Differentialgeometrie I
WiSe 2021-22

Problem Set 7

To be discussed: 7-8.12.2021

Problem 1

Prove: For each $k \geqslant 0$, a k-form $\omega \in \Omega^{k}(M)$ is closed if and only for every compact oriented $(k+1)$-dimensional submanifold $L \subset M$ with boundary, $\int_{\partial L} \omega=0$.

Problem 2

Prove: On S^{1}, a 1-form $\lambda \in \Omega^{1}\left(S^{1}\right)$ is exact if and only if $\int_{S^{1}} \lambda=0$.
Hint: Try to construct a primitive $f: S^{1} \rightarrow \mathbb{R}$ by integrating λ along paths.

Problem 3

Suppose \mathcal{O} is an open subset of either \mathbb{H}^{n} or \mathbb{R}^{n}. We call \mathcal{O} a star-shaped domain if for every $p \in \mathcal{O}$, it also contains the points $t p \in \mathbb{R}^{n}$ for all $t \in[0,1]$. It follows that $h(t, p):=t p$ defines a smooth homotopy $h:[0,1] \times \mathcal{O} \rightarrow \mathcal{O}$ between the identity and the constant map whose value is the origin, making \mathcal{O} smoothly contractible. Use this homotopy to produce an explicit formula for a linear operator $P: \Omega^{k}(\mathcal{O}) \rightarrow \Omega^{k-1}(\mathcal{O})$ for each $k \geqslant 1$ satisfying

$$
\omega=P(d \omega)+d(P \omega)
$$

for all $\omega \in \Omega^{k}(\mathcal{O})$. In particular, whenever ω is a closed k-form, $P \omega$ is a primitive of ω. Hint: Start with the chain homotopy that we constructed in lecture for proving the homotopy invariance of de Rham cohomology. As a sanity check, the answer to this problem can be found at the end of Lecture 13 in the notes, but try to find it yourself first.

Problem 4

Show that the wedge product descends to an associative and graded-commutative product $\cup: H_{\mathrm{dR}}^{k}(M) \times H_{\mathrm{dR}}^{\ell}(M) \rightarrow H_{\mathrm{dR}}^{k+\ell}(M)$, defined by

$$
[\alpha] \cup[\beta]:=[\alpha \wedge \beta]
$$

This is called the cup product on de Rham cohomology.
Remark: There is similarly a cup product on singular cohomology, to which this one is isomorphic via de Rham's theorem. But this one is easier to define, and is thus often used in practice as a surrogate for the singular cup product.

Problem 5

For this exercise, identify the n-torus \mathbb{T}^{n} with the quotient $\mathbb{R}^{n} / \mathbb{Z}^{n}$ (recall from Problem Set $2 \# 1$ that there is a natural diffeomorphism). For any sufficiently small open set $\widetilde{\mathcal{U}} \subset \mathbb{R}^{n}$, the usual Cartesian coordinates $x^{1}, \ldots, x^{n}: \widetilde{\mathcal{U}} \rightarrow \mathbb{R}$ can be used to define a smooth chart (\mathcal{U}, x) on \mathbb{T}^{n} where

$$
\mathcal{U}:=\left\{[p] \in \mathbb{T}^{n} \mid p \in \tilde{\mathcal{U}}\right\}, \quad x([p]):=\left(x^{1}(p), \ldots, x^{n}(p)\right) \text { for } p \in \tilde{\mathcal{U}}
$$

(a) Show that the coordinate differentials $d x^{1}, \ldots, d x^{n} \in \Omega^{1}(\mathcal{U})$ arising from the chart (\mathcal{U}, x) described above are independent of the choice of the set $\widetilde{\mathcal{U}} \subset \mathbb{R}^{n}$, i.e. the definitions of the coordinate differentials obtained from two different choices $\tilde{\mathcal{U}}_{1}, \widetilde{\mathcal{U}}_{2} \subset$ \mathbb{R}^{n} coincide on the region $\mathcal{U}_{1} \cap \mathcal{U}_{2} \subset \mathbb{T}^{n}$ where they overlap.
(b) As a consequence of part (a), the 1-forms $d x^{1}, \ldots, d x^{n} \in \Omega^{1}\left(\mathbb{T}^{n}\right)$ are well-defined on the entire torus, and they are obviously locally exact and therefore closed, but they might not actually be exact since none of the coordinates x^{1}, \ldots, x^{n} admit smooth definitions globally on \mathbb{T}^{n}. Show in fact that for any constant vector $\left(a_{1}, \ldots, a_{n}\right) \in$ $\mathbb{R}^{n} \backslash\{0\}$, the 1 -form

$$
\lambda:=a_{i} d x^{i} \in \Omega^{1}\left(\mathbb{T}^{n}\right)
$$

is closed but not exact.
Hint: You only need to find one smooth map $\gamma: S^{1} \rightarrow \mathbb{T}^{n}$ such that $\int_{S^{1}} \gamma^{*} \lambda \neq 0$.
(c) One can similarly produce closed k-forms $\omega \in \Omega^{k}\left(\mathbb{T}^{n}\right)$ for any $k \leqslant n$ by choosing constants $a_{i_{1} \ldots i_{k}} \in \mathbb{R}$ and writing

$$
\begin{equation*}
\omega=\sum_{i_{1}<\ldots<i_{k}} a_{i_{1} \ldots i_{k}} d x^{i_{1}} \wedge \ldots \wedge d x^{i_{k}} \in \Omega^{k}\left(\mathbb{T}^{n}\right) . \tag{1}
\end{equation*}
$$

Show that for every nontrivial k-form of this type, one can find a cohomology class $[\alpha] \in H_{\mathrm{dR}}^{n-k}\left(\mathbb{T}^{n}\right)$ such that the cup product $[\omega] \cup[\alpha] \in H_{\mathrm{dR}}^{n}\left(\mathbb{T}^{n}\right)$ defined in Problem 4 is nontrivial, and deduce from this that ω is not exact.
Hint: Can you choose $\alpha \in \Omega^{n-k}\left(\mathbb{T}^{n}\right)$ so that $\omega \wedge \alpha$ is a volume form?
Remark: One can show that all cohomology classes in $H_{\mathrm{dR}}^{k}\left(\mathbb{T}^{n}\right)$ are representable by k forms with constant coefficients as in (1), thus $\operatorname{dim} H_{\mathrm{dR}}^{k}\left(\mathbb{T}^{n}\right)=\binom{n}{k}$.

Problem 6

For V an n-dimensional vector space, the main goal of this exercise is to show that for every $v \in V$, the operator $\iota_{v}: \Lambda^{*} V^{*} \rightarrow \Lambda^{*} V^{*}$ defined by $\iota_{v} \omega:=\omega(v, \cdot, \ldots, \cdot)$ satisfies the graded Leibniz rule

$$
\begin{equation*}
\iota_{v}(\alpha \wedge \beta)=\left(\iota_{v} \alpha\right) \wedge \beta+(-1)^{k} \alpha \wedge\left(\iota_{v} \beta\right) \tag{2}
\end{equation*}
$$

for all $\alpha \in \Lambda^{k} V^{*}$ and $\beta \in \Lambda^{\ell} V^{*}$. The statement is trivial if $v=0$, so assume otherwise, in which case we may as well assume v is the first element e_{1} of a basis $e_{1}, \ldots, e_{n} \in V$, whose dual basis we can denote by $e_{*}^{1}, \ldots, e_{*}^{n} \in V^{*}=\Lambda^{1} V^{*}$.
(a) Prove that (2) holds whenever α and β are both products of the form $\alpha=e_{*}^{i_{1}} \wedge \ldots \wedge e_{*}^{i_{k}}$ and $\beta=e_{*}^{j_{1}} \wedge \ldots \wedge e_{*}^{j_{\ell}}$ with $i_{1}<\ldots<i_{k}$ and $j_{1}<\ldots<j_{\ell}$.
Hint: Consider separately a short list of cases depending on whether each of i_{1} and j_{1} are 1 and whether the sets $\left\{i_{1}, \ldots, i_{k}\right\}$ and $\left\{j_{1}, \ldots, j_{\ell}\right\}$ are disjoint.
(b) Deduce via linearity that (2) holds always.
(c) Using (2), prove that for any manifold M and vector field $X \in \mathfrak{X}(M)$, the operator $P_{X}:=d \circ \iota_{X}+\iota_{X} \circ d: \Omega^{*}(M) \rightarrow \Omega^{*}(M)$ satisfies the Leibniz rule

$$
P_{X}(\alpha \wedge \beta)=P_{X} \alpha \wedge \beta+\alpha \wedge P_{X} \beta . \quad d(\alpha \wedge \beta)=d \alpha \wedge \beta
$$

This is one of the main steps in a proof of Cartan's formula $\mathcal{L}_{X} \omega=P_{X} \omega$.

Problem 7

Prove that for any closed symplectic manifold $(M, \omega), H_{\mathrm{dR}}^{2}(M)$ is nontrivial.
Hint: What can you say about the n-fold cup product of $[\omega] \in H_{\mathrm{dR}}^{2}(M)$ with itself?

Problem Set 7

Problem 1
Prove: For each $k \geqslant 0$, a k-form $\omega \in \Omega^{k}(M)$ is closed if and only for every compact oriented $(k+1)$-dimensional submanifold $L \subset M$ with boundary, $\int_{\partial L} \omega=0$.

$$
\begin{aligned}
& d \omega=0 \quad \Rightarrow \quad \forall \quad L^{k+1} \subset M \quad \delta \omega=0 \\
& \partial L \\
& \Rightarrow \\
& \text { Suppose } d w=0 \text {. want:- } \quad S \omega=0 \\
& \int_{\partial L} \omega=\int_{L}^{\text {Stokes' Theorem. }} \quad d_{L}=0
\end{aligned}
$$

\leqslant
If $\int_{\partial L} \omega=0 \quad \forall$ compact, oriented $L^{K N 1} \subset M$ then $d \omega=0$.

Let $p \in M$ choose $\left\{X_{1}, \ldots, X_{k+1}\right\}$ linearly ind. set of vectors $T_{P} M$. Let D be a $(R+1)$-dimensional disc; it passes through p, tangent to the subspace spanned bey $\left\{x_{1}, \ldots, x_{k+1}\right\}$. \longrightarrow approximates the values of de

$$
\int_{\partial D} \omega=\left\{\begin{array}{l}
\int_{(R+1)-\operatorname{dim} v a l}^{d \omega} \\
D
\end{array}\right.
$$ itself.

$p \in M$ was arbitrary.

$$
\begin{aligned}
& \Rightarrow \quad d \omega\left(x_{1}, \ldots, x_{k+1}\right)=0 \\
& \Rightarrow \quad d \omega=0 . \\
& \left|\int d \omega\right| \leq|\phi \omega| \omega 0 l(k+1)
\end{aligned}
$$

Problem 2

$$
\lambda \in \Omega^{\prime}(M)
$$

Prove: On S^{1}, a 1-form $\lambda \in \Omega^{1}\left(S^{1}\right)$ is exact if and only if $\int_{S^{1}} \lambda=0$.
Hint: Try to construct a primitive $f: S^{1} \rightarrow \mathbb{R}$ by integrating λ along paths.
If $\int_{S^{\prime}} \lambda=0$ than λ is exact, ie, $\lambda=d f$ for $\begin{array}{r}\text { some } f \in C^{\infty}\left(S^{\prime}\right) \text {. }\end{array}$
Let $p_{0} \in S^{1}$ fixed.
Let $p \in S^{\perp} \quad \alpha:[0,1] \rightarrow S^{\prime}$ be a path in S^{\prime} joining p_{0} to p.
define $f: S^{\prime} \rightarrow R$

$$
\begin{array}{r}
f(\beta)=\int_{0}^{1} \lambda(\alpha(t)) d t-1 \tag{1}\\
\varphi\left(e^{2 \pi i t}\right)= \begin{cases}\alpha(t), & 0 \leq t \leq 1 / 2 \\
\beta(2-2 t), & \frac{1}{2} \leq t \leq 1\end{cases} \\
\int_{s^{\prime}} \varphi^{4} \lambda=\int_{0}^{1} \alpha^{4} \lambda-\int_{0}^{1} \beta^{3} \lambda=\int_{s^{\prime}} \lambda=0
\end{array}
$$

from (1)

$$
\begin{aligned}
& \frac{d}{d \mid t} f(\alpha(t))=\lambda\left(\alpha^{\prime}(t)\right) \quad \forall t \in[0,1] \\
& \\
& \forall \alpha:[0,1] \rightarrow s^{\prime} \omega / \alpha(0)=p_{0}
\end{aligned}
$$

$\therefore \quad d f=\lambda$ which is a primitive
$\Rightarrow \quad \lambda_{\text {is exact. }}$

Problem 3
3 Suppose \mathcal{O} is an open subset of either \mathbb{H}^{n} or \mathbb{R}^{n}. We call \mathcal{O} a star-shaped domain if for every $p \in \mathcal{O}$, it also contains the points $t p \in \mathbb{R}^{n}$ for all $t \in[0,1]$. It follows that $h(t, p):=t p$ defines a smooth homotopy $h:[0,1] \times \mathcal{O} \rightarrow \mathcal{O}$ between the identity and the constant map whose value is the origin, making \mathcal{O} smoothly contractible. Use this homotopy to produce
an explicit formula for a linear operator $P: \Omega^{k}(\mathcal{O}) \rightarrow \Omega^{k-1}(\mathcal{O})$ for each $k \geqslant 1$ satisfying an explicit formula for a linear operator P

$$
\omega=P /(\omega)+d(P \omega) \quad \omega=d(P \omega)
$$

for all $\omega \in \Omega^{k}(\mathcal{O})$. In particular, whenever ω is a closed k-form, $P \omega$ is a primitive of ω. Hint: Start with the chain homotopy that we constructed in lecture for proving the homotopy invariance of de Rham cohomology. As a sanity check, the answer to this problem can be found at the end of Lecture 13 in the notes, but try to find it yourself first.

$$
h:[0,1] \times O \rightarrow 0
$$

$h(t, p)=t p \quad$ smooth homotopy b / ω

$$
i d(p)=p, \quad h(0, p)=0 \in 0
$$

O - contractible.
We want $\quad P: \Omega^{k}(0) \rightarrow \Omega^{k-1}(0)$

$$
\omega=P(d \omega)+d(P \omega) .
$$

$L^{k-1} \subset O$ submanifold, compact, oriented. i ω is a $(k-1)$ for

$$
\begin{align*}
& h^{*}(d \omega) \in \Omega^{K}([0,1] \times O) \\
& \int_{[0,1] \times L} h^{x}(d \omega)=\int_{[0,1] \times L}^{\int d\left(h^{*} \omega\right)_{\text {Stokes' }}} \underset{\partial([0,1] \times L)}{\int h^{*} \omega} \\
& =\underset{\partial[0,1] \times L}{\int h^{*} \omega}-\begin{array}{r}
\int h^{*} \omega \\
{[0,1] \times 2 L}
\end{array} \\
& =\int_{\{1\} \times L} h^{*} \omega-\int_{\xi_{0}\{\times L}^{h^{4} \omega}-\underset{[0,1] \times \partial L}{\int h^{*} \omega} \\
& =\int_{L} \omega-0-\int_{[0,1] \times 2 L} h^{\prime} \omega \\
& \begin{array}{l}
\therefore \int h^{*}(d \omega)=\int_{L} \omega-\int_{[0,1] \times 2} \quad \int h^{*} \omega \\
{[0.15}
\end{array} \tag{1}\\
& \text { Po. } \Omega^{k} \rightarrow \Omega^{k-1} \text { as } \\
& \begin{array}{c}
\left(P_{\omega}\right)_{p}\left(x_{1}, \ldots, x_{k-1}\right)=\int_{0}^{1}\left(h^{*} \omega\right)_{(t, p)}\left(\partial_{t}, x_{1}, \ldots, x_{k-1}\right) d t \\
h=t p \mathbb{R}^{R}
\end{array} \\
& =\int_{0}^{1}\left((t p)^{*} \omega\right)_{t p}\left(\partial_{t}, x_{1}, \ldots, x_{k-1}\right) d t \\
& =\int_{0}^{1} \omega_{t p}\left((t p) * \partial_{t},(t p) * x_{1}, \ldots,(t p), x_{k-1}\right) d t
\end{align*}
$$

$$
\begin{align*}
& =\int_{0}^{1} \omega_{t p}\left(P, t x_{1}, t x_{2}, \ldots, t x_{k-1}\right) d t \\
& =\int_{0}^{1} t^{k-1} \omega\left(p, x_{1}, \ldots, x_{k-1}\right) d t \tag{2}\\
& (t, p) \mapsto t p \\
& \varphi: M^{n} \rightarrow N \\
& \varphi_{0} X^{X}=\operatorname{Jac}[\varphi]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \\
& \int_{[0,1] \times L} h^{*}(d \omega)=\int_{L} P(d \omega) \Rightarrow
\end{align*}
$$

\therefore in oq (1)

$$
\begin{aligned}
& \int_{L} P(d \omega)=\int \omega-\int P \omega \\
& =0 \quad \int_{L} P(d \omega)+\int_{L} d(P \omega)=\int_{L} \omega \\
& =0 \quad \int_{L} P(d \omega)+d(P \omega)=\int_{L} \omega
\end{aligned}
$$

$\because L$ was arbitracy
$\omega=P(d \omega)+d(P \omega) \omega / P$ is as given ei eq.(2).

Remark:- This was one of the main steps in the proof of homotopy invariance of de Rham con. groups.

(4)

Problem 4
Show that the wedge product descends to an associative and graded-commutative product $\cup: H_{\mathrm{dR}}^{k}(M) \times H_{\mathrm{dR}}^{\ell}(M) \rightarrow H_{\mathrm{dR}}^{k+\ell}(M)$, defined by

$$
[\alpha] \cup[\beta]:=[\alpha \wedge \beta] .
$$

well- defined.

$$
\begin{aligned}
& \tilde{\alpha} \in[\alpha] \Rightarrow \tilde{\alpha}_{\alpha}=\alpha+d \eta, \quad \eta \in \Omega^{k-1}(M) \\
& \hat{\beta} \in[\beta] \Rightarrow \hat{\beta}=\beta+d \gamma, \quad r \in \Omega^{l-1}(M) \\
& {[\tilde{\alpha} \wedge \widetilde{\beta}]=[\alpha \wedge \beta]}
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{\alpha} \wedge \hat{\beta}=(\alpha+d \eta) \wedge(\beta+d \gamma) \\
&=\alpha \wedge \beta+\alpha \wedge d \gamma+d \eta \wedge \beta+d \eta \wedge d \gamma \\
& {[\hat{\alpha} \wedge \widehat{\beta}]=[\alpha \wedge \beta]+\frac{[\alpha \wedge d \gamma]}{}+[d \eta \wedge \beta]+[d \eta \wedge d \gamma] } \\
& \underbrace{d(-)}_{0} \overbrace{0}^{d \wedge \gamma}+(-1)^{R} \alpha a d \gamma=d(\alpha \wedge \gamma) \quad d(\eta \wedge \beta) \quad d(\eta \wedge d \gamma)
\end{aligned}
$$

cup-product is well-defined.

11 pravile as a suriugave sur vie singuias up pivumé.
(5)

Problem 5
For this exercise, identify the n-torus \mathbb{T}^{n} with the quotient $\mathbb{R}^{n} / \mathbb{Z}^{n}$ (recall from Problem Set $2 \# 1$ that there is a natural diffeomorphism). For any sufficiently small open set $\widetilde{\mathcal{U}} \subset \mathbb{R}^{n}$, the usual Cartesian coordinates $x^{1}, \ldots, x^{n}: \widetilde{\mathcal{U}} \rightarrow \mathbb{R}$ can be used to define a smooth chart (\mathcal{U}, x) on \mathbb{T}^{n} where

$$
\mathcal{U}:=\left\{[p] \in \mathbb{T}^{n} \mid p \in \tilde{\mathcal{U}}\right\}, \quad x([p]):=\left(x^{1}(p), \ldots, x^{n}(p)\right) \text { for } p \in \tilde{\mathcal{U}}
$$

(a) Enow that the coordinate differentials $d x^{1}, \ldots, d x^{n} \in \Omega^{1}(\mathcal{U})$ arising from the chart (\mathcal{U}, x) described above are independent of the choice of the set $\tilde{\mathcal{U}} \subset \mathbb{R}^{n}$, ie. the definitions of the coordinate differentials obtained from two different choices, $\tilde{\mathcal{U}}_{1}, \tilde{\mathcal{U}}_{2} \subset$ \mathbb{R}^{n} coincide on the region $\mathcal{U}_{1} \cap \mathcal{U}_{2} \subset \mathbb{T}^{n}$ where they overlap.

$$
y_{1} \ldots \cdot y_{n} \text { or } \tilde{4} C \mathbb{R}^{n}
$$

(b) As a consequence of part (a), the 1 -forms $d x^{1}, \ldots, d x^{n} \in \Omega^{1}\left(\mathbb{T}^{n}\right)$ are well-defined on the entire torus, and they are obviously locally exact and therefore closed, but they might not actually be exact since none of the coordinates x^{1}, \ldots, x^{n} admit smooth definitions globally on \mathbb{T}^{n}. Show in fact that for any constant vector $\left(a_{1}, \ldots, a_{n}\right) \in$ $\mathbb{R}^{n} \backslash\{0\}$, the 1-form

$$
\lambda:=a_{i} d x^{i} \in \Omega^{1}\left(\mathbb{T}^{n}\right)
$$

$$
d y^{i}=\frac{\partial y^{i}}{\partial x^{j}} d x^{j}
$$

is closed but not exact.
Hint: You only need to find one smooth map $\gamma: S^{1} \rightarrow \mathbb{T}^{n}$ such that $\int_{S^{1}} \gamma^{*} \lambda \neq 0$.
(c) One can similarly produce closed k-forms $\omega \in \Omega^{k}\left(\mathbb{T}^{n}\right)$ for any $k \leqslant n$ by choosing constants $a_{i_{1} \ldots i_{k}} \in \mathbb{R}$ and writing

$$
\begin{equation*}
\omega=\sum_{i_{1}<\ldots<i_{k}} a_{i_{1} \ldots i_{k}} d x^{i_{1}} \wedge \ldots \wedge d x^{i_{k}} \in \Omega^{k}\left(\mathbb{T}^{n}\right) \tag{1}
\end{equation*}
$$

Show that for every nontrivial k-form of this type, one can find a cohomology class $[\alpha] \in H_{\mathrm{dR}}^{n-k}\left(\mathbb{T}^{n}\right)$ such that the cup product $[\omega] \cup[\alpha] \in H_{\mathrm{dR}}^{n}\left(\mathbb{T}^{n}\right)$ defined in Problem 4 is nontrivial, and deduce from this that ω is not exact.
Hint: Can you choose $\alpha \in \Omega^{n-k}\left(\mathbb{T}^{n}\right)$ so that $\omega \wedge \alpha$ is a volume form?
$a=\left(a_{1}, \ldots, a_{n}\right)$ constant vector die $\mathbb{R}^{n} \backslash\{0\{$.
$\lambda=a_{i} d x^{i} \in \Omega^{\prime}\left(T^{n}\right)$ is closed but not exact.

$$
\begin{aligned}
d \lambda & =d\left(Q_{i}\right) \wedge e l x^{i}+a_{i} d\left(d x^{i}\right) \\
& =0+0
\end{aligned}
$$

$$
\exists \gamma: S^{\prime} \rightarrow \pi^{n} \text { s.f. } \int_{S^{\prime}} \gamma^{n} \lambda \neq 0
$$

WLOG, let $a_{1} \neq 0, S^{\prime} \cong \mathbb{R} / \tau, \pi^{n} \cong(\mathbb{R} / r)^{n}$

$$
\begin{aligned}
\gamma: S^{\prime} & \longmapsto \pi^{n} \\
\mathbb{R} / \gamma_{r} \geqslant x & \longmapsto[x, 0, \ldots, 0] \in(\mathbb{R} / \tau)^{n} \\
& \gamma^{4} \lambda=\lambda_{0} \gamma=a_{1} d x^{\prime} \\
\Rightarrow \quad \int_{S^{\prime}} \gamma^{0} \lambda & =\int_{0}^{1} a_{1} d x^{\prime}=a_{1} \neq 0
\end{aligned}
$$

: by the characterization of exact forms, λ is not exact.
c)

$$
\begin{aligned}
& \omega=\sum a_{i_{1} \ldots i_{k}} d x^{i_{1}} \wedge \ldots \wedge d x^{i_{k}} \in \Omega^{k}\left(\pi^{n}\right) \\
& \alpha=\sum *\left(d x^{i_{1}} \wedge \ldots \wedge d x^{i_{k}}\right) \\
& *: \Omega^{k}(M) \rightarrow \Omega^{n-k}(M) \quad, M n-\operatorname{dim}, g, d v o l .
\end{aligned}
$$

$$
\begin{aligned}
& \beta \in \Omega^{k}(M), * \beta \in \Omega^{n-k}(M) \text { s.t. } \\
& \beta \wedge * \beta=d v o l M . \\
& \text { on } \mathbb{R}^{3}\left\{x_{1}, x_{2}, x_{3}\left\{, \quad d x^{\prime} \wedge d x^{2} \wedge d x^{3}\right.\right. \\
& x\left(d x^{\prime}\right)=d x^{2} \wedge d x^{3} \\
& {[\omega] \cup[\alpha]=[\omega \wedge \alpha]=[\text { dual }]_{\pi^{n}}}
\end{aligned}
$$

if ω is exact. then $\omega=d \beta$

$$
\int_{\pi^{n}} \operatorname{\omega n} \alpha=\int_{\pi^{n}} d \beta \wedge \alpha=\int_{\pi^{n}} d(\beta \wedge \alpha)+(-1)^{k-1} \int_{\pi^{k}} \beta \wedge d \alpha
$$

11 by the choice of α Stokes' The
$\int d v o l$
五n "vol $\left(\pi^{n}\right) \neq 0$
$\therefore \omega$ cannot be exact.

7 Problem 7
Hint: What for any closed symplectic manifold $(M, \omega), H_{\mathrm{dR}}^{2}(M)$ is nontrivial
Hint: What can you say about the n-fold cup product of $[\omega] \in H_{\mathrm{dR}}^{2}(M)$ with itself?
ω symplectic if $\in p \in M \quad \exists\left\{e^{2}, \ldots, e^{n}, f^{\prime}, \ldots, f^{n}\right\}$

$$
\omega=\sum_{i=1}^{n} d e^{i} \wedge d f^{i} \quad \text { (Dauboux coordinates) }
$$

Gues:- $[\omega] \in H_{d R}^{2}(M) .,[\omega] \neq 0$.
Remonk :- If A maniford $M^{2 n}$ is symplectic then necc.

$$
\begin{aligned}
& H_{d R}^{2}(M) \neq 0 . \\
& d \omega=0 \cdot \\
& \left.\underbrace{[\omega] \cup[\omega] \cup \cdots[\omega]}_{n-\text {-imes }}\right|_{U} \\
& {\left[\operatorname{de}^{1} \wedge d f^{\prime} \wedge d e^{2} \wedge d f^{2} \wedge \ldots \wedge d e^{n} \wedge d f^{n}\right]=[\text { dual }] \neq 0} \\
& {[\omega]^{n}=\left[\omega^{n}\right] \neq 0}
\end{aligned}
$$

If $\left[\omega^{n}\right]=0$ then $\omega^{n}=d \Omega$

$$
\int_{M} \omega^{n}=\int_{M} d \Omega=\int_{\partial M} \Omega=0
$$

M-closed compact, w/o bounday

$$
\Rightarrow \quad[\omega] \neq 0
$$

$\Rightarrow \quad[\omega] \in H_{d R}^{2}(M)$ is the non-trimial homology class \Rightarrow

$$
\begin{equation*}
H_{d R}^{2}(M) \neq 0 \tag{1}
\end{equation*}
$$

g

$$
y(0,2) \quad \alpha \in \Omega^{K}(M), \quad H_{d R}^{K}(M) \neq 0 .
$$

