g), the Riemann tensor $R \in \Gamma\left(T_{3}^{1} \Sigma\right)$ is determined on \mathcal{U} by the component R_{1122}.

Problem 2

The Ricci tensor Ric $\in \Gamma\left(T_{2}^{0} M\right)$ can be defined on a Riemannian n-manifold (M, g) by

$$
\begin{equation*}
\operatorname{Ric}(Y, Z):=\sum_{j=1}^{n}\left\langle e_{j}, R\left(e_{j}, Y\right) Z\right\rangle=\sum_{j=1}^{n} \operatorname{Riem}\left(e_{j}, e_{j}, Y, Z\right) \in \mathbb{R}, \quad \text { for } Y, Z \in T_{p} M \tag{1}
\end{equation*}
$$

where e_{1}, \ldots, e_{n} is any choice of orthonormal basis of $T_{p} M$ at a point $p \in M$. The following sequence of exercises is aimed showing that this definition does not depend on the choice of basis e_{1}, \ldots, e_{n}, and also generalizing it to the pseudo-Riemannian case:
(a) Use the Einstein summation convention to give a one-line proof that $\operatorname{tr}(\mathbf{A B})=$ $\operatorname{tr}(\mathbf{B A})$ for all pairs of square matrices \mathbf{A} and \mathbf{B}.
(b) Define $\operatorname{tr}(A)$ for any linear map $A: V \rightarrow V$ on a finite-dimensional vector space V. (There is only one reasonable definition. Show that it is independent of choices.)
(c) Show that $\operatorname{Ric}(Y, Z)$ according to (1) is the trace of the linear map $T_{p} M \rightarrow T_{p} M$: $X \mapsto R(X, Y) Z$.
(d) If (M, g) is a pseudo-Riemannian manifold, then the trace in part (c) can be taken as a definition of Ric, but the formula (1) is not quite right if g is indefinite. Fix it.
(e) Show that in local coordinates, the components $R_{k \ell}$ of Ric are given by $R_{k \ell}=R_{i k \ell}^{i}$.

The trick used above to turn a type $(1,3)$ tensor into a type $(0,2)$ tensor is called contraction. One can contract further to define the scalar curvature, a function Scal : $M \rightarrow \mathbb{R}$ that, on a Riemannian manifold (M, g), can be written as

$$
\begin{equation*}
\operatorname{Scal}(p):=\sum_{j=1}^{n} \operatorname{Ric}\left(e_{j}, e_{j}\right)=\sum_{j, k=1}^{n} \operatorname{Riem}\left(e_{j}, e_{j}, e_{k}, e_{k}\right) \in \mathbb{R} \tag{2}
\end{equation*}
$$

where $e_{1}, \ldots, e_{n} \in T_{p} M$ again denotes an orthonormal basis.
(f) Show that (2) is independent of the choice of orthonormal basis $e_{1}, \ldots, e_{n} \in T_{p} M$ by reinterpreting it as a contraction (i.e. trace) of the tensor $\operatorname{Ric}^{\sharp} \in \Gamma\left(T_{1}^{1} M\right)$ defined via the relation $\left\langle Y, \operatorname{Ric}^{\sharp}(Z)\right\rangle=\operatorname{Ric}(Y, Z)$.
(g) Taking the trace in part (f) as a general definition of Scal : $M \rightarrow \mathbb{R}$ for pseudoRiemannian manifolds (M, g), rewrite (2) so that it is also valid when g is indefinite.
(h) Show that in local coordinates, $\mathrm{Scal}=g^{k \ell} R_{i k \ell}^{i}$.
(i) Prove that if $\operatorname{dim} M=2$, then $R \in \Gamma\left(T_{3}^{1} M\right)$ is fully determined by Scal : $M \rightarrow \mathbb{R}$. Hint: Use Problem 1 in well-chosen coordinates near a given point $p \in M$.
(j) Show that on a Riemannian 2-manifold, Scal is twice the Gaussian curvature K_{G}.

Problem 3

Prove: A closed surface Σ in Euclidean \mathbb{R}^{3} cannot have $K_{G} \leqslant 0$ everywhere.
Hint: For some $R>0$, Σ must lie inside the closed ball of radius R and touch its boundary tangentially at some point.

Problem 4

Prove that for the hyperboloid $H:=\left\{x^{2}+y^{2}-z^{2}=1\right\}$ in Euclidean $\mathbb{R}^{3}, K_{G}(p)=-\frac{1}{|p|^{4}}$. Hint: This can be a horrible computation, but it doesn't have to be. For instance, there are some obvious isometries that make it sufficient to consider a point of the form $(r, 0, z) \in H$ with $r^{2}-z^{2}=1$, which is the intersection of the smooth curves $\alpha(t)=(\cosh t, 0, \sinh t)$ and $\beta(t)=(r \cos t, r \sin t, z)$ in H. Since H is a level set of $f(x, y, z)=x^{2}+y^{2}-z^{2}$, there is a unit normal vector field of the form $\nu=g \cdot \nabla f$ for some function $g: H \rightarrow(0, \infty)$. Try to convince yourself without any calculations that the curves α and β are tangent to the principal directions. Then consider the following: if you know $\gamma(t) \in H$ satisfies $\frac{d}{d t} \nu(\gamma(t))=\lambda \dot{\gamma}(t)$ for some $\lambda \in \mathbb{R}$, what happens if you take the inner product of both sides with $\dot{\gamma}(t)$? Write $\nu=g \cdot \nabla f$ and use this observation to compute the two principal curvatures at $(r, 0, z)$. You will need to write down the function g for this, but you should not need to differentiate it.
Final remark: It's also possible there's an easier way to do this that I haven't thought of.

Problem 5

In Problem 5 on the take-home midterm, we established that the geodesic curves on the Poincaré half-plane (\mathbb{H}, h), defined as $\mathbb{H}:=\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\}$ with $h:=\frac{1}{y^{2}}\left(d x^{2}+d y^{2}\right)$, are the vertical lines and the semicircles that meet the x-axis orthogonally.
(a) Write down the Riemannian volume form on (\mathbb{H}, h), and show that any region of the form $[a, b] \times[c, \infty) \subset \mathbb{H}$ for $-\infty<a<b<\infty$ and $c>0$ has finite area, while regions of the form $[a, b] \times(0, c] \subset \mathbb{H}$ have infinite area.
(b) By drawing pictures, show that the sum of the angles in a geodesic triangle in (\mathbb{H}, h) can be arbitrarily small. (By "geodesic triangle" we mean a compact region in \mathbb{H} bounded by three geodesic segments.)
(c) Pretend for the moment that you don't know (\mathbb{H}, h) is isometric to the hyperbolic plane, and compute its Gaussian curvature.
Note: Since (\mathbb{H}, h) is not given as a submanifold of \mathbb{R}^{3}, one should define $K_{G}: \mathbb{H} \rightarrow \mathbb{R}$ in this case as the unique function satisfying $R(X, Y) Z=-K_{G} d \operatorname{vol}(X, Y) J Z$.

Problem 6

Suppose $\pi: E \rightarrow M$ is a complex line bundle with a bundle metric \langle,$\rangle , so it has$ structure group $U(1)$. Since $U(1)$ is abelian, we showed in lecture that any metric connection ∇ on $E \rightarrow M$ gives rise to a globally-defined imaginary-valued curvature 2-form $F \in \Omega^{2}(M, \mathfrak{u}(1))=\Omega^{2}(M, i \mathbb{R})$, which matches $d A_{\alpha}$ on $\mathcal{U}_{\alpha} \subset M$ for any $\mathrm{U}(1)$-compatible local trivialization $\Phi_{\alpha}:\left.E\right|_{\mathcal{U}_{\alpha}} \rightarrow \mathcal{U}_{\alpha} \times \mathbb{C}$ with connection 1-form $A_{\alpha} \in \Omega^{1}(M, \mathfrak{u}(1))$. Show that if $\hat{\nabla}$ is a second metric connection on $E \rightarrow M$ with curvature 2-form $\widehat{F} \in \Omega^{2}(M, \mathfrak{u}(1))$, then $\widehat{F}-F$ is exact. The cohomology class $c_{1}(E):=\left[-\frac{1}{2 \pi i} F\right] \in H_{\mathrm{dR}}^{2}(M)$ is thus independent of the choice of connection; it is known as the first Chern class of E.
Hint: The two connections differ by a bililinear bundle map $B: T M \oplus E \rightarrow E$ satisfying $B(X, v)=\widehat{\nabla}_{X} v-\nabla_{X} v$. Reinterpret this as an $\operatorname{End}(E)$-valued 1-form, and then as a complex-valued 1-form, using the fact that fibers of E are 1-dimensional.

