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Problem 1
Prove: For each k • 0, a k-form ! P ⌦

kpMq is closed if and only for every compact oriented

pk ` 1q-dimensional submanifold L Ä M with boundary,
≥

BL ! “ 0.

Problem 2
Prove: On S

1
, a 1-form � P ⌦

1pS1q is exact if and only if
≥
S1 � “ 0.

Hint: Try to construct a primitive f : S
1 Ñ R by integrating � along paths.

Problem 3
Suppose O is an open subset of either H

n
or R

n
. We call O a star-shaped domain if for

every p P O, it also contains the points tp P R
n
for all t P r0, 1s. It follows that hpt, pq :“ tp

defines a smooth homotopy h : r0, 1s ˆO Ñ O between the identity and the constant map

whose value is the origin, making O smoothly contractible. Use this homotopy to produce

an explicit formula for a linear operator P : ⌦
kpOq Ñ ⌦

k´1pOq for each k • 1 satisfying

! “ P pd!q ` dpP!q

for all ! P ⌦
kpOq. In particular, whenever ! is a closed k-form, P! is a primitive of !.

Hint: Start with the chain homotopy that we constructed in lecture for proving the ho-
motopy invariance of de Rham cohomology. As a sanity check, the answer to this problem
can be found at the end of Lecture 13 in the notes, but try to find it yourself first.

Problem 4
Show that the wedge product descends to an associative and graded-commutative product

Y : H
k
dRpMq ˆ H

`
dRpMq Ñ H

k``
dR pMq, defined by

r↵s Y r�s :“ r↵ ^ �s.

This is called the cup product on de Rham cohomology.

Remark: There is similarly a cup product on singular cohomology, to which this one is
isomorphic via de Rham’s theorem. But this one is easier to define, and is thus often used
in practice as a surrogate for the singular cup product.

Problem 5
For this exercise, identify the n-torus T

n
with the quotient R

n{Zn
(recall from Problem

Set 2 #1 that there is a natural di↵eomorphism). For any su�ciently small open set

rU Ä R
n
, the usual Cartesian coordinates x

1
, . . . , x

n
: rU Ñ R can be used to define a

smooth chart pU , xq on T
n
where

U :“
!

rps P T
n

ˇ̌
ˇ p P rU

)
, xprpsq :“ px1ppq, . . . , xnppqq for p P rU .

(a) Show that the coordinate di↵erentials dx
1
, . . . , dx

n P ⌦
1pUq arising from the chart

pU , xq described above are independent of the choice of the set rU Ä R
n
, i.e. the

definitions of the coordinate di↵erentials obtained from two di↵erent choices rU1,
rU2 Ä

R
n
coincide on the region U1 X U2 Ä T

n
where they overlap.
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(b) As a consequence of part (a), the 1-forms dx
1
, . . . , dx

n P ⌦
1pTnq are well-defined on

the entire torus, and they are obviously locally exact and therefore closed, but they

might not actually be exact since none of the coordinates x
1
, . . . , x

n
admit smooth

definitions globally on T
n
. Show in fact that for any constant vector pa1, . . . , anq P

R
nzt0u, the 1-form

� :“ ai dx
i P ⌦

1pTnq
is closed but not exact.

Hint: You only need to find one smooth map � : S
1 Ñ T

n such that
≥
S1 �

˚
� ‰ 0.

(c) One can similarly produce closed k-forms ! P ⌦
kpTnq for any k § n by choosing

constants ai1...ik P R and writing

! “
ÿ

i1†...†ik

ai1...ik dx
i1 ^ . . . ^ dx

ik P ⌦
kpTnq. (1)

Show that for every nontrivial k-form of this type, one can find a cohomology class

r↵s P H
n´k
dR pTnq such that the cup product r!sYr↵s P H

n
dRpTnq defined in Problem 4

is nontrivial, and deduce from this that ! is not exact.

Hint: Can you choose ↵ P ⌦
n´kpTnq so that ! ^ ↵ is a volume form?

Remark: One can show that all cohomology classes in H
k
dRpTnq are representable by k-

forms with constant coe�cients as in (1), thus dimH
k
dRpTnq “

`n
k

˘
.

Problem 6
For V an n-dimensional vector space, the main goal of this exercise is to show that for

every v P V , the operator ◆v : ⇤
˚
V

˚ Ñ ⇤
˚
V

˚
defined by ◆v! :“ !pv, ¨, . . . , ¨q satisfies the

graded Leibniz rule

◆vp↵ ^ �q “ p◆v↵q ^ � ` p´1qk↵ ^ p◆v�q (2)

for all ↵ P ⇤
k
V

˚
and � P ⇤

`
V

˚
. The statement is trivial if v “ 0, so assume otherwise, in

which case we may as well assume v is the first element e1 of a basis e1, . . . , en P V , whose

dual basis we can denote by e
1
˚, . . . , e

n
˚ P V

˚ “ ⇤
1
V

˚
.

(a) Prove that (2) holds whenever ↵ and � are both products of the form ↵ “ e
i1˚ ^. . .^e

ik˚
and � “ e

j1˚ ^ . . . ^ e
j`˚ with i1 † . . . † ik and j1 † . . . † j`.

Hint: Consider separately a short list of cases depending on whether each of i1 and
j1 are 1 and whether the sets ti1, . . . , iku and tj1, . . . , j`u are disjoint.

(b) Deduce via linearity that (2) holds always.

(c) Using (2), prove that for any manifold M and vector field X P XpMq, the operator

PX :“ d ˝ ◆X ` ◆X ˝ d : ⌦
˚pMq Ñ ⌦

˚pMq satisfies the Leibniz rule

PXp↵ ^ �q “ PX↵ ^ � ` ↵ ^ PX�.

This is one of the main steps in a proof of Cartan’s formula LX! “ PX!.

Problem 7
Prove that for any closed symplectic manifold pM,!q, H2

dRpMq is nontrivial.

Hint: What can you say about the n-fold cup product of r!s P H
2
dRpMq with itself?
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