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Abstract. This is a revision of some expository lecture notes written originally for a
5-hour minicourse on the intersection theory of punctured holomorphic curves and its
applications in 3-dimensional contact topology. The main lectures are aimed primarily
at students and require only a minimal background in holomorphic curve theory, as the
emphasis is on topological rather than analytical issues. Some of the gaps in the analysis
are then filled in by the appendices, which include self-contained proofs of the similarity
principle and positivity of intersections, and conclude with a “quick reference” for the
benefit of researchers, detailing the basic facts of Siefring’s intersection theory.

Intersection theory has played a prominent role in the study of closed symplectic
4-manifolds since Gromov’s paper [Gro85] on pseudoholomorphic curves, leading to a
myriad of beautiful rigidity results that are either not accessible or not true in higher
dimensions. In recent years, the highly nontrivial extension of this theory to the case of
punctured holomorphic curves, due to Siefring [Sie08,Sie11], has led to similarly beautiful
results about contact 3-manifolds and their symplectic fillings. These notes begin with
an overview of the closed case and an easy application (McDuff’s characterization of
symplectic ruled surfaces), and then explain the essentials of Siefring’s intersection theory
and how to use it in the real world. As a sample application, we discuss the classification
of symplectic fillings of planar contact manifolds via Lefschetz fibrations [Wen10b].



Contents

Preface v

Lecture 0. Motivation 1

Lecture 1. Closed holomorphic curves in symplectic 4-manifolds 11
1.1. Some examples of symplectic 4-manifolds 11
1.2. McDuff’s characterization of symplectic ruled surfaces 16
1.3. Local foliations by holomorphic spheres 21

Lecture 2. Intersections, ruled surfaces, and contact boundaries 25
2.1. Positivity of intersections and the adjunction formula 25
2.2. Application to ruled surfaces 30
2.3. Contact manifolds, symplectic fillings and cobordisms 32
2.4. Asymptotically cylindrical holomorphic curves 35

Lecture 3. Asymptotics of punctured holomorphic curves 41
3.1. Holomorphic half-cylinders as gradient-flow lines 42
3.2. Asymptotic formulas for cylidrical ends 46
3.3. Winding of asymptotic eigenfunctions 49
3.4. Local foliations and the normal Chern number 51

Lecture 4. Intersection theory for punctured holomorphic curves 57
4.1. Statement of the main results 57
4.2. Relative intersection numbers and the ˚-pairing 61
4.3. Adjunction formulas, relative and absolute 64

Lecture 5. Symplectic fillings of planar contact 3-manifolds 71
5.1. Open books and Lefschetz fibrations 71
5.2. A classification theorem for symplectic fillings 77
5.3. Sketch of the proof 78

Appendix A. Properties of pseudoholomorphic curves 87
A.1. The closed case 87
A.2. Curves with punctures 94

Appendix B. Local Positivity of intersections 99
B.1. Regularity and the similarity principle 99
B.2. The representation formula 114

iii



iv CONTENTS

B.3. Counting local intersections and singularities 132

Appendix C. A quick survey of Siefring’s intersection theory 141
C.1. Preliminaries 141
C.2. The intersection pairing 143
C.3. The adjunction formula 145
C.4. Covering relations 148
C.5. The intersection product of buildings 149
C.6. Comparison with the ECH literature 154

Bibliography 157

Index 161



Preface

The main portion of this book is a lightly revised set of expository lecture notes written
originally for a 5-hour minicourse on the intersection theory of punctured holomorphic
curves and its applications in 3-dimensional contact topology, which I gave as part of the
LMS Short Course “Topology in Low Dimensions” at Durham University, August 26–30,
2013. These lectures were aimed primarily at students, and they required only a minimal
background in holomorphic curve theory since the emphasis was on topological rather
than analytical issues. The original appendices were relatively brief, their purpose being
to provide a quick survey of analytical background material on holomorphic curves that
I needed to refer to in the lectures without assuming that students already knew it. In
revising the manuscript for publication, I have taken the opportunity to add Lecture 0
as a motivational introduction to the topic of the notes, plus two things that I felt were
lacking from the existing literature, as a result of which the appendices have become
considerably more substantial. One (Appendix B) is a complete proof of local positivity of
intersections, including just enough background material on elliptic regularity for a student
familiar with distributions and Sobolev spaces to consider it “self-contained”; this notably
includes a weak version of the Micallef-White theorem, which some readers may hopefully
find easier to comprehend than the deeper result in [MW95] that inspired it. The other
(Appendix C) is a quick survey of Siefring’s intersection theory of punctured holomorphic
curves, putting the essential facts and formulas in as compact a form as possible for the
benefit of researchers who need a ready reference. Most of what is in Appendix C also
appears in Lectures 3 and 4, but the latter are written in a more pedagogical style that
develops the structure of the theory based on a few core ideas—that is presumably helpful
if your goal is to understand why the main results are true, but less so if you just need to
look up a specific formula, and Appendix C is there to help in the latter case.

Intersection theory has played a prominent role in the study of closed symplectic 4-
manifolds since Gromov’s paper [Gro85] on pseudoholomorphic curves, leading to a myriad
of beautiful rigidity results that are either not accessible or not true in higher dimensions.
In the last 15 years, the highly nontrivial extension of this theory to the case of punc-
tured holomorphic curves, due to Siefring [Sie08, Sie11], has led to similarly beautiful
results about contact 3-manifolds and their symplectic fillings. These notes begin with an
overview of the closed case and an easy application (McDuff’s characterization of symplec-
tic ruled surfaces), and then explain the essentials of Siefring’s intersection theory and how
to use it in the real world. As a sample application, Lecture 5 concludes by discussing
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the classification of symplectic fillings of planar contact manifolds via Lefschetz fibrations
[Wen10b].

How to use these notes. I expect a variety of audiences to find these notes useful
for a variety of reasons. Since they were written with an audience of students in mind, I
did not want to assume too much previous knowledge of symplectic/contact geometry or
holomorphic curves, and most of the text reflects that. On the other hand, I also expect
a certain number of readers to be experienced researchers who already know the essentials
of holomorphic curve theory—including the adjunction formula in the closed case—but
would specifically like to learn about the intersection theory for punctured curves. For
readers in this category, I recommend starting with Appendix C for an overview of the
basic facts, and then turning back to Lectures 3 and 4 for details whenever necessary. If
on the other hand you are a student and still getting to know the field of symplectic and
contact topology, you’d probably rather start from the beginning.

Or if you really want to challenge yourself, feel free to read the whole thing backwards.

Acknowledgments. I would like to thank Richard Siefring and Michael Hutchings for
many conversations over the years that have improved my understanding of the subjects
discussed in this book. Thanks are also due to Andrew Lobb, Durham University and
the London Mathematical Society for bringing about the summer school that gave rise
to the original notes. They were written mostly while I worked at University College
London, with partial support from a Royal Society University Research Fellowship and a
Leverhulme Research Project Grant.



LECTURE 0

Motivation

In order to illustrate briefly what these lectures are about, I’d like to give an informal
sketch of two closely related theorems from the early days of symplectic topology. The first
is a beautiful application of the theory of closed pseudoholomorphic curves as introduced by
Gromov in [Gro85], and its proof requires only a few basic facts from this theory, plus some
knowledge of the standard homological intersection product from algebraic topology. The
second theorem admits a closely analogous proof, but we will see that the intersection-
theoretic portion of the argument is difficult to make precise, because it is no longer
homological—it requires some generalization of the intersection product in which “cycles”
need not be closed. One of the main objectives of the subsequent lectures will be to make
this idea precise and demonstrate what else it can be used for.

The statements of these theorems assume familiarity with the notions of minimal sym-
plectic 4-manifolds, symplectomorphisms, symplectic submanifolds, the standard symplec-
tic structure on R4, the sign of a transverse intersection, and the homological intersection
product—some background on all of these topics is covered in Lectures 1 and 2.

Theorem 0.1. Suppose pM,ωq is a closed, connected, minimal symplectic 4-manifold
containing a pair of symplectic submanifolds S1, S2 Ă M with the following properties:

‚ Both are homeomorphic to S2;
‚ Both have vanishing homological self-intersection number:

rS1s ¨ rS1s “ rS2s ¨ rS2s “ 0.

‚ The set S1 X S2 Ă M consists of a single transverse and positive intersection.

Then there exists a symplectomorphism identifying pM,ωq with pS2 ˆ S2, ω0q such that S1

and S2 are identified with S2 ˆ tconstu and tconstu ˆ S2 respectively, and ω0 is a product
of two area forms on S2.

This result says in effect that if we are given a certain type of “local” information
about submanifolds of a closed symplectic 4-manifold, then this is enough to recover its
global structure. From an alternative perspective, it says that the vast majority of closed
symplectic 4-manifolds do not contain certain types of symplectic submanifolds. The sec-
ond result says something similar, but now the symplectic manifold is noncompact and
the “local” information we are given is its structure outside of some compact subset—the

This material will be published by Cambridge University Press as Contact 3-Manifolds, Holomorphic
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2 0. MOTIVATION

theorem is typically summarized by saying that there do not exist any exotic symplectic
4-manifolds that look “standard at infinity”.

Theorem 0.2. Suppose pM,ωq is an open, connected, minimal symplectic 4-manifold
with a compact subset K Ă M such that pMzK,ωq is symplectomorphic to the complement
of a compact subset in the standard symplectic R4. Then pM,ωq is globally symplectomor-
phic to the standard symplectic R

4.

Remark 0.3. Both of these theorems appeared in less general forms in Gromov’s paper
[Gro85]; see §2.4.A1

1 and §0.3.C respectively. The statements given above are attributed
to both Gromov and McDuff, as they rely on the slightly more sophisticated intersection
theory of closed holomorphic curves that was developed by McDuff within a few years
after Gromov’s paper—see in particular [McD90]. Theorem 0.2 can also be rephrased
as the statement that S3 with its standard contact structure admits a unique minimal
symplectic filling, and we will discuss this version of the result in Lecture 5 (see in particular
Corollary 5.7).

Let’s sketch a proof of Theorem 0.1. The starting point is the observation that since S1

and S2 are both symplectic submanifolds and their intersection is transverse and positive,
one can choose a compatible almost complex structure J : TM Ñ TM on pM,ωq that
preserves the tangent spaces of S1 and S2 (see §1.1 for more on almost complex structures).
This makes S1 and S2 into images of embedded J-holomorphic spheres, i.e. smooth maps
u : S2 Ñ M that satisfy the nonlinear Cauchy-Riemann equation

Tu ˝ i “ J ˝ Tu,
where i : TS2 Ñ TS2 is the almost complex structure on S2 resulting from its standard
identification with the extended complex plane CY t8u. The advantage of replacing sym-
plectic submanifolds by J-holomorphic spheres is a matter of rigidity: the condition of
being a symplectic submanifold is open and thus quite flexible, i.e. the space of all sym-
plectic submanifolds is unmanageably large, whereas J-holomorphic spheres are solutions
to an elliptic PDE, and thus tend to come in finite-dimensional moduli spaces, which are
sometimes (if we’re lucky!) even compact. For this reason, we now consider for each
k “ 1, 2 the moduli spaces

MkpJq :“
 
u : S2 Ñ M

ˇ̌
Tu ˝ i “ J ˝ Tu and rus :“ u˚rS2s “ rSks P H2pMq

(M
AutpS2, iq,

where AutpS2, iq is the group of holomorphic automorphisms ϕ : S2 Ñ S2 of the extended
complex plane (i.e. the Möbius transformations), acting on the space of J-holomorphic
maps u : S2 Ñ M by ϕ ¨ u :“ u ˝ ϕ. We assign to this space the natural topology arising
from C8-convergence of maps. Both M1pJq and M2pJq are clearly nonempty, since they
contain equivalence classes of parametrizations of the submanifolds S1 and S2 respectively.
One can now apply general results from the theory of J-holomorphic curves to prove that
for generic choices of the almost complex structure J , M1pJq and M2pJq are both compact
smooth 2-dimensional manifolds. A quick survey of the analytical results behind this is
given in Appendix A.1, and we will sketch the proof in a somewhat more general setting
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in Lectures 1 and 2 (see Lemmas 1.17 and 1.18), though we do not plan to get too deeply
into such analytical details in this book.

What we will discuss in more detail is the intersection-theoretic properties of the J-
holomorphic spheres in M1pJq and M2pJq. We observe first that the hypotheses of The-
orem 0.1 clearly imply

rS1s ¨ rS2s “ 1,

as this intersection number can be computed as a signed count of transverse intersections
between S1 and S2, for which there is only one intersection to count, and it is positive.
In Lecture 2 and Appendix B, we will discuss a standard result known as positivity of
intersections, which implies that whenever u : Σ Ñ M and v : Σ1 Ñ M are two closed
J-holomorphic curves with non-identical images in an almost complex 4-manifoldM , their
intersections are all isolated and count positively toward the homological intersection num-
ber rus ¨ rvs P Z; moreover, the contribution of each isolated intersection is exactly `1 if
and only if that intersection is transverse. This is very strong information, from which one
can deduce the following:

(1) For each k “ 1, 2 and every pair of distinct elements u, v P MkpJq, the images
of u : S2 Ñ M and v : S2 Ñ M are disjoint. (This follows from the condition
rSks ¨ rSks “ 0.)

(2) For every u P M1pJq and v P M2pJq, the maps u : S2 Ñ M and v : S2 Ñ M have
exactly one intersection point, which is transverse and positive.

A related result discussed in §2.1, called the adjunction formula, makes it possible charac-
terize in homological terms which J-holomorphic curves in an almost complex 4-manifold
are embedded, and in this case it implies:

(3) Every element of M1pJq or M2pJq is embedded.

Finally, we will see in §1.3 that whenever u P MkpJq is an embedded J-holomorphic sphere
in one of these moduli spaces, the 2-parameter family of nearby J-holomorphic spheres in
MkpJq forms a smooth foliation of the neighborhood of upS2q in M . Combining this with
the compactness of MkpJq, it follows that the set of points in M that are contained in the
images of any of the spheres in MkpJq is both open and closed, thus it is everything: the
holomorphic spheres of MkpJq foliate M . The result is the “coordinate grid” depicted in
Figure 0.1: starting from the two symplectically embedded spheres S1, S2 Ă M , we obtain
two smooth families of embedded J-holomorphic spheres that each foliate M , such that
each sphere in M1pJq has a unique transverse intersection with each sphere in M2pJq. It
follows that there is a diffeomorphism

(0.1) M
–ÝÑ M1pJq ˆ M2pJq,

assigning to each point p P M the unique pair of holomorphic spheres pu, vq P M1pJq ˆ
M2pJq such that both have p in their images. Moreover, for each individual element of
M1pJq parametrized by a map u : S2 Ñ M , there is a diffeomorphism

S2 –ÝÑ M2pJq
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Figure 0.1. The two symplectic submanifolds S1, S2 Ă M generate two
transverse foliations by holomorphic spheres in the proof of Theorem 0.1.
The two families can be regarded as a “coordinate grid” that identifies M
with S2 ˆ S2.

sending each z P S2 to the unique holomorphic sphere v P M2pJq that has upzq in its
image; this proves that M2pJq has the topology of S2, and in the same manner one shows
M1pJq – S2. In summary, (0.1) can now be interpreted as a diffeomorphism from M to
S2 ˆ S2. There is still a bit of work to be done in identifying the symplectic structure ω
with a product of two area forms, but the techniques needed for this are not hard—they
involve geometric tools such as the Moser stability theorem for deformations of symplectic
forms (see e.g. [MS17]), but no serious analysis is required.

The original proof of Theorem 0.2 used a clever “capping” trick to derive it from
Theorem 0.1. For this motivational discussion, I would like to sketch a different proof that
is conceptually simpler, but trickier in the technical details.

By the hypotheses of Theorem 0.2, we can decompose the open symplectic manifold
pM,ωq into two regions: one is the compact (but otherwise completely unknown) subset
K Ă M , and the other is a region that we can identify with pR4zK 1, ωstdq for some compact
set K 1 Ă R4, where ωstd denotes the standard symplectic form on R4. We would like to
argue as in Theorem 0.1, that is, find a nice pair of “seed curves” to generate two well-
behaved moduli spaces of J-holomorphic curves that can then be used to form a coordinate
grid identifying M with R4. One easy way to find such seed curves is by observing that
R4 has a natural identification with C2 such that the natural multiplication by i on C2

defines a compatible almost complex structure on pR4, ωstdq. This is useful for the following
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Figure 0.2. The two families of properly embedded holomorphic planes
fw and gw form a coordinate grid for C2 and are each asymptotic on the
cylindrical end C2zD4

R – pR,8q ˆS3 to one of two specific loops γ1, γ2 Ă S3.

reason: C2 contains two obvious families of holomorphic planes

fw : C Ñ C
2 : z ÞÑ pz, wq, for w P C,

gw : C Ñ C
2 : z ÞÑ pw, zq, for w P C,

all of which are properly embedded maps, with two distinct types of asymptotic behavior.
To describe the latter, choose a large constant R ą 0, let D4

R Ă C2 denote the disk of
radius R and identify C2zD4

R with pR,8q ˆ S3 by viewing S3 as the unit sphere in C2 and
applying the diffeomorphism

pR,8q ˆ S3 –ÝÑ C
2zD4

R : pr, xq ÞÑ rx.
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Figure 0.3. The moduli spaces M1pJ ; γ1q and M2pJ ; γ2q of proper J-
holomorphic planes asymptotic to the loops γ1, γ2 Ă S3 form two transverse
foliations of M in Theorem 0.2, building a coordinate grid that proves M –
C ˆ C “ R4.

Then each fw or gw maps a neighborhood of infinity into an arbitrarily small neighborhood
of the cylinder pR,8q ˆ γ1 or pR,8q ˆ γ2 respectively, where we define

γ1 :“ S1 ˆ t0u Ă S3 Ă C
2, γ2 :“ t0u ˆ S1 Ă S3 Ă C

2.

A schematic picture of this asymptotic behavior and the resulting transverse pair of holo-
morphic foliations of C2 is shown in Figure 0.2. Informally, we will say that the planes fw
are asymptotic to γ1 and the planes gw are asymptotic to γ2; more precise definitions of
this terminology will appear in §2.4 when we discuss asymptotically cylindrical maps.
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Now sinceK 1 Ă C2 “ R4 is compact, D4
R will containK 1 for any R ą 0 sufficiently large,

so that we can also regard pM,ωq as containing a copy of the region identified above with
pR,8q ˆ S3. Let us fix such a radius and choose a compatible almost complex structure
J on pM,ωq that matches the standard multiplication by i on C2zD4

R – pR,8q ˆ S3. The
curves fw and gw can then be regarded as J-holomorphic planes in M for every w P C

with |w| ą R, and just as in Theorem 0.1, these two families define elements in a pair of
connected moduli spaces M1pJ ; γ1q and M2pJ ; γ2q of J-holomorphic planes in M , where
we can use the loops γ1 and γ2 to prescribe the asymptotic behavior of the curves in the
moduli spaces. There exists a well-developed theory of moduli spaces of J-holomorphic
curves with this type of asymptotic behavior, a survey of which is given in Appendix A.2.
In the present context, it can be applied to prove that M1pJ ; γ1q and M2pJ ; γ2q are
both smooth 2-dimensional manifolds, and they are also compact except for the obvious
way in which they are not: a sequence uj P MkpJ ; γkq for k P t1, 2u will fail to have a
convergent subsequence if and only if for large j it is of the form uj “ fwj

P M1pJ ; γ1q or
uj “ gwj

P M2pJ ; γ2q for a sequence wj P C with |wj | Ñ 8. This gives each of M1pJ ; γ1q
and M2pJ ; γ2q the topology of a compact surface with one boundary component attached
to a cylindrical end of the form CzDR – pR,8q ˆ S1.

If we want to apply these two moduli spaces the same way they were used in Theo-
rem 0.1, then we need to establish the following:

Lemma 0.4. The moduli spaces M1pJ ; γ1q and M2pJ ; γ2q described above have the
following properties:

(1) For each k “ 1, 2 and every pair of distinct elements u, v P MkpJ ; γkq, the images
of u : C Ñ M and v : C Ñ M are disjoint.

(2) For every u P M1pJ ; γ1q and v P M2pJ ; γ2q, the maps u : C Ñ M and v : C Ñ M

have exactly one intersection point, which is transverse and positive.
(3) Every element of M1pJ ; γ1q or M2pJ ; γ2q is embedded.

Indeed, one can then argue exactly as in the proof of Theorem 0.1 that the two moduli
spaces M1pJ ; γ1q and M2pJ ; γ2q form two transverse smooth foliations of M by planes,
producing a coordinate grid (see Figure 0.3) that identifies M with C ˆ C – R4. The
question I would now like to focus on is this: why is Lemma 0.4 true?

The answer does not come from homological intersection theory, as the curves in
M1pJ ; γ1q and M2pJ ; γ2q are noncompact and do not represent homology classes. One
can however use differential topological arguments to verify the second claim in the lemma:
the fact that each fw intersects each gw1 exactly once transversely implies via a homotopy
argument that the same will be true for any pair u P M1pJ ; γ1q and v P M2pJ ; γ2q. Indeed,
M1pJ ; γ1q and M2pJ ; γ2q are each connected spaces of properly embedded planes that are
asymptotic to disjoint loops in S3, thus they map neighborhoods of infinity to completely
disjoint regions near infinity in M . This ensures that there exist homotopies of properly
embedded maps

uτ : C Ñ M, vτ : C Ñ M, τ P r0, 1s
with u0 “ u, u1 “ fw, v0 “ v and v1 “ gw1 such that the intersections of uτ with vτ for
every τ P r0, 1s are confined to compact subsets of both domains. Standard arguments as
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Figure 0.4. The algebraic intersection count u ¨ v P Z between two proper
maps of noncompact domains can change under homotopies if the two maps
have matching asymptotic behavior.

in [Mil97] then imply that u and v must have the same algebraic intersection count as
fw and gw1, which is 1, so in light of positivity of intersections, u and v can only have one
intersection point and it must be transverse.

This type of argument does not suffice to prove the other two claims in Lemma 0.4. For
example, suppose we would like to prove that two distinct curves u, v P M1pJ ; γ1q must
always be disjoint. It is easy to believe this in light of the curves that we can explicitly
see, i.e. fw and fw1 both belong to M1pJ ; γ1q for any w,w1 P C sufficiently large, and they
are clearly disjoint if w ‰ w1. To extend this to the curves that we cannot explicitly see
because they do not live entirely in the region pR,8q ˆ S3 Ă M , we would ideally like
to argue via homotopy invariance, namely that if uτ and vτ are two continuous families
of curves in M1pJ ; γ1q with u0 and v0 disjoint, then u1 and v1 must also be disjoint. But
here we have a problem that did not arise in the previous paragraph: the curves uτ and vτ
in this homotopy are always asymptotic to the same loop γ1 Ă S3, so their images in M
always become arbitrarily close to each other in the cylindrical end pR,8q ˆ S3. In this
situation, there is no way to make sure that intersections are confined to compact subsets,
and we can imagine in fact that under a homotopy, some intersections might just escape
to infinity and disappear (see Figure 0.4)!

It is a remarkable fact that in the situation under consideration, this nightmare scenario
cannot happen, and Lemma 0.4 is indeed true. To understand why, we will have to explore
the asymptotic behavior of noncompact J-holomorphic curves much more deeply. Still more
interesting perhaps is that in more general situations, the nightmare scenario of Figure 0.4
really can happen, but it can also be controlled : one can define an asymptotic contribution
that measures the possibility for “hidden” intersections to emerge from infinity under
small perturbations. It turns out that just like the contribution of an isolated intersection
between two J-holomorphic curves, this asymptotic contribution is always nonnegative, and
adding it to the algebraic count of actual intersections produces a meaningful homotopy-
invariant intersection product. Once this product and the corresponding generalization
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of the adjunction formula have been understood, proving results like Lemma 0.4 becomes
quite easy.

The first hints of a systematic intersection theory for noncompact holomorphic curves
appeared in Hutchings’s work on embedded contact homology [Hut02], and the theory
was developed in earnest a few years later in the Ph.D. thesis of Richard Siefring [Sie05]
and his two papers [Sie08,Sie11]. Our primary objectives in these notes will be to explain
where this theory comes from, demonstrate how to use it, and give some examples of what
it can be used for. We’ll start in Lectures 1 and 2 by reviewing the intersection theory for
closed holomorphic curves and discussing one of its most famous applications, McDuff’s
theorem [McD90] on symplectic ruled surfaces (which is a variation on Theorem 0.1). The
asymptotic analysis required for Siefring’s theory is then surveyed in Lecture 3 (mostly
without the proofs since these are analytically somewhat intense), and Lecture 4 uses
these asymptotic results to define the precise generalizations of the homological intersection
product and the adjunction formula that are needed for results such as Lemma 0.4. In
Lecture 5, we will demonstrate how to use the theory via a generalization of Theorem 0.2,
framed in the language of contact 3-manifolds and their symplectic fillings.





LECTURE 1

Closed holomorphic curves in symplectic 4-manifolds

Contents

1.1. Some examples of symplectic 4-manifolds 11

1.2. McDuff’s characterization of symplectic ruled surfaces 16

1.3. Local foliations by holomorphic spheres 21

In these lectures we would like to explain some results about symplectic 4-manifolds
with contact boundary, and some of the technical tools involved in proving them, notably
the intersection theory of punctured pseudoholomorphic curves. These tools are relatively
recent, but have historical precedents that go back to the late 1980’s, when the field of
symplectic topology was relatively new and many deep results about closed symplectic
4-manifolds were proved. We begin with a discussion of some of those results.

1.1. Some examples of symplectic 4-manifolds

SupposeM is a smooth manifold of even dimension 2n ě 2. A symplectic form onM
is a closed 2-form ω that is nondegenerate, meaning that ωpX, ¨q ‰ 0 for every nonzero
vector X P TM , or equivalently,

ωn :“ ω ^ . . .^ ‰ 0

everywhere on M . This means that ωn is a volume form, thus it induces a natural ori-
entation on M . We will always assume that any symplectic manifold pM,ωq carries the
natural orientation induced by its symplectic structure, thus we can write

ωn ą 0.

We say that a submanifold Σ Ă M is a symplectic submanifold, or is symplectically

embedded, if ω|TΣ is also nondegenerate.

Exercise 1.1. Show that every finite-dimensional manifold admitting a nondegenerate
2-form has even dimension.

There are many interesting questions one can study on a symplectic manifold pM,ωq,
e.g. one can investigate the Hamiltonian dynamics for a function H : M Ñ R, or one
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can study symplectic embedding obstructions of one symplectic manifold into another (see
e.g. [HZ94,MS17] for more on each of these topics). In this lecture, we will consider the
most basic question of symplectic topology: given two closed symplectic manifolds pM,ωq
and pM 1, ω1q of the same dimension, what properties can permit us to conclude that they
are symplectomorphic, i.e. that there exists a diffeomorphism

ϕ :M
–ÝÑ M 1 with ϕ˚ω1 “ ω?

We shall deal with two fundamental examples of symplectic manifolds in dimension 4, of
which the second is a generalization of the first.

Example 1.2. Suppose Σ is a closed, connected and oriented surface, and π :M Ñ Σ
is a smooth fibre bundle whose fibres are also closed, connected and oriented surfaces. The
following result of Thurston says that under a mild (and obviously necessary) homological
assumption, such fibrations always carry a canonical deformation class of symplectic forms.

Theorem 1.3 (Thurston [Thu76]). Given a fibration π : M Ñ Σ as described above,
suppose the homology class of the fibre is not torsion in H2pMq. Then M admits a sym-
plectic form ω such that all fibres are symplectic submanifolds of pM,ωq. Moreover, the
space of symplectic forms on M having this property is connected.

A symplectic manifold pM,ωq with a fibration whose fibres are symplectic is called a
symplectic fibration. As a special case, if the fibres of π : M Ñ Σ are spheres and Σ is
a closed oriented surface, then a symplectic fibration pM,ωq over Σ is called a symplectic

ruled surface. This term is inspired by complex algebraic geometry; in particular, the
word “surface” refers to the fact that such manifolds can also be shown to admit complex
structures, which makes them 2-dimensional complex manifolds, i.e. complex surfaces.

Exercise 1.4. Show that the homological condition in Theorem 1.3 is always satisfied
if the fibres are spheres. Hint: A P H2pMq is a torsion class if and only if the homological
intersection number A ¨B P Z vanishes for all B P H2pMq. Consider the vertical subbundle
VM Ă TM Ñ M , defined as the set of all vectors in TM that are tangent to fibres of
π : M Ñ Σ. How many times (algebraically) does the zero-set of a generic section of
VM Ñ M intersect a generic fibre of π :M Ñ Σ?

The above class of examples is a special case of the following more general class.

Example 1.5. Suppose M and Σ are closed, connected, oriented, smooth manifolds of
dimensions 4 and 2 respectively. A Lefschetz fibration of M over Σ is a smooth map

π :M Ñ Σ

with finitely many critical points M crit :“ Critpπq Ă M and critical values Σcrit :“
πpM critq Ă Σ such that near each point p P M crit, there exists a complex coordinate
chart pz1, z2q compatible with the orientation of M , and a corresponding complex coordi-
nate z on a neighborhood of πppq P Σcrit compatible with the orientation of Σ, in which π
locally takes the form

(1.1) πpz1, z2q “ z21 ` z22 .
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Remark 1.6. Any 2n-dimensional manifold M admits a set of complex coordinates
pz1, . . . , znq near any point p P M , but it is not always possible to cover M with such
coordinate charts so that the transition maps are holomorphic; this is possible if and only
ifM also admits a complex structure. In the definition above, we have not assumed that
M admits a complex structure, as the coordinates pz1, z2q are only required to exist locally
near the finite set M crit. Note however that any choice of complex coordinates on some
domain determines an orientation on that domain: this follows from the fact that under
the natural identification R2n “ Cn, any complex linear isomorphism Cn Ñ Cn, when
viewed as an element of GLp2n,Rq, has positive determinant. In the above definition,
we are assuming that the given orientations of M and Σ always match the orientations
determined by the complex local coordinates.

A Lefschetz fibration restricts to a smooth fibre bundle over the set ΣzΣcrit, and the
fibres of this bundle are called the regular fibres ofM ; they are in general closed oriented
surfaces, and we may always assume without loss of generality that they are connected (see
Exercise 1.9 below). The finitely many singular fibres π´1pzq for z P Σcrit are immersed
surfaces with finitely many double points that look like the transverse intersection of Cˆt0u
and t0u ˆ C in C

2; one can see this by rewriting (1.1) in the coordinates ζ1 :“ z1 ` iz2
and ζ2 :“ z1 ´ iz2, so that the local model becomes πpζ1, ζ2q “ ζ1ζ2. Each singular fibre is
uniquely decomposable into a transversely intersecting union of subsets that are immersed
images of connected surfaces: we call these subsets the irreducible components, see
Figure 1.1.

Thurston’s theorem about symplectic structures on fibrations was generalized to Lef-
schetz fibrations by Gompf. To state the most useful version of this result, we need to
generalize the notion of a “symplectic submanifold” in a way that will also make sense
for singular fibres, which are not embedded submanifolds. Since Lefschetz critical points
are defined in terms of complex local coordinates, one way to do this is by elucidating the
relationship between complex and symplectic structures.

Definition 1.7. Suppose E Ñ B is a smooth real vector bundle of even rank. A
complex structure on E Ñ B is a smooth linear bundle map J : E Ñ E such that
J2 “ ´1. A symplectic structure on E Ñ B is a smooth antisymmetric bilinear bundle
map ω : E ‘ E Ñ R which is nondegenerate, meaning ωpv, ¨q ‰ 0 for all nonzero v P E.
We say that ω tames J if for all v P E with v ‰ 0, we have

ωpv, Jvq ą 0.

We say additionally that J is compatible with ω if the pairing

gJpv, wq :“ ωpv, Jwq
is both nondegenerate and symmetric, i.e. it defines a bundle metric.

One can show that a complex or symplectic structure on a vector bundle implies the
existence of local trivializations for which all transition maps are complex linear maps
Cn Ñ Cn or symplectic linear maps R2n Ñ R2n respectively; see [MS17] for details.
An almost complex structure on a manifold M is simply a complex structure on its
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Figure 1.1. A Lefschetz fibration over T2 with regular fibres of genus 2
and two singular fibres, each of which has two irreducible components.

tangent bundle TM Ñ M . Here the word “almost” is inserted in order to distinguish
this relatively weak notion from the much more rigid notion mentioned in Remark 1.6: a
complex manifold carries a natural almost complex structure (defined via multiplication
by i in any holomorphic coordinate chart), but not every almost complex structure arises
in this way from local charts, and there are many manifolds that admit almost complex
structures but not complex structures. One way to paraphrase Definition 1.7 is to say
that ω tames J if and only if every complex 1-dimensional subspace of a fibre in E is
also a symplectic subspace; similarly, if pM,ωq is a symplectic manifold, then ω tames an
almost complex structure J onM if and only if every complex curve in the almost complex
manifold pM,Jq is also a symplectic submanifold.

With this understood, suppose π : M Ñ Σ is a Lefschetz fibration as defined above.
We will say that a symplectic form ω on M is supported by π if the following conditions
hold:

(1) Every fibre of π|MzMcrit :MzM crit Ñ Σ is a symplectic submanifold;
(2) On a neighborhood of M crit, ω tames some almost complex structure J that pre-

serves the tangent spaces of the fibres.

Gompf’s generalization of Thurston’s theorem can now be stated as follows.
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Theorem 1.8 (Gompf [GS99]). Suppose M and Σ are closed, connected and oriented
manifolds of dimensions 4 and 2 respectively, and π : M Ñ Σ is a Lefschetz fibration for
which the fibre represents a non-torsion class in H2pMq. Then the space of symplectic
forms on M that are supported by π is nonempty and connected.

A Lefschetz fibration π :M Ñ Σ on a symplectic manifold pM,ωq with ω supported in
the above sense is called a symplectic Lefschetz fibration.

Exercise 1.9. Assuming M and Σ are closed and connected, show that if π :M Ñ Σ
is a Lefschetz fibration with disconnected fibers, then one can write π “ ϕ ˝ π1 where
ϕ : Σ1 Ñ Σ is a finite covering map of degree at least 2 and π1 : M Ñ Σ1 is a Lefschetz
fibration with connected fibers.

There is a natural way to replace any smooth fibre bundle as in Example 1.2 with a
Lefschetz fibration that has singular fibres, namely by blowing up finitely many points.
Topologically, this can be described as follows: given p P M , choose local complex co-
ordinates pz1, z2q on some neighborhood N ppq Ă M of p that are compatible with the
orientation and identify p with 0 P C2. Let E Ñ CP1 denote the tautological complex
line bundle, i.e. the bundle whose fibre over rz1 : z2s P CP2 is the complex line spanned by
pz1, z2q P C2. There is a canonical identification of EzCP1 with C2zt0u, where CP1 Ă E

here denotes the zero-section. Thus for some neighborhood N pCP1q Ă E of CP1, the above
coordinates allow us to identify N ppqztpu with N pCP1qzCP1, and we define the (smooth,

oriented) blowup xM of M by removing N ppq and replacing it with N pCP1q. There is a
natural projection

Φ : xM Ñ M,

such that S :“ Φ´1ppq is a smoothly embedded 2-sphere S – CP1 Ă xM (called an excep-

tional sphere), whose homological self-intersection number satisfies

(1.2) rSs ¨ rSs “ ´1.

The restriction of Φ to xMzS is a diffeomorphism onto Mztpu.
Exercise 1.10. Show that if π : M Ñ Σ is a Lefschetz fibration and p P MzM crit,

then there exist complex local coordinates pz1, z2q for a neighborhood of p in M and z for
a neighborhood of πppq in Σ, both compatible with the orientations, such that π takes the
form πpz1, z2q “ z1 near p.

Exercise 1.11. Suppose π : M Ñ Σ is a Lefschetz fibration, and xM is obtained by
blowing upM at a point p P MzM crit, using a complex coordinate chart as in Exercise 1.10.

Then if Φ : xM Ñ M denotes the induced projection map, show that π ˝ Φ : xM Ñ Σ is
a Lefschetz fibration, having one more critical point than π : M Ñ Σ and containing the
exceptional sphere Φ´1ppq as an irreducible component of a singular fibre.

Exercise 1.12. Prove that the sphere S Ă xM created by blowing up M at a point
satisfies (1.2). Hint: You only need to know the first Chern number of the tautological line
bundle.
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Exercise 1.13. Prove that if xM is constructed by blowing up M at a point, then xM
is diffeomorphic to the connected sum M#CP2, where the line over CP2 indicates that it
carries the opposite of its canonical orientation (determined by the complex structure of
CP2). Hint: Present CP2 as the union of C2 with a “sphere at infinity” CP1 Ă CP2. What
does a tubular neighborhood of CP1 in CP2 look like, and what changes if you reverse the
orientation?

It is easy to prove from the above description of the blowup that if M is a complex

manifold, xM inherits a canonical complex structure. What is somewhat less obvious,
but nonetheless true and hopefully not so surprising by this point, is that if pM,ωq is

symplectic, then xM also inherits a symplectic form pω that is canonical up to smooth
deformation through symplectic forms (see [MS17] or [Wen18, §3.2]). In this case, the

resulting exceptional sphere is a symplectic submanifold of pxM, pωq. Conversely, if pM,ωq
is any symplectic 4-manifold containing a symplectically embedded exceptional sphere
S Ă M , then one can reverse the above operation and show that pM,ωq is the symplectic
blowup of another symplectic manifold pM0, ω0q, with the resulting projection Φ :M Ñ M0

collapsing S to a point. We say that a symplectic 4-manifold is minimal if it contains
no symplectically embedded exceptional spheres, which means it is not the blowup of any
other symplectic manifold. McDuff [McD90] proved:

Theorem 1.14 (McDuff [McD90]). If pM,ωq is a closed symplectic 4-manifold with a
maximal collection of pairwise disjoint exceptional spheres E1, . . . , EN Ă pM,ωq, then the
symplectic manifold obtained from pM,ωq by “blowing down” along E1, . . . , EN is minimal.

One can also show that if ω is supported by a Lefschetz fibration π : M Ñ Σ, then

the symplectic form pω on the blowup xM can be arranged to be supported by the Lefschetz

fibration on xM arising from Exercise 1.11; see e.g. [Wen18, Theorem 3.44].
Symplectic fibrations are a rather special class of symplectic 4-manifolds, but the follow-

ing deep theorem of Donaldson indicates that Lefschetz fibrations are surprisingly general
examples. The theorem is actually true in all dimensions; we will not make use of it in
any concrete way in these notes, but it is important to have as a piece of background
knowledge.

Theorem 1.15 (Donaldson [Don99]). Any closed symplectic manifold can be blown up
finitely many times to a symplectic manifold which admits a symplectic Lefschetz fibration
over S2.

1.2. McDuff’s characterization of symplectic ruled surfaces

If pM,ωq is a symplectic 4-manifold with a supporting Lefschetz fibration π : M Ñ Σ,
then it admits a 2-dimensional symplectic submanifold S Ă pM,ωq satisfying

rSs ¨ rSs “ 0;

indeed, S can be chosen to be any regular fibre of the Lefschetz fibration. The following
remarkable result says that if S has genus 0, then the converse also holds.
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Theorem 1.16 (McDuff [McD90]). Suppose pM,ωq is a closed and connected symplec-
tic 4-manifold, and S Ă M is a symplectically embedded 2-sphere satisfying rSs ¨ rSs “ 0.
Then S is a fibre of a symplectic Lefschetz fibration π :M Ñ Σ over some closed oriented
surface Σ, and π is a smooth symplectic fibration (i.e. without Lefschetz critical points)
whenever pMzS, ωq is minimal. In particular, pM,ωq can be obtained by blowing up a
symplectic ruled surface finitely many times.

This theorem is false for surfaces S with positive genus (see Remark A.9 for more on
this). There is also no comparably strong result about symplectic fibrations in dimen-
sions greater than 4, as the theory of holomorphic curves is considerably stronger in low
dimensions. Our main goal for the rest of this lecture will be to sketch a proof of the
theorem.

The proof begins with the observation, originally due to Gromov [Gro85], that every
symplectic manifold pM,ωq admits an almost complex structure J that is compatible with
ω in the sense of Definition 1.7. Moreover, if S Ă pM,ωq is a symplectic submanifold, one
can easily choose a compatible almost complex structure J that preserves TS, i.e. it makes
S into an embedded J-complex curve. The main idea of the proof is then to study the
entire space of J-complex curves homologous to S and show that these must foliate M ,
possibly with finitely many singularities.

Let us define the “space of J-complex curves” more precisely. Recall that a Riemann

surface can be regarded as an almost complex1 manifold pΣ, jq with2 dimΣ “ 2. Given
pΣ, jq and an almost complex manifold pM,Jq of real dimension 2n, we say that a smooth
map u : Σ Ñ M is J-holomorphic, or pseudoholomorphic (often abbreviated simply
as “holomorphic”), if its tangent map is complex linear at every point, i.e.

(1.3) Tu ˝ j ” J ˝ Tu.
This is a first order elliptic PDE: in any choice of holomorphic local coordinates s ` it on
a domain in Σ, (1.3) is equivalent to the nonlinear Cauchy-Riemann type equation

Bsups, tq ` Jpups, tqq Btups, tq “ 0.

Solutions are called pseudoholomorphic curves, where the word “curve” refers to the
fact that their domains are complex one-dimensional manifolds. They have many nice
properties, which are proved by a combination of complex function theory, nonlinear func-
tional analysis and elliptic regularity theory—a quick overview of the essential properties
is given in Appendix A, and some of these will be used in the following discussion.

For any integer g ě 0 and A P H2pMq, we define the moduli space MA
g pM,Jq

of unparametrized closed J-holomorphic curves of genus g homologous to A as
the space of equivalence classes rpΣ, j, uqs, where pΣ, jq is a closed connected Riemann
surface of genus g, u : pΣ, jq Ñ pM,Jq is a pseudoholomorphic map representing the
homology class rus :“ u˚rΣs “ A, and we write pΣ, j, uq „ pΣ1, j1, u1q if and only if they are

1Due to a theorem of Gauss, every almost complex structure on a manifold of real dimension 2 is
integrable, i.e. it arises from an atlas of coordiate charts with holomorphic transition maps and is thus also
a complex structure (without the “almost”).

2Unless otherwise noted, all dimensions mentioned in these notes will be real dimensions, not complex.
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related to each other by reparametrization, i.e. there exists a holomorphic diffeomorphism
ϕ : pΣ, jq Ñ pΣ1, j1q (a biholomorphic map) such that u “ u1 ˝ ϕ. We will sometimes
abuse notation and abbreviate an equivalence class rpΣ, j, uqs P MA

g pM,Jq simply as the
parametrization “u” when there is no danger of confusion. The notion of C8-convergence
defines a natural topology on MA

g pM,Jq such that a sequence rpΣk, jk, ukqs P MA
g pM,Jq

converges to rpΣ, j, uqs P MA
g pM,Jq if and only if there exist representatives pΣ, j1

k, u
1
kq „

pΣk, jk, ukq for which
j1
k Ñ j and u1

k Ñ u

uniformly with all derivatives on Σ. In cases where we’d prefer not to specify the homology
class, we will occasionally write

MgpM,Jq :“
ž

APH2pMq

MA
g pM,Jq.

Observe that if u : pΣ, jq Ñ pM,Jq is a closed J-holomorphic curve and ϕ : pΣ1, j1q Ñ
pΣ, jq is a holomorphic map from another closed Riemann surface pΣ1, j1q, then u ˝ ϕ :
pΣ1, j1q Ñ pM,Jq is also a J-holomorphic curve. If ϕ is nonconstant, then holomorphicity
implies that it has degree degpϕq ě 1, with equality if and only if it is biholomorphic; in
the case k :“ degpϕq ą 1, we then say that u1 is a k-fold multiple cover of u. Note
that in this situation, ru1s “ krus, so for instance, a curve cannot be a multiple cover if it
represents a primitive homology class. We say that a nonconstant closed J-holomorphic
curve is simple if it is not a multiple cover of any other curve.

Returning to the specific situation of McDuff’s theorem, assume J is an ω-compatible
almost complex structure that preserves the tangent spaces of the symplectically embedded
sphere S Ă pM,ωq. Then pS, J |TSq is a closed Riemann surface of genus 0, and its inclusion
uS : S ãÑ M is an embedded J-holomorphic curve, defining an element

uS P M
rSs
0 pM,Jq

in the moduli space of J-holomorphic spheres homologous so S. A straightforward appli-
cation of standard machinery now gives the following result, a proof of which may be found
at the end of Appendix A.1.

Lemma 1.17. After a C8-small perturbation of J outside a neighborhood of S, the

open subset M
rSs,˚
0 pM,Jq Ă M

rSs
0 pM,Jq, consisting of simple J-holomorphic spheres ho-

mologous to rSs, is a smooth oriented 2-dimensional manifold, and it is “compact up to
bubbling” in the following sense. There exists a finite set of simple curves B Ă M0pM,Jq
with positive first Chern numbers such that if uk P M

rSs,˚
0 pM,Jq is a sequence with no

convergent subsequence in M
rSs
0 pM,Jq, then it has a subsequence that degenerates (see

Figure 1.2) to a nodal curve tv`, v´u P M
rSs

0 pM,Jq for some v`, v´ P B.

The above formulation is a bit lazy since we have not as yet given any definition of the
space M0pM,Jq of nodal curves. More precise details of this compactification of M0pM,Jq
may be found in Appendix A.1, but for the purposes of the present discussion, it will suffice
to characterize the degeneration of a sequence rpS2, jk, ukqs P MA

0 pM,Jq to a nodal curve
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uk`2 v` v´

uǫ
u1
ǫ

pxW,Jq
pR ˆ M`, J`q
pR ˆ M´, J´q

v0
v`
1

v´
1

v´
2

v´
3

pM`, ξ`q
pM´, ξ´q

pz1
pz2
pz3
pz4
qz1
qz2
qz3
qz4
pC1

pC2

pC3

pC4

qC1

qC2

qC3

qC4

pS, jq
upSq

S

S 1

δpuq “ 0
δpuq ą 0

S3 “ R3 Y t8u
S1 ˆ S2

S1ˆ
B

D Ă C
h„

pR ˆ M,J`q
pM, ξq

Figure 1.2. A sequence of J-holomorphic spheres uk degenerating to a
nodal curve tv`, v´u.

trpS2, j`, v`qs, rpS2, j´, v´qsu P M
A

0 pM,Jq as follows. The nodal curve is assumed to have
the property that any choice of representatives pS2, j˘, v˘q comes with a distinguished
intersection

v`pz`q “ v´pz´q,
for some pair of points z˘ P S2; this intersection is called the node. Given these parametriza-
tions, let C Ă S2 denote the equator of the sphere, separating it into the two hemispheres

S2 “ D` YC D´,

and choose continuous surjections ϕ˘ : D˘ Ñ S2 that map D̊˘ diffeomorphically to S2ztz˘u
and collapse C to z˘. The map

u8 : S2 Ñ M : z ÞÑ
#
v´ ˝ ϕ´pzq for z P D´,

v` ˝ ϕ`pzq for z P D`

is then continuous, and smooth on S2zC. This also defines a complex structure on S2zC
by

j8 :“
#
ϕ˚

´j´ on D̊´,

ϕ˚
`j` on D̊`,

though j8 does not extend smoothly over C. Now the convergence uk Ñ tv`, v´u can
be defined to mean that all of the above choices can be made together with choices of
representatives pS2, jk, ukq such that

uk Ñ u8 in C0pS2,Mq and C8
locpS2zC,Mq, and

jk Ñ j8 in C8
locpS2zCq.

Observe that as a result of the C0-convergence, rv`s ` rv´s “ A P H2pMq.
Lemma 1.17 relies on very general properties of J-holomorphic curves that are valid

in all dimensions; under a few extra assumptions, some version of the same result could
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be proved for a 2n-dimensional symplectic manifold pM,ωq containing a symplectically
embedded 2-sphere S Ă M with trivial normal bundle. The following improvement, which
we will prove in Lecture 2 (see §2.2), is unique to dimension 4:

Lemma 1.18. The finitely many nodal curves

tv1`, v1´u, . . . , tvN` , vN´ u P M
rSs

0 pM,Jq
appearing in Lemma 1.17 have the following properties:

(1) Each vi˘ : S2 Ñ M for i “ 1, . . . , N is embedded and satisfies rvi˘s ¨ rvi˘s “ ´1;
(2) vi` and vi´ for i “ 1, . . . , N intersect each other exactly once, transversely;
(3) For i, j P t1, . . . , Nu with i ‰ j,

v`
i pS2q X v`

j pS2q “ v`
i pS2q X v´

j pS2q “ v´
i pS2q X v´

j pS2q “ H.

Moreover, if F Ă M denotes the union of all the images of these nodal curves, then the

curves in M
rSs
0 pM,Jq are all embedded and have pairwise disjoint images that define a

smooth foliation of some open subset of MzF .
With this lemma at our disposal, the proof of Theorem 1.16 concludes as follows: let

X :“
!
p P MzF

ˇ̌
p is in the image of a curve in M

rSs
0 pM,Jq

)
.

Lemma 1.18 guarantees that X is an open subset of MzF , but by the compactness state-
ment in Lemma 1.17, X is also a closed subset. Since MzF is connected, we conclude that

the curves in M
rSs
0 pM,Jq fill all of it. Now, the compactified moduli space M

rSs

0 pM,Jq
consists of M

rSs
0 pM,Jq plus finitely many additional elements in the form of nodal curves;

it has the topology of some compact oriented 2-manifold Σ, and the above argument shows

that every point in M is in the image of precisely one element of M
rSs

0 pM,Jq. This defines
a map

π :M Ñ M
rSs

0 pM,Jq – Σ,

whose regular fibres are the images of the smoothly embedded curves in M
rSs
0 pM,Jq,

and the images of nodal curves give rise to Lefschetz singular fibres, each with a unique
critical point where two embedded J-holomorphic spheres intersect transversely. Since
all the fibres are images of J-holomorphic curves and J is ω-tame, the fibres are also
symplectic submanifolds. Furthermore, the irreducible components of the singular fibres
are exceptional spheres that are disjoint from S (since the latter is also a fibre), thus no
singular fibres can exist if pMzS, ωq is minimal.

Remark 1.19. One can also prove the converse of the statement about minimality,
i.e. if the Lefschetz fibration has no singular fibres then pMzS, ωq must be minimal. This
relies on another theorem of McDuff [McD90], that for generic J , any exceptional sphere is
homologous to a unique J-holomorphic sphere, which is embedded. A more comprehensive
exposition of this topic and the more general version of McDuff’s theorem for rational and
ruled symplectic 4-manifolds is given in [Wen18]; see also [LM96].
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1.3. Local foliations by holomorphic spheres

The distinctive power of holomorphic curve methods in dimension four results from
the numerical coincidence that 2 ` 2 “ 4: in particular, any pair of holomorphic curves
u P MA

g pM,Jq and v P MA1

g1 pM,Jq has a well-defined homological intersection number
rus ¨ rvs “ A ¨ A1 P Z. We will discuss this subject in earnest in §2.1, but before that,
let us examine a slightly simpler phenomenon that is also distinctive to dimension 4 and
important for the proof of Lemma 1.18.

Suppose pM,Jq is a 2n-dimensional almost complex manifold and u P MA
0 pM,Jq is an

embedded J-holomorphic curve such that the normal bundle Nu Ñ S2 to any parametriza-
tion u : S2 ãÑ M is trivial. Since dupzq : pTzS2, jq Ñ pTupzqM,Jq is complex linear and
injective for all z P S2, the normal bundle naturally inherits a complex structure such that

u˚TM – TS2 ‘ Nu

as complex vector bundles, so the first Chern numbers of these bundles satisfy

c1pu˚TMq “ c1pTS2q ` c1pNuq “ χpS2q ` 0 “ 2,

where c1pu˚TMq is shorthand for evaluation of c1pu˚TM, Jq P H2pS2q on the fundamental
class:

c1pu˚TMq :“ xc1pu˚TM, Jq, rS2sy “ xu˚c1pTM, Jq, rS2sy “ xc1pTM, Jq, u˚rS2sy “: c1pAq.
If dimM “ 4, then triviality of Nu implies that upS2q is a symplectically embedded
sphere with self-intersection number 0, and we saw in Lemma 1.17 that in this case
dimMA

0 pM,Jq “ 2. More generally, plugging dimM “ 2n and c1pAq “ 2 into the virtual
dimension formula (A.1) in Appendix A.1 gives

vir-dimMA
0 pM,Jq “ 2pn´ 3q ` 2c1pAq “ 2n´ 2.

This means more precisely that if J is sufficiently generic, then the open subset ofMA
0 pM,Jq

consisting only of simple curves is a smooth manifold of this dimension, and since u itself
is embedded, this is true in particular for some neighborhood of u in MA

0 pM,Jq. Note also
that embeddedness of spheres inM is an open condition, so all other curves near u are also
embedded. This observation and the dimension computation above make the following
question reasonable:

Question 1.20. Do the curves near u in MA
0 pM,Jq foliate a neighborhood of upS2q?

To answer this, let us choose a Riemannian metric on M and assume there exists a
smooth family of parametrizations for the curves near u via sections of its normal bundle,
i.e. one can find a smooth map

(1.4) Ψ : D2n´2 ˆ S2 Ñ M : pσ, zq ÞÑ uσpzq :“ expupzq hσpzq
with hσ P ΓpNuq for each σ P D2n´2 and h0 ” 0, such that the maps uσ parametrize curves
in MA

0 pM,Jq and u0 “ u. There is then a linear map R2n´2 Ñ ΓpNuq : X ÞÑ ηX defined
by

ηXpzq “ dΨp0, zqpX, 0q “ d

dt
utXpzq

ˇ̌
ˇ̌
t“0

,
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and the image of this map can be identified with the tangent space TuM
A
0 pM,Jq. Using

the fact that each uσ : S2 Ñ M satisfies a nonlinear Cauchy-Riemann type equation, one
can show that all the sections ηX satisfy some linearized Cauchy-Riemann type equation
(cf. Appendix B.1.1): in particular, for any choice of local holomorphic coordinates s ` it

identifying a domain U Ă Σ with some open set Ω Ă C, the local expression for ηX in a
complex trivialization over U is a function f : Ω Ñ Cn´1 satisfying a linear PDE of the
form

(1.5) Bsfps, tq ` i Btfps, tq ` Aps, tqfps, tq “ 0,

for some smooth function Aps, tq valued in the space EndRpCn´1q of real-linear maps
on C

n´1. Except for the extra 0th-order term, this is the standard Cauchy-Riemann equa-
tion, and we might therefore expect f to have similar properties to an analytic function
Ω Ñ Cn´1, e.g. its zeroes should be isolated unless ηX ” 0. This intuition is made pre-
cise by the following consequence of elliptic regularity theory, often called the similarity

principle; a slight generalization of this result is stated and proved in Appendix B.1).

Theorem 1.21 (similarity principle). Suppose Ω Ă C is an open set, N P N, A : Ω Ñ
EndRpCNq is smooth, f : Ω Ñ C

N is a smooth function satisfying the equation (1.5), and
z0 P Ω is a point with fpz0q “ 0. Then f can be written on some neighborhood z0 P U Ă Ω
as

(1.6) fpzq “ Φpzqgpzq, z P U ,

for some continuous function Φ : U Ñ EndCpCNq with Φpz0q “ 1 and a holomorphic
function g : U Ñ C

N . Moreover, if A is complex linear at every point, then Φ can be taken
to be smooth.

Corollary 1.22. Given f : Ω Ñ C
N as in Theorem 1.21, f is either identically zero

or has only isolated zeroes. In the latter case, if N “ 1, all zeroes of f have positive order.

Proof. Writing fpzq “ Φpzqgpzq as in (1.6) for z in a neighborhood U of z0, we can
assume after shrinking U that Φpzq is close to 1 and thus invertible for all z P U . Then
f |U is identically zero if and only if g|U is, and otherwise, g has an isolated zero at z0 and
thus so does f . If the latter holds and also N “ 1, then we can further conclude that the
winding number of the loop

R{Z Ñ Czt0u : θ ÞÑ gpz0 ` ǫe2πiθq
for small ǫ ą 0 is positive, and since Φ is close to the identity, the same is true for f . �

The similarity principle implies that sections ηX P TuMA
0 pM,Jq have at most finitely

many zeroes in general, but it implies much more than this in the case where dimM “ 4.
Indeed, Nu Ñ S2 is in this case a complex line bundle, so for any section of this bundle
with only isolated zeroes, the algebraic count of the zeroes is given by the first Chern
number c1pNuq P Z, which vanishes since the bundle is trivial. But by Corollary 1.22, the
zeroes of any nontrivial section ηX P TuMA

0 pM,Jq all count positively,3 so it follows that

3zeroes of a section!positivity of
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there cannot be any: ηX is nowhere zero! This is true for all X ‰ 0, and thus implies that
dΨp0, zq : Tp0,zqpD2 ˆS2q Ñ TupzqM is an isomorphism for all z P S2, hence the map (1.4) is
an embedding in some neighborhood of t0uˆS2, giving a positive answer to Question 1.20:

Proposition 1.23. If dimM “ 4 and u P MA
0 pM,Jq is an embedded J-holomorphic

sphere with trivial normal bundle, then the images of the curves in MA
0 pM,Jq near u foliate

a neighborhood of the image of u. �

No such general result is possible when dimM ą 4, because there is no way to “count”
the number of zeroes of a section of a higher rank complex vector bundle over S2.

Exercise 1.24. Suppose L Ñ Σ is a complex line bundle over a closed Riemann
surface pΣ, jq, and V Ă ΓpLq is a vector space of sections that satisfy a real-linear Cauchy-
Riemann type equation, so in particular the similarity principle holds for sections η P V .
Prove dimR V ď 2 ` 2c1pLq.
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In this lecture we explain the intersection theory for closed holomorphic curves in di-
mension 4 and use it to complete the overview from Lecture 1 of McDuff’s theorem on
ruled surfaces. We will then begin discussing the generalization of these ideas to punc-
tured holomorphic curves in symplectic cobordisms, and some applications to the study of
symplectic fillings.

2.1. Positivity of intersections and the adjunction formula

To complete the proof of Lemma 1.18 from §1.2, we must discuss the intersection theory
of J-holomorphic curves in dimension 4. The notion of “homological” intersection numbers
was mentioned already a few times in the previous lecture, and it will be useful now to
review precisely what this means. Suppose M is a closed oriented smooth 4-manifold, Σ
and Σ1 are closed oriented surfaces, and

u : Σ Ñ M, v : Σ1 Ñ M

are C1-smooth maps. An intersection upzq “ vpζq “ p is transverse if

(2.1) im dupzq ‘ im dvpζq “ TpM,

and positive if and only if the natural orientation induced on this direct sum by the
orientations of TzΣ and TζΣ

1 matches the orientation of TpM . Otherwise it is called
negative, and we define the local intersection index accordingly as ιpu, z ; v, ζq “ ˘1.
If all intersections between u and v are transverse, then they are all isolated and thus there
are only finitely many, so we can define the total intersection number

rus ¨ rvs :“
ÿ

upzq“vpζq

ιpu, z ; v, ζq P Z.

This material will be published by Cambridge University Press as Contact 3-Manifolds, Holomorphic

Curves and Intersection Theory by Chris Wendl. This pre-publication version is free to view and download
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The choice of notation reflects the fact that rus ¨ rvs turns out to depend only on the
homology classes rus, rvs P H2pMq; in fact, it defines a nondegenerate bilinear symmetric
form

H2pMq b H2pMq Ñ Z : rus b rvs ÞÑ rus ¨ rvs.
More details on this may be found e.g. in [Bre93].

If u and v have an isolated but non-transverse intersection at upzq “ vpζq “ p, one
can still define a local intersection index ιpu, z ; v, ζq P Z as follows. By assumption, z
and ζ each lie in the interiors of smoothly embedded closed disks Dz Ă Σ and Dζ Ă Σ1

respectively such that

upDzztzuq X vpDζztζuq “ H.

Then one can find a C8-small perturbation uǫ of u such that uǫ|Dz
&v|Dζ

but uǫpBDzq and
vpBDζq remain disjoint. We set

ιpu, z ; v, ζq :“
ÿ

uǫpz1q“vpζ1q

ιpuǫ, z1 ; v, ζ 1q P Z,

where the sum is restricted to pairs pz1, ζ 1q P Dz ˆ Dζ.

Exercise 2.1. Suppose Σ and Σ1 are compact oriented surfaces with boundary, M is
a smooth oriented 4-manifold and

fτ : Σ Ñ M, gτ : Σ
1 Ñ M, τ P r0, 1s

are homotopies1 of maps with the property that for all τ P r0, 1s,
fτ pBΣq X gτpΣ1q “ fτ pΣq X gτ pBΣ1q “ H.

Show that if fτ and gτ are of class C
1 and have only transverse intersections for τ P t0, 1u,

then

(2.2)
ÿ

f0pzq“g0pζq

ιpf0, z ; g0, ζq “
ÿ

f1pzq“g1pζq

ιpf1, z ; g1, ζq.

Deduce from this that the above definition of the local intersection index for an isolated but
non-transverse intersection is well defined and independent of the choice of perturbation.
Then, show that (2.2) also holds if the intersections for τ P t0, 1u are assumed to be isolated
but not necessarily transverse. Hint: If you have never read [Mil97], you should.

The following useful result is immediate from the above definition; it can be paraphrased
by saying that “algebraically nontrivial intersections cannot be perturbed away.”

Proposition 2.2. If u : Σ Ñ M and v : Σ1 Ñ M have an isolated intersection
upzq “ vpζq with ιpu, z ; v, ζq ‰ 0, then for any neighborhood z P Uz Ă Σ, any sufficiently
C0-close perturbation uǫ of u satisfies upUzq X vpΣ1q ‰ H. �

1We are not specifying the regularity of the homotopy in this statement because it does not matter:
one can use general perturbation results as in [Hir94] to replace any continuous homotopy between two
C1-smooth maps with a homotopy of class C1. If desired, one can also perturb all of the maps to make
them smooth.
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Recall next that any complex structure on a real vector space induces a preferred
orientation. In the case where u : pΣ, jq Ñ pM,Jq and v : pΣ1, j1q Ñ pM,Jq are both
J-holomorphic curves, this means that each space in (2.1) carries a canonical orientation
and they are automatically compatible with the direct sum, hence ιpu, z ; v, ζq “ `1. This
positivity phenomenon turns out to be true for non-transverse intersections as well:

Theorem 2.3 (local positivity of intersections). Suppose u : pΣ, jq Ñ pM,Jq and
v : pΣ1, j1q Ñ pM,Jq are nonconstant pseudoholomorphic maps with upzq “ vpζq “ p P M
for some z P Σ, ζ P Σ1. Then there exist neighborhoods z P Uz Ă Σ and ζ P Uζ Ă Σ1 such
that either upUzq “ vpUζq or

upUzztzuq X vpUζztζuq “ H.

Moreover, in the latter case, if dimM “ 4 then ιpu, z ; v, ζq ě 1, with equality if and only
if the intersection is transverse.

A proof of this theorem is given in Appendix B.
To understand the global consequences of Theorem 2.3, observe that there are certain

obvious situations where a pair of closed J-holomorphic curves u : pΣ, jq Ñ pM,Jq and
v : pΣ1, j1q Ñ pM,Jq have infinitely many intersections, e.g. if they represent the same curve
up to parametrization, or they are multiple covers of the same simple curve. In such cases,
u and v have globally identical images, and we find neighborhoods with upUzq “ vpUζq
in Theorem 2.3. One can show that in all other cases, the set of intersections is finite, a
phenomenon known as unique continuation. Theorem 2.3 then implies:

Corollary 2.4 (global positivity of intersections). If dimM “ 4 and u : pΣ, jq Ñ
pM,Jq and v : pΣ1, j1q Ñ pM,Jq are closed connected J-holomorhic curves with non-
identical images, then they have finitely many intersections, and

rus ¨ rvs ě #
 

pz, ζq P Σ ˆ Σ1
ˇ̌
upzq “ vpζq

(
,

with equality if and only if all the intersections are transverse. In particular, rus ¨ rvs “ 0
if and only if upΣq X vpΣ1q “ H. �

We next consider the question of how many times a single closed J-holomorphic curve
u : pΣ, jq Ñ pM,Jq intersects itself at two distinct points in its domain, i.e. its count of
double points. This question obviously has no reasonable answer if u is multiply covered,
so let us assume u is simple, in which case it has only finitely many double points. We say
that a point z P Σ is a critical point of u if

dupzq “ 0.

Remark 2.5. This usage of the term “critical point” conflicts with standard terminol-
ogy since typically dimΣ ă dimM , hence dupzq can never be surjective and u therefore
cannot have any regular points, strictly speaking. Note however that whenever dupzq ‰ 0,
the Cauchy-Riemann equation implies that dupzq is injective. For this reason, we will refer
to points with this property as immersed points instead of “regular points”.
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A simple J-holomorphic curve can have critical points, but only finitely many, and their
role in intersection theory is dictated by the following lemma. For an oriented surface Σ and
a symplectic manifold pM,ωq, we say that a smooth map u : Σ Ñ M is symplectically

immersed if u˚ω ą 0.

Lemma 2.6. If u P MgpM,Jq is simple, then for any parametrization u : Σ Ñ M

and any z P Σ, there is a neighborhood z P Uz Ă Σ such that u|Uz
is injective. Moreover,

if dupzq “ 0, dimM “ 4, and ωz is an auxiliary choice of symplectic form defined near
upzq and taming J , then there exists a positive integer δpu, zq ą 0 depending only on the
germ of u near z, such that u|Uz

admits a C1-small perturbation to an ωz-symplectically
immersed map uǫ : Uz Ñ M that matches u outside an arbitrarily small neighborhood of z
and satisfies2

δpu, zq “ 1

2

ÿ

uǫpζ1q“uǫpζ2q, ζ1‰ζ2

ιpuǫ, ζ1 ; uǫ, ζ2q,

where the sum is finite and ranges over pairs pζ1, ζ2q P Uz ˆ Uz.

A proof of this lemma is given in Appendix B. It enables us to define for each simple
curve u P MgpM,Jq the integer

(2.3) δpuq :“ 1

2

ÿ

upzq“upζq, z‰ζ

ιpu, z ; u, ζq `
ÿ

dupzq“0

δpu, zq P Z,

which we shall call the singularity index of u. The contribution δpu, zq ą 0 for each
critical point z is the local singularity index of u at z.

Theorem 2.7. For any simple curve u P MgpM,Jq in an almost complex 4-manifold
pM,Jq, the integer δpuq defined in (2.3) depends only on the genus g and the homology
class rus P H2pMq. Moreover, δpuq ě 0, with equality if and only if u is embedded.

Note that the second statement in Theorem 2.7 is an immediate consequence of The-
orem 2.3 and Lemma 2.6. To prove the first statement, we shall relate δpuq to other
quantities that more obviously depend only on rus P H2pMq and the genus, for instance
the homological self-intersection number

rus ¨ rus P Z.

To compute the latter, it suffices to compute ruǫs ¨ ruǫs for any C1-small immersed pertur-
bation uǫ : Σ Ñ M of u. Choose uǫ to be the perturbation promised by Lemma 2.6, so
for some auxiliary symplectic structure ω taming J near the images of the critical points
of u, we can assume uǫ is symplectically immersed near those critical points and matches
u everywhere else. Notice that by Lemma 2.6 and the definition of δpuq,

δpuǫq “ δpuq.
Denote the normal bundle of uǫ by Nuǫ Ñ Σ. Since uǫ is symplectically immersed in the
region where it differs from u, we can deform the natural complex structure of u˚

ǫTM on

2Notice that each geometric double-point uǫpζ1q “ uǫpζ2q appears twice in the summation over pairs
pζ1, ζ2q, hence the factor of 1{2 in the definition of δpu, zq, and similarly in (2.3).
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this region to one that is tamed by ω but also admits a splitting of complex vector bundles
u˚
ǫTM – TΣ‘Nuǫ . This modification of the complex structure does not change c1pu˚

ǫTMq,
so we then have

(2.4) c1prusq “ c1pu˚
ǫTMq “ c1pTΣq ` c1pNuǫq “ χpΣq ` c1pNuǫq.

This motivates the following notion: we define the normal Chern number cNpuq P Z of
any closed J-holomorphic curve u : pΣ, jq Ñ pM,Jq to be

(2.5) cNpuq :“ c1prusq ´ χpΣq.
It is equal to c1pNuq whenever u is immersed, but has the advantage of obviously depending
only on rus P H2pMq and the topology of the domain, so we can define it without assuming
that u is immersed.

The self-intersection number rus ¨ rus “ ruǫs ¨ ruǫs can now be computed by counting
(with signs) the isolated intersections between uǫ and a generic perturbation of the form

u1
ǫ : Σ Ñ M : z ÞÑ expuǫpzq ηpzq,

where η is a generic C0-small smooth section of Nuǫ Ñ Σ, and the exponential map
is defined using any choice of Riemannian metric on M . Figure 2.1 shows how many
intersections we should expect to see. Any zero of η with order k P Z will produce an
intersection of uǫ and u1

ǫ whose local intersection index is also k, and the sum of these
orders over all zeroes of η is c1pNuǫq. Moreover, any isolated double point uǫpzq “ uǫpζq will
produce two intersections of uǫ and u

1
ǫ with the same local index. These two observations

produce the formula

rus ¨ rus “ 2δpuǫq ` c1pNuǫq “ 2δpuq ` cNpuq.
Since neither rus ¨ rus nor cNpuq depends on the perturbation uǫ, this proves the following
important result, known as the adjunction formula, which implies Theorem 2.7 as an
immediate corollary.

Theorem 2.8 (adjunction formula). For any closed, connected and simple J-holomorphic
curve u in an almost complex 4-manifold pM,Jq,
(2.6) rus ¨ rus “ 2δpuq ` cNpuq,
where cNpuq P Z is the normal Chern number (2.5), and δpuq is a nonnegative integer that
vanishes if and only if u is embedded. �

Corollary 2.9. If u P MA
g pM,Jq is embedded, then every other simple curve in

MA
g pM,Jq is also embedded. �

Exercise 2.10.

(a) Consider the intersecting holomorphic maps u, v : C Ñ C2 defined by

upzq “ pz3, z5q, vpzq “ pz4, z6q.
Show that u admits a C1-small perturbation to a holomorphic function uǫ such
that uǫ and v have exactly 18 intersections in a neighbourhood of the origin, all
transverse.
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Figure 2.1. Counting the intersections of uǫ : Σ Ñ M with a perturbation
of the form u1

ǫ “ expuǫ η for some section η of the normal bundle.

(b) Try to convince yourself that the above count of 18 intersections holds after any
generic C1-small perturbation of u and/or v.

(c) Show that for any neighbourhood U Ă C of 0, the map u admits a C1-small
perturbation to a holomorphic immersion uǫ such that

1

2
#tpz, ζq P U ˆ U | uǫpzq “ uǫpζq, z ‰ ζu “ 10.

(d) If you’re especially ambitious, now try to convince yourself that for any perturba-
tion as in part (c) making all double points of uǫ transverse, the count of double
points is the same.

Exercise 2.11. Recall that H2pCP2q is generated by an embedded sphere CP1 Ă CP2

with rCP1s ¨ rCP1s “ 1. A holomorphic curve u : Σ Ñ CP2 is said to have degree d P N if

rus “ drCP1s.
Show that all holomorphic spheres of degree 1 are embedded, and any other simple holo-
morphic sphere in CP2 is embedded if and only if it has degree 2.

2.2. Application to ruled surfaces

We now apply the results of the previous section to complete the proof of Lemma 1.18
from Lecture 1.

Since M
rSs
0 pM,Jq contains the embedded curve uS by construction, Corollary 2.9 im-

plies that all other simple curves in M
rSs
0 pM,Jq are also embedded, and we saw in §1.3

that every embedded curve u P M
rSs
0 pM,Jq has a neighborhood in M

rSs
0 pM,Jq consist-

ing of embeddings that foliate an open subset. On a more global level, any two curves

u, v P M
rSs
0 pM,Jq satisfy

rus ¨ rvs “ rSs ¨ rSs “ 0,

thus Corollary 2.4 now implies that u and v are disjoint unless they are identical, hence

the set of all simple curves in M
rSs
0 pM,Jq foliates an open subset of M .

We must still rule out the possibility that M
rSs
0 pM,Jq contains a multiple cover, so

arguing by contradiction, suppose u P M
rSs
0 pM,Jq is a k-fold cover of a simple curve
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v : pΣg, jq Ñ pM,Jq with genus g ě 0, for some k ě 2. This requires the existence of a
map ϕ : S2 Ñ Σg of degree k, but such a map cannot exist if g ą 0 since Σg then has a
contractible universal cover and thus π2pΣgq “ 0; we conclude g “ 0. Moreover, the fact
that the embedded sphere S Ă M has trivial normal bundle implies via the usual splitting
TM |S “ TS ‘ NS that

c1prSsq “ c1pTSq ` c1pNSq “ χpSq “ 2,

so rSs “ rus “ krvs implies 2 “ kc1prvsq, thus k “ 2 and c1prvsq “ 1. Consider now the
adjunction formula (2.6) applied to the simple curve v:

rvs ¨ rvs “ 2δpvq ` cNpvq “ 2δpvq ` c1prvsq ´ 2.

The right hand side is an odd integer since c1prvsq “ 1. However, the left hand side is 0,
as 0 “ rSs ¨ rSs “ rus ¨ rus “ k2rvs ¨ rvs, so we have a contradiction.

Next, suppose uk P M
rSs
0 pM,Jq is a sequence degenerating to a nodal curve tv`, v´u P

M
rSs

0 pM,Jq, for which Lemma 1.17 guarantees that both v` and v´ are simple and satisfy
c1prv˘sq ą 0. Since rSs “ ruks “ rv`s ` rv´s and c1prSsq “ 2, this implies

(2.7) c1prv`sq “ c1prv´sq “ 1.

Since every curve u P M
rSs
0 pM,Jq has c1prusq “ c1prSsq “ 2 and is simple, this implies that

u and v˘ can never have identical images, so rus ¨ rv˘s ě 0 by positivity of intersections
(Corollary 2.4). Moreover,

0 “ rSs ¨ rSs “ rus ¨ prv`s ` rv´sq “ rus ¨ rv`s ` rus ¨ rv´s,
where both terms at the right are nonnegative, thus both vanish and we conclude via
Corollary 2.4 that u is disjoint from both v` and v´.

We claim next that v` and v´ cannot be the same curve (up to parametrization):
indeed, if they are, then we have rSs “ 2rv`s, and applying the adjunction formula to v`

yields the same numerical contradiction as in the case of a multiple cover in M
rSs
0 pM,Jq. It

follows now by Corollary 2.4 that v` and v´ have finitely many intersections, all of which
count positively, and in fact

(2.8) rv`s ¨ rv´s ě 1

since they must have at least one intersection, namely at the node. Using rSs “ rv`s`rv´s
and (2.7), and plugging in the adjunction formula and (2.7) to compute rv˘s ¨ rv˘s, we find

0 “ rSs ¨ rSs “ prv`s ` rv´sq ¨ prv`s ` rv´sq “ rv`s ¨ rv`s ` rv´s ¨ rv´s ` 2rv`s ¨ rv´s
“ 2δpv`q ` cNpv`q ` 2δpv´q ` cN pv´q ` 2rv`s ¨ rv´s
“ 2δpv`q ` 2δpv´q ` c1prv`sq ´ χpS2q ` c1prv´sq ´ χpS2q ` 2rv`s ¨ rv´s
“ 2δpv`q ` 2δpv´q ` 2 prv`s ¨ rv´s ´ 1q .

By (2.8), every term in this last sum is nonnegative, implying

δpv`q “ δpv´q “ 0 and rv`s ¨ rv´s “ 1.
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Applying Corollary 2.4 and Theorem 2.8, we deduce that v˘ are each embedded and
intersect each other exactly once, transversely. Applying the adjunction formula again to
v˘ with cNpv˘q “ c1prv˘sq ´ χpS2q “ ´1 then gives

rv˘s ¨ rv˘s “ 2δpv˘q ` cNpv˘q “ 0 ´ 1 “ ´1,

so both are J-holomorphic parametrizations of exceptional spheres.
Finally, we show that if tv`, v´u and tv1

`, v
1
´u are two non-identical nodal curves arising

as limits of curves in M
rSs
0 pM,Jq, then they are disjoint. Here “non-identical” can be taken

to mean without loss of generality (i.e. by reversing the labels of v` and v´ if necessary) that
v` is not equivalent to either v1

` or v1
´ up to parametrization, so positivity of intersections

gives rv`s ¨ rv1
˘s ě 0. It could still happen in theory that v´ is equivalent to one of v1

` or v1
´;

say the latter, without loss of generality. Then rv´s ¨ rv1
´s “ ´1 by the above computation,

while rv`s ¨ rv´s “ rv`s ¨ rv1
´s “ 1 and rv1

`s ¨ rv1
´s “ rv1

`s ¨ rv´s “ 1, thus

0 “ rSs ¨ rSs “ prv`s ` rv´sq ¨
`
rv1

`s ¨ rv1
´s
˘

“ rv`s ¨ rv1
`s ` rv`s ¨ rv1

´s ` rv´s ¨ rv1
`s ` rv´s ¨ rv1

´s
ě 0 ` 1 ` 1 ´ 1 “ 1,

giving a contradiction. The only remaining possibility is that each of v˘ is not equivalent
to each of v1

˘, so their intersections are all positive, and the expansion above implies that
they are all zero, thus both curves in tv`, v´u are disjoint from both curves in tv1

`, v
1
´u.

The proof of Lemma 1.18 is now complete.
To conclude our discussion of the closed case, let us note which properties of the inter-

section theory we made essential use of in the above argument:

‚ The pairing rus ¨ rvs is homotopy invariant.
‚ The condition rus ¨ rvs “ 0 guarantees that two curves u and v with non-identical
images are disjoint ; moreover, if they have a known intersection, then rus ¨ rvs “ 1
guarantees that that intersection is transverse.

‚ There is a homotopy invariant number δpuq ě 0 defined for simple curves u, which
can be computed in terms of rus ¨ rus and whose vanishing guarantees that u is
embedded.

In order to produce a useful theory for studying contact 3-manifolds, we will want the
intersection theory defined in the next two lectures for punctured holomorphic curves to
have all of these same properties.

2.3. Contact manifolds, symplectic fillings and cobordisms

The goal for the remainder of these lectures will be to explain a generalization of the
intersection theory described above that has applications in 3-dimensional contact topology.
One way to motivate the study of contact manifolds is by considering symplectic manifolds
with boundary.

A vector field V on a symplectic manifold pM,ωq is called a Liouville vector field if
it satisfies

LV ω “ ω,
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i.e. its flow rescales the symplectic form exponentially. By Cartan’s formula for the Lie
derivative, this is equivalent to the condition

dλ “ ω, where λ :“ ιV ω,

and the primitive λ is then called a Liouville form. We say in this case that λ is ω-dual
to V .

Definition 2.12. Suppose pW,ωq is a symplectic manifold with boundary. A boundary
componentM Ă BW is called convex/concave if a neighborhood ofM admits a Liouville
vector field that points transversely outward/inward respectively at M .

Exercise 2.13. SupposeM is an oriented hypersurface in a 2n-dimensional symplectic
manifold pW,ωq, and V is a Liouville vector field defined near M , with ω-dual Liouville
form λ. Show that V is positively/negatively transverse to M if and only if the restriction
of λ ^ pdλqn´1 to M is a positive/negative volume form respectively.

Exercise 2.14. Show that in the situation of Exercise 2.13, the spaces of Liouville
forms λ defined near M Ă pW,ωq such that λ^ dλn´1|TM is a positive or negative volume
form are convex.

Exercise 2.13 leads directly to the notion of a contact manifold: we say that a 1-form
α on an oriented p2n´ 1q-dimensional manifold is a (positive) contact form if

(2.9) α ^ pdαqn´1 ą 0,

and a (positive, co-oriented) contact structure is any smooth co-oriented hyperplane dis-
tribution ξ Ă TM that can be defined by ξ “ kerα for some contact form α. Exercises 2.13
and 2.14 show that wheneverM Ă BW is a convex/concave boundary component of a sym-
plectic manifold pW,ωq, the oriented manifold ˘M inherits a positive3 contact structure,
which is unique up to deformation through families of contact structures. Whenever M is
closed, Gray’s stability theorem (see e.g. [Gei08]) then implies that the induced contact
structure on M is in fact canonical up to isotopy.4

Exercise 2.15. Show that up to issues of orientation, the contact condition (2.9) is
equivalent to the condition that α is nowhere zero and dα restricts to a nondegenerate
2-form on ξ :“ kerα, i.e. it makes pξ, dαq Ñ M a symplectic vector bundle.

Definition 2.16. Given two closed contact manifolds pM`, ξ`q and pM´, ξ´q of the
same dimension, a symplectic cobordism from5 pM´, ξ´q to pM`, ξ`q is a compact

3We are assuming M carries its canonical orientation as a boundary component of the symplectic
manifold pW,ωq, but also using the notation ´M to mean the same manifold with reversed orientation—
thus a positive contact structure on ´M is in fact a negative contact structure on M .

4Gray’s stability theorem states that any smooth 1-parameter family of contact structures on a closed
manifold arises from an isotopy. It is specifically true for contact structures and not contact forms, and
this is one good reason why we regard the contact structure on a convex/concave boundary of a symplectic
manifold as a well-defined object, whereas the contact form is only auxiliary data.

5Certain orientation conventions are not universally agreed upon: there is a vocal minority of authors
who would describe what we are defining here as a “symplectic cobordism from pM`, ξ`q to pM´, ξ´q.”
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symplectic manifold pW,ωq with

BW “ ´M´ \ M`,

such that a neighborhood of BW admits a Liouville form λ with

ker
`
λ|TM˘

˘
“ ξ˘.

If M´ “ H, we call pW,ωq a (strong) symplectic filling of pM`, ξ`q, and if M` “ H, we
say pW,ωq is a symplectic cap for pM´, ξ´q.

There are many interesting questions one can ask about contact manifolds and the
existence of symplectic fillings or cobordisms. The strongest results in this area are typically
specific to dimension three, though there has also been considerable recent progress in
higher dimensions. Here is a brief sampling of known results:

(1) Martinet [Mar71] proved that every closed oriented 3-manifold admits a con-
tact structure. This result was recently extended to all dimensions by Borman-
Eliashberg-Murphy [BEM15], given the obviously necessary topological condition
that an almost contact structure exists.

(2) A combination of results due to Gromov and Eliashberg [Gro85,Eli90,Eli89] im-
plies that any contact structure on any closed 3-manifoldM is homotopic through
oriented 2-plane fields to a contact structure ξ for which pM, ξq admits no sym-
plectic filling. These are the so-called overtwisted contact structures. This notion
has also recently been generalized to all dimensions in [BEM15].

(3) A result of Lisca [Lis98] even gives examples of closed oriented 3-manifolds on
which no contact structure is symplectically fillable. Etnyre and Honda [EH01]
later extended this to find 3-manifolds on which every contact structure is over-
twisted.

(4) In contrast to fillings, Etnyre and Honda [EH02] showed that symplectic caps
do exist for any closed contact 3-manifold, and in fact they come in infinitely
many distinct topological types. The existence of caps in all higher dimensions
was established only very recently, in parallel work of Conway-Etnyre [CE] and
Lazarev [Laz].

(5) Etnyre and Honda [EH02] also showed that every closed overtwisted contact 3-
manifold admits a symplectic cobordism to every other closed contact 3-manifold.
The higher-dimensional analogue of this result was recently established by Eliash-
berg-Murphy [EM].

Let us state more carefully two further results along these lines that will be discussed in
Lecture 5. We say that two symplectic manifolds pW,ωq and pW 1, ω1q with convex boundary
are symplectically deformation equivalent if there is a diffeomorphism ϕ : W Ñ W 1

such that ϕ˚ω1 can be deformed to ω through a smooth 1-parameter family of symplectic
forms that are all convex at the boundary. The standard contact structure ξstd on

Whichever convention one prefers, one must be consistent about it—unlike topological cobordisms, the
existence of a symplectic cobordism in one direction does not imply that one in the other direction also
exists!
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S3 is defined by identifying S3 with the boundary of the unit ball B4 with its standard

symplectic form on the 4-ball

ωstd :“
2ÿ

j“1

dxj ^ dyj

and Liouville form

λstd :“ 1

2

2ÿ

j“1

pxj dyj ´ yj dxjq .

By this definition, pB4, ωstdq is a symplectic filling of pS3, ξstdq, and one can trivially produce
other fillings of pS3, ξstdq with different topological types by blowing up pB4, ωstdq in its
interior. This procedure however produces a fairly limited range of topological types for
manifolds W with BW “ S3. Note that in terms of smooth topology, almost anything can
have boundary S3: just take any closed oriented 4-manifold, remove a ball and reverse the
orientation. Symplectically, however, the situation is very different:

Theorem 2.17 (Gromov [Gro85]). Every symplectic filling of pS3, ξstdq is symplecti-
cally deformation equivalent to a blowup of pB4, ωstdq.

Similarly, S1 ˆS2 and the lens spaces Lpk, k´ 1q for k P N each carry standard contact
structures as convex boundaries of certain symplectic manifolds, and their fillings are also
unique in the above sense:

Theorem 2.18. The contact manifolds pS1 ˆ S2, ξstdq and pLpk, k ´ 1q, ξstdq for k P N

each have unique symplectic fillings up to deformation equivalence and blowup.

Theorem 2.18 was proved for S1 ˆS2 originally by Eliashberg [Eli90], and the unique-
ness for Lpk, k´ 1q up to diffeomorphism was proved by Lisca [Lis08]. In the forms stated
above, Theorems 2.17 and 2.18 are both easy applications of a more general result from
[Wen10b], that can be thought of as an analogue of McDuff’s Theorem 1.16 for symplectic
fillings of certain contact 3-manifolds. This will be the main subject of Lecture 5.

2.4. Asymptotically cylindrical holomorphic curves

It is not usually useful to consider closed holomorphic curves in symplectic cobordisms—
for example, the symplectic form on a cobordism could be exact, in which case Stokes’ the-
orem implies that all closed holomorphic curves for a tame almost complex structure are
constant. A useful alternative is to consider noncompact holomorphic curves with cylin-
drical ends, and the proper setting for this is the noncompact completion of a symplectic
cobordism. The study of holomorphic curves in this setting is a large subject known as
symplectic field theory (see [EGH00,Wenb]), and we shall only touch upon a few aspects
of it here.

Assume pW,ωq is a symplectic cobordism from pM´, ξ´q to pM`, ξ`q, with a neighbor-
hood of BW admitting a Liouville form λ such that

ξ˘ “ kerα˘, where α˘ :“ λ|TM˘.
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Figure 2.2. The completion of a symplectic cobordism is constructed by
attaching half-symplectizations to form cylindrical ends.

Exercise 2.19. Show that the flow from M˘ along the Liouville vector field dual to λ
identifies collar neighborhoods N pM˘q Ă W of M˘ with the models

pN pM`q, λq – pp´ǫ, 0s ˆ M`, e
sα`q,

pN pM´q, λq – pr0, ǫq ˆ M´, e
sα´q

for sufficiently small ǫ ą 0, where s denotes the real coordinate in p´ǫ, 0s or r0, ǫq.
For any contact manifold pM, ξ “ kerαq, the exact symplectic manifold pRˆM, dpesαqq

is called the symplectization of pM, ξq; one can show that its symplectomorphism type
depends on ξ but not on the choice of contact form α. A choice of α does however determine
a distinguished vector field that spans the characteristic line fields of the hypersurfaces
tsuˆM : we define the Reeb vector field to be the unique vector field Rα onM satisfying

dαpRα, ¨q ” 0 and αpRαq ” 1.

The symplectic completion of the cobordism pW,ωq is defined by attaching halves
of symplectizations along the collar neighborhoods from Exercise 2.19, producing the non-
compact symplectic manifold (see Figure 2.2).

(2.10) pxW, pωq :“
`
p´8, 0s ˆ M´, dpesα´q

˘
YM´ pW,ωq YM`

`
r0,8q ˆ M`, dpesα`q

˘
.

Informally, the symplectization of pM, ξq can also be thought of as the completion of a
trivial symplectic cobordism from pM, ξq to itself.
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Given a choice of contact form α for ξ, pR ˆM, dpesαqq carries a special class J pαq of
compatible almost complex structures J , defined by the conditions

‚ JpBsq “ Rα;
‚ Jpξq “ ξ and J |ξ is compatible with dα|ξ;
‚ J is invariant under the translation action ps, pq ÞÑ ps ` c, pq for all c P R.

For any J P J pαq, a periodic orbit x : R Ñ M of Rα with period T ą 0 gives rise to a
J-holomorphic cylinder

u : R ˆ S1 Ñ R ˆ M : ps, tq ÞÑ pTs, xpT tqq.
Such curves are referred to as orbit cylinders (sometimes also trivial cylinders), and
they serve as asymptotic models for the more general class of holomorphic curves that we
now wish to consider.

Indeed, on the completion pxW, pωq as defined above, let J pω, α`, α´q denote the space
of almost complex structures that are compatible with ω on W and belong to J pα˘q on

r0,8q ˆ M` and p´8, 0s ˆ M´ respectively. A choice of J P J pω, α`, α´q makes pxW,Jq
into an almost complex manifold with cylindrical ends. A Riemann surface with
cylindrical ends can likewise be constructed by introducing punctures into a closed Riemann
surface. Namely, suppose pΣ, jq is closed, and Γ Ă Σ is a finite set partitioned into two
subsets Γ “ Γ` \ Γ´, which we will call the positive and negative punctures, writing
the resulting punctured surface as

9Σ :“ ΣzΓ.
Near each z P Γ˘, one can identify a closed neighborhood Dz Ă Σ of z biholomorphically
with the standard unit disk pD, iq such that z is identified with the origin, and then identify
Dzt0u in turn with a half-cylinder via the biholomorphic map

r0,8q ˆ S1 Ñ Dzt0u : ps, tq ÞÑ e´2πps`itq, for z P Γ`,

p´8, 0s ˆ S1 Ñ Dzt0u : ps, tq ÞÑ e2πps`itq, for z P Γ´.

We will refer to this identification as a choice of cylindrical coordinates near z P Γ˘.
Making such a choice for all punctures, this determines a decomposition

(2.11) 9Σ “
`
p´8, 0s ˆ C´

˘
YC´ Σ0 YC`

`
r0,8q ˆ C`

˘

analogous to (2.10), where Σ0 :“ ΣzŤzPΓ D̊z can be regarded as a cobordism with BΣ0 “
´C´ \ C` between two disjoint unions of circles C˘, and the complex structure on the
cylindrical ends is always the standard one, i.e. with iBs “ Bt in cylindrical coordinates
ps, tq.

We say that a smooth map u : 9Σ Ñ xW is (positively or negatively) asymptotic at
z P Γ˘ to a T -periodic orbit x : R Ñ M˘ of Rα˘ if there exists a choice of cylindrical
coordinates as above in which u near z takes the form

ups, tq “ exppTs,xpTtqq hps, tq P R ˆ M˘ for |s| large,
where the exponential map is defined with respect to a translation-invariant choice of
Riemannian metric on R ˆ M˘, and hps, tq is a vector field along the orbit cylinder that
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Figure 2.3. An asymptotically cylindrical map u : 9Σ Ñ xW of a punctured
surface of genus 2 into a completed cobordism, with one positive puncture
z P Σ asymptotic to a Reeb orbit γz in M`, and two positive punctures
w, ζ P Σ asymptotic to Reeb orbits γw and γζ in M´.

decays to 0 with all derivatives as s Ñ ˘8. We say that u : 9Σ Ñ M is asymptotically

cylindrical if it is positively/negatively asymptotic to some closed Reeb orbit in M` or
M´ respectively at each of its positive/negative punctures; see Figure 2.3.

Observe that the completion xW admits a natural compactification as a compact topo-
logical manifold with boundary:

W :“
`
r´8, 0s ˆ M´

˘
YM´ W YM`

`
r0,8s ˆ M`

˘
.

In the same way, the decomposition (2.11) allows us to define the circle compactification

Σ of 9Σ, a compact topological 2-manifold with boundary whose interior is identified with 9Σ.
It follows then from the definition above that any asymptotically cylindrical map u : 9Σ Ñ
xW extends naturally to a continuous map

ū : Σ Ñ W

which takes each component of BΣ to a closed Reeb orbit in t˘8u ˆ M˘.

If the set of punctures is nonempty, then an asymptotically cylindrical map u : 9Σ Ñ xW
does not represent a homology class in H2pxW q, but one can use the compactifications
described above to assign it a relative homology class. Concretely, let

sγ˘ Ă t˘8u ˆ M˘ Ă BĎW
denote the union of all of the images of the positive/negative asymptotic orbits of u;
topologically, this is a disjoint union of embedded circles. The relative homology class
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of u is then defined as

rus :“ su˚rsΣs P H2pĎW, sγ` Y sγ´q,
where rsΣs P H2psΣ, BsΣq denotes the relative fundamental class of sΣ. The long exact sequence
of the pair pĎW, sγ` Y sγ´q implies that any two asymptotically cylindrical maps having the
same asymptotic orbits with the same multiplicities have relative homology classes that
differ by a unique absolute homology class, that is, a class in the image of the natural map
H2pĎW q Ñ H2pĎW, sγ` Y sγ´q; note that the latter is injective since H2psγ` Y sγ´q “ 0. In
most situations, it is convenient to apply the obvious deformation retraction ĎW Ñ W and
regard rus as an element of H2pW, sγ` Y sγ´q, with sγ˘ now regarded as submanifolds of

M˘ Ă BW . In the special case where pxW, pωq is just the symplectization of a single contact
manifold pM, ξq, we take this one step further and retract R ˆ M to t0u ˆ M , so that rus
lives naturally in H2pM, sγ` Y sγ´q. In the following we will state definitions assuming that

pxW, pωq is a completion of a nontrivial cobordism instead of a symplectization, but one can
make obvious modifications to accommodate the latter case.

Moduli spaces of punctured J-holomorphic curves are now defined as follows. Choose
finite ordered sets of closed Reeb orbits

γ
` “ pγ`

1 , . . . , γ
`
r`

q in M` and γ
´ “ pγ´

1 , . . . , γ
´
r´

q in M´,

and a relative homology class A P H2pW, sγ` Y sγ´q, where sγ˘ denotes the union of the
images of the orbits γ˘

1 , . . . , γ
˘
r˘
. We then define

MA
g pxW,J ;γ`,γ´q :“

 
pΣ, j,Γ`,Γ´, uq

(M
„,

where

‚ pΣ, jq is a closed connected Riemann surface of genus g;
‚ Γ˘ “ pz˘

1 , . . . , z
˘
r˘

q are disjoint finite ordered sets of pairwise distinct points in Σ,

defining a punctured surface 9Σ :“ ΣzpΓ` Y Γ´q;
‚ The map u : p 9Σ, jq Ñ pxW,Jq is J-holomorphic, asymptotic to γ˘

i at z˘
i P Γ˘ for

i “ 1, . . . , r˘, and represents the relative homology class A;
‚ Two such tuples are considered equivalent if they are related by a biholomorphic
map that preserves the sets of positive and negative punctures, along with their
orderings.

We shall denote unions of these spaces over all possible choices of data by

MgpxW,J ;γ`,γ´q :“
ž

APH2pW,sγ`Ysγ´q

MA
g pxW,J ;γ`,γ´q,

Mg,r`,r´pxW,Jq :“
ž

|γ˘|“r˘

MgpxW,J ;γ`,γ´q,

MgpxW,Jq :“
ž

r`,r´ě0

Mg,r`,r´pxW,Jq.
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A topology on MgpxW,Jq can be defined by saying that a sequence rpΣk, jk,Γ`
k ,Γ

´
k , ukqs

converges to an element rpΣ, j,Γ`,Γ´, uqs if there exist representatives pΣ, j1
k,Γ

`,Γ´, u1
kq „

pΣk, jk,Γ`
k ,Γ

´
k , ukq such that

jk Ñ j in C8pΣq, uk Ñ u in C8
locp 9Σ,xW q, and ūk Ñ ū in C0pΣ,W q.

Our goal for the next pair of lectures will be to write down generalizations of the ho-

mological intersection number and the adjunction formula for curves in MgpxW,Jq. These
will be instrumental in the proof of Theorems 2.17 and 2.18.
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If u1 P MgpxW,J ;γ`
1 ,γ

´
1 q and u2 P MgpxW,J ;γ`

2 ,γ
´
2 q are two asymptotically cylindri-

cal holomorphic curves in a 4-dimensional completed symplectic cobordism, it remains true
as in the closed case that intersections of u1 with u2 are isolated and positive unless both
curves have identical images (i.e. they cover the same simple curve up to parametrization).
Since the domains are no longer compact, however, it is not obvious whether the number
of intersections is still finite. If it is finite, then one can define an algebraic intersection
number

u1 ¨ u2 P Z

which is guaranteed to be nonnegative, and strictly positive unless the two curves are
disjoint. Such a number is not very useful though unless it is homotopy invariant, i.e. we

would like to know that for any family us P MgpxW,J ;γ`
1 ,γ

´
1 q that depends continuously

(with respect to the topology of the moduli space) on a parameter s P r0, 1s, we have
u0 ¨ u2 “ u1 ¨ u2. This turns out to be false in general, as the noncompactness of the
domains can allow intersections to escape to infinity and disappear under homotopies (see
Figure 3.1). It is a very powerful fact, first suggested by Hofer and then worked out in
detail by Siefring [Sie05,Sie08,Sie11], that this phenomenon can be controlled: one can
define for any two distinct punctured holomorphic curves a count of virtual intersections
that are “hidden at infinity,” such that the sum of this number with u1 ¨ u2 is homotopy
invariant. We will define this precisely in the next lecture and explain some applications
in Lecture 5. As a preliminary step, it is necessary to gain a fairly precise understanding
of the asymptotic behavior of punctured holomorphic curves, so that will be the topic for
this lecture.
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Remark 3.1. While all results in this and the next lecture are stated in the setting
of symplectizations of contact manifolds and (completed) symplectic cobordisms between
them, they are valid in somewhat greater generality: they continue to hold namely when-
ever contact forms are replaced by stable Hamiltonian structures, so long as one can still
assume that all closed Reeb orbits are nondegenerate (or Morse-Bott—see the footnote
attached to Theorem 4.1). The main results are restated in this more general form in
Appendix C.

3.1. Holomorphic half-cylinders as gradient-flow lines

Historically, the study of punctured holomorphic curves arose from an analogy with
Floer’s interpretation of Morse theory as the study of gradient-flow lines of a Morse function
(see e.g. [Sal99,AD14]). In Morse theory, one considers a manifold M with a smooth
function f : M Ñ R, which is called a Morse function if its Hessian at every critical
point p P Critpfq

Hessp :“ ∇dfppq : TpM ˆ TpM Ñ R

is nondegenerate; here ∇ denotes the covariant derivative for any choice of connection
on M , but the Hessian does not depend on this choice since dfppq “ 0. Recall that the
Hessian is automatically a symmetric bilinear map, and if we choose a Riemannian metric g
with Levi-Civita connection ∇ and consider instead the covariant derivative of the gradient,
we can then identify Hessp with the linear map

Ap :“ ∇p∇fqppq : TpM Ñ TpM,

which is symmetric with respect to the inner product defined by g. One way of proving the
classical Morse inequalities on M is by defining a homology theory with a chain complex
generated by critical points in Critpfq, and a differential defined by counting isolated
solutions to the gradient-flow problem

Mpp`, p´q :“
"
x : R Ñ M

ˇ̌
ˇ 9x “ ∇fpxq and lim

sÑ˘8
xpsq “ p˘

*
,

for p˘ P Critpfq. In particular, one can show that the resulting homology theory is isomor-
phic to the usual singular homology H˚pMq, thus giving relations between the topology
of M and the set of critical points of f , see e.g [Sch93,AD14].

Since the Hessian Ap “ ∇p∇fqppq is symmetric, its eigenvectors in TpM are orthogonal
and its eigenvalues are real. Another way of expressing the Morse condition is to say
that 0 R σpApq for all p P Critpfq, and the Morse index of p is then the algebraic count
of negative eigenvalues in σpApq. It turns out that the spectrum σpApq also controls the
asymptotic behavior of gradient-flow lines approaching p: the following result from the
theory of ordinary differential equations makes this statement precise.

Proposition 3.2. Suppose f :M Ñ R is a Morse function on a Riemannian manifold
pM, gq, and x P Mpp`, p´q is a gradient-flow line between two critical points p`, p´ P
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Figure 3.1. The condition of two asymptotically cylindrical holomorphic
curves (or two ends of the same curve) being disjoint is not homotopy in-
variant, as intersections can escape to infinity if the two asymptotic Reeb
orbits coincide.

Critpfq. Let h˘psq P Tp˘M denote the unique smooth functions defined for s sufficiently
close to ˘8 by

xpsq “ expp˘
h˘psq.

Then there exist unique nontrivial eigenvectors v˘ P Tp˘M of Ap˘ with

Ap˘v˘ “ λ˘v˘, λ` ă 0 and λ´ ą 0,

such that h`psq and h´psq satisfy the exponential decay formula

h˘psq “ eλ˘spv˘ ` r˘psqq for s near ˘8,

where r˘psq P Tp˘M are functions satisfying r˘psq Ñ 0 as s Ñ ˘8.

Exercise 3.3. Try to prove the following lemma in the background of Proposition 3.2:
suppose S is a real symmetric n-by-n matrix, Apsq is a smooth matrix-valued function
with Apsq Ñ S as s Ñ 8 and vpsq P Rn is a smooth function that is defined for large s,
satisfies the linear ODE 9vpsq ´Apsqvpsq “ 0 and decays to 0 as s Ñ 8. Then vpsq satisfies

vpsq “ eλspv` ` rpsqq
for a unique eigenvector v` of S with Sv` “ λv` and λ ă 0, and a function rpsq with
rpsq Ñ 0 as s Ñ 8.

One consequence of Proposition 3.2 is that the direction of approach of a gradient-flow
line to a nondegenerate critical point is always determined by an eigenvector of the Hessian.
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We will not discuss this result any further here, but it will serve as motivation for some
similar results about asymptotics of J-holomorphic half-cylinders, which can be proved
using methods of elliptic regularity theory.

To see what this discussion has to do with holomorphic curves, consider a contact
manifold pM, ξq with contact form α and translation-invariant almost complex structure
J P J pαq on the symplectization pR ˆ M, dpesαqq. Denote the positive/negative half-
cylinders by

Z` :“ r0,8q ˆ S1, Z´ :“ p´8, 0s ˆ S1

with their standard complex structures defined by iBs “ Bt in the coordinates ps, tq. We
defined in §2.4 what it means for a J-holomorphic half-cylinder u : pZ˘, iq Ñ pRˆM,Jq to
be asymptotic to a closed Reeb orbit. We claim that such half-cylinders can be regarded
in a loose sense as gradient-flow lines of a functional on C8pS1,Mq whose critical points
are closed Reeb orbits. To see this, let πα : TM Ñ ξ denote the projection along the Reeb
vector field. Then the nonlinear Cauchy-Riemann equation Bsu` Jpuq Btu “ 0 satisfied by
a map u “ pf, vq : Z˘ Ñ R ˆ M is equivalent to the three equations

Bsf ´ αpBtvq “ 0,

Btf ` αpBsvq “ 0,

παBsv ` J παBtv “ 0.

(3.1)

Consider the contact action functional

Φα : C8pS1,Mq Ñ R : γ ÞÑ
ż

S1

γ˚α.

Exercise 3.4. Show that for any smooth 1-parameter family of loops γs : S1 Ñ M

with γ :“ γ0 and η :“ Bsγs|s“0 P Γpγ˚TMq,

dΦαpγqη :“ d

ds
Φαpγsq

ˇ̌
ˇ̌
s“0

“
ż

S1

dαpηptq, 9γptqq dt.

Deduce that γ P C8pS1,Mq is a critical point of Φα if and only if 9γptq P ker dα for all t,
meaning 9γ is everywhere proportional to Rα.

Observe that Φα has a very large symmetry group: it is independent of the choice of
parametrization for a loop γ : S1 Ñ M , and correspondingly, dΦαpγqη vanishes for any
variation η in the direction of the Reeb vector field. Since the main point of this discussion
however is to study asymptotic approach to Reeb orbits, we can limit our attention to
loops that are C8-close to Reeb orbits: such loops are always immersions transverse to ξ,
and all nearby loops are obtained (up to parametrization) via perturbations along ξ. We
shall therefore consider dΦαpγq restricted to sections of γ˚ξ. Define an L2-inner product
on Γpγ˚ξq by

(3.2) xη1, η2yL2 :“
ż

S1

dαpη1ptq, Jη2ptqq dt;
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this is nondegenerate and symmetric since J |ξ is compatible with dα|ξ. Now for any
γ P C8pS1,Mq and η P Γpγ˚ξq, we have

dΦαpγqη “ x´Jπα 9γ, ηyL2,

thus we can sensibly define ∇ξΦαpγq :“ ´Jπα 9γ and interpret the third equation in (3.1)
as a gradient flow equation for the family of loops vpsq :“ vps, ¨q P C8pS1,Mq,
(3.3) παBsvpsq “ ∇ξΦαpvpsqq.
This interpretation is mostly formal, as equations like (3.3) typically do not yield well-
defined flows on infinite-dimensional Fréchet manifolds such as C8pS1,Mq; in reality, one
must study these equations as PDEs rather than ODEs and use elliptic theory to obtain
results, but the gradient-flow interpretation provides something of a blueprint indicating
what results one should try to prove.

For example, it is now reasonable to expect that the asymptotic behavior of solutions
to (3.1) might be controlled by the spectrum of some symmetric operator interpreted as
the “Hessian” of Φα. We deduce the form of this operator as follows. Assume γ : S1 Ñ M

parametrizes a Reeb orbit with period T ą 0 such that αp 9γptqq “ T for all t. Suppose γs
is a smooth 1-parameter family of loops with γ0 “ γ and Bsγs|s“0 “: η P Γpγ˚ξq. Then
choosing any symmetric connection ∇ on M , the Hessian of Φα at γ should map η to the
covariant derivative of ∇ξΦα in the direction η: a computation gives

(3.4) ∇
`
∇ξΦα

˘
pγqη :“ ∇s

`
∇ξΦα

˘
pγsq

ˇ̌
s“0

“ ∇s p´Jπα 9γsq|s“0 “ ´Jp∇tη ´ T∇ηRαq.
Note that since ∇ξΦαpγq “ 0, this expression is independent of the choice of connection.
This motivates the following definition.

Definition 3.5. Given a Reeb orbit γ : S1 Ñ M parametrized so that αp 9γq ” T ą 0
is constant, the asymptotic operator associated to γ is

Aγ : Γpγ˚ξq Ñ Γpγ˚ξq : η ÞÑ ´Jp∇tη ´ T∇ηRαq.
Exercise 3.6. Fill in the gaps in the computation (3.4).

Let H1pγ˚ξq denote the Sobolev space of sections S1 Ñ γ˚ξ of class L2 that have
weak derivatives also of class L2. The operator Aγ then extends to a continuous linear
map H1pγ˚ξq Ñ L2pγ˚ξq. By a similar argument as with the usual Hessian of a smooth
function on a finite-dimensional manifold, one can show that Aγ is always symmetric with
respect to the L2-inner product (3.2), and in fact:

Proposition 3.7 ([HWZ95, §3]). For every Reeb orbit γ, the asymptotic operator Aγ

determines an unbounded self-adjoint operator on L2pγ˚ξq with dense domain H1pγ˚ξq. Its
spectrum σpAγq consists of real eigenvalues that accumulate at ´8 and `8, and nowhere
else.

The natural analogue of the Morse condition for Φα is now the following.

Definition 3.8. A Reeb orbit γ is called nondegenerate if kerAγ “ t0u.
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Exercise 3.9. Show that for any contact form α, the flow ϕtRα
of the Reeb vector field

preserves α for all t, so in particular, it preserves ξ “ kerα and the symplectic bundle
structure dα|ξ. Then show that a Reeb orbit γ : S1 Ñ M of period T ą 0 is nondegenerate
if and only if

dϕTRα
|ξγp0q

: ξγp0q Ñ ξγp0q

does not have 1 as an eigenvalue. Deduce from this that nondegenerate Reeb orbits are
(up to parametrization) always isolated in C8pS1,Mq.

3.2. Asymptotic formulas for cylidrical ends

We shall now state some asymptotic results analogous to Proposition 3.2, but for
holomorphic curves instead of gradient-flow lines. In the form presented here, these re-
sults are due to Siefring [Sie05,Sie08], and they are generalizations and improvements
of earlier results of Hofer-Wysocki-Zehnder [HWZ96a,HWZ96b], Kriener [Kri98] and
Mora [Mor03]. The proofs are lengthy and technical, so we will omit them, but the results
should hopefully be believable via the analogy with Morse theory discussed above.

The basic workhorse result of this subject is an asymptotic analogue of the similarity
principle (Theorem 1.21), in the spirit of Exercise 3.3. To state this, recall that for any
closed Reeb orbit γ : S1 Ñ M on a p2n` 1)-dimensional contact manifold pM, ξ “ kerαq,
one can find a unitary trivialization of the bundle γ˚ξ Ñ S1, identifying dα|ξ and J |ξ with
the standard symplectic and complex structures on R2n “ Cn. If J0 : R

2n Ñ R2n denotes
the standard complex structure, the asymptotic operator Aγ : Γpγ˚ξq Ñ Γpγ˚ξq is then
identified with a first-order differential operator

(3.5) A :“ ´J0
d

dt
´ S : C8pS1,R2nq Ñ C8pS1,R2nq,

where S : S1 Ñ EndpR2nq is a smooth loop of real 2n-by-2n matrices, and symmetry of A
with respect to the standard L2-inner product translates into the condition that Sptq is a
symmetric matrix for all t. The following statement and the two that follow it should each
be interpreted as two closely related statements, one with plus signs and the other with
minus signs.

Theorem 3.10. Suppose S : Z˘ Ñ EndpR2nq is a smooth family of 2n-by-2n matrices
satisfying

Sps, tq ÞÑ Sptq uniformly in t as s Ñ ˘8,

where S : S1 Ñ EndpR2nq is a smooth family of symmetric matrices such that the asymp-
totic operator A defined in (3.5) has trivial kernel. Suppose further that f : Z˘ Ñ R

2n is
a smooth function that is not identically zero and satisfies
(3.6)

Bsfps, tq ` J0 Btfps, tq ` Sps, tqfps, tq “ 0, and fps, ¨q Ñ 0 uniformly as s Ñ ˘8.

Then there exists a unique nontrivial eigenfunction vλ P C8pS1,R2nq of A with

Avλ “ λvλ, ˘λ ă 0,



3.2. ASYMPTOTIC FORMULAS FOR CYLIDRICAL ENDS 47

and a function rps, tq P R2n satisfying rps, ¨q Ñ 0 uniformly as s Ñ ˘8, such that for
sufficiently large |s|,

(3.7) fps, tq “ eλs rvλptq ` rps, tqs .

Now assume γ : S1 Ñ M is a nondegenerate T -periodic Reeb orbit in pM, ξ “ kerαq,
parametrized so that αp 9γq ” T . Nondegeneracy implies that the asymptotic operator Aγ

has trivial kernel. Fixing J P J pαq, recall that in §2.4, we defined a J-holomorphic half-
cylinder u : Z` Ñ R ˆ M or u : Z´ Ñ R ˆ M to be (positively or negatively) asymptotic
to γ if, after a possible reparametrization near infinity,

(3.8) ups, tq “ exppTs,γptqq hps, tq for |s| large,

where the exponential map is assumed translation-invariant and hps, tq is a vector field
along the orbit cylinder with hps, ¨q Ñ 0 in C8pS1q as s Ñ ˘8. In particular, as |s| Ñ 8,
ups, tq becomes C8-close to the orbit cylinder ps, tq ÞÑ pTs, γptqq, which is an immersion
with normal bundle equivalent to γ˚ξ. After a further reparametrization of Z˘, we can
then arrange for (3.8) to hold for a unique section

hps, tq P ξγptq,

which we will call the asymptotic representative of u. Note that the uniqueness of h
depends on our choice of parametrization γ : S1 Ñ M for the Reeb orbit; different choices
will change h by a shift in the t-coordinate.

The relation (3.8) is a special case of the following general scenario. We have an almost
complex manifold pW,Jq with two immersed J-holomorphic curves v : pΣ, jq Ñ pW,Jq and
u : pΣ1, j1q Ñ pW,Jq, together with a (not necessarily holomorphic) “reparametrization”
diffeomorphism ϕ : Σ Ñ Σ1 and a section h of the normal bundle Nv Ñ Σ to v such that

u ˝ ϕ “ expv h, or equivalently u “ expv˝ψ η,

where we define ψ :“ ϕ´1 and η :“ h ˝ ψ, the latter being a section of the induced bundle
ψ˚Nv Ñ Σ1. It turns out (see Proposition B.28 in Appendix B.2.2) that in this situation,
one can always view η as a solution of a linear Cauchy-Riemann type equation, hence its
local behavior is governed by the similarity principle—or in the asymptotic setting, by
Theorem 3.10 above. In the present context, this idea can be used to prove:

Theorem 3.11. Suppose u : Z˘ Ñ R ˆ M is a J-holomorphic half-cylinder posi-
tively/negatively asymptotic to the nondegenerate Reeb orbit γ : S1 Ñ M , and let hups, tq P
ξγptq denote its asymptotic representative. Then if hu is not identically zero, there exists a
unique nontrivial eigenfunction fλ of Aγ with

Aγfλ “ λfλ, ˘λ ă 0,

and a section rps, tq P ξγptq satisfying rps, ¨q Ñ 0 uniformly as s Ñ ˘8, such that for
sufficiently large |s|,

hups, tq “ eλs rfλptq ` rps, tqs .
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In the situation of Theorem 3.11, we will say that ups, tq approaches the Reeb orbit
γ along the asymptotic eigenfunction fλ and with decay rate |λ|. Observe that this
theorem can be viewed as describing the asymptotic approach of two J-holomorphic half-
cylinders to each other, namely ups, tq and the orbit cylinder pTs, γptqq. A similar result
holds for any two curves approaching the same orbit, and one can then establish a lower
bound on the resulting “relative” decay rate. For our purposes, this result can be expressed
most conveniently as follows.

Theorem 3.12. Suppose u, v : Z˘ Ñ R ˆ M are two J-holomorphic half-cylinders,
both positively/negatively asymptotic to the nondegenerate Reeb orbit γ : S1 Ñ M , with
asymptotic representatives hu and hv, asymptotic eigenfunctions fu, fv and decay rates
|λu|, |λv| respectively. Then if hu ´ hv is not identically zero, it satisfies

hups, tq ´ hvps, tq “ eλs rfλptq ` rps, tqs
for a unique nontrivial eigenfunction fλ of Aγ with

Aγfλ “ λfλ, ˘λ ă 0,

and a section rps, tq P ξγptq satisfying rps, ¨q Ñ 0 uniformly as s Ñ ˘8. Moreover:

‚ If fu “ fv, then |λ| ą |λu| “ |λv|.
‚ Otherwise, |λ| “ mint|λu|, |λv|u.

We say in the situation of Theorem 3.12 that u and v approach each other along the
relative asymptotic eigenfunction fλ with relative decay rate |λ|.

Observe that if u and v are two asymptotically cylindrical curves with a pair of ends for
which hu ´ hv ” 0 in Theorem 3.12, then standard unique continuation arguments imply
that u and v have identical images, i.e. they both cover the same simple curve. In all other
cases, the asymptotic formula provides a neighborhood of infinity on which hu ´ hv must
be nowhere zero, so u and v have no intersections near infinity. If u and v are asymptotic
to different covers of the same orbit, then one can argue in the same way by replacing each
with suitable covers

ũps, tq :“ upks, ktq, ṽps, tq :“ vpℓs, ℓtq
whose asymptotic Reeb orbits match. In this way, one can deduce the following important
consequence, which was not previously obvious:

Corollary 3.13. If u : p 9Σ, jq Ñ pxW,Jq and v : p 9Σ1, j1q Ñ pxW,Jq are two asymptot-
ically cylindrical J-holomorphic curves with non-identical images, then they have at most
finitely many intersections.

Similarly:

Corollary 3.14. If u : p 9Σ, jq Ñ pxW,Jq is an asymptotically cylindrical J-holomorphic
curve which is simple, then it is embedded on some neighborhood of the punctures.

Proof. If u has two ends asymptotic to covers of the same orbit, we deduce as in
Corollary 3.13 that their images are either identical or disjoint near infinity, and the former
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is excluded via unique continuation arguments if u is simple. There could still be double
points near a single end asymptotic to a multiply covered Reeb orbit, i.e. suppose Z˘ Ă 9Σ
is an end on which u|Z˘ is asymptotic to

γptq “ γ0pktq,
where k ě 2 is an integer and γ0 : S1 Ñ M is an embedded Reeb orbit. Then writing
ups, tq “ exppTs,γ0pktqq hps, tq on Z˘ as in Theorem 3.11, the reparametrizations ujps, tq :“
ups, t` j{kq for j “ 1, . . . , k ´ 1 are each also J-holomorphic half-cylinders asymptotic to
γ, with asymptotic representatives hjps, tq :“ hps, t` j{kq, and Theorem 3.12 implies that
hj ´ h is either identically zero or nowhere zero near infinity for j “ 1, . . . , k ´ 1. The
former is again excluded via unique continuation if u is simple. �

3.3. Winding of asymptotic eigenfunctions

When dimM “ 3, the asymptotic eigenfunctions in the above discussion are nowhere
vanishing sections of complex line bundles γ˚ξ Ñ S1, so they have well-defined winding
numbers relative to any choice of trivialization. This defines the notion of the asymptotic
winding of a holomorphic curve as it approaches an orbit. It is extremely useful to observe
that these winding numbers come with a priori bounds.

Theorem 3.15 ([HWZ95]). Suppose S : S1 Ñ EndpR2q is a smooth loop of symmetric
2-by-2 matrices and A : C8pS1,R2q Ñ C8pS1,R2q denotes the model asymptotic operator

A “ ´J0
d

dt
´ S,

with spectrum σpAq Ă R. Then there exists a well-defined integer-valued function

wind : σpAq Ñ Z

determined by windpλq :“ windpvλq, where vλ P C8pS1,R2q is any nontrivial eigenfunction
with eigenvalue λ. Moreover, this function is monotone increasing and attains every value
in Z exactly twice (counting multiplicity of eigenvalues).

Exercise 3.16. Verify Theorem 3.15 for the special case where Sptq is a constant mul-
tiple of the identity matrix. (The general case can be derived from this using perturbation
theory for self-adjoint operators; see [HWZ95, Lemma 3.6] or [Wenb, Chapter 3].)

Given a closed Reeb orbit γ in a contact 3-manifold pM, ξ “ kerαq, one can now choose
a trivialization

τ : γ˚ξ Ñ S1 ˆ R
2

and define

windτ : σpAγq Ñ Z

by windτ pλq :“ windpfq where f : S1 Ñ R2 is the expression via τ of any nontrivial
eigenfunction fλ P Γpγ˚ξq with Aγfλ “ λfλ. It follows immediately from Theorem 3.15
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that windτ is a monotone surjective function attaining all values exactly twice. Since
eigenvalues of Aγ do not accumulate except at ˘8, we can then define the integers:

ατ`pγq :“ min twindτ pλq | λ P σpAγq X p0,8qu ,
ατ´pγq :“ max twindτ pλq | λ P σpAγq X p´8, 0qu ,
ppγq :“ ατ`pγq ´ ατ´pγq.

(3.9)

As implied by this choice of notation, ατ˘pγq each depend on the choice of trivialization τ ,
but ppγq does not. If γ is nondegenerate, hence 0 R σpAγq, it follows from Theorem 3.15
that ppγq is either 0 or 1: we shall say accordingly that γ is even or odd respectively, and
call ppγq the parity of γ.

The winding invariants we’ve just defined have an important relation with another
integer associated to nondegenerate Reeb orbits, namely the Conley-Zehnder index

µτCZpγq P Z,

a Maslov-type index that was originally introduced in the study of Hamiltonian systems (see
[CZ83,SZ92]) and can also be defined for nondegenerate Reeb orbits in any dimension. It
can be thought of as a measurement of the degree of “twisting” (relative to τ) of the nearby
Reeb flow around γ. We refer to [HWZ95, §3] or [Wenb, Chapter 3] for further details
on µτCZ; for our purposes in the 3-dimensional case, the following result from [HWZ95, §3]
can just as well be taken as a definition:

Proposition 3.17. For any nondegenerate Reeb orbit γ : S1 Ñ M in pM, ξ “ kerαq
with a trivialization τ of γ˚ξ,

µτCZpγq “ 2ατ´pγq ` ppγq “ 2ατ`pγq ´ ppγq.

Exercise 3.18. To any closed Reeb orbit of period T ą 0 parametrized by a loop
γ : S1 Ñ M with 9γ ” T ¨ Rαpγq, one can associate a Reeb orbit of period kT for each
k P N, parametrized by

γk : S1 Ñ M : t ÞÑ γpktq.
We say γk is the k-fold cover of γ, and it is multiply covered if k ě 2. We say γ is
simply covered if it is not the k-fold cover of another Reeb orbit for any k ě 2.

(a) Given a Reeb orbit γ, check that the k-fold cover of each eigenfunction of Aγ is
an eigenfunction of Aγk . Assuming τ is the pullback under S1 Ñ S1 : t ÞÑ kt

of a trivialization of γ˚ξ Ñ S1, deduce from Theorem 3.15 that a nontrivial
eigenfunction f of Aγk is a k-fold cover if and only if windτ pfq is divisible by k.

(b) Under the same assumptions, show that for any nontrivial eigenfunction f of Aγk ,

covpfq :“ maxtm P N | f is an m-fold coveru “ gcdpk,windτ pfqq.

(c) Show that if γ is a Reeb orbit that has even Conley-Zehnder index, then so does
every multiple cover γk of γ.
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3.4. Local foliations and the normal Chern number

We now address a generalization of the question considered in §1.3: if pxW,ωq is a
completed symplectic cobordism of dimension 4, what conditions can guarantee that a

2-parameter family of embedded punctured holomorphic curves in xW will form a foliation?
There are several issues here that do not arise in the closed case: for example, if

u : 9Σ “ ΣzpΓ` Y Γ´q Ñ xW
is embedded, it is not guaranteed in general that all nearby curves uǫ : 9Σ Ñ xW are also
embedded, e.g. u may have multiple ends asymptotic to the same Reeb orbit, allowing uǫ
to have double points near that orbit which escape to infinity as uǫ Ñ u. We will address
this issue in the next lecture and ignore it for now, as we must first deal with the more
basic question of how to count zeroes of sections on the normal bundle Nu Ñ 9Σ. Indeed,
let us consider as in §1.3 a 1-parameter family of J-holomorphic curves uσ near u0 :“ u,
presented as expu ησ for sections ησ P ΓpNuq. One can then show that

(3.10) η :“ B
Bσuσ

ˇ̌
ˇ̌
σ“0

P ΓpNuq

satisfies a linear Cauchy-Riemann type equation. We would like to know when such sections
are guaranteed to be nowhere zero. Write the positive and negative contact boundary
components of the cobordism pW,ωq as

BpW,ωq “ p´M´, ξ´q \ pM`, ξ`q.
Since u is always transverse to the contact bundles ξ˘ near infinity, one can identify Nu

with u˚ξ˘ on the cylindrical ends. By the similarity principle, zeroes of η are isolated and
positive, but the total algebraic count of them is not a homotopy invariant since they may
escape to infinity under homotopies; in fact, there could in theory be infinitely many. It
turns out however that on any cylindrical end Z˘ Ă 9Σ near a puncture z P Γ˘ where u is
asymptotic to an orbit γz, the relevant linear Cauchy-Riemann type equation has the same
form as in Theorem 3.10, with Aγz as the relevant asymptotic operator. The theorem thus
implies that η is nowhere zero near each puncture z, and it has a well-defined asymptotic

winding relative to any choice of trivialiation τ of γ˚
z ξ˘,

windτ pη; zq P Z,

defined simply as windτ pvλq where vλ P Γpγ˚
z ξ˘q is the asymptotic eigenfunction appearing

in (3.7). This implies that η´1p0q Ă 9Σ is finite, so we can define the algebraic count of
zeroes

(3.11) Zpηq :“
ÿ

zPη´1p0q

ordpη; zq P Z,

where ordpη; zq denotes the order of each zero, and the similarity principle guarantees
that Zpηq ě 0, with equality if and only if η is nowhere zero. This number is still not
homotopy invariant, because zeroes can still escape to infinity under homotopies. However,
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the crucial observation is that we can keep track of this phenomenon via the asymptotic
winding numbers: by Theorem 3.15, windτ pη; zq satisfies the a priori bounds

windτ pη; zq ď ατ´pγzq, if z P Γ`,

windτ pη; zq ě ατ`pγzq, if z P Γ´.
(3.12)

This motivates the definition of the asymptotic defect of η, as the integer

(3.13) Z8pηq :“
ÿ

zPΓ`

“
ατ´pγzq ´ windτ pη; zq

‰
`

ÿ

zPΓ´

“
windτ pη; zq ´ ατ`pγzq

‰
,

where the trivializations τ of γ˚
z ξ˘ can be chosen arbitrarily since each difference ατ¯pγzq ´

windτ pη; zq does not depend on this choice. By construction, any η P ΓpNuq satisfying a
Cauchy-Riemann type equation as described above now has both Zpηq ě 0 and Z8pηq ě 0,
and their sum turns out to give the closest thing possible to a homotopy invariant count
of zeroes:

Proposition 3.19. For any section η P ΓpNuq with only finitely many zeroes, the sum
Zpηq ` Z8pηq depends only on the bundle Nu and the asymptotic operators Az for z P Γ,
not on η. In particular, this gives an upper bound on the algebraic count of zeroes of any
section η appearing in (3.10).

This result motivates the interpretation of Z8pηq as a count of virtual or “hidden zeroes
at infinity.” We will prove Proposition 3.19 by defining another quantity that is manifestly
homotopy invariant and happens to equal Zpηq ` Z8pηq: this will be a generalization of
the normal Chern number, which we defined for closed holomorphic curves in §2.1.

We must first define the notion of a relative first Chern number for complex vector
bundles over punctured surfaces. Suppose first that E Ñ 9Σ is a complex line bundle, and
τ denotes a choice of trivializations for E over the cylindrical ends of 9Σ, i.e. over small
neighborhoods of each puncture. Such trivializations always exist since complex vector
bundles over S1 are always trivial. In fact, E Ñ 9Σ is globally trivializable if the set of
punctures is nonempty, because 9Σ is then retractable to its 1-skeleton—nonetheless, a given
set of trivializations τ over the ends may or may not be globally extendable over the rest
of 9Σ. An obstruction to such extensions is given by the relative first Chern number of
E with respect to τ : we define it as an algebraic count of zeroes,

cτ1pEq :“ Zpηq P Z

where Zpηq is defined as in (3.11) for a section η P ΓpEq with finitely many zeroes, and we
assume that η is constant and nonzero near infinity with respect to τ . It follows by standard
arguments as in [Mil97] that cτ1pEq does not depend on the choice η: the point is that any
two such choices are homotopic through sections that are nonzero near infinity, so zeroes
stay within a compact subset under the homotopy. Observe that in the special case where
9Σ “ Σ is a closed surface without punctures, there is no choice of asymptotic trivialization
τ to be made and the above definition matches the usual first Chern number c1pEq. When
there are punctures, cτ1pEq depends on the choice τ .
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For a higher rank complex vector bundle E Ñ 9Σ with a trivialization τ near infinity,
cτ1pEq can be defined by assuming the following two axioms:

(1) cτ1‘τ2
1 pE1 ‘ E2q “ cτ11 pE1q ` cτ21 pE2q;

(2) cτ1pEq “ cτ
1

1 pE 1q whenever E and E 1 admit a complex bundle isomorphism identi-
fying τ with τ 1.

The following exercise shows that this is a reasonable definition.

Exercise 3.20. Show that for any complex vector bundle E over a punctured Riemann
surface 9Σ of rank n with an asymptotic trivialization τ , there exist complex line bundles
E1, . . . , En Ñ 9Σ with asymptotic trivializations τ1, . . . , τn such that

pE, τq – pE1 ‘ . . .‘ En, τ1 ‘ . . .‘ τnq,
and if E 1

1, . . . , E
1
n and τ 1

1, . . . , τ
1
n are another n-tuple of line bundles and asymptotic trivi-

alizations with this property, then

cτ11 pE1q ` . . .` cτ21 pE2q “ c
τ 1
1

1 pE 1
1q ` . . .` c

τ 1
n

1 pE 1
nq.

From now on, let τ denote a fixed arbitrary choice of trivializations of the bundles γ˚ξ˘

for all Reeb orbits γ; several things in the calculations below will depend on this choice, but
the most important expressions typically will not. Since the normal bundle Nu matches
ξ˘ near infinity, τ determines an asymptotic trivialization of Nu, allowing us to define the

relative first Chern number cτ1pNuq. More generally, if u : 9Σ Ñ xW is any asymptotically
cylindrical map, not necessarily immersed, then it is still immersed and transverse to ξ˘

near infinity, so τ also determines an asymptotic trivialization of the rank 2 complex vector

bundle pu˚TxW,Jq Ñ 9Σ, by observing that the first factor in the splitting

T pR ˆ M˘q “ pR ‘ RRα˘q ‘ ξ˘

carries a canonical complex trivialization. We shall denote the resulting relative first Chern

number for u˚TxW by cτ1pu˚TxW q.

Exercise 3.21. Show that if u : p 9Σ, jq Ñ pxW,Jq is an asymptotically cylindrical and

immersed J-holomorphic curve, with complex normal bundle Nu Ñ 9Σ, then

(3.14) cτ1pu˚TxW q “ χp 9Σq ` cτ1pNuq.

Definition 3.22. For any asymptotically cylindrical J-holomorphic curve u : p 9Σ, jq Ñ
pxW,Jq asymptotic to Reeb orbits γz in M˘ at its punctures z P Γ˘, we define the normal

Chern number of u to be the integer

cN puq :“ cτ1pu˚TxW q ´ χp 9Σq `
ÿ

zPΓ`

ατ´pγzq ´
ÿ

zPΓ´

ατ`pγzq.

Exercise 3.23. Show that the definition of cNpuq above is independent of the choice
of trivializations τ .
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The normal Chern number cNpuq clearly depends only on the homotopy class of u as an
asymptotically cylindrical map, together with the properties of its asymptotic Reeb orbits.
When u is immersed, we can rewrite it via (3.14) as

(3.15) cN puq “ cτ1pNuq `
ÿ

zPΓ`

ατ´pγzq ´
ÿ

zPΓ´

ατ`pγzq.

Proposition 3.19 then follows immediately from:

Theorem 3.24. Suppose u : p 9Σ, jq Ñ pxW,Jq is an immersed asymptotically cylindrical
J-holomorphic curve, and η P ΓpNuq is a smooth section of its normal bundle with at most
finitely many zeroes. Then

Zpηq ` Z8pηq “ cNpuq.
In the situation of interest, we already know that both Zpηq and Z8pηq are nonnegative,

so this yields:

Corollary 3.25. If u : p 9Σ, jq Ñ pxW,Jq is an immersed asymptotically cylindrical
J-holomorphic curve and η P ΓpNuq is a section of its normal bundle describing nearby
J-holomorphic curves as in (3.10), then

Zpηq ď cNpuq;
in particular, if cNpuq “ 0 then every such section is zero free.

Proof of Theorem 3.24. Let τ0 denote the unique choice of asymptotic trivializa-
tion of Nu such that

windτ0pη; zq “ 0 for all z P Γ.

Note that if u has multiple ends approaching the same orbit γ in M˘, this choice may
require non-isomorphic trivializations of γ˚ξ˘ for different ends, but this will pose no
difficulty in the following. For this choice, we have

Zpηq “ cτ01 pNuq,
thus using (3.15) and the definition (3.13) of Z8pηq,

Zpηq ` Z8pηq “ cτ01 pNuq `
ÿ

zPΓ`

ατ0´ pγzq ´
ÿ

zPΓ´

ατ0` pγzq

“ cNpuq.
�

Corollary 3.25 tells us that in order to find 2-dimensional families of embedded J-
holomorphic curves that locally form foliations, one should restrict attention to curves
satisfying cNpuq “ 0. To see what kinds of curves satisfy this condition, recall (see Appen-

dix A.2) that a general J-holomorphic curve u : 9Σ Ñ xW in a 2n-dimensional cobordism
xW , with positive/negative punctures z P Γ :“ Γ` YΓ´ asymptotic to nondegenerate Reeb
orbits γz, is defined to have index

indpuq “ pn´ 3qχp 9Σq ` 2cτ1pu˚TxW q `
ÿ

zPΓ`

µτCZpγzq ´
ÿ

zPΓ´

µτCZpγzq.
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As usual, all dependence on the trivialization τ in terms on the right hand side cancels out
in the sum. This index is the virtual dimension of the moduli space of all curves homotopic
to u, and for generic J , the open subset of simple curves in this space is a smooth manifold

of this dimension. Let us restrict to the case dimxW “ 4, so n “ 2, and let g denote the
genus of Σ, hence

(3.16) indpuq “ ´χp 9Σq ` 2cτ1pu˚TxW q `
ÿ

zPΓ`

µτCZpγzq ´
ÿ

zPΓ´

µτCZpγzq.

and

(3.17) χp 9Σq “ 2 ´ 2g ´ #Γ.

There is also a natural partition of Γ into the even and odd punctures

Γ “ Γeven Y Γodd,

defined via the parity of the corresponding orbit as defined in §3.3, or equivalently, the
parity of the Conley-Zehnder index.1 Now combining (3.16), (3.17), Definition 3.22 and
the Conley-Zehnder/winding relations of Proposition 3.17, we have

2cNpuq “ 2cτ1pu˚TxW q ´ 2χp 9Σq `
ÿ

zPΓ`

2ατ´pγzq ´
ÿ

zPΓ´

2ατ`pγzq

“ 2cτ1pu˚TxW q ´ χp 9Σq ´ p2 ´ 2g ´ #Γq `
ÿ

zPΓ`

rµτCZpγzq ´ ppγzqs

´
ÿ

zPΓ´

rµτCZpγzq ` ppγzqs

“ indpuq ´ 2 ` 2g ` #Γ ´ #Γodd

“ indpuq ´ 2 ` 2g ` #Γeven.

(3.18)

Since we are interested in 2-dimensional families of curves, assume indpuq “ 2. Then
the right hand side of (3.18) is nonnegative, and vanishes if and only if g “ #Γeven “ 0,

i.e. 9Σ is a punctured sphere and all asymptotic orbits have odd Conley-Zehnder index. This
leads to the following result. We state it for now with an extra assumption (condition (iv)
below) in order to avoid the possibility of extra intersections emerging from infinity—this
can be relaxed using the technology introduced in the next lecture, but the weaker result
will also suffice for our application in Lecture 5.

Theorem 3.26. Suppose u : p 9Σ, jq Ñ pxW,Jq is an embedded asymptotically cylindrical
J-holomorphic curve such that:

(i) indpuq “ 2;

(ii) 9Σ has genus 0;
(iii) all asymptotic orbits of u have odd Conley-Zehnder index;
(iv) all the punctures are asymptotic to distinct Reeb orbits, all of them simply covered.

1Note that while the Conley-Zehnder index µτ

CZ
pγq P Z generally depends on a choice of trivialization

τ of the contact bundle along γ, different choices of trivialization change the index by multiples of 2, thus
the odd/even parity is independent of this choice.
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Then some neighborhood of u in the moduli space M0pxW,Jq is a smooth 2-dimensional

manifold consisting of pairwise disjoint embedded curves that foliate a neighborhood of up 9Σq
in xW . �
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We are now ready to explain the intersection theory introduced by Siefring [Sie11]
for asymptotically cylindrical holomorphic curves in 4-dimensional completed symplectic
cobordisms. The theory follows a pattern that we saw in our discussion of the normal Chern
number in §3.4: the obvious geometrically meaningful quantities such as u ¨ v (counting
intersections between u and v) and δpuq (counting double points and critical points of u) can
be defined, and are nonnegative, but they are not homotopy invariant since intersections
may sometimes escape to infinity. In each case, however, one can add a nonnegative count
of “hidden intersections at infinity,” defined in terms of asymptotic winding numbers, so
that the sum is homotopy invariant.

4.1. Statement of the main results

Throughout this lecture, we assume pW,ωq is a four-dimensional symplectic cobordism

with BpW,ωq “ p´M´, ξ´ “ kerα´q \ pM`, ξ` “ kerα`q, pxW,ωq is its completion and

J P J pω, α`, α´q. For two asymptotically cylindrical maps u : 9Σ Ñ xW and v : 9Σ1 Ñ xW
with at most finitely many intersections, we define the algebraic intersection number

u ¨ v :“
ÿ

upzq“vpζq

ιpu, z ; v, ζq P Z,

and similarly, if u has at most finitely many double points and critical points, then it has
a well-defined singularity index

δpuq :“ 1

2

ÿ

upzq“upζq, z‰ζ

ιpu, z ; u, ζq `
ÿ

dupzq“0

δpu, zq P Z,
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i.e. the sum of the local intersection indices for all double points with the local singularity
index at each critical point (cf. Lemma 2.6). If u and v are both asymptotically cylindrical
J-holomorphic curves, then we saw in Corollaries 3.13 and 3.14 that u ¨ v is well defined if
u and v have non-identical images, and δpuq is also well defined if u is simple. Moreover,
the usual results on positivity of intersections (Appendix B) then imply

u ¨ v ě 0,

with equality if and only if u and v are disjoint, and

δpuq ě 0,

with equality if and only if u is embedded. So far, all of this is the same as in the closed case,
but the crucial difference here is that neither u ¨ v nor δpuq is invariant under homotopies,
which makes them harder to control in general. For example, there is no reasonable
definition of “u ¨ u” since trying to count intersections of u with a small perturbation of
itself (as one does in the closed case) may give a number that depends on the perturbation.
The situation is saved by the following results from [Sie11].

Theorem 4.1. For any two asymptotically cylindrical maps u : 9Σ Ñ xW and v : 9Σ1 Ñ xW
with nondegenerate1 asymptotic orbits, there exists a pairing

u ˚ v P Z

with the following properties:

(1) u˚v depends only on the homotopy classes of u and v as asymptotically cylindrical
maps;

(2) If u : p 9Σ, jq Ñ pxW,Jq and v : p 9Σ, j1q Ñ pxW,Jq are J-holomorphic curves with
non-identical images, then

u ˚ v “ u ¨ v ` ι8pu, vq,
where ι8pu, vq is a nonnegative integer interpreted as the count of “hidden in-
tersections at infinity.” Moreover, there exists a perturbation Jǫ P J pω, α`, α´q
which is C8-close to J , and a pair of asymptotically cylindrical Jǫ-holomorphic

curves uǫ : p 9Σ, jǫq Ñ pxW,Jǫq and vǫ : p 9Σ, j1
ǫq Ñ pxW,Jǫq close to u and v in their

respective moduli spaces, such that

uǫ ¨ vǫ “ u ˚ v.
The last statement in the above theorem, involving the perturbations uǫ and vǫ, helps

us interpret u˚v as the count of intersections between generic curves homotopic to u and v.
That particular detail is not proved in [Sie11], nor anywhere else in the literature—it has

1Theorems 4.1 and 4.4 both also hold under the more general assumption that all asymptotic orbits
belong to Morse-Bott families, as long as one imposes the restriction that asymptotic orbits of curves are
not allowed to change under homotopies. (This assumption is vacuous in the nondegenerate case since
nondegenerate orbits are isolated.) One can also generalize the theory further to allow homotopies with
moving asymptotic orbits, in which case additional nonnegative counts of “hidden” intersections must be
introduced; see [Wen10a, §4.1] and [SW].



4.1. STATEMENT OF THE MAIN RESULTS 59

the status of a “folk theorem,” meaning that at least a few experts would be able to prove
it as an exercise, but have not written down the details in any public forum. The proof
involves Fredholm theory on exponentially weighted Sobolev spaces, as explained e.g. in
[HWZ99,Wen10a], and we will not prove it here either, but have included the statement
mainly for the sake of intuition. It is not needed for any of the most important applications
of Theorem 4.1, such as:

Corollary 4.2. If u and v are J-holomorphic curves satisfying u ˚ v “ 0, then any
two J-holomorphic curves that have non-identical images and are homotopic to u and v
respectively are disjoint.

In order to write down the punctured version of the adjunction formula, we must
introduce a little bit more notation. Suppose γ : S1 Ñ M is a Reeb orbit in a contact
3-manifold pM, ξ “ kerαq, and k P N. This gives rise to the k-fold covered Reeb orbit

γk : S1 Ñ M : t ÞÑ γpktq,
and we define the covering multiplicity covpγq of a general Reeb orbit γ as the largest
k P N such that γ “ γk0 for some other Reeb orbit γ0. Similarly, if f P Γpγ˚ξq is an
eigenfunction of Aγ with eigenvalue λ P R, then the k-fold cover

fk P Γppγkq˚ξq, fkptq :“ fpktq
is an eigenfunction of Aγk with eigenvalue kλ, and for any Reeb orbit γ and nontrivial
eigenfunction f of Aγ, we define covpfq P N to be the largest integer k such that f is a
k-fold cover of an eigenfunction for a Reeb orbit covered by γ. Observe that, in general,
1 ď covpfq ď covpγq, and covpfq always divides covpγq. Note also that any trivialization
τ of γ˚ξ naturally determines a trivialization of pγkq˚ξ, which we shall denote by τk.

Remark 4.3. Exercise 3.18 implies that if γ : S1 Ñ M is a simply covered (i.e. em-
bedded) Reeb orbit in a contact 3-manifold pM, ξ “ kerαq and τ is a trivialization of γ˚ξ,

then for any k P N and a nontrivial eigenfunction f of Aγk with windτ
kpfq ą 0, covpfq

depends only on k and windτ
kpfq, in fact:

covpfq “ gcd
`
k,windτ

kpfq
˘
.

We now associate to any Reeb orbit γ in a contact 3-manifold pM, ξ “ kerαq the
spectral covering numbers

σ̄˘pγq :“ covpf˘q P N,

where f˘ P Γpγ˚ξq is any choice of eigenfunction of Aγ with windτ pf˘q “ ατ˘pγq. Re-

mark 4.3 implies that σ̄˘pγq does not depend on this choice. Finally, if u : 9Σ Ñ xW is an
asymptotically cylindrical map with punctures z P Γ˘ asymptotic to orbits γz in M˘, we
define the total spectral covering number of u by

σ̄puq :“
ÿ

zPΓ`

σ̄´pγzq `
ÿ

zPΓ´

σ̄`pγzq.
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Observe that σ̄puq really does not depend on the map u, but only on its sets of positive
and negative asymptotic orbits. It is a positive integer in general, and we have

σ̄puq ´ #Γ ě 0,

with equality if and only if all of the so-called “extremal” eigenfunctions at the asymptotic
orbits of u are simply covered. This is true in particular whenever all asymptotic orbits of
u are simply covered.

The next statement is the punctured generalization of the adjunction formula (Theo-
rem 2.8): it relates u ˚u to δpuq, the spectral covering number σ̄puq, and our generalization
of the normal Chern number cN puq from §3.4 (see Definition 3.22).

Theorem 4.4. If u : p 9Σ, jq Ñ pxW,Jq is an asymptotically cylindrical and simple J-
holomorphic curve with punctures Γ Ă Σ, then there exists an integer

δ8puq ě 0,

interpreted as the count of “hidden double points at infinity,” such that

(4.1) u ˚ u “ 2 rδpuq ` δ8puqs ` cNpuq ` rσ̄puq ´ #Γs .
In particular, δpuq ` δ8puq depends only on the homotopy class of u as an asymptotically
cylindrical map. Moreover, there exists a perturbation Jǫ P J pω, α`, α´q which is C8-close

to J , and a Jǫ-holomorphic curve uǫ : p 9Σ, jǫq Ñ pxW,Jǫq close to u in the moduli space,
such that δ8puǫq “ 0.

Corollary 4.5. If u P MgpxW,Jq is simple and satisfies δpuq “ δ8puq “ 0, then every

simple curve in the same connected component of MgpxW,Jq is embedded.

Remark 4.6. It is important to notice the lack of the words “and only if” in Corol-
lary 4.5: an embedded curve u always has δpuq “ 0 but may in general have δ8puq ą 0, in
which case it could be homotopic to a simple curve with critical or double points.

The remainder of this lecture will be concerned with the definitions of u ˚ v, ι8pu, vq
and δ8puq, and the proofs of Theorems 4.1 and 4.4.

Remark 4.7. The reader should be aware of a few notational differences between
these notes and the original source [Sie11]. One relatively harmless difference is in the
appearance of the adunction formula (Equation (4.1) above vs. [Sie11, Equation (2-5)]),
as Siefring does not define or mention the normal Chern number, but writes an expression
that is equivalent due to (3.18). A more serious difference of conventions appears in the
formulas we will use to define u ˚ v and δpuq below, e.g. (4.4) and (4.12) contain “˘”
and “¯” symbols that do not appear in the equivalent formulas in [Sie11]. The reason
is that alternate versions of these numbers need to be defined for asymptotic orbits that
appear at positive or negative ends; Siefring handles this issue with a notational shortcut,
formally viewing Reeb orbits that occur at negative ends as orbits with negative covering
multiplicity. In these notes, covering multiplicities are always positive.
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4.2. Relative intersection numbers and the ˚-pairing
For the remainder of this lecture, fix a choice of trivializations of the bundles γ˚ξ˘ Ñ S1

for every simply covered Reeb orbit γ : S1 Ñ M˘. Wherever a trivialization along a
multiply covered orbit γk is needed, we will use the one induced on pγkq˚ξ˘ Ñ S1 by our
chosen trivialization of γ˚ξ˘, and denote this choice as usual by τ .

For two asymptotically cylindrical maps u : 9Σ Ñ xW and v : 9Σ1 Ñ xW , we define the
relative intersection number

u ‚τ v :“ u ¨ vτ P Z,

where vτ : 9Σ1 Ñ xW denotes any C0-small perturbation of v such that u and vτ have at
most finitely many intersections and vτ is “pushed off” near ˘8 in directions determined
by τ , i.e. if v approaches the orbit γ : S1 Ñ M˘ asymptotically at a puncture z, then vτ

at the same puncture approaches a loop of the form expγptq ǫηptq, where ǫ ą 0 is small and
η P Γpγ˚ξ˘q satisfies windτ pηq “ 0. Since vτ asymptotically approaches loops that may
(without loss of generality) be assumed disjoint from the asymptotic orbits of u, it follows
from Exercise 2.1 that this definition is independent of the choice of perturbation, and it
only depends on the homotopy classes of u and v (as asymptotically cylindrical maps) plus
the trivializations τ . The dependence on τ indicates that u ‚τ v is not a very meaningful
number on its own, so it will not be an object of primary study for us, but like the relative
first Chern numbers in §3.4, it will provide a useful tool for organizing information.

Exercise 4.8. Show that u ‚τ v “ v ‚τ u.
Suppose u : 9Σ Ñ xW and v : 9Σ1 Ñ xW are asymptotically cylindrical and have finitely

many intersections, so u ¨ v is well defined. Then u ‚τ v can be computed with the per-
turbation vτ assumed to be nontrivial only in some neighborhood of infinity where u and
v are disjoint, so that u ¨ vτ counts the intersections of u with v, plus some additional
intersections that appear in a neighborhood of infinity when v is perturbed to vτ . We shall
denote this count of additional intersections near infinity by ιτ8pu, vq P Z, so we can write

u ‚τ v “ u ¨ v ` ιτ8pu, vq
whenever u ¨ v is well defined.

The number ιτ8pu, vq also depends on τ and is thus not meaningful on its own, but
it is useful to observe that it can be computed in terms of relative asymptotic winding
numbers—this observation will lead us to the natural definitions of the much more mean-
ingful quantities u ˚ v and ι8pu, vq, which do not depend on τ . To see this, denote the
punctures of u and v by Γu “ Γ`

u Y Γ´
u and Γv “ Γ`

v Y Γ´
v respectively, and for any z P Γu

or Γv, denote the corresponding asymptotic orbit of u or v by γkzz , where we assume γz is
a simply covered orbit and kz P N is the covering multiplicity. A contribution to ιτ8pu, vq
may come from any pair of punctures pz, ζq P Γ˘

u ˆΓ˘
v , so we shall denote this contribution

by ιτ8pu, z ; v, ζq and write

(4.2) ιτ8pu, vq “
ÿ

pz,ζqPΓ˘
u ˆΓ˘

v

ιτ8pu, z ; v, ζq.
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Remark 4.9. In (4.2) and several other expressions in this lecture, the summation
should be understood as a sum of two summations, one with ˘ “ ` and the other with
˘ “ ´.

If γz ‰ γζ, then u and vτ have no intersections in neighborhoods of these particular
punctures, implying

ιτ8pu, z ; v, ζq “ 0 if γz ‰ γζ.

Now assume γ :“ γz “ γζ , and let T ą 0 denote the period of γ. We shall parametrize
punctured neighborhoods of z and ζ by half-cylinders Z˘ and consider the resulting maps

ups, tq, vps, tq P R ˆ M˘,

defined for |s| sufficiently large and asymptotic to γkz and γkζ respectively. We first consider
the special case where both asymptotic orbits have the same covering multiplicity, so let

k :“ kz “ kζ.

Asymptotic approach to γk means we can write

ups, tq “ exppkTs,γpktqq hups, tq, vps, tq “ exppkTs,γpktqq hvps, tq,
for sections hu and hv of ξ˘ along the orbit cylinder such that both decay uniformly to 0 as
s Ñ ˘8. The assumption that u and v have no intersections near infinity implies moreover
that for some s0 ą 0, each of the sections

ps, tq ÞÑ hups, t` j{kq ´ hvps, tq, j “ 0, . . . , k ´ 1

has no zeroes in the region |s| ě s0. The perturbation vτ can now be defined as

vτps, tq “ exppkTs,γpktqq rhvps, tq ` ǫηps, tqs ,
where ǫ ą 0 is small and ηps, tq P ξ˘ can be assumed to vanish for |s| ď s0 and to satisfy
ηps, tq Ñ η8pktq as s Ñ ˘8, with η8 P Γpγ˚ξ˘q a nowhere vanishing section satisfying
windτ pη8q “ 0. Intersections of vτ with u in the region |s| ě s0 are now in one-to-one
correspondence with solutions of the equation

Fjps, tq :“ hups, t` j{kq ´ hvps, tq ´ ǫηps, tq “ 0,

for arbitrary values of j P t0, . . . , k ´ 1u. Notice that Fj admits a continuous extension to
s “ ˘8 with Fjp˘8, tq “ ´ǫη8pktq. Since windτ pη8q “ 0 and ǫ ą 0 is small, the algebraic
count of zeroes of Fj on the region t|s| ě s0u is thus

˘ rwindτ pFjp˘8, ¨qq ´ windτ pFjp˘s0, ¨qqs “ ¯windτ phup˘s0, ¨ ` j{kq ´ hvp˘s0, ¨qq ,
i.e. it is the relative asymptotic winding number of v about the reparametrization ups, t`
j{kq, with respect to the trivialization τ . Summing this over all such reparametrizations
gives

(4.3)
k´1ÿ

j“0

¯windτ
`
hups, ¨ ` j{kq ´ hvps, ¨q

˘
,

where the parameter s can be chosen to be any number sufficiently close to ˘8. If kz ‰ kζ ,
then the above computation is valid for the covers ukζps, tq :“ upkζs, kζtq and vkzps, tq :“
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vpkzs, kztq, both asymptotic to γkzkζ , and (4.3) must then be divided by kzkζ to compute
ιτ8pu, z ; v, ζq.

Remark 4.10. The computation above can be interpreted in terms of braids: namely,
if u and v have at most finitely many intersections, then their asymptotic behavior at a pair
of punctures with matching asymptotic orbit (up to multiplicity) determines up to isotopy
a pair of (perhaps multiply covered) disjoint connected braids, whose linking number with
each other is (up to a sign) ιτ8pu, z ; v, ζq. It appears in this form in the work of Hutchings
on embedded contact homology; see Appendix C.6 for further discussion.

The discussion thus far has been valid for any pair of asymptotically cylindrical maps. If
we now assume u and v are also J-holomorphic, then Theorem 3.12 expresses the summands
in (4.3) as winding numbers of certain relative asymptotic eigenfunctions for γkzkζ , and
these winding numbers satisfy a priori bounds due to Theorem 3.15. Specifically, assume
ups, tq and vps, tq approach their respective covers of γ along asymptotic eigenfunctions fu
and fv with decay rates |λu| and |λv| respectively, so by (3.9) we have

¯windτ pfuq ě ¯ατ¯pγkzq, ¯windτ pfvq ě ¯ατ¯pγkζq.

Then the covers ukζps, tq and vkzps, tq approach γkzkζ along asymptotic eigenfunctions f
kζ
u

and fkzv with decay rates kζ|λu| and kz|λv| respectively, and the winding is bounded by

¯windτ
`
f
kζ
u

˘
ě ¯kζατ¯pγkzq, ¯windτ

`
fkzv

˘
ě ¯kzατ¯pγkζq.

Theorem 3.12 now implies that the relative decay rate controlling the approach of vps, tq to
any of the reparametrizations ups, t`j{kq is at least the minimum of kζ|λu| and kz|λv|, thus
the corresponding winding number is similarly bounded due to Theorem 3.15. We conclude
that each of the summands in (4.3) is bounded from below by the integer Ωτ˘pγkz , γkζq,
where for any k,m P N we define

(4.4) Ωτ˘pγk, γmq :“ min
 

¯kατ¯pγmq,¯mατ¯pγkq
(
.

Adding the summands in (4.3) for j “ 0, . . . , kzkζ´1 and then dividing by the combinatorial
factor kzkζ produces the bound

ιτ8pu, z ; v, ζq ě Ωτ˘
`
γkzz , γ

kζ
ζ

˘
if γz “ γζ .

If we extend the definition of Ωτ˘ by setting

Ωτ˘pγk1 , γm2 q :“ 0 whenever γ1 ‰ γ2,

then a universal lower bound for ιτ8pu, vq can now be written in terms of asymptotic winding
numbers as

(4.5) ιτ8pu, vq ě
ÿ

pz,ζqPΓ˘
u ˆΓ˘

v

Ωτ˘
`
γkzz , γ

kζ
ζ

˘
.
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Definition 4.11. For any asymptotically cylindrical maps u : 9Σ Ñ xW and v : 9Σ1 Ñ xW
with finitely many intersections, define

ι8pu, vq :“ ιτ8pu, vq ´
ÿ

pz,ζqPΓ˘
u ˆΓ˘

v

Ωτ˘
`
γkzz , γ

kζ
ζ

˘
.

Similarly, for any asymptotically cylindrical maps u and v (not necessarily with finitely
many intersections), we can define

u ˚ v :“ u ‚τ v ´
ÿ

pz,ζqPΓ˘
u ˆΓ˘

v

Ωτ˘
`
γkzz , γ

kζ
ζ

˘
.

When it is well defined, ι8pu, vq is sometimes called the asymptotic contribution to
u ˚ v.

Exercise 4.12. Check that neither of the above definitions depends on the choice of
trivializations τ .

Definitions involving Ωτ˘pγk, γmq may seem not very enlightening at first, and they
are seldom used in practice for computations, but it’s useful to keep in mind what these
terms mean: they are theoretical bounds on the possible relative asymptotic winding of
ends of u around (all possible reparametrizations of) ends of v. We will say that a given
winding number is extremal whenever it achieves the corresponding theoretical bound.
We conclude, for example:

Theorem 4.13 (asymptotic positivity of intersections). If u and v are asymptotically
cylindrical J-holomorphic curves with non-identical images, then ι8pu, vq ě 0, with equality
if and only if for all pairs of ends of u and v respectively asymptotic to covers of the same
Reeb orbit, all of the resulting relative asymptotic eigenfunctions have extremal winding. �

It is also immediate from the above definition that u˚v is homotopy invariant and equals
u ¨ v ` ι8pu, vq whenever u ¨ v is well defined. This completes the proof of Theorem 4.1,
except for the claim that one can always achieve u ¨ v “ u ˚ v after a perturbation of

the data. This can be proved by observing that the subset of MgpxW,Jq ˆ Mg1pxW,Jq
consisting of pairs pu, vq with ι8pu, vq ą 0 consists precisely of those pairs that share an
asymptotic orbit at which some relative asymptotic winding number is not extremal. By
Theorem 3.15, this means that the relative decay rate of some pair of ends approaching
the same orbit is an eigenvalue other than the one closest to 0. One can then use Fredholm
theory with exponential weights (cf. [HWZ99,Wen10a,Hry12]) to show that the moduli
space of pairs of curves satisfying this relative decay condition has strictly smaller Fredholm
index than the usual moduli space, thus for generic data, it is a submanifold of positive
codimension.

4.3. Adjunction formulas, relative and absolute

In order to generalize the adjunction formula, we begin by computing u ‚τ u for an

immersed simple J-holomorphic curve u : p 9Σ, jq Ñ pxW,Jq with asymptotic orbits

tγkzz uzPΓ˘ ,



4.3. ADJUNCTION FORMULAS, RELATIVE AND ABSOLUTE 65

where the notation is chosen as in the previous section so that γz is always a simply
covered orbit and kz P N is the corresponding covering multiplicity. Choose a section η of
the normal bundle Nu Ñ 9Σ with finitely many zeroes and such that, on each cylindrical
neighborhood Z˘ Ă 9Σ of a puncture z P Γ˘,

ηps, tq Ñ η8pkztq uniformly in t as s Ñ ˘8,

for some nonzero η8 P Γpγ˚
z ξ˘q satisfying windτ pη8q “ 0. We can also assume the zeroes

of η are disjoint from all points z P 9Σ at which upzq “ upζq for some ζ ‰ z. Then
u ‚τ u “ u ¨ uτ , where

uτpzq “ expupzq ǫηpzq
for some ǫ ą 0 small. As we saw in §2.1, there are two obvious sources of intersections
between u and uτ :

(1) Each transverse double point upzq “ upζq with z ‰ ζ contributes two transverse
positive intersections, one near z and one near ζ . More generally, the algebraic
count of intersections contributed by each isolated double point is twice its local
intersection index.

(2) Each zero ηpzq “ 0 contributes an intersection at z, with local intersection index
equal to the order of the zero. The algebraic count of these zeroes is the relative
first Chern number cτ1pNuq P Z.

Unlike in the closed case, there are now two additional sources of intersections. As we saw
in the previous section, if z, ζ P Γ˘ are two distinct punctures with γz “ γζ, then perturbing
u to uτ will cause ιτ8pu, z ; u, ζq P Z additional intersections of u and uτ to appear near
infinity along the corresponding half-cylinders, and this number is also bounded below by

Ωτ˘
`
γkzz , γ

kζ
ζ

˘
, defined in (4.4) in terms of winding numbers of asymptotic eigenfunctions.

Additionally, near any z P Γ˘ with kz ą 1, u may intersect different parametrizations of
uτ near infinity. To see this, we can again parametrize a neighborhood of z in 9Σ with the
half-cylinder Z˘ and write

ups, tq “ exppkTs,γpktqq hps, tq
for large |s|, where k :“ kz, γ :“ γz, T ą 0 is the period of γ and hps, tq P ξ˘ decays to 0
as s Ñ ˘8. Since u is simple, it has no double points in some neighborhood of infinity,
which means that for some s0 ą 0, we have

hps, tq ‰ hps, t` j{kq for all |s| ě s0, t P S1, j P t1, . . . , k ´ 1u.

The perturbation uτ on this neighborhood may be assumed to take the form

uτ ps, tq “ exppkTs,γpktqq rhps, tq ` ǫη8pktqs ,

for some ǫ ą 0 small, where again windτ pη8q “ 0. Thus intersections of u with uτ on the
region t|s| ě s0u correspond to solutions of

Fjps, tq :“ hps, t` j{kq ´ hps, tq ´ ǫη8pktq “ 0
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for arbitrary values of j “ 0, . . . , k ´ 1. For j “ 0, this equation has no solutions. For
j “ 1, . . . , k ´ 1, we observe that Fj extends continuously to s “ ˘8 with Fjp˘8, tq “
´ǫη8pktq and obtain the count of solutions

˘ rwindτ pFjp˘8, ¨qq ´ windτ pFjp˘s0, ¨qqs “ ¯windτ php˘s0, ¨ ` j{kq ´ hp˘s0, ¨qq .
The count of additional intersections of u with uτ in a neighborhood of z is therefore

(4.6) ιτ8pu, zq :“ ¯
kz´1ÿ

j“1

windτ phps, ¨ ` j{kq ´ hps, ¨qq ,

where s is any number sufficiently close to ˘8, and we can then write the total count of
asymptotic contributions to u ‚τ u as

ιτ8puq :“
ÿ

z,ζPΓ˘, z‰ζ

ιτ8pu, z ; u, ζq `
ÿ

zPΓ˘

ιτ8pu, zq.

This yields the computation

u ‚τ u “ 2δpuq ` cτ1pNuq ` ιτ8puq,

and since cτ1pNuq “ cτ1pu˚TxW q ´ χp 9Σq, we deduce from this a relation that is valid for any
(not necessarily immersed) simple and asymptotically cylindrical J-holomorphic curve,
called the relative adjunction formula

(4.7) u ‚τ u “ 2δpuq ` cτ1pu˚TxW q ´ χp 9Σq ` ιτ8puq.
This version of the adjunction formula first appeared in [Hut02].

Remark 4.14. As with ιτ8pu, z ; v, ζq (cf. Remark 4.10), ιτ8pu, zq can be given a braid-
theoretic interpretation: it is (up to a sign) the writhe of the braid defined by identifying a
neighborhood of the framed loop γz with S

1 ˆ D and projecting the embedded loop ups, ¨q
to M˘ for any s close to ˘8; see Appendix C.6.

As we did with ιτ8pu, vq in the previous section, it will be useful to derive a theoretical

bound on ιτ8puq. We already have ιτ8pu, z ; u, ζq ě Ωτ˘
`
γkzz , γ

kζ
ζ

˘
, and must deduce a similar

bound for ιτ8pu, zq. Let γ :“ γz and k :“ kz, and write ups, tq “ exppTs,γpktqq hps, tq as usual,
and for j “ 1, . . . , k ´ 1, let

ujps, tq :“ ups, t` j{kq “ exppTs,γpktqq hjps, tq, where hjps, tq :“ hps, t` j{kq.

By theorem 3.11, hps, tq is controlled as s Ñ ˘8 by some eigenfunction f of Aγk with
eigenvalue λ, and by (3.9),

¯windτ pfq ě ¯ατ¯pγkq.
The reparametrizations hjps, tq are similarly controlled by reparametrized eigenfunctions

fjptq :“ fpt` j{kq
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with windτ pfjq “ windτ pfq and the same eigenvalue, and the relative decay rates con-
trolling hj ´ h are then at least |λ| due to Theorem 3.12, implying (via Theorem 3.15) a
corresponding bound on the relative winding terms in (4.6), thus

ιτ8pu, zq ě ¯pk ´ 1qwindτ pfq ě ¯pk ´ 1qατ¯pγkq.
The bound established above is only a first attempt, as we will see in a moment that

a stricter bound may hold in general. If windτ pfq is not extremal, i.e. ¯windτ pfq ě
¯ατ¯pγkq ` 1, the above computation gives

(4.8) ιτ8pu, zq ě ¯pk ´ 1qατ¯pγkq ` k ´ 1.

Alternatively, suppose windτ pfq is extremal, hence equal to ατ¯pγkq, and letm “ covpfq,
so k “ mℓ for some ℓ P N and

fptq “ gmptq :“ gpmtq
for some eigenfunction g of Aγℓ which is simply covered. It follows that for j “ 1, . . . , k´1,
fj ” f if and only if j P ℓZ. When j is not divisible by ℓ, Theorem 3.12 now gives a relative
decay rate equal to |λ| and thus relative winding equal to windτ pfq, so adding up these
terms for the mpℓ ´ 1q values of j not in ℓZ contributes

(4.9) ¯ mpℓ ´ 1qατ¯pγkq
to ιτ8pu, zq.

For j “ 1, . . . , m ´ 1, we claim that the asymptotic winding of hjℓ ´ h is stricter than
the bound established above, i.e. for large |s|,
(4.10) ¯ windτ phjℓps, ¨q ´ hps, ¨qq ě ¯ατ¯pγkq ` 1.

By Theorem 3.12, there is a nontrivial eigenfunction ϕj P Γppγkq˚ξ˘q ofAγk with eigenvalue
λ1 such that

hjℓps, tq ´ hps, tq “ eλ
1s rϕjptq ` r1ps, tqs ,

for large |s|, with r1ps, ¨q Ñ 0 uniformly as s Ñ ˘8. Now if the claim is false, then
windτ pϕjq “ ατ¯pγkq “ windτ pfq. Since f is an m-fold cover, this means windτ pϕjq is
divisible by m, and Remark 4.3 then implies that ϕj is also an m-fold cover, thus

(4.11) ϕjpt` 1{mq “ ϕjptq for all t P S1.

But observe:

0 “
m´1ÿ

r“0

„
h

ˆ
s, t` j ` r

m

˙
´ h

´
s, t` r

m

¯
“

m´1ÿ

r“0

”
hjℓ

´
s, t` r

m

¯
´ h

´
s, t` r

m

¯ı

“
m´1ÿ

r“0

eλ
1s
”
ϕj

´
t` r

m

¯
` r1

´
s, t` r

m

¯ı
,

implying
m´1ÿ

r“0

ϕjpt` r{mq “ 0 for all t P S1.
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Since ϕj is not identically zero, this contradicts (4.11) and thus proves the claim.
Adding to (4.9) the m´ 1 terms bounded by (4.10), we conclude

ιτ8pu, zq ě ¯mpℓ ´ 1qατ¯pγkq ` pm´ 1q
“
¯ατ¯pγkq ` 1

‰
“ ¯pk ´ 1qατ¯pγkq ` pm ´ 1q.

This bound is weaker than (4.8), but the latter is valid only when windτ pfq is non-extremal,
thus the former is the strongest possible bound in general. Recall that the covering multi-
plicity m “ covpfq is precisely what we denoted by σ̄¯pγkq in §4.1. To summarize, we now
define for any simply covered orbit γ and k P N,

(4.12) Ωτ˘pγkq :“ ¯pk ´ 1qατ¯pγkq `
“
σ̄¯pγkq ´ 1

‰
.

The above computation then implies

(4.13) ιτ8pu, zq ě Ωτ˘
`
γkzz

˘
.

Definition 4.15. For any asymptotically cylindrical map u : 9Σ Ñ xW that is embedded
outside some compact set, we define the asymptotic contribution to the singularity
index by

δ8puq :“ 1

2

«
ιτ8puq ´

ÿ

z,ζPΓ˘, z‰ζ

Ωτ˘
`
γkzz , γ

kζ
ζ

˘
´

ÿ

zPΓ˘

Ωτ˘
`
γkzz

˘
ff
.

Exercise 4.16. Check that the above definition does not depend on the trivializa-
tions τ . Then try to convince yourself that it’s an integer, not a half-integer.

Like Theorem 4.13 in the previous section, the following is now immediate from the
computation above:

Theorem 4.17. If u is an asymptotically cylindrical and simple J-holomorphic curve,
then δ8puq ě 0, with equality if and only if:

(1) For all pairs of ends asymptotic to covers of the same Reeb orbit, the resulting
relative asymptotic eigenfunctions have extremal winding;

(2) For all ends asymptotic to multiply covered Reeb orbits, the relative asymptotic
eigenfunctions controlling the approach of distinct branches to each other have
extremal winding.

The proof of the absolute adjunction formula in Theorem 4.4 now consists only of
plugging in the relevant definitions and computing.

Exercise 4.18. Show that for any simply covered Reeb orbit γ and k P N,

Ωτ˘pγkq ´ Ωτ˘pγk, γkq ¯ ατ¯pγkq “ σ̄¯pγkq ´ 1.

Proof of Theorem 4.4. Plugging the relative adjunction formula (4.7) into the def-
inition of u ˚ u (Definition 4.11) gives

u ˚ u “ u ‚τ u ´
ÿ

pz,ζqPΓ˘ˆΓ˘

Ωτ˘
`
γkzz , γ

kz
z

˘

“ 2δpuq ` cτ1pu˚TxW q ´ χp 9Σq ` ιτ8puq ´
ÿ

pz,ζqPΓ˘ˆΓ˘

Ωτ˘
`
γkzz , γ

kz
z

˘
.
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Now replacing cτ1pu˚TxW q´χp 9Σq with cNpuq plus some extra terms from Definition 3.22, and

ιτ8puq with 2δ8puq plus extra terms from Definition 4.15, all terms of the form Ωτ˘
`
γkzz , γ

kζ
ζ

˘

with z ‰ ζ cancel and the above becomes

u ˚ u “ 2 rδpuq ` δ8puqs ` cNpuq `
ÿ

zPΓ˘

“
Ωτ˘

`
γkzz

˘
´ Ωτ˘

`
γkzz , γ

kz
z

˘
¯ ατ¯

`
γkzz

˘‰
.

The result then follows from Exercise 4.18. �

Exercise 4.19. Assume γ : S1 Ñ M is a nondegenerate Reeb orbit in a contact 3-
manifold pM, ξ “ kerαq, and given J P J pαq, let uγ : R ˆ S1 Ñ R ˆ M denote the
associated J-holomorphic orbit cylinder.

(a) Show that cN puγq “ ´ppγq, where ppγq P t0, 1u is the parity of the Conley-Zehnder
index of γ.

(b) Show that uγ ˚ uγ “ ´ covpγq ¨ ppγq.
(c) Deduce from part (b) that if uk denotes a k-fold cover of a given asymptotically

cylindrical J-holomorphic curve u, it is not generally true that uk ˚ vℓ “ kℓpu ˚ vq.
Remark: One can show however that in general, uk ˚ vℓ ě kℓpu ˚ vq, cf. Proposi-
tion C.2.

(d) Use the adjunction formula to show the following: if γ is a multiple cover of a
Reeb orbit with even Conley-Zehnder index, and J 1 is an arbitrary almost complex
structure on R ˆ M that is compatible with dpesαq and belongs to J pαq outside
a compact subset, then there is no simple J 1-holomorphic curve homotopic to uγ
through asymptotically cylindrical maps.
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Symplectic fillings of planar contact 3-manifolds
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In this lecture, we will explain an application of the intersection theory of punctured
holomorphic curves to the problem of classifying symplectic fillings of contact 3-manifolds.
The main result is stated in §5.2 as Theorem 5.6, and it may be seen as an analogue of
McDuff’s Theorem 1.16 in a slightly different context—indeed, the structure of the proof
is very similar, but the technical details are a bit more intricate and require the machinery
developed in Lecture 4. Before stating the theorem and sketching its proof, we review some
topological facts about Lefschetz fibrations, open books, and symplectic fillings.

5.1. Open books and Lefschetz fibrations

As we saw in Lecture 1, symplectic forms on 4-manifolds can be characterized topo-
logically (up to deformation) via Lefschetz fibrations. The natural analogue of a Lefschetz
fibration for a contact manifold is an open book decomposition. If M is a closed
oriented 3-manifold, an open book is a pair pB, πq, where B Ă M is an oriented link and

π :MzB Ñ S1

is a fibration such that some neighborhood N pγq Ă M of each connected component γ Ă B

admits an identification with S1 ˆ D in which π takes the form

π|N pγqzγ : S
1 ˆ pDzt0uq Ñ S1 : pθ, pr, φqq ÞÑ φ.

Here pr, φq denote polar coordinates on the disk D, with the angle normalized to take values
in S1 “ R{Z. We call B the binding of the open book, and the fibres π´1pφq Ă M are its
pages; these are open surfaces whose closures are compact oriented surfaces with oriented
boundary equal to B. Figure 5.1 shows simple examples on S3 and S1 ˆ S2.

This material will be published by Cambridge University Press as Contact 3-Manifolds, Holomorphic

Curves and Intersection Theory by Chris Wendl. This pre-publication version is free to view and download
for personal use only. Not for re-distribution, re-sale or use in derivative works. c©Chris Wendl, 2019.
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Figure 5.1. Simple open book decompositions on S3 and S1 ˆ S2, with
pages diffeomorphic to the plane and the cylinder respectively.

A contact structure ξ on M is said to be supported by the open book π :MzB Ñ S1

if one can write ξ “ kerα some contact form α with

α|TB ą 0 and dα|pages ą 0.

Equivalently, one can require that the components of B are closed Reeb orbits with respect
to α, and everywhere else the Reeb vector field is positively transverse to the pages. This
definition is due to Giroux, and contact forms that satisfy these conditions are sometimes
called Giroux forms.

The following contact analogue of Theorems 1.3 and 1.8 is a translation into modern
language of a classical result of Thurston and Winkelnkemper:

Theorem 5.1 (Thurston-Winkelnkemper [TW75]). Every open book on a closed ori-
ented 3-manifold supports a unique contact structure up to isotopy.

A much deeper result known as the Giroux correspondence [Gir02] asserts that the set
of contact structures up to isotopy on any closed 3-manifold admits a natural bijection to
the set of open books up to a topological operation called positive stabilization. We will
not need this fact in the discussion below, but it is worth mentioning since it has had a
major impact on the modern field of contact topology; see e.g. [Etn06] for more on this
subject.

In order to discuss symplectic fillings, we will also need to consider a more general class
of Lefschetz fibrations, in which both the base and fibre are allowed to have boundary.
Specifically, assume W is a compact oriented 4-manifold with boundary and corners, where
the boundary consists of two smooth faces

BW “ BhW Y BvW,
the horizontal and vertical boundary respectively, which intersect each other at a corner
of codimension 2. Given a compact oriented surface Σ with nonempty boundary, we define
a bordered Lefschetz fibration of W over Σ to be a smooth map

Π : W Ñ Σ
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with finitely many interior critical pointsW crit :“ CritpΠq Ă W̊ and critical values Σcrit :“
ΠpW critq Ă Σ̊ such that:

(1) As in Example 1.5, critical points take the form Πpz1, z2q “ z21 ` z22 in complex
local coordindates compatible with the orientations;

(2) The fibres have nonempty boundary;
(3) Π´1pBΣq “ BvW and

Π|BvW : BvW Ñ BΣ
is a smooth fibration;

(4) BhW “ Ť
zPΣ B pΠ´1pzqq, and

Π|BhW : BhW Ñ Σ

is also a smooth fibration.

In the following, we assume the base is the closed unit disk (see Figure 5.2),

Σ :“ D Ă C.

In this case, the vertical boundary is a connected fibration of some compact oriented surface
with boundary over BD “ S1,

π :“ Π|BvW : BvW Ñ S1,

and the horizontal boundary is a disjoint union of circle bundles over D; since bundles over
D are trivial, the connected components of BhW can then be identified with S1 ˆ D such
that π on the corner BhW X BvW “ BpBhW q “ špS1 ˆ BDq takes the form πpθ, φq “ φ.
This means that after smoothing the corners of BW , the latter inherits from Π : W Ñ D

an open book decomposition π : BW zB Ñ S1 uniquely up to isotopy, with BhW regarded
as a tubular neighborhood of the binding B :“ špS1 ˆ t0uq.

Recall that for any surface fibration F ãÑ M Ñ S1 that is trivial near the boundaries
of the fibres, the parallel transport (with respect to any connection) along a full traversal
of the loop S1 determines (uniquely up to isotopy) a diffeomorphism ϕ : F Ñ F that
is trivial near BF ; we call this the monodromy of the fibration. One can thus define
the monodromy of a Lefschetz fibration along any loop containing no critical values—in
particular, the monodromy along BD is also called the monodromy of the open book induced
at the boundary.

It is a basic fact about the topology of Lefschetz fibrations that the monodromy along
a loop can always be expressed in terms of positive Dehn twists ; see e.g. [GS99]. For our
purposes, the relevant version of this statement is the following. Let z0 “ 1 P BD and
denote the fibre at z0 by F :“ Π´1pz0q. Pick a set of smooth paths

γz : r0, 1s Ñ D, for each z P D
crit,

from γzp0q “ z0 to γzp1q “ z, intersecting each other only at z0. Then for each z P Dcrit

and p P W crit X Π´1pzq, there is a unique isotopy class of smoothly embedded circles

S1 – Cp Ă F
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Figure 5.2. A bordered Lefschetz fibration over the unit disk D Ă C,
where the regular fibres have genus 2 and two boundary components, and
there are two singular fibres, each with two irreducible components. The
boundary inherits an open book with pages of genus 2 and two binding
components.

that can be collapsed to p under parallel transport along γz; this is called the vanishing

cycle of p. We then have:

Proposition 5.2. If Π : W Ñ D is a bordered Lefschetz fibration, then the monodromy
F Ñ F of the induced open book at the boundary is a composition of positive Dehn twists
along the vanishing cycles Cp Ă F for each critical point p P W crit.

Example 5.3. Suppose Π : W Ñ D has regular fibre F – r´1, 1s ˆ S1 and exactly
k ě 0 singular fibres, each consisting of two disks connected along a critical point (see
Figure 5.3, left). The resulting open book on BW then has pages diffeomorphic to R ˆ S1

and monodromy δk, where δ denotes the positive Dehn twist along the separating curve
t0u ˆS1, which generates the mapping class group of RˆS1. If we blow up W at a regular
point in the interior, then by Exercise 1.11 we obtain a new bordered Lefschetz fibration
with one additional singular fibre consisting of an annulus connected to an exceptional
sphere (Figure 5.3, right). This blowup operation obviously does not change the open book
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blow up
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Figure 5.3. Two bordered Lefschetz fibrations with regular fibre diffeo-
morphic to the annulus. The picture at the right is obtained from the one
at the left by blowing up at a regular point.

on BW , which is consistent with Proposition 5.2 since the additional Dehn twist introduced
by the extra critical point is along a contractible vanishing cycle, and is therefore isotopic
to the identity.

Let us denote the contact manifolds supported by the open books on BW in Exam-
ple 5.3 by pMk, ξkq. It is not too hard to say precisely what these contact manifolds are:
topologically, we have M0 – S1 ˆ S2, M1 – S3, and Mk for k ě 2 is the lens space
Lpk, k ´ 1q. All of these carry standard contact structures that can be defined as follows.
We defined pS3, ξstdq already in §2.3 by identifying S3 with the boundary of the unit ball
in R4 with coordinates px1, y1, x2, y2q and writing ξstd “ ker pλstd|TS3q Ă TS3, where

λstd :“ 1

2

2ÿ

j“1

pxj dyj ´ yj dxjq .

Under the natural identification R4 Ñ C2 : px1, y1, x2, y2q ÞÑ px1`iy1, x2`iy2q, this contact
structure is invariant under the action of Up2q, thus the standard contact structure ξstd on
any lens space Lpp, qq for two coprime integers p ą q ě 1 can be defined via the quotient

pLpp, qq, ξstdq :“ pS3, ξstdq
L
Gp,q,

where Gp,q Ă Up2q denotes the subgroup

Gp,q :“
"ˆ

ζ 0
0 ζq

˙
P Up2q

ˇ̌
ˇ̌ ζp “ 1

*
.

Finally, on S1 ˆ S2, we use the coordinates pη, θ, φq, where η P S1 “ R{Z and pθ, φq P
r0, πs ˆ pR{2πZq are the natural spherical coordinates on S2, and write

ξstd “ ker rfpθq dη ` gpθq dφs
for a suitably chosen loop pf, gq : R{πZ Ñ R2zt0u that is based at the point pfp0q, gp0qq “
p1, 0q and winds exactly once counterclockwise around the origin. Any two choices of pf, gq
that make the above expression a smooth contact form on S1 ˆ S2 and have the stated
winding property produce isotopic contact structures; see e.g. [Gei08]. The following can
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now be verified by constructing explicit open books that support these contact structures
and then computing the monodromy.

Proposition 5.4. There are contactomorphisms pM0, ξ0q – pS1 ˆ S2, ξstdq, pM1, ξ1q –
pS3, ξstdq, and pMk, ξkq – pLpk, k ´ 1q, ξstdqq for each k ě 2.

We will say that a symplectic form ω on W is supported by a bordered Lefschetz
fibration Π : W Ñ D if the following conditions hold:

(1) Every fibre of Π|W zW crit :W zW crit Ñ D is a symplectic submanifold;
(2) On a neighborhood of W crit, ω tames some almost complex structure J that pre-

serves the tangent spaces of the fibres;
(3) On a neighborhood of BW , ω “ dλ for some 1-form λ such that λ|T pBhW q and

λ|T pBvW q are each contact forms, and the induced Reeb vector field on BhW is
tangent to the fibres (in the positive direction).

Observe that for the contact form λ on the smooth faces of BW in the above definition,
dλ “ ω is necessarily positive on the pages of the induced open book, and λ is also positive
on the binding in BhW , so that λ|BW satisfies a variation on the conditions for a Giroux
form. The natural analogue of Theorem 1.8 in this context is the following:

Theorem 5.5. On any bordered Lefschetz fibration Π : W Ñ D, the space of supported
symplectic forms is nonempty and connected, and the corner of BW can be smoothed so
that pW,ωq becomes (canonically up to symplectic deformation) a symplectic filling of the
contact structure supported by the induced open book at the boundary.

We note one additional detail about this construction: a symplectic form ω on W

may sometimes be exact since BW ‰ H, but the condition of ω being positive on fibres
imposes contraints that may make this impossible. In particular, ω can never be exact if
any singular fibre of Π : W Ñ D contains an irreducible component that is closed—this
would violate Stokes’ theorem. We say that a bordered Lefschetz fibration is allowable

if no such components exist, which is equivalent to saying that all the vanishing cycles
are homologically nontrivial. For example, the Lefschetz fibration in Figure 5.2 is not
allowable, due to the presence of a closed irreducible component in the singular fibre at the
right, but one can show that this component is an exceptional sphere, thus an allowable
Lefschetz fibration could be produced by blowing it down (cf. Exercise 1.11).

It turns out that if Π : W Ñ D is allowable, one can always construct ω so that it is
not only exact but also arises from a Weinstein structure, a much more rigid notion of a
symplectic filling. We will not discuss Weinstein and Stein fillings any further here (see
[Etn98,OS04a,CE12]), except to mention the following related result:

Theorem 5.51. If Π : W Ñ D is an allowable bordered Lefschetz fibration, then pW,ωq
in Theorem 5.5 can be arranged to be a Weinstein filling of the contact manifold pBW, ξq
supported by the open book induced at the boundary. In particular, pBW, ξq is Stein fillable.

Theorems 5.5 and 5.51 can be found in a variety of forms in the literature but are usually
not stated quite so precisely as we have stated them here—complete proofs of our versions
(including also cases where Σ ‰ D) may be found in [LVWa].
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5.2. A classification theorem for symplectic fillings

An open book decomposition of a 3-manifold is called planar if its pages have genus 0,
i.e. they are punctured spheres. We then call pM, ξq a planar contact manifold if M
admits a planar open book supporting ξ. The planar contact manifolds play something
of a special role in 3-dimensional contact topology, similar to the role of rational and
ruled surfaces among symplectic 4-manifolds (see [McD90,Wen18]). It is not always
easy to recognize whether a given contact structure is planar or not, but many results in
either direction or known: Etnyre [Etn04] showed for instance that all overtwisted contact
structures are planar, and by an obstruction established in the same paper, the standard
contact structures on unit cotangent bundles of oriented surfaces with positive genus are
never planar. As we saw in Proposition 5.4, the standard contact structures on S3, S1 ˆS2

and Lpk, k´1q for k ě 2 are all planar, as are all contact structures that arise on boundaries
of bordered Lefschetz fibrations with genus 0 fibres.

For an arbitrary contact 3-manifold pM, ξq, the problem of classifying all of its symplec-
tic fillings is often hopeless—many examples are known for instance which admit infinite
(but not necessarily exhaustive) lists of pairwise non-homeomorphic or non-diffeomorphic
Stein fillings [Smi01,OS04b,AEMS08]. On the other hand, many of the earliest results
on this question gave finite classifications, and sometimes even uniqueness (up to certain
obvious ambiguities) of symplectic fillings, e.g. for S3 [Gro85,Eli90], S1 ˆS2 [Eli90], the
unit cotangent bundle of S2 [Hin00], and lens spaces [McD90,Hin03,Lis08]. Most of
these finiteness results can now be deduced from the theorem stated below.

We will say that a symplectic filling pW,ωq of a contact 3-manifold pM, ξq admits a
symplectic Lefschetz fibration over D if there exists a bordered Lefschetz fibration
Π : E Ñ D with a supported symplectic form ωE such that, after smoothing the corners
on BE, pE, ωEq is symplectomorphic to pW,ωq. Whenever this is the case, the Lefschetz
fibration determines a supporting open book on pM, ξq uniquely up to isotopy.

Theorem 5.6 ([Wen10b]). Suppose pW,ωq is a symplectic filling of a contact 3-
manifold pM, ξq which is supported by a planar open book π : MzB Ñ S1. Then pW,ωq
admits a symplectic Lefschetz fibration over D, such that the induced open book at the
boundary is isotopic to π : MzB Ñ S1. Moreover, the Lefschetz fibration is allowable if
and only if pW,ωq is minimal.

One can say slightly more: [Wen10b] shows in fact that the isotopy class of the Lef-
schetz fibration produced on pW,ωq depends only on the deformation class of the symplectic
structure, hence the problem of classifying fillings up to deformation reduces to the problem
of classifying Lefschetz fibrations that fill a given open book. In some cases, this provides
an immediate uniqueness result, for instance:

Corollary 5.7. The symplectic fillings of pS3, ξstdq, pS1ˆS2, ξstdq and pLpk, k´1q, ξstdq
for k ě 2 are unique up to symplectic deformation equivalence and blowup.

Proof. By Proposition 5.4, the contact manifolds in question all admit supporting
open books with cylindrical pages and monodromy equal to δk for some k ě 0, where δ
is the positive Dehn twist that generates the mapping class group of R ˆ S1. The only
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allowable Lefschetz fibration that produces such an open book at the boundary is the one
with fibre r´1, 1s ˆ S1 and exactly k singular fibres of the form pictured in Figure 5.3 at
the left. Theorem 5.6 then implies that all the minimal symplectic fillings in question are
supported by Lefschetz fibrations of this type, which determines their symplectic structures
up to deformation equivalence via Theorem 5.5. �

Further uniqueness results along these lines have been obtained in papers by Plamenevskaya
and Van Horn-Morris [PV10], and Kaloti and Li [KL16], each by studying the factoriza-
tions of mapping classes on planar surfaces into products of positive Dehn twists and then
applying Theorem 5.6. In a slightly different direction, Wand [Wan12] used Theorem 5.6
to establish a new obstruction for a contact 3-manifold to be planar.

Theorem 5.51 implies another quite general consequence of the above result:

Corollary 5.8. Every symplectic filling of a planar contact manifold is deformation
equivalent to a blowup of a Stein filling. In particular, any contact manifold that is both
planar and symplectically fillable is also Stein fillable.

Ghiggini [Ghi05] gave examples of contact 3-manifolds that are symplectically but
not Stein fillable, hence Corollary 5.8 implies that Ghiggini’s examples cannot be planar.
Similarly, Wand [Wan15] and Baker, Etnyre and Van Horn-Morris [BEV12] have given
examples of Stein fillable contact manifolds with (necessarily non-planar) supporting open
books that cannot arise from boundaries of Lefschetz fibrations.

Remark 5.9. Theorem 5.6 and Corollary 5.8 can be generalized to allow Lefschetz
fibrations over arbitrary compact oriented surfaces with boundary [LVWb]. In this form,
they apply to a larger class of contact manifolds, including many that are not planar; a
prototypical example of this is the uniqueness (proved originally in [Wen10b]) of strong
fillings of the 3-torus, whose tight contact structures are never planar. Generalizing in a
different direction, [NW11] shows that both results also remain valid (but only specifically
for planar contact manifolds) if the symplectic filling condition on pM, ξq is weakened to
the existence of a compact symplectic manifold pW,ωq with BW “ M and ω|ξ ą 0. Such
objects are known as weak symplectic fillings of pM, ξq, and they have been extensively
studied, but at present, the planar contact manifolds are the only class for which any
meaningful classification of weak fillings is known to be feasible.1

5.3. Sketch of the proof

As in our proof of McDuff’s result on ruled surfaces, the main idea for Theorem 5.6 is
to consider a moduli space of holomorphic curves whose intersection theory is sufficiently
well behaved to view them as fibres of a Lefschetz fibration. The first step is thus to define
the moduli space and show that it is nonempty. This rests on a construction known as the

1The loophole in this statement is that by a frequently used lemma of Eliashberg [Eli91, Prop. 3.1],
weak fillings for which ω is exact near the boundary can always be deformed to strong fillings, thus
whenever M happens to be a rational holomogy 3-sphere, the classification of weak fillings is the same as
that of strong fillings. This is, however, an essentially topological phenomenon that has little to do with
contact geometry.
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holomorphic open book ; the following result was first stated in [ACH05], and two proofs
later appeared in independent work of Abbas [Abb11] and the author [Wen10c].

Theorem 5.10 (Holomorphic open book construction). Suppose pM, ξq is supported
by a planar open book π : MzB Ñ S1. Then there exists a Giroux form α and an almost
complex structure J` P J pαq such that:

(1) Each connected component γ Ă B is a nondegenerate Reeb orbit with µτCZpγq “ 1,
where τ is any trivialization in which the pages approach γ with winding number 0.

(2) Each page P Ă M lifts to an embedded asymptotically cylindrical J`-holomorphic

curve uP : 9Σ Ñ R ˆ M with all punctures positive, and indpuP q “ 2.

Observe that pages of an open book come always in 1-parameter families, but when
we lift them to the symplectization R ˆ M , an additional parameter appears due to the
translation-invariance. Thus Theorem 5.10 produces a 2-dimensional moduli space

M`
OB Ă M0pR ˆ M,J`q

of J`-holomorphic pages; it is diffeomorphic to R ˆ S1 and admits a free action by R-
translations, so that

M`
OB

L
R – S1.

The curves in M`
OB have the “correct” index, in the sense that the actual and virtual

dimensions match. In [Wen10c], it is shown in fact that for suitable (non-generic!) choices
of data, an open book with pages of any genus g ě 0 admits a 2-parameter family of
pseudoholomorphic lifts, but they have index 2´2g, which is the correct virtual dimension
only when g “ 0. This is why Theorem 5.6 fails in general for open books of positive genus
(cf. Remark A.9).

Now suppose pW,ωq is a symplectic filling of pM, ξq, where the latter is supported by
a planar open book. By modifying ω near BW , we can assume without loss of generality
(possibly after rescaling ω) that it takes the form dpesαq in a collar neighborhood of the

boundary, where α is the contact form provided by Theorem 5.10. Let pxW, pωq denote the
resulting symplectic completion, and choose an pω-compatible almost complex structure J
which is generic in W and matches J` (from Theorem 5.10) on r0,8q ˆ M . Since the
J`-holomorphic pages in R ˆ M have no negative punctures, each can be assumed to lie
in r0,8q ˆ M after some R-translation, so these give rise to a 2-dimensional family of

embedded J-holomorphic curves living in the cylindrical end of xW , which we shall refer to

henceforward as the J-holomorphic pages in xW . Let

MOB Ă M0pxW,Jq
denote the connected component of the moduli space M0pxW,Jq that contains these J-
holomorphic pages, and let MOB denote its closure in the compactified moduli space

M0pxW,Jq (see Appendix A.2). Theorem 5.6 can be deduced from the following:

Proposition 5.11. The compactified moduli space MOB is diffeomorphic to the 2-disk,
and the elements of MOB can be described as follows.
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‚ The smooth curves in MOB are all embedded and pairwise disjoint, and they foliate
xW outside a finite union of properly embedded surfaces.

‚ There is a natural identification

BMOB “ M`
OB

L
R,

where each R-equivalence class of J`-holomorphic pages uP P M`
OB in R ˆ M is

identified with a holomorphic building that has empty main level and a single upper
level consisting of uP .

2

‚ There are at most finitely many elements of MOBzMOB in the interior of MOB,

and they are pairwise disjoint nodal curves in xW , each having exactly two connected
components, which are embedded and intersect each other exactly once, trans-
versely. Any such component that is closed also has homological self-intersection
number ´1.

Every point in xW lies in the image of a unique (possibly nodal) curve in the interior
of MOB.

To prove this, notice first that all curves inMOB are guaranteed to be simple, since their
asymptotic orbits are all distinct and simply covered. By Theorem 4.17, all u P MOB then
satisfy δ8puq “ 0, as double points can only be hidden at infinity if there exist multiply
covered asymptotic orbits or two distinct punctures asymptotic to coinciding orbits. Since
δpuq ` δ8puq is homotopy invariant (Theorem 4.4), and the J-holomorphic pages uP are
embedded and thus satisfy δpuP q “ 0, we conclude

δpuq “ δ8puq “ 0 for all u P MOB,

hence all curves in MOB are embedded. Theorem 3.26 then implies slightly more: since
the curves in MOB also have index 2 and genus 0 and all their asymptotic orbits have odd
Conley-Zehnder index, we have:

Lemma 5.12. For each u P MOB, there is a neighborhood U Ă MOB such that the
curves in U are all embedded and their images foliate a neighborhood of the image of u in
xW .

The self-intersection number u ˚ u for any curve u P MOB can now be computed easily
from Siefring’s adjunction formula (4.1): since all asymptotic orbits are simply covered,
the spectral covering term σ̄puq ´ #Γ vanishes, and so does cN puq due to formula (3.18),
thus

u ˚ u “ 2 rδpuq ` δ8puqs ` cN puq ` rσ̄puq ´ #Γs “ 0.

This result can alternatively be deduced as an immediate corollary of Lemma 5.15 below.
By Theorem 4.1, we conclude:

Lemma 5.13. Any two distinct curves in MOB are disjoint.

2It is standard to define the space of holomorphic buildings MgpxW,Jq such that two buildings are
considered equivalent if they differ only by an R-translation of one of the symplectization levels; see
[BEH`03].
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Combining that with Lemma 5.12, it follows that the curves in MOB form a smooth

foliation of some open subset of xW .

Lemma 5.14. Assume uP P M`
OB is a J`-holomorphic page in RˆM , and uγ : RˆS1 Ñ

R ˆ M is the orbit cylinder for an embedded Reeb orbit γ that is a component of the
binding B. Then

uP ˚ uγ “ 0.

Proof. The page P Ă M is always disjoint from the binding B Ă M , thus uP ¨uγ “ 0,
so it only remains to show that ι8puP , uγq “ 0. By Theorem 4.13, this is true if and only
if the asymptotic eigenfunction controlling the approach of the relevant end of uP to γ has
extremal winding. Let τ denote the trivialization of γ˚ξ in which pages approach γ with
winding number 0, hence by construction, the winding (relative to τ) of the eigenfunction
in question is 0. Combining Theorem 5.10 with Proposition 3.17, we also have

1 “ µτCZpγq “ 2ατ´pγq ` ppγq,
hence the extremal winding is also ατ´pγq “ 0, and this implies ι8puP , uγq “ 0 as claimed.

�

Lemma 5.15. Assume uP P M`
OB is a J`-holomorphic page in R ˆ M and v : 9Σ1 Ñ

R ˆ M is any J`-holomorphic curve whose positive ends are all asymptotic to embedded
Reeb orbits in the binding B. Then uP ˚ v “ 0.

Proof. The argument depends only on the following facts:

(1) uP has no negative ends;
(2) By Lemma 5.14, uP ˚ uγ “ 0 for all orbits γ that appear at positive ends of v,

where uγ denotes the orbit cylinder over γ.

Figure 5.4 shows a homotopy through asymptotically cylindrical maps for two curves sat-
isfying the above conditions (uP has positive genus in the picture, which has no impact
on the argument). After a homotopy, we may assume namely that uP lives entirely in
r0,8q ˆ M , while the portion of v living in r0,8q ˆ M is simply a disjoint union of orbit
cylinders uγ for which Lemma 5.14 implies u ˚ uγ “ 0. Using the homotopy invariance3 of
the ˚-pairing, we conclude that u ˚ v equals a sum of terms of the form u ˚ uγ, all of which
vanish. �

Lemma 5.16 (cf. [Sie11, Theorem 5.21]). Other than the J`-holomorphic pages uP P
M`

OB and the orbit cylinders over embedded orbits in B, there exist no J`-holomorphic
curves in RˆM that are asymptotic to embedded orbits in B at all their positive punctures.

Proof. Any such curve v : 9Σ1 Ñ R ˆ M must intersect one of the pages uP , as these
foliate R ˆ pMzBq, hence

uP ˚ v ě uP ¨ v ą 0,

and this contradicts Lemma 5.15. �

3Note that the homotopy in our proof of Lemma 5.15 is not a homotopy through J-holomorphic curves,
but only through asymptotically cylindrical maps.
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Figure 5.4. A homotopy through asymptotically cylindrical maps for the
Proof of Lemma 5.15.

We are now in a position to justify the description of the compactification MOB given
in Proposition 5.11.

Lemma 5.17. Suppose uk P MOB is a sequence convergent to a holomorphic building
with at least one nontrivial upper level. Then the main level of the limit is empty, and its
upper level is a J`-holomorphic page in M`

OB.

Proof. If the lemma is false, then we obtain a holomorphic building whose top level
contains a J`-holomorphic curve in R ˆ M that is not in M`

OB but has all its positive
punctures asymptotic to orbits in the binding B (see Figure 5.5). This is impossible by
Lemma 5.16. �

We can now identify BMOB with M`
OB{R – S1 as described in Proposition 5.11, and

the above lemma says that all other elements of MOBzMOB must be buildings with no

upper levels, i.e. nodal J-holomorphic curves in xW . The components of these nodal curves
have only positive ends (if any), all asymptotic to distinct simply covered orbits in the
binding B. These orbits all have have Conley-Zehnder index 1 relative to the canonical

trivialization. Now (A.5) gives the index of such a curve v : Σ1zΓ1 Ñ xW as

indpvq “ ´χpΣ1zΓ1q ` 2cτ1pv˚TxW q `
ÿ

zPΓ1

µτCZpγzq “ ´χpΣ1q ` 2cτ1pv˚TxW q.

This matches the index formula for the closed case closely enough that one can now repeat
the compactness argument in the proof of Lemma 1.17 (see Appendix A.1) more or less
verbatim,4 thus proving:

Lemma 5.18. There exists a finite set of simple curves B Ă M0pxW,Jq, with index 0,
such that every nodal curve in MOB has exactly two components v`, v´ P B. �

4There are two main differences from the closed case: first, it is trivial to prove that non-closed curves
in B are simple, since their asymptotic orbits are distinct and simply covered, while for closed components
one must apply the same argument as before. Second, proving compactness (and hence finiteness) of B

requires first ruling out holomorphic buildings with nontrivial upper levels—this works the same way as
in Lemma 5.17.
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Figure 5.5. A hypothetical degeneration of a sequence uk P MOB to a
holomorphic building in MOB. This scenario is ruled out by Lemma 5.16,
which says that the two curves in the top level that are not orbit cylinders
cannot exist.

To finish the proof, we must study the intersection-theoretic properties of the compo-
nents of nodal curves tv`, v´u P MOB. Given such a curve as limit of a sequence uk P MOB,
we have

(5.1) 0 “ uk ˚ uk “ v` ˚ v` ` v´ ˚ v´ ` 2pv` ˚ v´q.
Exercise 5.19. Verify (5.1), using the definition of the ˚-pairing from Lecture 4.

Observe that v` and v´ cannot be the same curve up to parametrization, as they are
required to have distinct sets of asymptotic orbits. This implies that they have at least
one isolated intersection, so by Theorem 4.1,

(5.2) v` ˚ v´ ě v` ¨ v´ ě 1.

Since indpv˘q “ 0 and all asymptotic orbits of v˘ have odd Conley-Zehnder index, (3.18)
gives

cN pv˘q “ ´1.

Now applying Siefring’s adjunction formula (Theorem 4.4), the spectral covering numbers
σ̄pv˘q are each equal to the number of punctures since all orbits are simply covered, so
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Figure 5.6. Two possible degenerations of a sequence uk P MOB to nodal
curves in MOB. The second scenario includes a J-holomorphic exceptional
sphere and is thus only possible if pW,ωq is not minimal.

these terms vanish from the adjunction formula and we have

v˘ ˚ v˘ “ 2 rδpv˘q ` δ8pv˘qs ` cNpv˘q “ 2 rδpv˘q ` δ8pv˘qs ´ 1.

Combining this with (5.1) gives

0 “ 2
ÿ

˘

rδpv˘q ` δ8pv˘qs ` 2pv` ˚ v´ ´ 1q,

so in light of (5.2), we have

δpv˘q “ δ8pv˘q “ 0, v` ˚ v´ “ v` ¨ v´ “ 1, and v˘ ˚ v˘ “ ´1,

implying that v˘ are both embedded and intersect each other exactly once, transversely.
Moreover, if either component is closed, then its homological self-intersection number is
now v˘ ¨v˘ “ v˘ ˚v˘ “ ´1, hence it is a J-holomorphic exceptional sphere; see Figure 5.6.
In the same manner, one can show that the nodal curves in MOB are all fully disjoint from
each other and from the smooth curves in MOB.
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Arguing as in the proof of Theorem 1.16, let F Ă xW denote the union of the images of
the curves in B, which are finitely many properly embedded surfaces. Then let

X :“
!
p P xW zF

ˇ̌
ˇ p is in the image of a curve in MOB

)
.

The lemmas proved above imply that X is an open and closed subset of xW zF , thus

X “ xW zF , and we see that every point in xW is in the image of a unique (possibly
nodal) curve in MOB, giving a surjective map

Π : xW Ñ MOBzBMOB.

Since the J`-holomorphic pages ruP s P M`
OB{R “ BMOB also foliate MzB under the

projection R ˆ M Ñ M , we can extend Π to the natural compactification W :“ xW Y
pt8u ˆ Mq as a surjective map

Π :W zB Ñ MOB,

whose smooth fibres are the compact symplectically embedded surfaces with boundary
obtained as the images of maps ū : Σ Ñ W for u P MOB, and we are treating B as
a submanifold of t8u ˆ M “ BW . There is still a small amount of work to be done
in identifying the above construction with something that one can regard as a smooth
symplectic Lefschetz fibration; details (in a more general setting) may be found in [LVWb].

One detail in Proposition 5.11 has not yet been verified: we’ve seen that MOB is an
oriented 2-dimensional manifold, compactified by adding finitely many interior points (the
nodal curves) and the boundary BMOB “ M`

OB{R – S1, hence MOB is a compact oriented
surface with one boundary component, but we claim in fact that it is a disk. To see this,
choose a smooth loop γ : S1 Ñ M near a binding component that meets every page of the
open book exactly once transversely. Viewing γ as a loop in t8u ˆ M “ BW , the loop

Π ˝ γ : S1 Ñ MOB

then parametrizes BMOB. Now, γ is obviously not contractible in MzB, but we can easily
assume it is contractible in W zB: indeed, γ can be chosen contractible in M , and then

translating downward from t8u ˆ M to a level tsu ˆ M Ă xW for s P r0,8q gives a

contractible loop in xW . Composing this contraction with Π, we conclude

rBMOBs “ 0 P π1pMOBq,
hence MOB – D.
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Properties of pseudoholomorphic curves
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In this appendix we will summarize (without proofs) the essential global analytical
results about pseudoholomorphic curves that are used in various places in these lectures.
The first section covers results on closed holomorphic curves that are needed in Lectures 1
and 2, and §A.2 then states the generalizations of these results to punctured curves in
completed symplectic cobordisms. For more details on each, we refer to [MS12] or [Wena]
for the closed case and [Wenb] for the punctured case.

A.1. The closed case

Given a closed symplectic manifold pM,ωq with a compatible1 almost complex structure
J , we defined in §1.2 the moduli spaceMA

g pM,Jq of (equivalence classes up to parametriza-
tion of) J-holomorphic curves with genus g ě 0 homologous to A P H2pMq. We shall now
summarize the main analytical properties of this space and use them to prove Lemma 1.17.

The virtual dimension of MA
g pM,Jq, also sometimes called the index of a curve

u P MA
g pM,Jq and denoted by indpuq P Z, is defined to be the integer

(A.1) vir-dimMA
g pM,Jq :“ pn´ 3qp2 ´ 2gq ` 2c1pAq,

where c1pAq is shorthand for the evaluation of the first Chern class c1pTM, Jq P H2pMq
on the homology class A. This definition of vir-dimMA

g pM,Jq is justified by Theorem A.3
below.

Recall that closed J-holomorphic curves u : pΣ, jq Ñ pM,Jq are always either simple

or multiply covered, where the latter means u “ v ˝ ϕ for some closed J-holomorphic
curve v : pΣ1, j1q Ñ pM,Jq and holomorphic map ϕ : pΣ, jq Ñ pΣ1, j1q of degree degpϕq ą 1.

This material will be published by Cambridge University Press as Contact 3-Manifolds, Holomorphic

Curves and Intersection Theory by Chris Wendl. This pre-publication version is free to view and download
for personal use only. Not for re-distribution, re-sale or use in derivative works. c©Chris Wendl, 2019.

1The vast majority of the results we will state here can also be generalized for almost complex structures
that are tamed by ω but not necessarily compatible. Such generalizations become much less straightforward
whenever asymptotic analysis is involved, thus in the punctured case, it is best always to assume J is
compatible and not just tame.
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By a slight abuse of terminology (see Remark 2.5), we refer to a point z P Σ in the domain
of a J-holomorphic curve u : Σ Ñ M as a critical point if dupzq “ 0; the alternative
is that dupzq : TzΣ Ñ TupzqM is injective, in which case we call z an immersed point.
Combining general topological arguments with the local properties of J-holomorphic curves
(e.g. Theorem B.23 in Appendix B), one can show:

Theorem A.1. Every nonconstant, closed and connected J-holomorphic curve u :
pΣ, jq Ñ pM,Jq has at most finitely many critical points. Moreover, if u is simple, then
it also has at most finitely many double points, hence it is embedded outside of some finite
subset of Σ.

The following related result is sometimes referred to as the unique continuation

principle:

Theorem A.2. If u and v are two closed J-holomorphic curves that are both sim-
ple, then they are either equivalent up to parametrization or have at most finitely many
intersections.

The automorphism group of a triple pΣ, j, uq representing an element of MA
g pM,Jq

is defined as

AutpΣ, j, uq “ tϕ : pΣ, jq Ñ pΣ, jq biholomorphic | u “ u ˝ ϕu .
This group is always finite if u : Σ Ñ M is not constant, and Theorem A.1 implies that it
is trivial whenever u is simple.

The following result is dependent on a definition of the term Fredholm regular, which
is rather technical and therefore we will not give it—this is obviously a terrible thing to do,
but hopefully Theorems A.4 and A.6 below will make up for it. The proofs of these results
depend on the regularity theory of elliptic PDEs; see [MS12] or [Wena] for details.

Theorem A.3. The subset of MA
g pM,Jq consisting of all curves that are Fredholm

regular and have trivial automorphism groups is open, and moreover, it naturally admits
the structure of a smooth oriented finite-dimensional manifold, with dimension equal to
vir-dimMA

g pM,Jq.
Recall that for any topological space X , a subset Y Ă X is said to be comeager if

it contains a countable intersection of open dense sets.2 If X is a complete metric space,
then the Baire category theorem implies that every comeager subset of X is also dense.

Theorem A.4. Suppose pM,ωq is a closed symplectic manifold, U Ă M is an open
subset, and J0 is an ω-compatible almost complex structure on M . Let J pU , J0q denote the
space of all smooth ω-compatible almost complex structures J on M such that J ” J0 on
MzU , and assign to J pU , J0q the natural C8-topology. Then there exists comeager subset
J regpU , J0q Ă J pU , J0q such that for all J P J regpU , J0q, every simple curve u P MA

g pM,Jq
that intersects U is Fredholm regular.

2It is common among symplectic topologists to say that comeager subsets are “Baire sets” or are “of
second category,” but this seems to be slightly inconsistent with the standard usage of these terms in other
fields.
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Results such as Theorem A.4 that hold for all data in some comeager subset are of-
ten said to hold for generic data, so one can summarize the two theorems above by
saying that the moduli space of simple J-holomorphic curves is a smooth manifold of
the “correct” dimension for “generic” J . This fact is true even for moduli spaces with
vir-dimMA

g pM,Jq ă 0, implying that in such spaces, no Fredholm regular curves exist:

Corollary A.5. For generic ω-compatible almost complex structures J in a closed
symplectic manifold pM,ωq, every simple J-holomorphic curve u satisfies indpuq ě 0.

Theorem A.4 is a “transversality” result, i.e. it follows from an infinite-dimensional ver-
sion (the Sard-Smale theorem) of the standard fact from differential topology that any two
submanifolds intersect each other transversely after a generic perturbation. Occasionally,
one also needs transversality results for non-generic data. Such results exist—they follow
from the Riemann-Roch formula in certain fortunate situations—but their utility is typi-
cally limited to dimension 4 and genus 0. The following theorem of Hofer-Lizan-Sikorav
[HLS97] is closely related to the question of local foliations discussed in §1.3.

Theorem A.6. If dimM “ 4 and J is any almost complex structure on M , then every
immersed J-holomorphic curve u P MA

g pM,Jq with indpuq ą 2g ´ 2 is Fredholm regular.

The moduli space MA
g pM,Jq is not generally compact, but if M is closed and J is

compatible with a symplectic form ω, then it has a natural compactification. The energy

of a curve u P MgpM,Jq can be defined as

Epuq “
ż

Σ

u˚ω

for any parametrization u : Σ Ñ M ; the taming condition implies that Epuq ě 0 for all
J-holomorphic curves, with equality if and only if the curve is constant. Observe that Epuq
only depends on rus P H2pMq.

The moduli space of stable nodal J-holomorphic curves of arithmetic genus g

homologous to A P H2pMq is defined as

M
A

g pM,Jq :“ tpS, j, u,∆qu
M

„,

where:

‚ pS, jq is a (possibly disconnected) closed Riemann surface;
‚ The set of nodes, ∆ Ă S, is a finite unordered set of pairwise distinct points
organized into pairs

∆ “ ttpz1, qz1u, . . . , tpzr, qzruu
such that the singular surface

pS :“ S
M
pzj „ qzj for j “ 1, . . . , r

is homeomorphic to a (possibly singular) fibre of some Lefschetz fibration with
regular fibres of genus g;
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‚ u : pS, jq Ñ pM,Jq is a pseudoholomorphic map with rus “ A that descends to

the quotient pS “ S{ „ as a continuous map pS Ñ M ;
‚ Every connected component of Sz∆ on which u is constant has negative Euler
characteristic;

‚ We write pS, j, u,∆q „ pS 1, j1, u1,∆1q if there is a biholomorphic map ϕ : pS, jq Ñ
pS 1, j1q such that u “ u1 ˝ ϕ and ϕ maps pairs in ∆ to pairs in ∆1.

The condition on the Euler characteristics of constant components is called stability—its
effect is to exclude certain ambiguities that would otherwise cause non-uniqueness of limits

for the natural topology on M
A

g pM,Jq. Assuming A ‰ 0 so that elements of MA
g pM,Jq

are never constant, there is a natural inclusion MA
g pM,Jq Ă M

A

g pM,Jq defined by setting

∆ :“ H for any rpΣ, j, uqs P MA
g pM,Jq. We denote the union over all A P H2pMq

by MgpM,Jq.
Theorem A.7 (Gromov’s compactness theorem). For each A P H2pMq, g ě 0 and

each ω-compatible almost complex structure J on a closed symplectic manifold pM,ωq,
M

A

g pM,Jq admits a natural topology as a compact metrizable space. Moreover, any se-
quence uk P MgpM,Jq of curves satisfying a uniform energy bound Epukq ď C has a

subsequence convergent to an element of MgpM,Jq.
Remark A.8. The second statement in the above theorem does not impose any direct

restriction on the homology classes ruks P H2pMq, but it implies the existence of a subse-
quence with constant homology. Observe that the required energy bound is automatic if
all uk represent a fixed homology class.

It will not be necessary for our purposes to give a complete definition of the topol-

ogy of M
A

g pM,Jq, but we can describe the convergence of a sequence of smooth curves

rpΣk, jk, ukqs P MA
g pM,Jq to a nodal curve rpS, j, u,∆qs P M

A

g pM,Jq as follows. (See Fig-
ure A.1 for an example.) Let S 1 denote the compact topological 2-manifold with boundary
(Figure A.2, lower left) obtained from S by replacing each point z P ∆ Ă S with the circle

Cz :“ TzS
L
R`,

where R` :“ p0,8q acts on TzS by scalar multiplication. The smooth structure of Sz∆ does
not have an obviously canonical extension over S 1, but each boundary component Cz Ă BS 1

inherits from the conformal structure of pS, jq a natural class of preferred diffeomorphisms
to S1. Now since the points in ∆ come in pairs tpz, qzu, we can make a choice of preferred
orientation-reversing diffeomorphisms Cpz Ñ Cqz for each such pair and glue corresponding
boundary components of S 1 to define a closed surface (Figure A.2, lower right),

S :“ S 1
L
Cpz „ Cqz.

This is naturally a closed topological 2-manifold and it also carries a smooth structure and
a complex structure on SzC “ Sz∆, where

C :“
ď

zP∆

Cz Ă S.
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Figure A.1. A sequence of genus 3 holomorphic curves degenerating to a
nodal curve of arithmetic genus 3, with four nodes, two connected compo-
nents of genus 0 and one of genus 1.

Since uppzq “ upqzq for each pair tpz, qzu Ă ∆, u extends from SzC to a continuous map

ū : S Ñ M.

The convergence rpΣk, jk, ukqs Ñ rpS, j, u,∆qs can now be defined to mean that for
sufficiently large k there exist homeomorphisms

ϕk : S Ñ Σk

whose restrictions to SzC are smooth and have smooth inverses, such that

ϕ˚
kjk Ñ j in C8

locpSzCq, uk ˝ϕk Ñ u in C8
locpSzC,Mq, and uk ˝ϕk Ñ ū in C0pS,Mq.

The analytical toolbox is now complete enough to fill in the following gap from §1.2.

Proof of Lemma 1.17. By construction, M
rSs
0 pM,Jq contains an embedded curve

uS, defined as the inclusion of S. The almost complex structure J cannot be assumed
“generic” in the sense of Theorem A.4 since we chose it specifically to have the property
of preserving TS. We claim however that uS is nonetheless Fredholm regular due to
Theorem A.6. Indeed, it has trivial normal bundle NS Ñ S2 since rSs ¨ rSs “ 0, so the
natural splitting of complex vector bundles

pu˚
STM, Jq “ pTS2, jq ‘ pNS, Jq

implies

c1prSsq :“ c1pu˚
STMq “ c1pTS2q ` c1pNSq “ χpS2q ` 0 “ 2.
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Figure A.2. Four ways of viewing the nodal holomorphic of Figure A.1.
At the upper left, we see the disconnected Riemann surface pS, jq with nodal
pairs tpzi, qziu for i “ 1, 2, 3, 4. To the right of this is a possible picture of the
image of the nodal curve, with nodal pairs always mapped to identical points.
The bottom right shows the surface S 1 with boundary, obtained from S by
replacing the points pzi, qzi with circles pCi, qCi. Gluing these pairs of circles
together gives the closed connected surface S at the bottom right, whose
genus is by definition the arithmetic genus of the nodal curve.

Plugging c1prSsq “ 2 and n “ 2 into the index formula (A.1) now gives

indpuSq “ ´2 ` 2c1prSsq “ 2,

hence vir-dimM
rSs
0 pM,Jq “ 2. Since uS also is immersed, it now satisfies the hypotheses

of Theorem A.6, so Fredholm regularity follows.

To achieve smoothness near the rest of the simple curves in M
rSs
0 pM,Jq, it suffices to

choose a generic perturbation J 1 of J on the open subset MzS. Indeed, for any such J 1,
assuming J 1 “ J along S ensures that uS is also J 1-holomorphic, so unique continuation
(Theorem A.2) then implies that no other J 1-holomorphic curve in M can be contained
entirely in S unless it is a multiple cover of uS. In particular, uS itself is the only such
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curve that is either simple or homologous to rSs. It follows then by Theorem A.4 that every
other simple curve in M0pM,J 1q is also Fredholm regular, so by Theorem A.3, the subset

M
rSs,˚
0 pM,J 1q Ă M

rSs
0 pM,J 1q of simple curves is an oriented 2-dimensional manifold. To

simplify the notation, we relabel J :“ J 1 from now on.

By Gromov’s compactness theorem (Theorem A.7), any sequence uk P M
rSs,˚
0 pM,Jq

with no convergent subsequence in M
rSs
0 pM,Jq converges to a nodal curve with arithmetic

genus 0. The genus condition implies that its connected components are all spheres, so
we can regard the nodal curve simply as a finite set of J-holomorphic spheres v1, . . . , vN P
M0pM,Jq with N ě 2, satisfying the condition

(A.2) rv1s ` . . .` rvN s “ rSs.
These spheres cannot at first be assumed to be simple, but for each j “ 1, . . . , N , there is a
simple curve wj P MgjpM,Jq and an integer kj P N such that vj is a kj-fold cover of wj; here
we adopt the convention wj “ vj if kj “ 1. If kj ą 1, then vj factors through a holomorphic
map S2 Ñ Σgj of degree kj, where Σgj is a closed connected surface with genus gj; but
no such map exists if gj ą 0 since the universal cover of Σgj is then contractible, implying
π2pΣgjq “ 0, so we conclude that each wj has genus 0. Now since all simple J-holomorphic
curves in M are Fredholm regular, Corollary A.5 and the index formula (A.1) give

indpwjq “ ´2 ` 2c1prwjsq ě 0,

hence c1prwjsq ě 1. Since c1prSsq “ 2, (A.2) now gives

(A.3) k1 ` ¨ ¨ ¨ ` kN ď k1c1prw1sq ` . . .` kNc1prwNsq “ 2,

thus N “ 2 and k1 “ k2 “ c1prv1sq “ c1prv2sq “ 1. We conclude that the nodal curve has
exactly two components, both simple, and since rv1s ` rv2s “ rSs, they satisfy the uniform
energy bound

(A.4) Epvjq “ xrωs, rvjsy ď xrωs, rv1sy ` xrωs, rv2sy “ xrωs, rSsy
for j “ 1, 2.

Finally, we claim that the set of simple curves v P M0pM,Jq with c1prvsq “ 1 is finite.
By Theorems A.3 and A.4, this set is a 0-dimensional manifold, i.e. a discrete set, so
finiteness will follow if we can show that it is compact. This follows essentially by a repeat
of the argument above; note that Gromov’s compactness theorem is applicable due to the
energy bound (A.4). Now if a sequence of such curves converges to a nodal curve with
more than one component, then it produces an inequality like (A.3) but with 1 on the right
hand side, which gives a contradiction. The only remaining possibility is that a sequence
vk of curves with c1prvksq “ 1 converges to a smooth but multiply covered curve v, but this
is immediately excluded since c1prvsq “ 1, so rvs is a primitive homology class. �

Remark A.9. Let us see what goes wrong if one tries to prove an analogue of McDuff’s
theorem about ruled surfaces under the assumption of a symplectically embedded surface
S Ă pM,ωq with rSs ¨ rSs “ 0 and genus g ą 0. One can still construct an embedded

J-holomorphic curve uS P M
rSs
g pM,Jq, and since its normal bundle NS Ñ S is necessarily
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trivial, the splitting u˚TM “ TS ‘ NS now gives c1prSsq “ χpSq “ 2 ´ 2g, so (A.1) now
gives

vir-dimMrSs
g pM,Jq “ ´p2 ´ 2gq ` 2c1prSsq “ 2 ´ 2g.

This answer is desirable when g “ 0 because 2 is the right number of dimensions to
foliate a 4-manifold by holomorphic curves—but if g ą 0, one cannot hope to find a 2-
parameter family of holomorphic curves homologous to rSs, and in fact the curves should
disappear entirely after a generic perturbation if g ą 1. The failure of the proof is thus
attributable essentially to the Riemann-Roch formula, from which the dimension formula
(A.1) is derived. It is more than a failure of technology, however, as the theorem is false
when g ą 0.

A.2. Curves with punctures

A general reference for the contents of this section is [Wenb].
Assume pW,ωq is a 2n-dimensional symplectic cobordism with

BpW,ωq “ p´M´, ξ´ “ kerα´q \ pM`, ξ` “ kerα`q,
pxW, pωq denotes its completion and J P J pω, α`, α´q; see §2.4 for the relevant definitions.

Consider an asymptotically cylindrical J-holomorphic curve u : p 9Σ “ ΣzΓ, jq Ñ pxW,Jq
asymptotic to nondegenerate3 Reeb orbits γz in M˘ at its positive/negative punctures
z P Γ˘ Ă Σ. The index formula for u can be expressed in terms of the Conley-Zehnder
indices of its asymptotic orbits, but this requires a choice of normal trivialization along
each orbit. We shall therefore fix an arbitrary choice of trivialization of γ˚ξ˘ for every
Reeb orbit γ in M˘, and denote this choice collectively by τ . The Conley-Zehnder index
of γ relative to τ will then be denoted by µτCZpγq, and we write the index of u as

(A.5) indpuq :“ pn´ 3qχp 9Σq ` 2cτ1pu˚TxW q `
ÿ

zPΓ`

µτCZpγzq ´
ÿ

zPΓ´

µτCZpγzq,

where cτ1pu˚TxW q denotes the relative first Chern number of the complex vector bundle

pu˚TxW,Jq Ñ 9Σ; cf. §3.4. One can check that the sum on the right hand side of (A.5)
does not depend on the choice τ . As with closed curves, indpuq is also called the virtual

dimension of the connected component of MgpxW,Jq containing u; one can show in fact
that it only depends on the Reeb orbits, the genus, and the relative homology class of u.

A curve u : p 9Σ, jq Ñ pxW,Jq in MgpxW,Jq is multiply covered whenever it can be

written as u “ v ˝ ϕ for some v : p 9Σ1, j1q Ñ pxW,Jq in Mg1pxW,Jq and a holomorphic map

ϕ : pΣ, jq Ñ pΣ1, j1q with ϕp 9Σq “ 9Σ1,

having degree degpϕq ą 1. The automorphism group AutpΣ, j,Γ, uq can be defined
similarly as the group of biholomorphic maps ϕ : pΣ, jq Ñ pΣ, jq that fix each point in

3Most of this discussion can also be generalized to allow Reeb orbits in Morse-Bott nondegenerate
families, though the index formula becomes more complicated (see e.g. [Bou02,Wen10a]). In general,
the linearized Cauchy-Riemann operator is not Fredholm (and thus the moduli space is not well behaved)
unless some nondegeneracy condition is imposed on the ends.
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Γ and satisfy u “ u ˝ ϕ. If u is not multiply covered, it is called simple, and then it
necessarily has trivial automorphism group. A straightforward combination of standard
arguments for the closed case (e.g. [MS12, Prop. 2.5.1]) with Siefring’s relative asymptotic
formula (Theorem 3.12) proves:

Theorem A.10. Theorems A.1 and A.2 also hold for asymptotically cylindrical J-

holomorphic curves in xW .

A proof of the following generalization of Theorem A.3 is sketched in [Wen10a, The-
orem 0]:

Theorem A.11. The subset of MgpxW,Jq consisting of all Fredholm regular curves with
trivial automorphism group is open and admits the structure of a smooth finite-dimensional

manifold, whose dimension near any given curve u P MgpxW,Jq is indpuq.
We have intentionally omitted the word “oriented” from Theorem A.11, as the question

of orientations is somewhat subtler here than in the closed case; see [BM04] or [Wenb,
Chapter 11]. Theorem A.4 generalizes as follows:

Theorem A.12. Assume U Ă xW is an open subset with compact closure, fix J0 P
J pω, α`, α´q, and define

J pU , J0q :“
!
J P J pω, α`, α´q

ˇ̌
ˇ J ” J0 on xW zU

)

with its natural C8-topology. Then there exists a comeager subset J regpU , J0q Ă J pU , J0q
such that for all J P J regpU , J0q, every simple curve u P MgpxW,Jq that intersects U is
Fredholm regular.

There is a further variation on the theme of “generic transversality” that only makes
sense in the translation-invariant setting of a symplectization: a perturbation of a translation-
invariant structure J P J pαq on RˆM that is generic in the sense of Theorem A.12 cannot
generally be assumed translation-invariant, but Dragnev [Dra04] (see also the appendix
of [Bou06] or [Wenb, Chapter 8]) proved:

Theorem A.13. Suppose pM, ξ “ kerαq is a closed contact manifold, U Ă M is an
open subset and J0 P J pαq, and denote

J pU , J0q :“ tJ P J pαq | J ” J0 on R ˆ pMzUqu .
Then there exists a comeager subset J regpU , J0q Ă J pU , J0q such that for all J P J regpU , J0q,
every simple curve u P MgpR ˆ M,Jq that intersects R ˆ U is Fredholm regular.

Observe that in the symplectization, the translation-invariance of J P J pαq turns any
curve u P MgpR ˆ M,Jq that isn’t a cover of an orbit cylinder into a 1-parameter family,
so Theorem A.13 implies a slightly different analogue of Corollary A.5:

Corollary A.14. For generic J P J pαq on the symplectization of a closed contact
manifold pM, ξ “ kerαq, every simple J-holomorphic curve that is not an orbit cylinder
satisfies indpuq ě 1.
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The punctured generalization of our previous “automatic” transversality result (The-
orem A.6) is again valid only in dimension 4, and is most easily stated in terms of the
normal Chern number (see §3.4):

Theorem A.15 ([Wen10a, Theorem 1]). If dimxW “ 4 and J P J pω, α`, α´q, then
every immersed J-holomorphic curve u P MA

g pxW,Jq with indpuq ą cNpuq is Fredholm
regular.

Before stating the generalization of Gromov’s compactness theorem, we must define the

energy of a curve u P MgpxW,Jq. The obvious definition (by integrating u˚pω) is not quite
the right one, as for instance orbit cylinders uγps, tq “ pTs, γptqq in the symplectization
pR ˆ M, dpesαqq satisfy ż

RˆS1

u˚
γdpesαq “ 8.

Instead, denote

T :“
 
ϕ : R Ñ p´1, 1q smooth

ˇ̌
ϕ1psq ą 0 for all s P R and ϕpsq “ s near s “ 0

(
,

and observe that for every ϕ P T , the 2-form on xW defined by

ωϕ :“

$
’&
’%

ω on W ,

d
`
eϕpsqα`

˘
on r0,8q ˆ M`,

d
`
eϕpsqα´

˘
on p´8, 0s ˆ M´

is symplectic, and any J P J pω, α`, α´q is ωϕ-compatible. We then define

(A.6) Epuq :“ sup
ϕPT

ż

9Σ

u˚ωϕ

for any parametrization u : 9Σ Ñ xW of a curve in MgpxW,Jq.
The natural compactification ofMgpxW,Jq is the spaceMgpxW,Jq of stable J-holomorphic

buildings

pv`
N`
, . . . , v`

1 , v0, v
´
1 , . . . , v

´
N´

q,
which have N` ě 0 upper levels, N´ ě 0 lower levels and exactly one main level.
Each of the levels is a (possibly disconnected) asymptotically cylindrical nodal curve that
is stable in the sense defined in §A.1, where

‚ v`
i for i “ 1, . . . , N` live in R ˆ M` and are J`-holomorphic, with

J` :“ J |r0,8qˆM` P J pα`q;

‚ v0 lives in xW and is J-holomorphic;
‚ v´

i for i “ 1, . . . , N´ live in R ˆ M´ and are J´-holomorphic, with

J´ :“ J |p´8,0sˆM´ P J pα´q.
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Figure A.3. Degeneration of a sequence uk of punctured holomorphic
curves with genus 2, one positive end and two negative ends in a symplectic
cobordism. The limiting holomorphic building pv`

1 , v0, v
´
1 , v

´
2 , v

´
3 q in this ex-

ample has one upper level, a main level and three lower levels, each of which
is a (possibly disconnected) punctured nodal holomorphic curve. The build-
ing has arithmetic genus 2 and the same numbers of positive and negative
ends as uk.

The levels also connect to each other, meaning that the data of a building includes a
bijection between the positive ends of each level and the negative ends of the level above it
such that matching ends are asymptotic to the same Reeb orbit—orbits that appear in this
way are not considered asymptotic orbits of the building itself, but are sometimes called
breaking orbits (see Figure A.3). The arithmetic genus g ě 0 can be characterized by

the following condition: if pS denotes the space obtained from the domains of all the levels
by filling in all punctures and then identifying any two nodal points that belong to the
same node and any two punctures between levels that are matched by the aforementioned
bijection, then pS is homeomorphic to a (possibly singular) fiber of some Lefschetz fibration
with closed regular fibers of genus g. Equivalence of holomorphic buildings is defined via the
obvious notion of biholomorphic equivalence (preserving nodes and matching punctures),
with the additional feature that upper and lower levels may be translated freely, i.e. two
levels that are identical after an R-translation of an upper or lower level are considered
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equivalent. Finally, the stability condition is enhanced with the stipulation that none of
the levels v˘

i may consist exclusively of orbit cylinders without any nodes; this is necessary

in order to make sure that the natural topology of MgpxW,Jq is Hausdorff.
The natural inclusion

MgpxW,Jq ãÑ MgpxW,Jq
regards any smooth curve u P MgpxW,Jq as a building that has no upper or lower levels
and no nodes.

Theorem A.16. For every g ě 0 and every J P J pω, α`, α´q, MgpxW,Jq admits a
natural topology as a metrizable space, and its connected components are compact. More-

over, any sequence uk P MgpxW,Jq of curves satisfying a uniform energy bound Epukq ď C

in the sense of (A.6) has a subsequence convergent to an element of MgpxW,Jq.

A small modification is appropriate in the case where pxW,Jq is the completion of a
trivial symplectic cobordism, i.e. an R-invariant symplectization R ˆ M . In this case the
levels are still ordered, but there is no distinguished main level, nor a distinction between
“upper” and “lower” levels, and the notion of equivalence allows R-translations in all
levels—the latter means in particular that MgpR ˆ M,Jq is not a compactification of
MgpRˆM,Jq, but rather of MgpRˆM,Jq

L
R. For full details on these matters, including

a precise definition of the notion of convergence to a holomorphic building, we refer to
[BEH`03].
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In this appendix we explain the local results in the background of the standard theorems
of §2.1 on positivity of intersections and the adjunction formula. Readers wishing to
understand the geometric picture without worrying about the analytical details may read
the statement of Theorem B.23 in §B.2 and then skip ahead to §B.3, which proves positivity
of intersections using the local representation formula of Theorem B.23 as a black box. The
main tool in proving the latter is the similarity principle, which is explained (along with
the necessary background on elliptic regularity) in §B.1.

Since all important results in this appendix are local, we will mostly discuss functions
defined on the domains

D :“
 
z P C

ˇ̌
|z| ď 1

(
and Dρ :“

 
z P C

ˇ̌
|z| ď ρ

(

for ρ ą 0.

B.1. Regularity and the similarity principle

The similarity principle can be thought of as a linearized version of positivity of inter-
sections: it gives a local description of solutions to linear Cauchy-Riemann type equations
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near their zeroes, proving in particular that they qualitatively resemble complex-analytic
functions. The proof given in this section is more or less self-contained—it requires some
understanding of the theory of distributions and Sobolev spaces, but avoids using the
harder aspects of elliptic regularity theory such as the Calderón-Zygmund inequality. It
is based in large part on arguments that were explained to the author by Jean-Claude
Sikorav.

B.1.1. Linear Cauchy-Riemann type operators. Linear Cauchy-Riemann equa-
tions on vector bundles arise naturally from infinitessimal perturbations of J-holomorphic
curves.

Definition B.1. Suppose pΣ, jq is a Riemann surface, E Ñ Σ is a smooth complex
vector bundle, and F Ñ Σ denotes the complex vector bundle

F :“ HomCpTΣ, Eq
whose sections are the complex-antilinear bundle maps TΣ Ñ E. A (smooth) linear

Cauchy-Riemann type operator is a first-order real-linear partial differential operator
D : ΓpEq Ñ ΓpF q that satisfies the Leibniz rule

Dpfηq “ pB̄fqη ` fDη for all η P ΓpEq, f P C8pΣ,Rq,
where B̄f P Ω0,1pTΣq denotes the complex-valued 1-form df ` i df ˝ j.

Remark B.2. If D : ΓpEq Ñ ΓpF q in the above definition is also complex linear, then
it satisfies a complex version of the Leibniz rule, namely

Dpfηq “ pB̄fqη ` fDη for all η P ΓpEq, f P C8pΣ,Cq.
It is important however to allow the possibility that D : ΓpEq Ñ ΓpF q is only real and not
complex linear, even though E and F both carry complex structures. Unless one restricts
attention to complex manifolds with integrable complex structures, most of the linearized
Cauchy-Riemann operators that arise in the context of J-holomorphic curve theory are not
complex linear.

Remark B.3. It is easy to check that if D : ΓpEq Ñ ΓpF q is a Cauchy-Riemann type
operator and A : E Ñ F is a smooth real-linear bundle map, then D`A is also a Cauchy-
Riemann type operator. Moreover, for any two Cauchy-Riemann type operators D and D1

on E, the map D1 ´ D : ΓpEq Ñ ΓpF q is C8-linear and thus arises from a smooth bundle
map A : E Ñ F , meaning D1 “ D`A. This proves that the space of all Cauchy-Riemann
type operators on E is an affine space over ΓpHomRpE, F qq.

Given an open subset U Ă Σ with a holomorphic coordinate z “ s ` it : U Ñ C

identifying pU , jq with pD, iq and a complex trivialization of E|U , there is a naturally
induced trivialization of F |U such that if η P ΓpE|Uq is represented by the function f :
D Ñ Cn, then the same function also represents the section ξ P ΓpF |Uq given by ξpXq “
dz̄pXq ηppq for p P U and X P TpΣ. These choices identify the spaces of sections of E and
F over U with C8pD,Cnq such that the map

Bs ` iBt : C8pD,Cnq Ñ C8pD,Cnq
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represents a linear Cauchy-Riemann type operator on E|U . It follows via Remark B.3 that
every Cauchy-Riemann type operator D : ΓpE|Uq Ñ ΓpF |Uq is in this way identified with
a map of the form

(B.1) Bs ` iBt ` A : C8pD,Cnq Ñ C8pD,Cnq

for some smooth function A : D Ñ EndRpCnq. With this local picture understood, it will
sometimes also be useful to consider Cauchy-Riemann type operators on complex vector
bundles that are not equipped with a smooth structure, e.g. pullbacks of smooth bundles
along non-smooth (but differentiable) maps. In general, one says that a vector bundle is
of class Ck if it is equipped with an atlas of local trivializations whose transition maps
are all of class Ck. One can then speak of sections of class Cm for any m ď k but not
for m ą k; the former notion makes sense due to the fact that for m ď k, the product of
a Ck-smooth function with a Cm-smooth function is also of class Cm. In the following,
we shall allow non-smooth vector bundles E Ñ Σ but continue to assume that the base
is a smooth Riemann surface, i.e. the almost complex structure j on Σ is smooth, so that
holomorphic local coordinate charts on Σ are automatically also smooth. For this reason,
F :“ HomCpTΣ, Eq always inherits from E and Σ an atlas of local trivializations with the
same regularity as E. If E is of class Ck, then the notion of a differential operator from E

to F of order r P N makes sense as long as r ď k.

Definition B.4. Suppose pΣ, jq is a Riemann surface, E Ñ Σ is a complex vector
bundle of class Ck for some k P N Y t8u, F “ HomCpTΣ, Eq, and m ď k ´ 1 is a
nonnegative integer. A linear Cauchy-Riemann type operator of class Cm is a first-
order real-linear partial differential operator D from E to F such that under arbitrary
choices of local holomorphic coordinates and trivializations as described in the previous
paragraph, D locally takes the form Bs ` iBt ` A for some A P CmpD,EndRpCnqq.

Remark B.5. The condition m ď k ´ 1 is required in the above definition since
the transformation of the zeroth-order term in a Cauchy-Riemann type operator under a
transition map depends in general on the first derivative of the transition map, i.e. if the
latter is only of class Ck, then the condition A P Ck´1 is coordinate-invariant but A P Ck

would not be. The same remark applies to connections on a bundle of class Ck.

Remark B.6. For functions of Sobolev class W k,p, there is also a well-defined continu-
ous product pairing CkˆW k,p Ñ W k,p due to the fact that products of continuous functions
with Lp-functions are also in Lp. As a consequence, one can also speak of Cauchy-Riemann
type operators of class W k,p whenever the bundle is of class Ck`1.

Example B.7. If E Ñ Σ is endowed with a holomorphic vector bundle structure, then
it carries a canonical (complex-)linear Cauchy-Riemann type operator D : ΓpEq Ñ ΓpF q
such that the local holomorphic functions η P ΓpE|Uq on open sets U Ă Σ are precisely
those which satisfy Dη “ 0. This operator takes the form Bs`iBt with respect to any choice
of local holomorphic coordinates and holomorphic trivialization, and the holomorphicity
of the transition maps guarantees that this definition does not depend on any choices.
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Example B.8. For any connection ∇ on E Ñ Σ, Dη :“ ∇η ` i∇η ˝ j defines a linear
Cauchy-Riemann type operator.

Example B.9. If u : pΣ, jq Ñ pM,Jq is a J-holomorphic curve, then linearizing the
nonlinear operator B̄Jpuq :“ du ` J ˝ du ˝ j along a smooth family of maps tuσ : Σ Ñ
MuσPp´ǫ,ǫq with u0 “ u and η :“ Bσuσ|σ“0 P Γpu˚TMq gives rise to a linear Cauchy-
Riemann type operator of the form

Γpu˚TMq DuÑ ΓpHomCpTΣ, u˚TMqq,
η ÞÑ ∇η ` Jpuq ˝ ∇η ˝ j ` p∇ηJq ˝ Tu ˝ j,

where ∇ is an arbitrary choice of symmetric connection on M .

B.1.2. Elliptic regularity. In the following we will consider Cn-valued functions of
one complex variable z “ s` it, for which we denote the standard local models of Cauchy-
Riemann and anti-Cauchy-Riemann type operators by

B̄ :“ Bs ` iBt, B :“ Bs ´ iBt.
Notation (Sobolev spaces). In this appendix, the Sobolev space of functions f : D Ñ

Cn admitting weak derivatives of class Lp up to orderk ě 0 is denoted by W k,ppDq, and
for the case p “ 2 we abbreviate the Hilbert spaces HkpDq :“ W k,2pDq. The larger vector

spaces W k,p
loc pDq and Hk

locpDq consist of all functions on D whose restrictions to compact
subsets of the interior of D are of class W k,p or Hk respectively. An important special case
of this is L1

locpDq “ W
0,1
loc pDq, the space of all locally integrable functions on D. We write

the space of smooth compactly supported functions on the interior of D as C8
0 pDq.

Since B̄ and B are first-order differential operators with constant coefficients, they define
bounded linear maps

B̄, B : W k,ppDq Ñ W k´1,ppDq
for each k P N and p P r1,8s. We will need to use the “easy” (p “ 2) case of the following
nontrivial fact from elliptic regularity theory.

Proposition B.10. For each p P p1,8q, the operator B̄ :W 1,ppDq Ñ LppDq is surjective
and admits a bounded right inverse T : LppDq Ñ W 1,ppDq.

Sketch of the proof for p “ 2. The locally integrable function K : C Ñ C de-
fined almost everywhere by

Kpzq :“ 1

2πz
is a fundamental solution for the equation B̄u “ f , meaning it satisfies B̄K “ δ in the sense
of distributions, so in particular, one can use convolution to associate to any f P C8

0 pCq a
function u :“ K ˚ f P C8pCq satisfying B̄u “ f . Since C8

0 pDq Ă C8
0 pCq is dense in LppDq,

the desired right inverse T : LppDq Ñ W 1,ppDq can be defined as the unique bounded linear
extension of C8

0 pDq Ñ C8pDq : f ÞÑ pK ˚ fq|
D
after establishing an estimate of the form

}K ˚ f}W 1,ppDq ď c}f}Lp for all f P C8
0 pDq.
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This is equivalent to three estimates,

(B.2) }K ˚ f}LppDq ď c}f}Lp, }BpK ˚ fq}LppDq ď c}f}Lp, }B̄pK ˚ fq}LppDq ď c}f}Lp,

each again for f P C8
0 pDq. The third of these is immediate since B̄pK ˚ fq “ f . The

first estimate is a minor variation on the standard Young’s inequality for convolutions (see
e.g. [LL01, §4.2]), and admits a similar proof based on the Hölder inequality and Fubini’s
theorem—the crucial assumptions here are only that K is locally integrable and D Ă C

is bounded. The hard part in general is the second estimate, though in the case p “ 2, a
straightforward argument is possible using the Fourier transform.

The idea is to interpret both sides of the equation B̄K “ δ as tempered distributions on
C, which then have well-defined Fourier transforms in the sense of distributions. Expressing

these Fourier transforms as functions of a variable ζ P C, the Fourier transform pKpζq of
Kpzq gets multiplied by 2πiζ to produce the Fourier transform of B̄Kpzq, so B̄K “ δ implies

(B.3) 2πiζ pKpζq “ pδpζq “ 1.

If f P C8
0 pCq and we define another function on C by u :“ K ˚ f , then u also defines a

tempered distribution, whose Fourier transform pu then satisfies

pu “ {K ˚ f “ pK pf,
so by (B.3) we have 2πiζpupζq “ pfpζq. Denoting the Lebesgue measure on C for functions
of ζ P C by dµpζq, Plancherel’s theorem now implies

}BpK ˚ fq}2L2pDq ď }Bu}2L2pCq “
ż

C

ˇ̌xBupζq
ˇ̌2
dµpζq “

ż

C

ˇ̌
2πisζpupζq

ˇ̌2
dµpζq

“
ż

C

ˇ̌
ˇ̌ sζ
ζ
2πiζpupζq

ˇ̌
ˇ̌
2

dµpζq “
ż

C

ˇ̌ pfpζq
ˇ̌2
dµpζq “

›› pf
››2
L2pCq

“ }f}2L2pCq,

and the last expression is the same as }f}2L2pDq if we assume f P C8
0 pDq, hence the remaining

estimate is proven.
The case p ‰ 2 requires totally different arguments, which begin by writing BpK ˚ fq “

BK ˚ f as a principal value integral

BpK ˚ fqpzq “ ´ 1

π
lim
ǫÑ0`

ż

|ζ´z|ěǫ

fpζq
pz ´ ζq2 dµpζq,

in which the right hand side can be interpreted as the convolution of a distribution BK
with a smooth function f . The limit in this expression is necessary because in contrast
to 1{z, the function 1{z2 that arises by differentiating Kpzq is not locally integrable on C,
and for this reason, simple convolution inequalities do not apply. Estimates in Lp for
transformations given by singular integrals of this type are the subject of a much harder
analytical result, the Calderón-Zygmund inequality. Details on this and the rest of the
argument sketched above may be found in [Wena, Chapter 2]; we shall not present them
here since the p ‰ 2 case, while important for the general theory of pseudoholomorphic
curves, is not needed in our discussion of intersection theory. �
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Remark B.11. A closely related result is the existence of an estimate

(B.4) }u}W 1,p ď c}B̄u}Lp for all u P C8
0 pDq.

This can be derived from Proposition B.10 using a bit of extra knowledge about the fun-
damental solution Kpzq “ 1{2πz, but in the case p “ 2 it also admits the following simple
proof borrowed from Sikorav [Sik94]. The bound on }u}W 1,p is again equivalent to three
bounds, namely on }u}Lp, }Bu}Lp and |B̄u}Lp, where the third is immediate. Since u is
assumed to be smooth with compact support, the first bound follows from a standard
Sobolev estimate, the Poincaré inequality (see e.g. [AF03, §6.30]). To achieve the second
bound, it is convenient to write z “ s` it P C and consider the complex partial derivative
operators

Bz :“
B

Bz “ 1

2
B, Bz̄ :“

B
Bz̄ “ 1

2
B̄

along with the corresponding complex-valued 1-forms

dz “ ds ` i dt, dz̄ “ ds ´ i dt.

For any smooth compactly supported function u : C Ñ C, we can now write

du “ Bzu dz ` Bz̄u dz̄,
and the complex-valued 1-form u dū has compact support in C, so applying Stokes’ theorem
to dpu dūq “ du ^ dū on a sufficiently large disk DR Ă C gives

0 “
ż

BDR

u dū “
ż

DR

du ^ dū “
ż

DR

pBzu dz ` Bz̄u dz̄q ^ pBzū dz ` Bz̄ū dz̄q

“ 1

4

ż

DR

`
|Bu|2 ´ |B̄u|2

˘
dz ^ dz̄,

proving }Bu}L2 “ }B̄u}L2.
Note that by applying (B.4) to derivatives Bαu with arbitrary multi-indices α and using

the fact that Bα commutes with B̄, one obtains the easy generalization

}u}W k,p ď c}B̄u}W k´1,p for all u P C8
0 pDq

for every k P N. By density, this extends to

(B.5) }u}W k,p ď c}B̄u}W k´1,p for all u P W k,p
0 pDq,

where W k,p
0 pDq Ă W k,ppDq denotes the closed subspace defined as the W k,p-closure of

C8
0 pDq.
Note that if p ą 2 and f P LppDq, then the statement of Proposition B.10 gives a

solution u :“ Tf P W 1,ppDq to the equation B̄u “ f , and u is then continuous by the
Sobolev embedding theorem. We will need this fact for certain applications, but since we
did not prove the p ą 2 case of Proposition B.10, the continuity of solutions to B̄u “ f P Lp
for p ą 2 needs to be proved separately. This turns out to be not so hard.
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Proposition B.12. Let T : L2pDq Ñ H1pDq denote the bounded right inverse of
B̄ : H1pDq Ñ L2pDq provided by Proposition B.10, defined as an extension of the convolution
operator f ÞÑ K ˚ f . Then for p P p2,8q, T sends any f P LppDq Ă L2pDq into C0pDq, and
it restricts to a bounded linear operator

T : LppDq Ñ C0pDq.
Proof. Observe that the fundamental solutionKpzq “ 1{2πz belongs to LqlocpCq when-

ever 1 ď q ă 2, and in fact the Lq-norm of K on the unit disk Dpzq Ă C about a point
z P C satisfies

}K}LqpDpzqq ď C

for some constant C ą 0 that depends on q but not on z. In particular if p ą 2, this is
true for q P p1, 2q such that 1{q ` 1{p “ 1. Now if f P C8

0 pDq, Hölder’s inequality implies
that for every z P C,

|K ˚ fpzq| “
ˇ̌
ˇ̌
ż

C

Kpz ´ ζqfpζq dµpζq
ˇ̌
ˇ̌ ď

ż

D

|Kpz ´ ζq| ¨ |fpζq| dµpζq

ď }Kpz ´ ¨q}LqpDq ¨ }f}LppDq ď C}f}LppDq,

hence }Tf}L8 ď C}f}Lp. By standard results on convolutions of smooth functions with
distributions (see e.g. [LL01, §6.13]), K ˚ f is a smooth function for each f P C8

0 pDq, thus
the map f ÞÑ K ˚ f extends to a bounded linear map from LppDq to the L8-closure of the
space of bounded smooth functions, which is C0pDq. Since LppDq embeds continuously into
L2pDq, this extension is necessarily the same as T : L2pDq Ñ H1pDq for all f P LppDq. �

Here is the first of several applications of these estimates.

Proposition B.13. If g P Hk
locpDq for some integer k ě 0, then every weak solution

f P L1
locpDq to the equation B̄f “ g is also in Hk`1

loc pDq. In particular, f is smooth whenever
g is smooth.

Sketch of the proof. One starts by showing that if k ě 1 and f is already known
to be in H1pDrq for some r ą 0, then f will also in Hk`1pDr1q for every r1 P p0, rq, and it
satisfies an estimate of the form

(B.6) }f}Hk`1pDr1 q ď c}f}H1pDrq ` c}g}HkpDrq.

To show for instance that f is in H2pDr1q, it suffices to show that both of the partial
derivatives Bsf and Btf are in H1pDr1q, and for this purpose one can approximate them by
difference quotients, e.g.

Dh
sfps, tq :“ fps ` h, tq ´ fps, tq

h

for h P Rzt0u close enough to 0 so that this definition makes sense on a neighborhood
of Dr1. These difference quotients are automatically of class H1 since f is, and the main
task is to show that they satisfy a uniform H1-bound on Dr1 as h Ñ 0, as the Banach-
Alaoglu theorem then implies that they converge weakly to a function in H1 as h Ñ 0,
implying that Bsf (or Btf respectively) is indeed of class H1. The required uniform bound
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comes from the basic elliptic estimate (B.5): to apply it, one chooses a smooth function
β : Dr Ñ r0, 1s that equals 1 on Dr1 and has compact support in the interior of Dr, so that
βDh

sf is now of class H1
0 on Dr, thus }Dh

sf}H1pDr1 q ď }βDh
sf}H1pDrq is bounded in terms of

}B̄pβDh
sfq}L2pDrq. This in turn can be bounded in terms of }Dh

sf}L2 and }Dh
s g}L2, which

are both uniformly bounded as h Ñ 0 because f and g are both of class H1. If k ą 1, then
one can now repeat this argument with the knowledge that f is of class H2 on Dr1, and
continue repeating it on smaller disks at each step until f is shown to be of class Hk`1,
with the estimate (B.6) as a quantitative expression of this fact. This argument shows in
particular that if f is of class H1

loc and B̄f is of class Hk
loc, then f is also of class Hk`1

loc .
Before weakening the hypothesis on f further, it is useful to notice that the previ-

ous paragraph makes possible a generalization of Proposition B.10: for every k P N, the
operator B̄ : HkpDq Ñ Hk´1pDq admits a bounded right inverse

Tk : H
k´1pDq Ñ HkpDq.

The proof of this is by induction on k, with Proposition B.10 as the case k “ 0. If
one fixes some R ą 1 and assumes that a right inverse Tk´1 : Hk´2pDRq Ñ Hk´1pDRq
of B̄ : Hk´1pDRq Ñ Hk´2pDRq exists, then a right inverse Tk : Hk´1pDq Ñ HkpDq for
B̄ : HkpDq Ñ Hk´1pDq can be defined in the form

Tkf :“ Tk´1
rf
ˇ̌
ˇ
D

for f P Hk´1pDq Ă Hk´2pDq, where
Hk´1pDq Ñ Hk´1pDRq : f ÞÑ rf

is any choice of bounded linear extension operator, i.e. satisfying rf |D “ f . The reason
this defines a bounded operator Hk´1pDq Ñ HkpDq is that if u “ Tkf , then u is the

restriction to a smaller disk D Ă DR of a function Tk´1
rf P Hk´1pDRq which satisfies

B̄Tk´1
rf “ rf P Hk´1pDRq, thus the previous paragraph implies that u is also in HkpDq, and

(B.6) produces the required estimate on }u}HkpDq.

Finally, if f P L1pDrq and B̄f “ g P HkpDrq, one can now take the bounded right inverse
Tk`1 : HkpDrq Ñ Hk`1pDrq and consider the function h :“ f ´ Tk`1g, which is in L1pDrq
and is a weak solution to the equation B̄h “ 0. The real and imaginary parts of h are then
weak solutions to the Laplace equation, and by convolution with an approximate identity,
one can approximate them in L1pDrq by smooth solutions to the Laplace equation. The
latter are characterized by the mean value property (see [Eva98, §2.2.3]), which behaves
well under L1-convergence, implying that the real and imaginary parts of h also satisfy the
mean value property and are therefore smooth. In particular, h then belongs to Hk`1

loc pDrq,
and therefore so does f “ h` Tk`1g. �

Corollary B.14. Suppose E is a complex vector bundle of class Ck`1 over a Riemann
surface Σ, and D : ΓpEq Ñ ΓpHomCpTΣ, Eqq is a linear Cauchy-Riemann type operator of
class Ck. Then every weak solution of class L2

loc to the equation Dη “ 0 is of class Hk`1
loc .

In particlar, if the bundle E and operator D are smooth, then all weak solutions of class
L2
loc are smooth.
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Proof. Locally, a weak solution to Dη “ 0 of class L2
loc can be represented by a Cn-

valued function f P L2pDq satisfying pB̄ `Aqf “ 0 for some function A : D Ñ EndRpCnq of
class Ck. In particular A is continuous, so ´Af is of class L2, and the equation B̄f “ ´Af
thus implies via Prop. B.13 that f is of class H1

loc. If A is also of class C1, it follows that
´Af is in H1

loc, and another application of Prop. B.13 implies f P H2
loc. Repeat until A

runs out of derivatives. �

At one point in §B.3 we will need a nonlinear analogue of the above result, which applies
to J-holomorphic curves in an almost complex manifold pM,Jq. This justifies the fact that
we only consider smooth J-holomorphic curves in these notes, even though the nonlinear
Cauchy-Riemann equation would make sense for maps that are only differentiable. The
hypotheses can be weakened in various ways, e.g. by allowing non-smooth almost complex
structures, but we will have no need to consider this. The statement is fundametally local,
thus we are free to assume pM,Jq “ pCn, Jq.

Proposition B.15. Suppose J is a smooth almost complex structure on Cn with Jp0q “
i, and u : D Ñ Cn is a continuous function of class W 1,8 that is a weak solution to the
equation Bsu ` JpuqBtu “ 0 with up0q “ 0. Then u is smooth.

Sketch of the proof. By the Sobolev embedding theorem, it suffices to prove that
u is of class Hk

loc for every k P N. We prove this by induction on k, and observe first that at
each step of the induction, it will be enough to prove that u is of class Hk on Dρ for some
ρ ą 0; indeed, changing coordinates then produces the same result on sufficiently small
neighborhoods of any point in the domain, so that finitely many such small neighborhoods
can be pieced together to show that u is in Hk on any compact subset of the interior.

Another useful observation is that for any constants R ą 0 and ρ P p0, 1s, u is of class
Hk on Dρ if and only if the rescaled map

pu : D Ñ C
n : z ÞÑ Rupρzq

is in HkpDq. To make use of this, we rewrite the equation Bsu` JpuqBtu “ 0 in the form

B̄u ´ QpuqBtu “ 0,

where Q :“ i ´ J P C8pCn,EndRpCnqq. The rescaled map pu then satisfies

(B.7) B̄pu´ pQppuqBtpu “ 0

if we define pJ, pQ : Cn Ñ EndRpCnq by

pJppq :“ Jpp{Rq, pQ :“ i´ pJ.

The advantage of these definitions is that pQ can be made arbitrarily C8-small by choosing
R ą 0 large, and since u : D Ñ C

n is continuous with up0q “ 0, one can subsequently

choose ρ ą 0 small to make the function pQ ˝ pu : D Ñ EndRpCnq correspondingly small so
that (B.7) becomes a small perturbation of the linear equation B̄pu “ 0. In this context, it
will be useful to note that for any k P N and p P p1,8q with kp ą 2, there exist constants
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c ą 0 and γ ą 0 such that every f P W k,ppDq with fp0q “ 0 is related to its rescaled cousin
pfpzq :“ Rfpρzq by

(B.8) } pf}W k,ppDq ď cRργ}f}W k,ppDq.

This can be proved as a corollary of the Sobolev embedding theorem, and it implies that
for each k ě 2, }pu}Hk can also be made arbitrarily small by choosing ρ ą 0 small for any
given R ą 0. In the following, we always reserve the right to enlarge R and subsequently
shrink ρ whenever convenient.

Arguing by induction, the goal is now to show that if pu P HkpDq for a given k P N, then
pu is also of class Hk`1 on Dr for some r ă 1, where in the case k “ 1 we impose the extra
hypothesis pu P W 1,8pDq. As in Proposition B.13, the argument uses difference quotients,
e.g. if one can prove uniform Hk-bounds on the difference quotients Dh

s pu with respect to
s as h Ñ 0, then the Banach-Alaoglu theorem implies that Bspu is in Hk. The assumption
pu P HkpDq already implies a uniform Hk´1-bound on Dh

s pu as h Ñ 0, where in the case
k “ 1, there is an additional L8-bound. Choosing a smooth bump function β : D Ñ r0, 1s
with compact support in the interior and β|Dr

” 1 for some r ă 1, it then suffices to find
a uniform bound on }βDh

s pu}Hk as h Ñ 0. The usual estimate (B.5) gives

}βDh
s pu}Hk ď c}B̄pβDh

s puq}Hk´1.

To bound the right hand side, one can apply the operatorDh
s to the equation B̄pu “ p pQ˝puqBtpu

from (B.7), giving

B̄
`
Dh
s pu
˘

“ Dh
s

` pQ ˝ pu
˘
Btpu ` p pQ ˝ puqBt

`
Dh
s pu
˘

and thus

B̄
`
βDh

s pu
˘

“ βDh
s

` pQ ˝ pu
˘
Btpu ` p pQ ˝ puqBt

`
βDh

s pu
˘

`
´

B̄β ´ p pQ ˝ puqBtβ
¯
Dh
s pu.

From this we deduce the estimate

(B.9) }βDh
spu}Hk ď c

››› pQppuqBt
`
βDh

s pu
˘›››
Hk´1

` c
›››βDh

s

` pQ ˝ pu
˘
Btpu

›››
Hk´1

` c
›››
´

B̄β ´ pQppuqBtβ
¯
Dh
su
›››
Hk´1

.

We claim that after suitable adjustments of the rescaling parameters ρ and R, every term
in (B.9) is bounded uniformly as h Ñ 0.

Indeed, since pQ can be assumed arbitrarily Ck-small on the image of pu, we can also

apply (B.8) if k ě 2 to assume that the composition pQ ˝ pu is arbitrarily small in Hk, in
which case the continuous product pairing Hk ˆ Hk´1 Ñ Hk´1 gives a uniform bound on
the third term. This argument does not quite work in the case k “ 1, as (B.8) is then not
valid and there is no continuous product pairing H1 ˆ L2 Ñ L2, but here one can instead

make pQ ˝ pu arbitrarily C0-small and achieve a uniform L2-bound.
For the first term, if k ě 2 then one can similarly use the continuous product pairing

Hk ˆ Hk´1 Ñ Hk´1 and make } pQ ˝ pu}Hk small via (B.8), giving an estimate of the form
››› pQppuqBt

`
βDh

s pu
˘›››
Hk´1

ď δ
››Bt

`
βDh

s pu
˘››
Hk´1

ď cδ}βDh
s pu}Hk ,
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with a constant δ ą 0 that can be made arbitrarily small by suitable adjustments of R
and ρ. One can therefore absorb this term into the left hand side of (B.9). Once again a

special argument is required for the case k “ 1, but here one can instead assume pQ ˝ pu is
C0-small and use the continuous pairing C0 ˆ L2 Ñ L2 to achieve the same result.

The second term in (B.9) requires some version of the chain rule for the difference
quotient operator Dh

s . Here one can write

pQpp ` p1q “ pQppq `
ż 1

0

d pQpp ` τp1qp1 dτ

“ pQppq ` d pQppqp1 `
ˆż 1

0

”
d pQpp ` τp1q ´ d pQppq

ı
dτ

˙
p1

“ pQppq `
”
d pQppq ` pRpp, p1q

ı
p1

for a smooth remainder function pR : Cn ˆ Cn Ñ HomRpCn,EndRpCnqq satisfying pRp¨, 0q ”
0, and use this to derive a formula of the form

(B.10) Dh
s

` pQ ˝ pu
˘

“
”
d pQ ˝ pu ` pR ˝

`
pu, hDh

s pu
˘ı
Dh
s pu,

valid for all h ‰ 0 sufficiently close to 0. For k ě 2, one can use (B.8) to assume the
terms pu and hDh

s pu satisfy an arbitrarily small Hk-bound independent of h, and then use

the smoothness of pQ and pR and the fact that pRp¨, 0q ” 0 to assume that the bracketed
term in the above expression is arbitrarily Hk-small for all h near 0. Since Hk is a Banach
algebra, this gives rise to an estimate of the form

›››βDh
s

´
pQ ˝ pu

¯›››
Hk

ď δ}βDh
s pu}Hk

where the constant δ ą 0 can be assumed arbitrarily small after adjusting R and ρ.
Since }Btpu}Hk´1 ď }pu}Hk can also be assumed small by (B.8) and the product pairing
Hk ˆ Hk´1 Ñ Hk´1 is continuous, it follows that the second term in (B.9) can also be
absorbed into the left hand side. In the case k “ 1, we can instead use the uniform L8-
bound on Btu to put a bound on }Btpu}L8 while making ρ as small as is needed, and then

use the uniform L2-bound on Dh
s pu to derive from (B.10) a uniform L2-bound on Dh

s p pQ˝puq,
which now direcly implies a uniform bound on the second term in (B.9). �

Exercise B.16. Show that for any ϕ P C8
0 pDq and f P C0pDq such that f |Dzt0u is of

class C1 with bounded derivative, the usual formula for integration by parts
ż

D

Bjf ¨ ϕ “ ´
ż

D

f ¨ Bjϕ

is valid, and deduce that f belongs to W 1,8pDq.
B.1.3. Local existence of holomorphic sections. The main engine behind the

similarity principle is the following local existence result for solutions to linear Cauchy-
Riemann type equations.
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Theorem B.17. Assume 2 ă p ď 8 and A P LppD,EndRpCnqq. Then for sufficiently
small ρ ą 0, the problem

B̄u ` Au “ 0

up0q “ u0

admits a weak solution u P C0pDρq X H1pDρq for every u0 P Cn.

Notice that by elliptic regularity (Prop. B.13), the local solutions u : Dρ Ñ Cn provided
by this theorem may be much nicer than just continuous functions with weak derivatives
in L2, e.g. they will be smooth if A is smooth. One easy consequence is the follow-
ing fundamental result in complex geometry, which gives an equivalence between smooth
complex-linear Cauchy-Riemann type operators and holomorphic vector bundle structures.

Corollary B.18. Suppose E is a complex vector bundle over a Riemann surface Σ,
and D : ΓpEq Ñ ΓpHomCpTΣ, Eqq is a smooth complex-linear Cauchy-Riemann type oper-
ator. Then E admits a unique maximal atlas of smooth local complex trivializations whose
transition maps are holomorphic, such that a section η P ΓpE|Uq defined on some open
domain U Ă Σ is holomorphic with respect to these trivializations if and only if Dη “ 0.

Proof. For any point p P Σ, Theorem B.17 and Proposition B.13 together provide
a collection of smooth sections η1, . . . , ηn defined on a neighborhood of p that all satisfy
Dηi “ 0 and are pointwise complex-linearly independent at p (and therefore also in a
neighborhood of p). We define the desired atlas of local trivializations by viewing collections
of this sort as local frames. The Leibniz rule for complex-linear Cauchy-Riemann type
operators (cf. Remark B.2) then implies that transition maps are holomorphic. �

The local existence theorem admits a fairly straightforward proof using the p ą 2 case
of Prop. B.10. The idea is to multiply A by the characteristic function χρ of Dρ for ρ ą 0,
producing a family of bounded linear operators

Dρ :“ B̄ ` χρA : W 1,ppDq Ñ LppDq,
which converge in the norm topology to B̄ : W 1,ppDq Ñ LppDq as ρ Ñ 0. It follows that
the operators

Lρ : W
1,ppDq Ñ LppDq ˆ C

n : u ÞÑ pDρu, up0qq
also converge as ρ Ñ 0 to L0puq “ pB̄u, up0qq; note here that W 1,ppDq Ñ Cn : u ÞÑ up0q
is a well-defined and continuous linear map due to the Sobolev embedding theorem. Since
B̄ : W 1,ppDq Ñ LppDq has a bounded right inverse and holomorphic functions on D can
take arbitrary values at a point, the operator L0 also has a bounded right inverse, and so
therefore does Lρ for ρ ą 0 sufficiently small, as the existence of bounded right inverses is an
open condition. The right inverse of Lρ can then be used to produce functions u P W 1,ppDq
that have prescribed values at 0 and satisfy pB̄ ` χρAqu “ 0, so in particular they satisfy
pB̄ `Aqu “ 0 on Dρ. These functions are also continuous since, by the Sobolev embedding
theorem, W 1,ppDq embeds continuously into C0pDq for p ą 2.

The argument just sketched would not work for p “ 2 because H1pDq “ W 1,2pDq does
not embed into C0pDq. Since we did not prove the p ą 2 case of Proposition B.10, we will



B.1. REGULARITY AND THE SIMILARITY PRINCIPLE 111

have to do something slightly more roundabout in order to produce a self-contained proof
of local existence. It is based on the following lemma, which was suggested by Jean-Claude
Sikorav.

Lemma B.19. Under the same assumptions as in Theorem B.17, suppose 0 ă r ď 1
and f0 : Dr Ñ Cn is a holomorphic function. Then for any δ ą 0, there exists ρ P p0, rs
and a continuous function f : Dρ Ñ Cn such that |f | ď δ and u :“ f0 ` f : Dρ Ñ Cn is a
weak solution to the equation pB̄ ` Aqu “ 0.

Proof. We will look for a continuous weak solution u : D Ñ Cn to the equation

pB̄ ` Aρqu “ 0,

for some small number ρ ą 0, where Aρ :“ χρA and χρ : D Ñ r0, 1s denotes the function
that equals 1 on Dρ and 0 everywhere else. We claim that each of the operators B̄ ` Aρ
is a bounded linear operator H1pDq Ñ L2pDq, and that these operators converge in the
operator norm to B̄ as ρ Ñ 0. Recall that H1pDq is a “Sobolev borderline case,” so it
admits continuous inclusions H1pDq ãÑ LqpDq for every finite q ě 1 (see [AF03]). Thus if
we pick q ą 1 according to the condition 1{q ` 2{p “ 1, then Hölder’s inequality and the
continuous inclusion H1 ãÑ L2q imply that for any u P H1pDq,

}Aρu}2L2 ď
ż

Dρ

|A|2|u|2 ď
››|A|2

››
Lp{2pDρq

¨
››|u|2

››
LqpDρq

ď }A}2LppDρq}u}2L2qpDq

ď c}A}2LppDρq}u}2H1pDq

for some constant c ą 0. This proves the claim, since }A}LppDρq Ñ 0 as ρ Ñ 0.
Since B̄ : H1pDq Ñ L2pDq has a bounded right inverse T : L2pDq Ñ H1pDq, it follows

that B̄ ` Aρ also has a bounded right inverse

Tρ : L
2pDq Ñ H1pDq

for all ρ ą 0 sufficiently small. It should now at least seem plausible that any solution
f0 P H1pDq to B̄f0 “ 0 admits anH1-close perturbation f0`f satisfying pB̄`Aρqpf0`fq “ 0:
indeed, the latter is equivalent to the equation

pB̄ ` Aρqf “ ´Aρf0,
which can be solved by

f :“ ´TρpAρf0q.
This function clearly is H1-small whenever ρ is correspondingly small since Tρ : L

2 Ñ H1

is continuous and LppDq embeds continuously into L2pDq, hence
(B.11) }Aρf0}L2pDq ď c}Aρf0}LppDq ď c}A}LppDρq}f0}C0 Ñ 0 as ρ Ñ 0.

We claim in fact that the operator Tρ can be chosen to make f continuous and C0-small
when ρ is correspondingly small. By (B.11), this will be immediate if we can show that
Tρ restricts to a continuous linear map LppDq Ñ C0pDq for p ą 2, a fact which we already
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know is true of T : L2pDq Ñ H1pDq by Proposition B.12. Thus to prove the claim, let us
write down a more explicit definition of Tρ. Notice that

pB̄ ` AρqT “ 1 ` AρT

is a bounded linear operator on L2 and is close to the identity in the operator norm since
T : L2 Ñ H1 is continuous and Aρ : H

1 Ñ L2 is small. But for slightly different reasons,
this operator is also close to the identity in the space of bounded linear operators on Lp:
indeed, Aρ : C

0 Ñ Lp is also continuous and small since

}Aρu}LppDq ď }Aρ}LppDq}u}C0pDq “ }A}LppDρq}u}C0pDq,

so this statement follows from the continuity of T : LppDq Ñ C0pDq. Thus for any ρ ą 0
sufficiently small, 1`AρT defines isomorphisms on both L2pDq and LppDq, so that defining

Tρ :“ T p1 ` AρT q´1

gives a right inverse of B̄`Aρ that is continuous both from L2 to H1 and from Lp to C0. �

Proof of Theorem B.17. Using Lemma B.19, we can construct the columns of a
continuous matrix-valued function Φ : Dρ Ñ EndRpCnq for ρ ą 0 small such that Φ weakly
satisfies pB̄ ` AqΦ “ 0 and is arbitrarily C0-close to the constant (and thus holomorphic)
function Φ0pzq :“ 1. We can therefore assume Φ takes values in GLp2n,Rq. Continuous
solutions u : Dρ Ñ C

n to pB̄ ` Aqu “ 0 with prescribed values up0q “ u0 can then be
constructed by multiplying Φ by suitable constant vectors in Cn. �

B.1.4. The similarity principle. We can now prove the main result of the present
section.

Theorem B.20. Assume E is a complex vector bundle of class C1 over a Riemann
surface Σ, D is a linear Cauchy-Riemann type operator on E of class Lp for some p P p2,8s
in the sense of Remark B.6, and η : Σ Ñ E is a continuous section that is a weak solution
to the equation Dη “ 0 with ηpz0q “ 0 for some point z0 P Σ. Then there exists a
continuous local complex trivialization of E near z0 that identifies η with a holomorphic
function. Moreover, if D is smooth and complex linear, then the local trivialization near
z0 can be arranged to be smooth.

Proof. The issue is purely local, so assume A P LppD,EndRpCnqq with p ą 2 and
u : D Ñ Cn is a continuous weak solution to

pB̄ ` Aqu “ 0

with up0q “ 0. We start by replacing B̄ ` A by another Cauchy-Riemann type operator
that is complex linear but has the same regularity. Indeed, choose a measurable function
C : D Ñ EndCpCnq such that |Cpzq| ď |Apzq| and Cpzqupzq “ Apzqupzq for all z P D. Then
C is also of class LppDq and u also satisfies B̄u ` Cu “ 0.

Now construct a local frame as in the proof of Corollary B.18, that is, let Φ : Dρ Ñ
EndCpCnq be a complex matrix-valued function whose columns are local weak solutions
to pB̄ ` Cqη “ 0 as provided by Theorem B.17, with Φp0q “ 1. Since C P LppDq with
p ą 2, Φ is in C0pDρq X H1pDρq, and it also satisfies pB̄ ` CqΦ “ 0. After shrinking ρ ą 0
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if necessary, continuity then implies that we are free to assume Φpzq is invertible for all
z P Dρ, and we can therefore define a continuous function f : Dρ Ñ Cn by

fpzq :“ rΦpzqs´1upzq.
To conclude, we need to show that f is a weak solution to B̄f “ 0, in which case Propo-
sition B.13 implies that f is also smooth, and therefore holomorphic. If Φ, u and f were
all smooth, then B̄f “ 0 would follow from the fact that B̄ ` C is complex linear and
annihilates both Φ and u, as the Leibniz rule (cf. Remark B.2) then implies

0 “ pB̄ ` Cqu “ pB̄ ` CqpΦfq “
“
pB̄ ` CqΦ

‰
f ` ΦpB̄fq “ ΦpB̄fq.

An additional argument is required in order to justify this conclusion without knowing
whether Φ and u are smooth. What we do know is that u is continuous and Φ is in
both C0 and H1; since A P LppDq Ă L2pDq, we also have ´Au P L2pDq, so that Prop. B.13
implies that u is also in H1pDρq. To make use of this, we can consider the following normed
linear space:

X :“ H1pDρq X C0pDρq, }η}X :“ }η}H1pDρq ` }η}C0pDρq.

It is a straightforward exercise to prove that X has the following properties:

‚ X is complete, i.e. it is a Banach space.
‚ C8pDρq XX is dense in X . (Indeed, one can check that the standard mollification
procedure for functions in H1pDρq as in [Eva98, §5.3] works simultaneously for
C0pDρq.

‚ X is a Banach algebra, i.e. there exists a continuous product pairing X ˆ X Ñ
X : pg, hq ÞÑ gh for complex-valued functions, and there is similarly a continuous
product pairing X ˆ L2pDρq Ñ L2pDρq. (The main tool in both cases is the
inequality }gh}L2 ď }g}C0}h}L2 for g P C0 and h P L2.)

‚ If Φ P X is a function D Ñ EndCpCnq with image in GLpn,Cq, then the function
Φ´1pzq :“ rΦpzqs´1 also belongs to X and depends continuously on Φ P X in
the topology of X . (Recall that GLpn,Cq Ñ GLpn,Cq : B ÞÑ B´1 is a smooth
function.)

Notice that for any g P X , we have B̄g P L2pDρq since g P H1pDρq, and similarly, Cg P
L2pDρq since C P Lp Ă L2 and g is continuous. In fact, B̄ ` C defines a continuous linear
operator

pB̄ ` Cq : X Ñ L2pDρq.
The previous remarks now imply after taking ρ ą 0 sufficiently small that Φ´1 and u both
belong to X , so by the Banach algebra property, so does f “ Φ´1u. Now use the density of
smooth functions to find sequences of smooth functions fν ,Φν converging in X to f and Φ
respectively, so that (using the Banach algebra property again) uν :“ Φνfν also converges
in X to u. The Leibniz rule now gives

pB̄ ` Cquν “
“
pB̄ ` CqΦν

‰
fν ` ΦνpB̄fνq,

in which the left hand side and the first term on the right hand side both converge in L2

as ν Ñ 8 to zero, while the last term converges in L2 to ΦpB̄fq, proving B̄f “ 0.
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Finally, consider the special case in which A is smooth and complex linear. Under this
assumption, Corollary B.18 implies that D defines a holomorphic structure on E in which
η is a holomorphic section. Alternatively, one could instead apply the argument above
after setting C :“ A in the initial step, so that the function Φ : Dρ Ñ EndCpCnq satisfying
pB̄ ` CqΦ is then smooth by elliptic regularity (Corollary B.14). �

Corollary B.21. Under the assumptions of Theorem B.20, suppose η is not identi-
cally zero near z0, and choose local holomorphic coordinates and a local complex trivializa-
tion near z0 to identify η with a function D Ñ C

n such that z0 “ 0 P D. Then η satisfies
the formula

ηpzq “ zkC ` |z|kRpzq
for some k P N, C P C

nzt0u and a function Rpzq P C
n such that limzÑ0Rpzq “ 0.

Proof. In the chosen coordinates and trivialization, the similarity principle provides
a continuous transition map Φ : Dρ Ñ GLpn,Cq for ρ ą 0 small and a holomorphic
function f : Dρ Ñ Cn such that η “ Φf and fp0q “ 0. Since η is not identically zero
on this neighborhood, we have fpzq “ zkgpzq for some k P N and a holomorphic function
g : Dρ Ñ Cn with gp0q ‰ 0. Then

upzq “ zkΦp0qgp0q ` zk rΦpzqgpzq ´ Φp0qgp0qs ,
in which Φp0qgp0q ‰ 0 and the term in brackets is a continuous function that vanishes at
z “ 0. �

Remark B.22. If η in the corollary above is smooth, then the result is equivalent to
the statement that the Taylor series of η about z0 is nontrivial and its lowest-order term is
holomorphic (i.e. a polynomial in z with no dependence on z̄). However, the result remains
valid even if E, D and η are not assumed smooth, e.g. in the proof of the representation
formula in the next section, we will need to consider examples where η is only known to
be of class C1.

B.2. The representation formula

If upzq “ vpζq is an isolated intersection of two J-holomorphic curves in an almost
complex 4-manifold and at least one of the curves is immersed at the intersection point, then
there is a relatively easy argument via the similarity principle (cf. [MS12, Exercise 2.6.1])
to prove that this intersection must count positively. The same holds without assuming
that either curve is immersed, but the proof requires more work. One approach, due to
McDuff [McD94], shows that a J-holomorphic curve with critical points always admits
a global perturbation to an immersed J 1-holomorphic curve for some perturbed almost
complex structure J 1, thus the general case can be reduced to the immersed case. This is
an elegant argument, but it gives little insight as to what is really happening near critical
points of holomorphic curves, so we will instead discuss a purely local approach, using a
variation on a result of Micallef and White [MW95]. The following statement is weaker
than the actual Micallef-White theorem but suffices for our purposes, and is easier to prove.
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Theorem B.23. Suppose pM,Jq is a smooth almost complex manifold of dimension
2n, and u : pΣ, jq Ñ pM,Jq is a J-holomorphic curve that is not constant in some neigh-
borhood of the point z0 P Σ. Then there exists a unique integer k P N and 1-dimensional
complex subspace L Ă Tupz0qM such that one can find a C8-smooth coordinate chart on a
neighborhood of upz0q P M and a C1-smooth coordinate chart on a neighborhood of z0 P Σ,
identifying these points with the origin in Cn and C respectively and identifying L with
C ˆ t0u Ă Cn, so that u in these coordinates near z0 takes the form

upzq “ pzk, pupzqq P C ˆ C
n´1

for some C1-smooth function pupzq P Cn´1 defined near z “ 0 and satisfying pupzq “
Op|z|k`1q. Moreover, the C1-smooth chart near z0 may be assumed C8 at all points other
than z0, and pu either vanishes identically or satisfies the formula

pupzq “ zk`ℓuCu ` |z|k`ℓurupzq
for some constants Cu P Cn´1zt0u, ℓu P N, and a function rupzq P Cn´1 with rupzq Ñ 0 as
z Ñ 0. We will say in this situation that u has tangent space L with critical order

k ´ 1 at z0.
Further, if v : pΣ1, j1q Ñ pM,Jq is another nonconstant J-holomorphic curve with

an intersection upz0q “ vpζ0q at some point ζ0 P Σ1 where u and v have the same tangent
spaces and critical orders, then the coordinates above can be chosen together with C1-smooth
coordinates near ζ0 P Σ1 having the same properties, in particular such that v satisfies a
representation formula

vpzq “ pzk, pvpzqq,
with either pv ” 0 or

pvpzq “ zk`ℓvCv ` |z|k`ℓvrvpzq
for some Cv P Cn´1zt0u, ℓv P N and function rvpzq with rvpzq Ñ 0 as z Ñ 0.

Finally, any two curves written in this way are related to each other as follows: either
pu ” pv, or
(B.12) pvpzq ´ pupzq “ zk`ℓ1

C 1 ` |z|k`ℓ1

r1pzq,
for some constants C 1 P Cn´1zt0u, ℓ1 P N and a function r1pzq P Cn´1 with r1pzq Ñ 0 as
z Ñ 0.

Exercise B.24. Prove Theorem B.23 for the case pM,Jq “ pCn, iq.
Exercise B.25. Use Theorem B.23 to show that for any J-holomorphic curve u :

pΣ, jq Ñ pM,Jq with a point z0 P Σ where dupz0q “ 0 but u is not constant near z0, all
other points in some neighborhood of z0 are immersed points, and moreover, the natural
map

z ÞÑ im dupzq
from the immersed points in Σ to the bundle of complex 1-dimensional subspaces in
pTM, Jq extends continuously to z0.
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The much deeper theorem of Micallef and White [MW95] applies to a more general
class of maps than just J-holomorphic curves, and it also provides coordinates in which pupzq
and pvpzq become polynomials, thus the remainder formulas stated in Theorem B.23 become
obvious. The Micallef-White theorem is discussed in more detail in [MS12, Appendix E]
(written with Laurent Lazzarini) and [Sik97]. Our weaker version is based on ideas due
to Hofer, and is essentially a “non-asymptotic version” of Siefring’s relative asymptotic
analysis [Sie05] described in Lecture 3.

The remainder of §B.2 will be concerned with the proof of Theorem B.23.

B.2.1. The generalized tangent-normal decomposition. The first step is to prove
a refined version of the corollary that was observed in Exercise B.25:

Proposition B.26. If u : pΣ, jq Ñ pM,Jq is a smooth connected J-holomorphic curve
that is not constant, then the critical points of u are isolated, and there exists a unique
smooth rank 1 complex subbundle

Tu Ă u˚TM

such that pTuqz “ im dupzq for all immersed points z P Σ of u. Moreover, du defines a
smooth section of the complex line bundle HomCpTΣ, Tuq whose zeroes coincide with the
critical points of z, and these zeroes all have positive order.

We shall refer to the subbundle Tu Ă u˚TM in Proposition B.26 as the generalized

tangent bundle of the curve u : pΣ, jq Ñ pM,Jq, and define the critical order of each
critical point of u to be the order of the corresponding zero of du P ΓpHomCpTΣ, Tuqq.
A choice of smooth complex subbundle Nu Ă u˚TM that is complementary to Tu will
then be referred to as the generalized normal bundle of u, characterized by the smooth
complex-linear splitting

u˚TM “ Tu ‘ Nu.

The bundle Nu is non-unique but is clearly unique up to isomorphism, so we shall typically
ignore this detail in our discussion—if you prefer, you are free to eliminate the ambiguity
by assuming always that Nu is the orthogonal complement of Tu with respect to some fixed
choice of J-invariant Riemannian metric.

Proposition B.26 is an easy consequence of the correspondence given by Corollary B.18
between complex-linear Cauchy-Riemann operators and holomorphic bundle structures. It
depends on the following trick borrowed from [IS99]. Consider the linearized Cauchy-
Riemann operator

Du : Γpu˚TMq Ñ ΓpHomCpTΣ, u˚TMqq,
which can be defined via the property that if tuσ : Σ Ñ MuσPp´ǫ,ǫq is any smooth 1-
parameter family of maps satisfying u0 “ u and Bσuσ|σ“0 “ η P Γpu˚TMq, then for any
connection ∇ on M and any z P Σ and X P TzΣ,

pDuηqpXq “ ∇σ

“
pB̄JuσqpXq

‰ ˇ̌
ˇ
σ“0

,

where B̄J denotes the nonlinear Cauchy-Riemann operator

B̄Jf :“ df ` J ˝ df ˝ j P ΓpHomCpTΣ, f˚TMqq.
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Choosing the connection ∇ to be symmetric, one can derive a more direct formula for Du

in the form

Duη “ ∇η ` Jpuq ˝ ∇η ˝ j ` p∇ηJq ˝ Tu ˝ j,
which shows that Du is indeed a smooth linear Cauchy-Riemann type operator. In general
Du is real but not complex linear, because the connection ∇ need not be complex and
∇JηJ ´ J∇ηJ need not vanish. On the other hand, it is easy to check that the complex-
linear part of Du,

DC

u : Γpu˚TMq Ñ ΓpHomCpTΣ, u˚TMqq

η ÞÑ 1

2
pDuη ´ JDupJηqq ,

also satisfies the required Leibniz rule and is thus a smooth complex-linear Cauchy-Riemann
type operator. By Corollary B.18, DC

u therefore determines a holomorphic vector bundle
structure on u˚TM .

Lemma B.27. The complex-linear bundle map du : TΣ Ñ u˚TM is holomorphic with
respect to the canonical holomorphic structure of TΣ and the holomorphic structure on
u˚TM determined by DC

u .

Proof. The canonical holomorphic structure of TΣ is determined by a complex-linear
Cauchy-Riemann type operator DΣ : ΓpTΣq Ñ ΓpEndCpTΣqq which is the linearization at
Id : pΣ, jq Ñ pΣ, jq of the nonlinear operator B̄jϕ :“ dϕ` j ˝ dϕ ˝ j P ΓpHomCpTΣ, ϕ˚TΣqq
for maps ϕ : Σ Ñ Σ. It follows that a smooth vector field X P ΓpTΣq is holomorphic near
some point z P Σ if and only if it can be written as

X “ Bσϕσ|σ“0

for a smooth family of maps tϕσ : Σ Ñ ΣuσPp´ǫ,ǫq which satisfy ϕ0 “ Id and Bσϕσ|σ“0 “ X

and are holomorphic near z. In this case, the maps

uσ :“ u ˝ ϕσ : Σ Ñ M

also satisfy B̄Juσ “ 0 in a neighborhood of z, and the section η :“ Bσuσ|σ“0 P Γpu˚TMq is
related to the vector field X by η “ dupXq. This implies that Duη also vanishes near z.
Since jX is also a holomorphic vector field near z, the same argument implies that the
section dupjXq “ Jη P Γpu˚TMq satisfies DupJηq “ 0 near z. Both of these facts together
prove that DC

uη “ 0 vanishes near z. In summary, we’ve shown that du maps any locally
defined holomorphic vector field to a locally defined section of u˚TM that is holomorphic
with respect to DC

u , and this is equivalent to du : TΣ Ñ u˚TM being a holomorphic bundle
map. �

Proof of Proposition B.26. Since u is not constant and Σ is connected, the holo-
morphicity of du P ΓpHomCpTΣ, u˚TMqq implies that zeroes of du and therefore also
critical points of u are isolated. The definition of Tu Ă u˚TM at immersed points of u is
obvious, thus we only need to check that a smooth extension of this subbundle over the
zero-set of du exists. Given a critical point z0 P Σ, choose a holomorphic local coordinate
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for Σ and a holomorphic trivialization of HomCpTΣ, u˚TMq near z0, so that du is expressed
in this neighborhood as a Cn-valued holomorphic function of the form

pz ´ z0qkF pzq
for some k P N and a C

n-valued holomorphic function F with F pz0q ‰ 0. We can then
define Tu at each point z near z0 to be the complex line in TupzqM corresponding to the
complex span of F pzq in the trivialization. This definition matches the previous definition
at the immersed points z ‰ z0 and thus makes Tu Ă u˚TM into a smooth line bundle on a
neighborhood of z0, with the integer k ą 0 as the order of the zero of du P ΓpHomCpTΣ, Tuqq
at z0. �

B.2.2. A lemma on normal push-offs. The message of the following result is that
whenever u : pΣ, jq Ñ pM,Jq and v : pΣ1, j1q Ñ pM,Jq are two J-holomorphic curves
related to each other by

expu˝ϕ η “ v

for some diffeomorphism ϕ : Σ1 Ñ Σ and section η of ϕ˚Nu, the section η is subject to the
similarity principle. For technical reasons, we will need to allow ϕ and η in the statement
to have only finitely-many derivatives, which forces non-smooth bundles with non-smooth
Cauchy-Riemann type operators into the picture.

For convenience, we shall denote elements of the bundle Nu Ñ Σ as pairs pz, wq where
z P Σ and w belongs to the fiber pNuqz over z. The zero-section thus consists of all pairs
of the form pz, 0q, and there are canonical isomorphisms

(B.13) Tpz,0qNu “ TzΣ ‘ pNuqz
due to the natural identification of Σ with the zero-section and of vertical tangent spaces
with fibers of Nu. Given a map ϕ : Σ1 Ñ Σ, a section η of the induced bundle ϕ˚Nu Ñ Σ1

can now be written in the form ηpzq “ pϕpzq, fpzqq P Nu with fpzq P pNuqϕpzq for z P Σ1.

Proposition B.28. Suppose u : pΣ, jq Ñ pM,Jq and v : pΣ1, j1q Ñ pM,Jq are smooth
J-holomorphic curves, ϕ : Σ1 Ñ Σ is a diffeomorphism of class Ck for some k P N Y t8u,
Nu Ă u˚TM is the generalized normal bundle of u in the sense of §B.2.1, O Ă Nu is an
open neighborhood of the zero-section, and

Ψ : O Ñ M

is a smooth map that satisfies

Ψpz, 0q “ upzq and dΨpz, 0qX “ X for all z P Σ and X P pNuqz,
where the second condition makes sense due to the canonical splitting (B.13) and the inclu-
sion pNuqz Ă TupzqM . If η : Σ1 Ñ ϕ˚Nu is a section of class Ck of the bundle ϕ˚Nu Ñ Σ1

with image in ϕ˚O such that

vpzq “ Ψpϕpzq, ηpzqq for all z P Σ1,

then η satisfies Dη “ 0 for some real-linear Cauchy-Riemann type operator D of class
Ck´1 on the bundle pϕ˚Nu, Jq Ñ pΣ1, j1q.
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Proof. Choose connections on the bundles TM and Nu. The induced bundle ϕ˚Nu

is of class Ck, and the connection on Nu induces a connection on ϕ˚Nu of class Ck´1

(cf. Remark B.5), whose covariant derivative operator we will denote by ∇. For pz, wq P O,
let

Ppz,wq : TupzqM Ñ TΨpz,wqM

denote the isomorphism defined via parallel transport along the path r0, 1s Ñ M : τ ÞÑ
Ψpz, τwq. The connection on Nu also determines natural isomorphisms

(B.14) Tpz,wqNu “ TzΣ ‘ pNuqz
for each pz, wq P Nu, where the two factors correspond to the horizontal and vertical
subspaces respectively. We can then associate to each pz, wq P O the linear map

F pz, wq :“ P´1
pz,wq ˝ dΨpz, wq P HomR

`
TzΣ ‘ pNuqz, TupzqM

˘
,

which depends smoothly on pz, wq P O and satisfies

F pz, 0q “ dupzq ‘ 1.

If we fix z P Σ, then F pz, ¨q is a smooth map from Oz :“ O X pNuqz to a fixed vector space
of linear maps, and thus satisfies

F pz, wq “ F pz, 0q `
ż 1

0

d

dτ
F pz, τwq dτ “ F pz, 0q `

ˆż 1

0

d2F pz, τwq dτ
˙
w

“ pdupzq ‘ 1q ` rF pz, wqw,
where the integral at the end of the first line is used to define a smooth family of linear
maps

rF pz, wq : pNuqz Ñ HomR

`
TzΣ ‘ pNuqz, TupzqM

˘

parametrized by pz, wq P O.
Similarly, we associate to each pz, wq P O another linear map

Gpz, wq :“ P´1
pz,wq ˝ JpΨpz, wqq ˝ Ppz,wq P EndRpTupzqMq,

which again depends smoothly on pz, wq P O and has image in a fixed vector space if z is
fixed. We then have

Gpz, wq “ Gpz, 0q `
ż 1

0

d

dτ
Gpz, τwq dτ “ Gpz, 0q `

ˆż 1

0

d2Gpz, τwq dτ
˙
w

“ Jpupzqq ` rGpz, wqw,
where the integral in the first line defines

rGpz, wq : pNuqz Ñ EndRpTupzqMq,
another family of linear maps with smooth dependence on the parameter pz, wq P O.

Now suppose v : pΣ1, j1q Ñ pM,Jq is J-holomorphic and vpzq “ Ψpϕpzq, ηpzqq, where
η : Σ1 Ñ ϕ˚Nu is a Ck-smooth section with image in ϕ˚O. Using the splitting (B.14)
determined by the connection on Nu, we have for each z P Σ1,

dvpzq “ dΨpϕpzq, ηpzqq ˝ pdϕpzq,∇ηpzqq “ Ppϕpzq,ηpzqq ˝ F pϕpzq, ηpzqq ˝ pdϕpzq,∇ηpzqq.
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The parallel transport isomorphisms Ppϕpzq,ηpzqq : TupϕpzqqM Ñ TvpzqM now define a Ck-
smooth real-linear bundle isomorphism pu ˝ ϕq˚TM Ñ v˚TM , and applying its inverse
to the nonlinear Cauchy-Riemann equation dv ` Jpvq ˝ dv ˝ j1 “ 0 gives an equation for
real-linear bundle maps TΣ Ñ ϕ˚u˚TM ,

0 “ F pϕ, ηq ˝ pdϕ,∇ηq ` Gpϕ, ηq ˝ F pϕ, ηq ˝ pdϕ ˝ j1,∇η ˝ j1q

“
”
pdupϕq ‘ 1q ` rF pϕ, ηqη

ı
˝ pdϕ,∇ηq

`
”
Jpupϕqq ` rGpϕ, ηqη

ı
˝
”
pdupϕq ‘ 1q ` rF pϕ, ηqη

ı
˝ pdϕ ˝ j1,∇η ˝ j1q

“ rdpu ˝ ϕq ` Jpu ˝ ϕq ˝ dpu ˝ ϕq ˝ j1s ` r∇η ` Jpu ˝ ϕq ˝ ∇η ˝ j1s

`
”
rF pϕ, ηqη

ı
˝ pdϕ,∇ηq

`
”
rGpϕ, ηqη

ı
˝
”
dpu ˝ ϕq ˝ j1 ` ∇η ˝ j1 `

´
rF pϕ, ηqη

¯
˝ pdϕ ˝ j1,∇η ˝ j1q

ı

` Jpu ˝ ϕq ˝
”
rF pϕ, ηqη

ı
˝ pdϕ ˝ j1,∇η ˝ j1q.

Since η and ϕ are of class Ck, all terms in this expression are at least Ck´1-smooth functions
of z, and each term in the last three lines can be understood as a product of Ck´1-smooth
sections of various bundles, at least one of which is always of the form Bη for a Ck´1-smooth
linear bundle map B from ϕ˚Nu to some other bundle, e.g. we have Bpzq “ rF pϕpzq, ηpzqq
in the first of these three lines and Bpzq “ rGpϕpzq, ηpzqq in the second. We can therefore

abbreviate the last three lines as pAη for some Ck´1-smooth bundle map pA : ϕ˚Nu Ñ
HomRpTΣ, ϕ˚u˚TMq, so that the entire equation becomes

rdpu ˝ ϕq ` Jpu ˝ ϕq ˝ dpu ˝ ϕq ˝ j1s ` r∇η ` Jpu ˝ ϕq ˝ ∇η ˝ j1s ` pAη “ 0.

Finally, let πN : u˚TM Ñ Nu denote the smooth bundle map defined by projecting
u˚TM “ Tu ‘ Nu along Tu, which induces a Ck-smooth bundle map

πN : ϕ˚u˚TM Ñ ϕ˚Nu.

In terms of the splitting ϕ˚u˚TM “ ϕ˚Tu‘ϕ˚Nu, the term dpu˝ϕq`Jpu˝ϕq˝dpu˝ϕq˝ j1

in the above expression has image in ϕ˚Tu, while ∇η`Jpu˝ϕq˝∇η ˝j1 has image in ϕ˚Nu.
Applying πN to the whole equation thus gives rise to

∇η ` Jpuq ˝ ∇η ˝ j1 ` πN pAη “ 0.

This is not quite yet a Cauchy-Riemann type equation; for this we would need the target
of the bundle map πN pA to be the bundle of complex-antilinear maps HomCpTΣ, ϕ˚Nuq,
whereas πN pA sends Nu to the larger bundle HomRpTΣ, ϕ˚Nuq. We can fix this simply by
taking the complex-antilinear part, i.e. we define

ϕ˚Nu
AÑ HomC

`
pTΣ, j1q, pϕ˚Nu, Jq

˘
,

Aw :“ 1

2

´
πN pAw ` J ˝ πN pAw ˝ j1

¯
.
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Since πN pAη “ ´∇η´ Jpu ˝ϕq ˝∇η ˝ j1 and the latter is manifestly complex antilinear, we

have Aη “ πN pAη, proving that η also satisfies the Cauchy-Riemann type equation

∇η ` Jpu ˝ ϕq ˝ ∇η ˝ j1 ` Aη “ 0.

�

B.2.3. Local coordinates. For the rest of this section, we focus explicitly on the
situation described in the statement of Theorem B.23. Our first objective is to find suitable
coordinate charts near z0 P Σ and upz0q P M so that u near z0 becomes a map of the form

Dρ Ñ C ˆ C
n : z ÞÑ pzk, pupzqq

for some k P N with pupzq “ Op|z|k`1q. In light of our discussion of the generalized tangent
bundle Tu Ă u˚TM in §B.2.1, it should be clear that the complex subspace L Ă Tupz0qM

mentioned in the theorem will be
L “ pTuqz0 .

For the smooth coordinates near upz0q on M , we impose the following conditions, which
depend on the point upz0q P M and the subspace pTuqz0, but not otherwise on the map

Σ
uÑ M :

(1) The point upz0q P M is identified with 0 P Cn;
(2) The complex subspace L Ă Tupz0qM is identified with C ˆ t0u Ă Cn;
(3) The map u0pzq :“ pz, 0q P C ˆ C

n´1 is J-holomorphic on Dρ for sufficiently small
ρ ą 0, and J along the image of this map is identified with the standard complex
structure i on Cn.

Note that while the first two conditions are easy to achieve, the third is highly nontrivial. It
is possible due to the standard local existence result for J-holomorphic curves with a fixed
tangent vector—the latter follows from the implicit function theorem after performing
a local rescaling argument to view B̄J as a small perturbation of the surjective linear
operator B̄, see e.g. [Wena, Chapter 2] or [Sik94, Theorem 3.1.1]. After choosing a suitable
J-holomorphic disk Dρ ãÑ M through upz0q, one can construct the desired coordinates by
exponentiating in complex normal directions from this disk. With this understood, for the
rest of this section we shall fix a choice of holomorphic coordinates near z0 P Σ and smooth
coordinates near upz0q P M as described above in order to assume pΣ, jq “ pDρ, iq with
z0 “ 0 P Dρ for some ρ ą 0, while J is a smooth almost complex structure on Cn “ CˆCn´1

with Jpz, 0q “ i for all z P Dρ, and u : pDρ, iq Ñ pCn, Jq is a J-holomorphic curve with
up0q “ 0 and generalized tangent space pTuq0 “ C ˆ t0u.

We next seek a C1-smooth coordinate change near the origin on the domain of u so
that it becomes a map of the form z ÞÑ pzk, Op|z|k`1qq. We start with the observation
that u : pDρ, iq Ñ pCn, Jq itself satisfies the smooth complex-linear case of the similarity
principle: indeed, the nonlinear Cauchy-Riemann equation

Bsupzq ` Jpupzqq Btupzq “ 0

can be interpreted as a smooth complex-linear Cauchy-Riemann type equation Du “ 0 on
the trivial rank n complex vector bundle over Dρ with complex structure sJpzq :“ Jpupzqq.
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As a consequence, Theorem B.20 gives

upzq “ Φpzqfpzq
on Dρ after possibly shrinking ρ ą 0, where Φ : Dρ Ñ GLp2n,Rq is the inverse of a smooth
complex local trivialization and thus satisfies Φpzq ˝ i “ Jpupzqq ˝Φpzq, while f : Dρ Ñ Cn

is a holomorphic function with fp0q “ 0. Since Jp0q “ i, we can assume without loss of
generality that Φp0q “ 1. The assumption that u is not constant near z0 implies in turn
that f is nontrivial and thus satisfies

fpzq “ zkgpzq
for some k P N and a holomorphic function g : Dρ Ñ Cn with gp0q ‰ 0. By Corollary B.21
and Remark B.22, we can identify k as the degree of the lowest-order nontrivial term
in the Taylor series of u at z “ 0; equivalently, k ´ 1 is the vanishing order of du P
ΓpHomCpTΣ, Tuqq at z “ 0, also known as the critical order of u at this point. The
assumption L “ Cˆ t0u now implies that after a complex-linear coordinate change on the
domain, we may assume gp0q “ p1, 0q P C ˆ Cn´1. Thus fpzq “ pzkg1pzq, zk`1g2pzqq on Dρ

for some holomorphic functions g1 : Dρ Ñ C and g2 : Dρ Ñ C
n´1, with g1p0q “ 1. Let us

use the splitting Cn “ C ˆ Cn´1 to write Φpzq in block form as

Φpzq “
ˆ
1 ` αpzq βpzq
γpzq 1 ` δpzq

˙
,

where the blocks αpzq, βpzq, γpzq and δpzq are all regarded as real -linear maps between
complex vector spaces, and all of them vanish at z “ 0 since Φp0q “ 1. Now upzq takes
the form pu1pzq, u2pzqq P C ˆ Cn´1, where

u1pzq “ zkg1pzq ` αpzqzkg1pzq ` βpzqzk`1g2pzq,
u2pzq “ γpzqzkg1pzq ` p1 ` δpzqqzk`1g2pzq.

(B.15)

We claim that after shrinking ρ ą 0 further if necessary, there exists a C1-smooth function
ξ : Dρ Ñ C such that ξp0q “ 0, dξp0q “ 1 and rξpzqsk “ u1pzq. Indeed, the desired function
can be written for z ‰ 0 as

ξpzq “ z
k

c
g1pzq ` 1

zk
αpzqzkg1pzq ` 1

zk
βpzqzk`1g2pzq,

where the expression under the root lies in a neighborhood of g1p0q “ 1 for z near 0, hence
the root is uniquely defined as a continuous function of z on Dρ if we set k

?
1 :“ 1. It is

clear that ξ is also smooth for z ‰ 0, and differentiable at z “ 0 with dξp0q “ 1. Moreover,
the fact that α and β are smooth functions vanishing at z “ 0 implies that both are Op|z|q,
so that the first derivative of the expression under the root is bounded on Dρzt0u. This is
enough information to prove that dξ is also continuous at z “ 0, so ξ is of class C1.

Denote the inverse of the local C1-diffeomorphism z ÞÑ ξpzq by

ϕ :“ ξ´1 : Dρ Ñ D,
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where we can again shrink ρ ą 0 if necessary to make sure that ϕ is well defined and has
image contained in the domain of u. The composition u˝ϕ is then well defined and satisfies

u ˝ ϕpzq “ pzk, pupzqq,
where pu :“ u2 ˝ ϕ : Dρ Ñ Cn´1 is a C1-smooth function satisfying the relation pupξpzqq “
u2pzq.

Lemma B.29. The function pu P C1pDρ,C
n´1q satisfies pupzq “ Op|z|k`1q and dpupzq “

Op|z|kq.
Proof. We have u2pzq “ Op|z|k`1q by (B.15) since γpzq is a smooth function with

γp0q “ 0, so in particular the first nontrivial term in the Taylor series of u2 about z “ 0
has degree at least k ` 1, implying a similar conclusion for du2 and thus du2pzq “ Op|z|kq.
The conditions ϕp0q “ 0 and dϕp0q “ 1 imply also that ϕpzq “ z ` op|z|q. Writing
u2pzq “ |z|k`1Bpzq for a bounded function Bpzq near z “ 0 and ϕpzq “ z ` |z| ¨ rpzq for a
remainder function with limzÑ0 rpzq “ 0, we find

pupzq “ u2pϕpzqq “ u2pz ` |z| ¨ rpzqq “
ˇ̌
z ` |z| ¨ rpzq

ˇ̌k`1
Bpz ` |z| ¨ rpzqq

“ |z|k`1 ¨
ˇ̌
ˇ̌ z
|z| ` rpzq

ˇ̌
ˇ̌
k`1

Bpz ` |z| ¨ rpzqq “ Op|z|k`1q.

Similarly, dpupzq “ du2pϕpzqq ˝ dϕpzq, where dϕ is continuous and therefore bounded near
z “ 0, and the same argument as above gives du2pϕpzqq “ Op|z|kq since du2pzq “ Op|z|kq,
so the result for dpupzq follows. �

Now if v : pΣ1, j1q Ñ pCn, Jq is a second J-holomorphic curve with a point ζ0 P Σ1 such
that vpζ0q “ upz0q “ 0, pTvqζ0 “ pTuqz0 “ Cˆ t0u and the critical orders at vpζ0q and upz0q
match, then we can repeat the same argument to find a C1-smooth local diffeomorphism
ψ from Dρ to a neighborhood of ζ0 in Σ1 sending 0 ÞÑ ζ0 such that

v ˝ ψpzq “ pzk, pvpzqq,
with

pv P C1pDρ,C
n´1q such that pvpzq “ Op|z|k`1q and dpvpzq “ Op|z|kq.

The main goal for the rest of this section is to prove that the C1-smooth function

hpzq “ p0,phpzqq :“ p0, pvpzq ´ pupzqq “ v ˝ ψpzq ´ u ˝ ϕpzq
is either identically zero or satisfies the formula hpzq “ zℓC ` op|z|ℓq for some C P C

nzt0u
and ℓ ą k.

Remark B.30. It should be emphasized that ϕ and ψ are in general neither holomor-
phic nor smooth, so u˝ϕ and v˝ψ are pseudoholomorphic curves of class C1 with respect to
complex structures on Dρ that are nonstandard, and continuous but not generally smooth,
though since dϕp0q “ dψp0q “ 1 and ϕ and ψ are smooth outside the origin, both complex
structures are standard at the origin and smooth elsewhere. As a special case, however,
we could take v to be

v : pDρ, iq Ñ pC ˆ C
n´1, Jq : z ÞÑ pzk, 0q,
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which is J-holomorphic due to the third condition imposed on our local coordinates in M .
The claim in Theorem B.23 that pu and pv each satisfy formulas of the form zℓC ` op|z|ℓq
will thus follow as a special case of the general formula for pv ´ pu.

B.2.4. Constructing the normal push-off. We now define a neighborhood O Ă Nu

and a map Ψ : O Ñ M “ Cn as in Proposition B.28. Our first task is to specify a concrete
complex subbundle Nu Ă u˚TM complementary to Tu. Since pTuq0 “ Cˆt0u, any complex
subbundle that matches t0u ˆ Cn´1 at 0 will do if we are willing to shrink ρ ą 0, as the
two subbundles will necessarily be transverse on Dρ for ρ sufficiently small. Let

e1, . . . , en P C
n

denote the standard complex basis of Cn, and for each w “ px2 ` iy2, . . . , xn ` iynq P Cn´1,
define a smooth vector field on Cn by

Xwppq :“
nÿ

j“2

pxjej ` yjJppqejq .

Since Jpz, 0q “ i for pz, 0q P Dρ ˆ Cn´1, at such points we have Xwpz, 0q “ p0, wq P Cn for
all w P Cn´1. We shall regard Nu Ñ Dρ in the following as the pullback along u : Dρ Ñ Cn

of the smooth subbundle of TCn spanned by the vector fields Xw for all w P Cn´1. This
bundle comes equipped with a global trivialization

(B.16) Nu Ñ Dρ ˆ C
n´1 : Xwpupzqq ÞÑ pz, wq.

For a constant δ ą 0, we define the open set

Oδ :“
 

pz, wq
ˇ̌

|w| ă δ
(

Ă Dρ ˆ C
n´1

and smooth map
Ψ : Oδ Ñ C

n : pz, wq ÞÑ upzq ` Xwpupzqq.
In light of the trivialization (B.16), we can equivalently regard Oδ as a neighborhood of the
zero-section in Nu on which Ψ is defined as in Proposition B.28. Notice that Ψpϕpzq, 0q “
u ˝ ϕpzq “ pzk, pupzqq. The goal is to apply Proposition B.28 to the following construction:

Lemma B.31. Choosing δ ą 0 sufficiently small and then shrinking ρ ą 0 further if
necessary, there exist C1-smooth functions θ : Dρ Ñ C and η : Dρ Ñ Cn´1 such that
θp0q “ 0, dθp0q “ 1, ηpzq “ Op|z|k`1q, and

v ˝ ψpzq “ Ψpϕ ˝ θpzq, ηpzqq for all z P Dρ.

The proof of this lemma requires some preparation. We will use the notation d1 and
d2 to denote the differentials of Ψ or Xw with respect to the first variable z P C or second
variable w P Cn´1 respectively, e.g. writing

d1Ψpz, wq P HomRpC,Cnq, d2Ψpz, wq P HomRpCn´1,Cnq.
Let us also write

Ψpz, wq “: pqΨpz, wq, pΨpz, wqq P C ˆ C
n´1 and Xwppq “ p qXwppq, pXwppqq P C ˆ C

n´1,

so qΨpz, wq “ u1pzq ` qXwpupzqq and pΨpz, wq “ u2pzq ` pXwpupzqq.
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Lemma B.32. Given a compact region K Ă C ˆ Cn´1, there exists a constant C ą 0
such that the following estimates hold for all pz, pq P K and all w P Cn´1:

ˇ̌
ˇ qXwpz, pq

ˇ̌
ˇ ď C|p| ¨ |w|,

ˇ̌
ˇ pXwpz, pq ´ w

ˇ̌
ˇ ď C|p| ¨ |w|, |d1Xwpz, pq| ď C|p| ¨ |w|.

Proof. For each pz, pq P C ˆ Cn´1, w ÞÑ qXwpz, pq defines a real-linear map qXpz, pq :

Cn´1 Ñ C. Since Jpz, 0q “ i for all z, we have Xwpz, 0q “ p0, wq, thus qXpz, 0q “ 0, and

the smoothness of qXwpz, pq with respect to z and p then gives rise to an estimate

| qXpz, pq| ď C|p|
from which the first estimate above follows. The second estimate follows in the same
manner since pXpz, 0q is the identity map 1 : Cn´1 Ñ C

n´1, hence | pXpz, pq ´ pXpz, 0q| ď
C|p|. For the third estimate, one observes that w ÞÑ d1Xwpz, pq is also a real-linear map
Cn´1 Ñ HomRpC,Cnq for every pz, pq and d1Xwpz, 0q “ 0 since Xwpz, 0q is independent
of z, so the same argument applies. �

Due to the coordinate choices made in §B.2.3, we also have upzq “ pu1pzq, u2pzqq “
pzk, 0q ` Op|z|k`1q, thus |u1pzq| ě c|z|k and |u2pzq| ď C|z|k`1 for some constants c, C ą 0,
where we are free to assume C is the same constant as in Lemma B.32. It follows that for
z ‰ 0,

ˇ̌qΨpz, wq
ˇ̌

“
ˇ̌
u1pzq ` qXwpupzqq

ˇ̌
ě |u1pzq| ´

ˇ̌ qXwpu1pzq, u2pzqq
ˇ̌

ě c|z|k ´ C|u2pzq| ¨ |w|
ě c|z|k ´ C2|z|k`1|w| “ |z|k

`
c´ C2|w| ¨ |z|

˘
,

which is positive if |w| ă c{ρC2. This proves:

Lemma B.33. If δ ą 0 is sufficiently small, then Ψ preserves the subset tpz, wq P
C ˆ C

n´1 | z ‰ 0u. �

Now consider the C1-smooth function Ψ1 “ pqΨ1, pΨ1q : Oδ Ñ C ˆ C
n defined by

Ψ1pz, wq “ Ψpϕpzq, wq “ upϕpzqq ` Xwpupϕpzqq

“
´
zk ` qXwpzk, pupzqq, pupzq ` pXwpzk, pupzqq

¯
,

and extend this to a C1-smooth family of maps Ψε “ pqΨε, pΨεq : Oδ Ñ C ˆ C
n´1 for

0 ă ε ď 1 by

Ψεpz, wq “
˜
qΨ1pεz, wq

εk
, pΨ1pεz, wq

¸

“
˜
zk `

qXwpεkzk, pupεzqq
εk

, pupεzq ` pXwpεkzk, pupεzqq
¸
.

We would like to understand what happens to Ψε as ε Ñ 0, but from a slightly differ-
ent vantage point, namely after transforming the first complex variable in C ˆ Cn´1 to
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holomorphic cylindrical coordinates. Define the biholomorphic map

f : R ˆ S1 –ÝÑ Czt0u : ps, tq ÞÑ e2πps`itq,

let
9Oδ :“

 
ps, t, wq P R ˆ S1 ˆ C

n´1
ˇ̌

pfps, tq, wq P Oδ

(
,

and consider the family of C1-smooth maps

Ψ1
ε :“ pqΨ1

ε,
pΨ1
εq :“ pf´1 ˆ Idq ˝ Ψε ˝ pf ˆ Idq : 9Oδ Ñ R ˆ S1 ˆ C

n´1,

which are given by

qΨ1
εps, t, wq “ f´1 ˝ qΨεpe2πps`itq, wq and pΨ1

εps, t, wq “ pΨεpe2πps`itq, wq.
Since pΨεpe2πps`itq, wq “ pΨ1pεe2πps`itq, wq, the functions pΨ1

ε :
9Oδ Ñ Cn´1 converge in C1 to

pΨ1
0ps, t, wq :“ pΨ1p0, wq “ w as ε Ñ 0. The convergence of qΨ1

ε :
9Oδ Ñ R ˆ S1 as ε Ñ 0 will

be deduced from the next lemma. To motivate the hypotheses in this statement, notice
that the required estimates are satisfied automatically by any smooth function gpz, wq that
is of the form azk plus terms that are higher order in z; the formulation below is only
more complicated than this because we need to allow functions that are of class C1 and
not smooth.

Lemma B.34. Fix r P R, ρ :“ e2πr ą 0 and an open set U Ă Rn, and suppose

g : Dρ ˆ U Ñ C

is a function of class C1 satisfying gpz, wq ‰ 0 for all z ‰ 0, along with estimates of the
form

|gpz, wq ´ azk| ď C|z|k`1, |d2gpz, wq| ď C|z|k`1,ˇ̌
ˇ̌Bg
Bz pz, wq ´ kazk´1

ˇ̌
ˇ̌ ď C|z|k,

ˇ̌
ˇ̌Bg
Bz̄ pzq

ˇ̌
ˇ̌ ď C|z|k

for a constant C ą 0 independent of pz, wq P Dρ ˆ U , where a P Czt0u and k P N are
constants, and d2gpz, wq : Rn Ñ C denotes the differential with respect to the second

variable w P U . Using the biholomorphic map f : R ˆ S1 –Ñ Czt0u : ps, tq ÞÑ e2πps`itq,
define for each ε P p0, 1s the maps gε : Dρ ˆU Ñ C and g1

ε : p´8, rs ˆ S1 ˆU Ñ Rˆ S1 by

gεpz, wq :“ gpεz, wq
εk

, and g1
εps, t, wq :“ f´1 ˝ gεpfps, tq, wq.

Then as ε Ñ 0, the maps g1
ε are C

1-convergent on p´8, rs ˆ S1 ˆ U to

g1
0ps, t, wq :“ pks ` s0, kt ` t0q,

where e2πps0`it0q “ a.

Proof. By assumption, we can write

gpz, wq “ azk ` |z|k`1Bpz, wq, d2gpz, wq “ |z|k`1Bwpz, wq,
Bg
Bz pzq “ kazk´1 ` |z|kBzpz, wq, Bg

Bz̄ pzq “ |z|kBz̄pz, wq
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for bounded functions B, Bw, Bz and Bz̄. Then

gεpz, wq “ azk ` ε|z|k`1Bpεz, wq,
and on the punctured domain 9Dρ ˆU for 9Dρ :“ Dρzt0u, we therefore have uniform conver-
gence

gεpz, wq
zk

“ a` ε|z| |z|k
zk

Bpεz, wq Ñ a as ε Ñ 0.

We claim that this convergence is also in C1 on 9Dρ ˆ U . Indeed, we have

d2

ˆ
gεpz, wq
zk

˙
“ 1

εkzk
d2gpεz, wq “ 1

εkzk
εk`1|z|k`1Bwpεz, wq “ ε|z| |z|k

zk
Bwpεz, wq,

along with

B
Bz

ˆ
gεpz, wq
zk

˙
“ 1

zk
B

Bzgεpz, wq ´ k

zk`1
gεpz, wq “ 1

εk´1zk
Bg
Bz pεz, wq ´ k

εkzk`1
gpεz, wq

“ 1

εk´1zk

“
εk´1kazk´1 ` εk|z|kBzpεz, wq

‰
´ k

εkzk`1

“
εkazk ` εk`1|z|k`1Bpεz, wq

‰

“ ε

„ |z|k
zk

Bzpεz, wq ´ k
|z|k`1

zk`1
Bpεz, wq


,

and

B
Bz̄

ˆ
gεpz, wq
zk

˙
“ 1

zk
B

Bz̄ gεpz, wq “ 1

εk´1zk
Bg
Bz̄ pεz, wq “ 1

εk´1zk
εk|z|kBz̄pεz, wq “ ε

|z|k
zk

Bz̄pεz, wq.

All of these converge uniformly to 0 as ε Ñ 0.
To relate this to the maps g1

ε, identify RˆS1 with C{iZ and write fpζq “ e2πζ , so g1
ε is

now determined by gε according to the formula e2πg
1
εpζ,wq “ gεpz, wq for z “ e2πζ , implying

e2πrg1
εpζ,wq´kζs “ gεpz, wq

zk
.

For ε small enough, the convergence established above implies that the right hand side lies
in a compact neighborhood of a P Czt0u on which the holomorphic logarithm function can
be defined, giving rise to the formula

g1
εpζ, wq ´ kζ “ 1

2π
log

`
gεpz, wq{zk

˘
.

The right hand side is C1-convergent to the constant 1
2π

logpaq when regarded as a function

of pz, wq P 9Dρ ˆ U , and composing it with the transformation pζ, wq ÞÑ pe2πζ , wq in order
to view it as a function of pζ, wq P p´8, rs ˆ S1 ˆ U does not change this result, thus we
obtain C1-convergence of g1

ε to kζ ` 1
2π

logpaq. �

We would now like to feed the function

qΨ1pz, wq “ zk ` qXwpzk, pupzqq
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into Lemma B.34. Since pupzq “ Op|z|k`1q, Lemma B.32 implies
ˇ̌
ˇqΨ1pz, wq ´ zk

ˇ̌
ˇ ď C|w| ¨ |pupzq| ď C 1|w| ¨ |z|k`1

for some constant C 1 ą 0 independent of z and w, and another application of Lemma B.32

together with the fact that qΨ1pz, wq depends linearly on w gives
ˇ̌
ˇd2qΨ1pz, wqw1

ˇ̌
ˇ “

ˇ̌
ˇ qXw1pzk, pupzqq

ˇ̌
ˇ ď C|pupzq| ¨ |w1|,

hence ˇ̌
ˇd2qΨ1pz, wq

ˇ̌
ˇ ď C|pupzq| ď C 1|z|k`1.

For the required estimates on derivatives with respect to z, it will suffice to prove that the
function

ξwpzq :“ qXwpzk, pupzqq satisfies |dξwpzq| ď C|z|k
for a constant C ą 0 independent of pz, wq P Oδ. We have |dpupzq| “ Op|z|kq by Lemma B.29

and can assume d2 qXwpzk, pupzqq is bounded for pz, wq P Oδ, so applying the third estimate
in Lemma B.32 gives

|dξwpzq| “
ˇ̌
ˇd1 qXwpzk, pupzqq ˝ pkzk´1q ` d2 qXwpzk, pupzqq ˝ dpupzq

ˇ̌
ˇ

ď C|w| ¨ |pupzq| ¨ |z|k´1 ` C|z|k ď C 1|z|2k ` C|z|k “ Op|z|kq.
We can now apply Lemma B.34 and conclude:

Lemma B.35. The maps Ψ1
ε :

9Oδ Ñ R ˆ S1 ˆ Cn´1 are C1-convergent as ε Ñ 0 to

Ψ1
0ps, t, wq :“ pks, kt, wq.

�

A crucial detail in Lemma B.35 is that the C1-convergence is not just on compact
subsets, but remains uniform (including first derivatives) as s varies on the unbounded
half-interval p´8, rs. We conclude from this in particular that for all ε ą 0 sufficiently
small, Ψ1

ε is a local C1-diffeomorphism whose image contains the set

9O1
δ :“

!
ps, t, wq P 9Oδ

ˇ̌
|w| ă δ{2

)
.

This is finally enough information to prove the main result of this subsection.

Proof of Lemma B.31. Denote v1pzq “ pqvpzq, pvpzqq :“ v ˝ ψpzq, so qvpzq “ zk. Our
objective is to find a suitable local C1-diffeomorphism θ : Dρ Ñ C sending 0 ÞÑ 0 and a
C1-function η : Dρ Ñ Cn´1 such that the relation

(B.17) Ψ1pθpzq, ηpzqq “ v1pzq
holds if the disk Dρ is taken to be sufficiently small. We will do this by applying the
same rescaling and cylindrical transformations to θ, η and v1 that were applied above for
Ψ1, as the existence of such functions for ε ą 0 sufficiently small will become obvious in
cylindrical coordinates due to the convergence Ψ1

ε Ñ Ψ1
0.
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Concretely, if maps θ and η as in (B.17) were already known, then for ε P p0, 1s, we
could define θε : Dρ Ñ C, ηε : Dρ Ñ Cn´1 and vε : Dρ Ñ C ˆ Cn´1 by

θεpzq :“ θpεzq
ε

, ηεpzq :“ ηpεzq, vεpzq :“
ˆqvpεzq

εk
, pvpεzq

˙
“ pzk, pvpεzqq,

which must then satisfy the relation

(B.18) Ψεpθεpzq, ηεpzqq “ vεpzq.
Transforming one step further, let us again identify RˆS1 with C{iZ and write fpζq “ e2πζ ,
ρ “ 2πr. If θ is a local diffeomorphism sending 0 ÞÑ 0, then we can assume θεpzq ‰ 0 for all
z ‰ 0 and ε ą 0 sufficiently small, and can therefore define maps θ1

ε : p´8, rsˆS1 Ñ RˆS1,
η1
ε : p´8, rs ˆ S1 Ñ Cn´1 and v1

ε : p´8, rs ˆ S1 Ñ R ˆ S1 ˆ Cn´1 by

θ1
ε :“ f´1 ˝ θε ˝ f, η1

ε :“ ηε ˝ f, v1
ε :“ pf´1 ˆ Idq ˝ vε ˝ f.

This last map is of the form

v1
εpζq “ pkζ,pvpεe2πζqq,

thus for ε Ñ 0 we have C1-convergence v1
ε Ñ v1

0 where

v1
0pζq :“ pkζ, 0q “ Ψ1

0pζ, 0q.
The cylindrical coordinate version of (B.18) is now the relation

(B.19) Ψ1
εpθ1

εpζq, η1
εpζqq “ v1

εpζq,
which is equivalent to (B.18) for each ε ą 0.

The discussion of θ and η has been purely hypothetical thus far, but we are now in a
position to find actual maps θ1

ε and η
1
ε such that (B.19) is satisfied. Indeed, after shifting the

upper boundary of the half-cylinder p´8, rs ˆ S1 slightly if necessary, the convergence of
local C1-diffeomorphisms Ψ1

ε Ñ Ψ1
0 together with the convergence v1

ε Ñ v1
0 implies that for

every ζ P p´8, rsˆS1, there exists a unique continuous family of points pθ1
εpζq, η1

εpζqq P 9O1
δ

for ε ě 0 sufficiently small such that (B.19) holds and pθ0pζq, η0pζqq “ pζ, 0q; notice that
the ε “ 0 case of (B.19) is then the relation v1

0pζq “ Ψ1
0pζ, 0q already established. Since the

Ψε are local C1-diffeomorphisms for ε ě 0 small and vε is of class C
1, the maps θε and ηε

defined in this way are also of class C1 and form a C1-continuous family with respect to the
parameter ε, implying in particular that we have C1-convergence θε Ñ θ0 and ηε Ñ 0 as
ε Ñ 0. To obtain the actual objective, we only need fix ε ą 0 sufficiently small and observe
that both of the transformations pθ, ηq ÞÑ pθε, ηεq and pθε, ηεq ÞÑ pθ1

ε, η
1
εq described above

are reversible, at least if we are willing to restrict the domain of θ and η to a punctured disk
9Dρ whose size is reduced in proportion to the size of ε. After this reversal, we have a pair

of C1-smooth maps θ : 9Dρ Ñ 9C and η : 9Dρ Ñ Cn´1 that satisfy (B.17) on the punctured

disk 9Dρ.
We claim that both θ and η can be extended over the puncture to functions of class C1

on Dρ, with

θp0q “ 0, dθp0q “ 1, and ηp0q “ 0, dηp0q “ 0.
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For θ, we consider the functions gεpzq :“ θεpzq
z

on 9Dρ and observe that since θ1
ε converges

in C1 on p´8, rs ˆ S1 to θ1
0pζq “ ζ ,

gε ˝ fpζq “ e2πrθ1
εpζq´ζs

is C1-convergent on p´8, rs ˆ S1 to the constant function with value 1. This implies that

gε converges uniformly on 9Dρ to 1, and writing θεpzq “ θpεzq{ε, we obtain the relation

θpεzq “ εzgεpzq “ εz ` εz rgεpzq ´ 1s .
for all z P 9Dρ. If we restrict this relation to points z on the boundary of Dρ and introduce
a new variable w :“ εz living in a neighborhood of 0 P Dρ, we can define a remainder
function

Rpwq :“ w

|w|
“
g|w|{ρpzq ´ 1

‰

that satisfies limwÑ0Rpwq “ 0 due to the uniform convergence of gε, and it turns the above
relation into θpwq “ w ` |w|Rpwq. Defining θp0q :“ 0 therefore makes θ continuous and
differentiable at 0, with dθp0q “ 1.

To prove that dθpzq is also continuous at z “ 0, we use the uniform convergence of the
first derivatives of gε ˝ f : writing z “ fpζq “ e2πζ , this convergence implies

B
Bζ gε ˝ fpζq “ Bgε

Bz
Bz
Bζ “ 2πz

Bgε
Bz Ñ 0, and

B
Bζ̄ gε ˝ fpζq “ Bgε

Bz̄
Bz̄
Bζ̄ “ 2πz̄

Bgε
Bz̄ Ñ 0

as ε Ñ 0. From the convergence of z̄ Bgε
Bz̄
, we obtain

z̄
B
Bz̄

ˆ
θεpzq
z

˙
“ z̄

z

B
Bz̄ θεpzq “ z̄

z

Bθ
Bz̄ pεzq Ñ 0,

implying limzÑ0
Bθ
Bz̄

pzq “ 0 “ Bθ
Bz̄

p0q. Similarly, the convergence of z Bgε
Bz

implies

z
B

Bz

ˆ
θεpzq
z

˙
“ z

ˆ
1

z

Bθε
Bz pzq ´ 1

z2
θεpzq

˙
“ Bθε

Bz pzq ´ θεpzq
z

Ñ 0,

and since θεpzq{z “ gεpzq Ñ 1 uniformly, it follows that Bθε
Bz

pzq “ Bθ
Bz

pεzq converges as ε Ñ 0

to 1 “ Bθ
Bz

p0q.
Having established that θ is a C1-smooth function, we now take a closer look at the

relation

(B.20) Ψ1pθ, ηq “
´
θk ` qXηpθk, pu ˝ θq, pu ˝ θ ` pXηpθk, pu ˝ θq

¯
“ pzk, pvq “ v1,

viewed as a function of z P 9Dρ. Since θp0q “ 0 and dθp0q “ 1, the argument of Lemma B.29
implies that both pvpzq and pu ˝ θpzq are Op|z|k`1q, so this equation implies

pXηpzq

´
rθpzqsk , pu ˝ θpzq

¯
“ Op|z|k`1q.

The second estimate in Lemma B.32 then givesˇ̌
ˇ pXηpzq

´
rθpzqsk , pu ˝ θpzq

¯
´ ηpzq

ˇ̌
ˇ ď C|pu ˝ θpzq| ¨ |ηpzq| ď C 1|z|k`1
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for some constant C 1 ą 0. We conclude that η extends to a continuous function on Dρ

with ηp0q “ 0 and ηpzq “ Op|z|k`1q, and since k ` 1 ě 2, the latter implies that η is also
differentiable at z “ 0 with dηp0q “ 0.

Finally, differentiating (B.20) at z ‰ 0 gives

dv1pzq “ d1Ψ1pθpzq, ηpzqq ˝ dθpzq ` d2Ψ1pθpzq, ηpzqq ˝ dηpzq.
If k ě 2, then in the limit as z Ñ 0, the first differential of Ψ1 becomes d1Ψ1p0, 0q “
dpu ˝ ϕqp0q “ 0, while the second becomes d2Ψ1p0, 0q “ p0,1q since Ψ1p0, wq “ p0, wq, and
since dv1p0q also vanishes, this proves limzÑ0 dηpzq “ 0. The case k “ 1 is slightly different
since dv1p0q and d1Ψ1p0, 0q ˝ dθp0q “ d1Ψ1p0, 0q “ dpu ˝ ϕqp0q do not vanish, but instead
they are identical, so we obtain the same conclusion about dηpzq. �

B.2.5. Conclusion of the proof. We cannot apply Proposition B.28 directly to the
relation v ˝ ψpzq “ Ψpϕ ˝ θpzq, ηpzqq because v ˝ ψ is not a smooth map. However, we can
write

rϕ :“ ϕ ˝ θ ˝ ψ´1 and rη :“ η ˝ ψ´1,

and then apply the proposition to the relation

vpzq “ Ψprϕpzq, rηpzqq.
Since rη and rϕ are of class C1, it follows that rη is a solution to a linear Cauchy-Riemann
type equation of class C0, and the similarity principle (Corollary B.21) then implies that
rη is either identically zero near z “ 0 or satisfies

rηpzq “ zℓA` op|z|ℓq
for some ℓ P N and A P Cn´1zt0u. If rη vanishes near 0, then so does η, and we obtain

pzk, pvpzqq “ v ˝ ψpzq “ Ψpϕ ˝ θpzq, 0q “ pu ˝ ϕqpθpzqq “
´

rθpzqsk , pu ˝ θpzq
¯
.

Given that θ is of class C1 with dθp0q “ 1, this can only hold if θ is the identity map near
z “ 0, implying pu ” pv.

If on the other hand rηpzq “ zℓA` |z|ℓRpzq with A ‰ 0 and limzÑ0Rpzq “ 0, then since
ψp0q “ 0 and dψp0q “ 1, we can write ψpzq “ z ` |z| ¨ rpzq with limzÑ0 rpzq “ 0 and find

ηpzq “ rηpψpzqq “ pz ` |z|rpzqqℓA`
ˇ̌
z ` |z| ¨ rpzq

ˇ̌ℓ
R
`
z ` |z| ¨ rpzq

˘
“ zℓA` op|z|ℓq.

Since ηpzq “ Op|z|k`1q by Lemma B.31, we deduce from this that ℓ ą k. It remains to

relate this to the function hpzq “ p0,phpzqq :“ p0, pvpzq ´ pupzqq “ v ˝ ψpzq ´ u ˝ ϕpzq, which
can now be expressed as

p0,phq “ Ψpϕ ˝ θ, ηq ´ Ψpϕ, 0q “ pu ˝ ϕq ˝ θ ´ u ˝ ϕ ` Xηpu ˝ ϕ ˝ θq
“ pθk, pu ˝ θq ´ pzk, puq ` Xηpθk, pu ˝ θq

“
´
θk ´ zk ` qXηpθk, pu ˝ θq, pu ˝ θ ´ pu` pXηpθk, pu ˝ θq

¯
.

(B.21)
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Since ηpzq “ Op|z|ℓq and pu ˝ θpzq “ Op|z|k`1q, Lemma B.32 implies an estimate
ˇ̌
ˇ qXηpzq

`
rθpzqsk , pu ˝ θpzq

˘ˇ̌
ˇ ď C|ηpzq| ¨ |pu ˝ θpzq| “ Op|z|ℓ`k`1q,

so that (B.21) then gives rθpzqsk´zk “ Op|z|ℓ`k`1q. Since θpzq{z can be assumed arbitrarily
close to 1 for |z| small, we then have

|θ ´ z| “
ˇ̌
ˇ̌ θk ´ zk

θk´1 ` θk´2z ` . . .` θzk´2 ` zk´1

ˇ̌
ˇ̌ “ |θk ´ zk|

|z|k´1

1ˇ̌
ˇ
`
θ
z

˘k´1 ` . . .`
`
θ
z

˘
` 1

ˇ̌
ˇ

ď const ¨ |z|ℓ`k`1

|z|k´1
“ Op|z|ℓ`2q,

which implies an estimate of the form

(B.22) |pupθpzqq ´ pupzq| ď C|θpzq ´ z| “ Op|z|ℓ`2q
since pu is of class C1. Finally, the second estimate in Lemma B.32 implies

ˇ̌
ˇ pXηpzq

`
rθpzqsk , pu ˝ θpzq

˘
´ ηpzq

ˇ̌
ˇ ď C|ηpzq| ¨ |pu ˝ θpzq| “ Op|z|ℓ`k`1q,

hence

pXηpzq

`
rθpzqsk , pu ˝ θpzq

˘
“ ηpzq `Op|z|ℓ`k`1q “ zℓA` op|z|ℓq `Op|z|ℓ`k`1q “ zℓA` op|z|ℓq,

and combining this with (B.22), we can now derive from (B.21) the relation

phpzq “ Op|z|ℓ`2q ` zℓA` op|z|ℓq “ zℓA` op|z|ℓq.
The proof of Theorem B.23 is now complete.

B.3. Counting local intersections and singularities

In this section, we take the local representation formula of Theorem B.23 as a black
box and use it deduce the standard results on positivity of intersections.

According to the representation formula, a nonconstant J-holomorphic curve has a
well-defined tangent space at every point, including critical points, with a nonnegative
critical order k P Z that is strictly positive if and only if the point is critical. We can now
prove local positivity of intersections (Theorem 2.3) by considering separately the cases
where the two curves have matching or non-matching tangent spaces at their intersection.
Note that when dimM “ 4, the condition that two (complex-linear!) tangent spaces at an
intersection point do not match means simply that they are transverse, and the intersection
itself is then transverse if and only if neither curve is critical at the intersection point.

Exercise B.36. Let π : Cnzt0u Ñ CPn´1 denote the natural projection, and consider
a map u : D Ñ Cn of the form upzq “ pzk, |z|k`1fpzqq for some k ě N and a bounded
function f : D Ñ Cn´1. Show that for any neighborhood U of r1 : 0 : . . . : 0s P CPn´1, one
can find ρ ą 0 such that the restriction of π ˝ u to Dρzt0u has image in U .
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Proposition B.37. Suppose u : pΣ, jq Ñ pM,Jq and v : pΣ1, j1q Ñ pM,Jq are two
J-holomorphic curves with an intersection upz0q “ vpζ0q at which u has critical order
ku ´ 1 ě 0, v has critical order kv ´ 1 ě 0, and their tangent spaces (in the sense of
Theorem B.23) are distinct. Then the intersection is isolated, and if dimM “ 4, its local
intersection index is

ιpu, z0 ; v, ζ0q “ kukv;

in particular, it is positive, and equal to 1 if and only if the intersection is transverse.

Proof. By Theorem B.23, we can choose C1-smooth coordinates such that without
loss of generality z0 “ ζ0 “ 0 P D “ Σ “ Σ1, M “ C

n, upzq “ pzku , |z|ku`1fpzqq for some
bounded function f : D Ñ Cn´1, and v : D Ñ Cn satisfies vp0q “ 0. The condition of
distinct tangent spaces implies via Exercise B.36 that if π : Cnzt0u Ñ CPn´1 denotes the
natural projection, we can also assume that the images of the maps

π ˝ u|Dzt0u, π ˝ v|Dzt0u : Dzt0u Ñ CP
n´1

lie in arbitrarily small neighborhoods of two distinct points. The same is also true if we
replace u with any of the maps

uτ : D Ñ C
n : z ÞÑ pzku , τ |z|ku`1fpzqq, τ P r0, 1s.

The claim that the intersection is isolated follows immediately, and when n “ 2, we also
deduce via Exercise 2.1 that ιpu, 0 ; v, 0q “ ιpu0, 0 ; v, 0q. After applying the same homotopy
argument in different coordinates adapted to v and then choosing new coordinates so that
the tangent spaces of u and v match C ˆ t0u and t0u ˆ C respectively, we can reduce the
problem to a computation of ιpu0, 0 ; v0, 0q for

u0pzq “ pzku , 0q, v0pzq “ p0, zkvq.
Choose ǫ P Czt0u and perturb these maps to pzku ` ǫ, 0q and p0, zkv ` ǫq respectively. Both
are now holomorphic for the standard complex structure on C

2 and they have exactly kukv
intersections, all transverse. �

When both curves have matching tangent spaces where they intersect, we will need to
use the more precise information provided by Theorem B.23. Observe that in this case the
intersection can never be transverse.

Exercise B.38. Suppose dimM “ 4, u, v : pD, iq Ñ pM,Jq are J-holomorphic
disks and they have an isolated intersection up0q “ vp0q. Given k, ℓ P N, define the
J-holomorphic branched covers uk, vℓ : pD, iq Ñ pM,Jq,

ukpzq :“ upzkq, vℓpzq :“ vpzℓq.
Show that ιpuk, 0 ; vℓ, 0q “ kℓ ¨ ιpu, 0 ; v, 0q.

Proposition B.39. Suppose u : pΣ, jq Ñ pM,Jq and v : pΣ1, j1q Ñ pM,Jq are two
J-holomorphic curves with an intersection upz0q “ vpζ0q at which u has critical order
ku ´ 1 ě 0, v has critical order kv ´ 1 ě 0, and their tangent spaces (in the sense of
Theorem B.23) are identical. Then either the intersection upz0q “ vpζ0q is isolated, or
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there exist neighborhoods z0 P Uz0 Ă Σ and ζ0 P Uζ0 Ă Σ1 such that upUz0q “ vpUζ0q. In the
former case, if dimM “ 4, the local intersection index satisfies

ιpu, z0 ; v, ζ0q ą kukv;

in particular, it is strictly greater than 1.

Proof. We can choose holomorphic coordinates near z0 P Σ and ζ0 P Σ1 so that,
without loss of generality, pΣ, jq “ pΣ1, j1q “ pD, iq with z0 “ ζ0 “ 0. Since ku and kv may
be different, we first replace u and v with suitable branched covers so that their critical
orders become the same: let

m “ kukv P N,

and define u1, v1 : pD, iq Ñ pM,Jq by

u1pzq :“ upzkvq, v1pzq :“ vpzkuq,
so that in particular u1 and v1 both have critical orderm´1 at the intersection u1p0q “ v1p0q,
as well as matching tangent spaces. Now by Theorem B.23, we find new choices of C1-
smooth local coordinates in D near 0 and smooth coordinates in M near up0q “ vp0q such
that

u1pzq “ pzm, pupzqq, v1pzq “ pzm, pvpzqq
for some functions pu, pv : D Ñ C

n´1 of class C1 that are both Op|z|m`1q. For each j “
0, . . . , m ´ 1, we can also compose u1 with the smooth coordinate change z ÞÑ e2πij{mz to
produce a new parametrization v1

j : D Ñ Cn of the form

v1
jpzq :“ v1pe2πij{mzq “ pzm, pvjpzqq, where pvjpzq “ pvpe2πij{mzq,

for which the statement of Theorem B.23 is equally valid. If pu ´ pvj is identically zero for
some j “ 0, . . . , m´ 1, then we have

u1pzq “ v1pe2πij{mzq for all z P D,

implying that u1 and v1 have identical images on some neighborhood of the intersection, in
which case so do u and v. If not, then Theorem B.23 gives for each j “ 0, . . . , m ´ 1 the
formula

(B.23) pupzq ´ pvjpzq “ zm`ℓjCj ` |z|m`ℓjrjpzq,
where Cj P Cn´1zt0u, ℓj P N and rjpzq P Cn´1 is a function with rjpzq Ñ 0 as z Ñ 0. This
expression has an isolated zero at z “ 0, thus the intersection of u1 and v1 (and hence of u
and v) is isolated.

If n “ 2, we can now compute ιpu1, 0 ; v1, 0q by choosing ǫ P Czt0u small and defining
the perturbation

u1
ǫpzq :“ pzm, pupzq ` ǫq.

This curve does not intersect v1 at z “ 0 since ǫ ‰ 0. If u1
ǫpzq “ v1pζq, then zm “ ζm, hence

ζ “ e2πij{mz for some j “ 0, . . . , m´ 1, and equality in the second factor then implies

(B.24) pvjpzq ´ pupzq “ ǫ.
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By (B.23), the zero of pvjpzq´pupzq at z “ 0 has order m`ℓj ą m, thus if ǫ P C is sufficiently
small and chosen generically so that it is a regular value of pvj ´ pu, we conclude that (B.24)
has exactly m` ℓj solutions near z “ 0, all of them simple positive zeroes of pvj ´ pu´ ǫ and
thus corresponding to transverse positive intersections of u1

ǫ with v
1. Adding these up for

all choices of j “ 0, . . . , m´ 1, we conclude

ιpu1, 0 ; v1, 0q ą m2 “ k2uk
2
v ,

so by Exercise B.38, ιpu, 0 ; v, 0q ą kukv. �

Exercise B.40. Find examples to show that in the situation of Proposition B.39,
ιpu, z0 ; v, ζ0q cannot in general be bounded from above.

Combining Propositions B.37 and B.39 completes the proof of Theorem 2.3.
We now turn to the proof of Lemma 2.6 from Lecture 2, which asserts that any critical

point on a simple J-holomorphic curve gives rise to a strictly positive count of double
points after an immersed perturbation. In the background of this statement is the fact
that all simple holomorphic curves are locally injective, which we can now prove using the
representation formula of Theorem B.23.

Proposition B.41. Suppose u : pΣ, jq Ñ pM,Jq is a J-holomorphic curve that is
nonconstant near a point z0 P Σ with dupz0q “ 0. Then there exists a neighborhood
z0 P Uz0 Ă Σ such that there is a biholomorphic identification

ϕ : pD, iq –ÝÑ pUz0 , jq
with ϕp0q “ z0, a number k P N, and an injective J-holomorphic map

v : pD, iq Ñ pM,Jq
with

dvpzq ‰ 0 for z P Dzt0u and u ˝ ϕpzq “ vpzkq for z P D.

If u : pΣ, jq Ñ pM,Jq is a simple curve, then k “ 1.

Proof. Theorem B.23 provides C1-smooth local coordinates near z0 P Σ and smooth
coordinates near upz0q P M in which u takes the form

upzq “ pzk, pupzqq P C
n

for a C1-smooth map pu : D Ñ Cn´1 with pupzq “ Op|z|k`1q, where k ´ 1 ě 0 is the critical
order of u at z0, and all the maps in this picture are of class C8 away from z0 P Σ or 0 P D

respectively. For each j “ 1, . . . , k ´ 1, we can compose this representation of u with the
smooth reparametrization ψjpzq :“ e2πij{kz and thus use Theorem B.23 to compare u with

ujpzq :“ upe2πij{kzq “ pzk, pujpzqq, where pujpzq :“ pupe2πij{kzq.
The theorem implies that each pu ´ puj is either identically zero or has an isolated zero
at z “ 0. Self-intersections upzq “ upζq with z ‰ ζ can now be identified with pairs
j P t1, . . . , k´ 1u and z P D for which pupzq “ pujpzq. Let m P t1, . . . , ku denote the smallest
number for which pu ” pum, hence upzq “ upe2πim{kzq for all z. Then we also have pu ” pujm
for all j P Z, so m must divide k, and setting ℓ :“ k{m, we see that u : D Ñ Cn is invariant
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with respect to the Zℓ action on D generated by the rotation ψ :“ ψm. It therefore factors
as

upzq “ vpzℓq
for a continuous map v : D Ñ C

n that is smooth on Dzt0u, and v is injective near 0 since
we always have pupzq ‰ pujpzq near z “ 0 for j “ 1, . . . , m´ 1.

It remains to show that v : D Ñ Cn can be reparametrized near 0 P D to become
a smooth J-holomorphic curve. We shall deduce this from elliptic regularity, but first,
we need to switch back to smooth holomorphic coordinates on the domain. Since the
parametrization upzq “ pzk, pupzqq was obtained via a C1-smooth coordinate chart on the
smooth Riemann surface pΣ, jq, this parametrization is a pseudoholomorphic map pD, j1q Ñ
pM,Jq for a continuous complex structure j1 that is smooth on 9D :“ Dzt0u and uniquely
determined there by j1 “ u˚J . It follows that the Zℓ-action on D leaving u invariant acts
holomorphically on pD, j1q, and it can therefore be defined as a group of biholomorphic
(and therefore smooth) transformations on the simply connected neighborhood U Ă Σ of
z0 that is identified with D via our C1-coordinates. Using the Riemann mapping theorem,
we can now choose a holomorphic coordinate chart identifying pU , jq with pD, iq and z0
with 0 P D, so that in the new coordinates, ψ generates a Zℓ-action by biholomorphic
transformations on pD, iq that fix 0. All such transformations are rotations, thus ψ is given
by the same formula as before in the new coordinates, and we can define a continuous map
v : D Ñ Cn as before via the relation upzq “ vpzℓq, observing that v is manifestly smooth

and holomorphic on the standard punctured disk p 9D, iq. Since dupzq “ Op|z|k´1q, we then
deduce from upzq “ vpzℓq and dupzq “ dvpzℓq ˝ pℓzℓ´1q an estimate of the form

ˇ̌
dvpzℓq

ˇ̌
ď C

|dupzq|
|z|ℓ´1

ď C 1|z|k´ℓ

near z “ 0. This expression is bounded since ℓ ď k, implying via Exercise B.16 that the
map v : D Ñ Cn is of class W 1,8. It is therefore smooth by Proposition B.15. �

The remainder of Lemma 2.6 can be restated as follows.

Proposition B.42. Suppose dimM “ 4 and u : pD, iq Ñ pM,Jq is an injective J-
holomorphic map with critical order k ´ 1 ě 1 at z “ 0 and no critical points on Dzt0u.
Then there exists an integer

δpu, 0q ě kpk ´ 1q
2

depending only on the germ of u near 0, such that for any given neighborhood U Ă D

of 0 and symplectic form ω0 defined near up0q taming J , one can find a C1-smooth map
uǫ : D Ñ M satisfying the following conditions:

(1) uǫ is C
1-close to u and matches u outside U and at 0;

(2) uǫ is an immersion with u˚
ǫω0 ą 0;

(3) uǫ has finitely many self-intersections and satisfies

(B.25)
1

2

ÿ

pz,ζq

ιpuǫ, z ; uǫ, ζq “ δpu, 0q,
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where the sum ranges over all pairs pz, ζq P D ˆ D such that z ‰ ζ and uǫpzq “
uǫpζq.

Our proof will show in fact that the tangent spaces spanned by the perturbation uǫ can
be arranged to be uniformly close to i-complex subspaces (or equivalently J-complex sub-
spaces, since J and i may also be assumed uniformly close in a small enough neighborhood
of up0q). This implies that it is a symplectic immersion without loss of generality for any
given ω0 taming J , as the condition of being a symplectic subspace is open. In practice,
the crucial point in applications is that the complex structure on the bundle pu˚

ǫTM, Jq
admits a homotopy supported near 0 to a new complex structure for which im duǫ becomes
a complex subbundle—in this way we can keep control over the c1 term in the adjunction
formula. The subtlety in the proof is that the change in tangent subspaces when perturbing
from u to uǫ cannot be understood as a C0-small perturbation if dup0q “ 0. Our strategy
will be to show that the tangent spaces spanned by duǫ are in fact C0-close to the tangent
spaces spanned by another map which is a holomorphic immersion. In order to make this
notion precise, we need a practical way of measuring the “distance” between two subspaces
of a vector space, in particular for the case when both subspaces arise as images of injective
linear maps.

Definition B.43. Fix the standard Euclidean norm on Rn. Given two subspaces
V,W Ă R

n of the same positive dimension, define

distpV,W q :“ max
vPV,|v|“1

distpv,W q :“ max
vPV,|v|“1

min
wPW

|v ´ w|.

Definition B.44. The injectivity modulus of a linear map A : Rk Ñ R
n is

InjpAq “ min
vPRkzt0u

|Av|
|v| ě 0.

Clearly InjpAq ą 0 if and only if A is injective.

Lemma B.45. For any pair of injective linear maps A,B : Rk Ñ Rn,

dist pimA, imBq ď |A ´ B|
InjpAq .

Proof. Pick any nonzero vector v P Rn. Then Av ‰ 0 since A is injective, and we
have

dist

ˆ
Av

|Av| , imB

˙
“ min

wPRk

ˇ̌
ˇ̌A v

|Av| ´ Bw

ˇ̌
ˇ̌ ď

ˇ̌
ˇ̌A v

|Av| ´ B
v

|Av|

ˇ̌
ˇ̌

ď |A´ B| |v|
|Av| ď |A´ B|

InjpAq .

�

Lemma B.46. Given a symplectic form ω0 on C2 taming i, there exists ǫ ą 0 such
that if V Ă C2 is a complex 1-dimensional subspace, then all real 2-dimensional subspaces
W Ă C2 satisfying distpV,W q ă ǫ are ω0-symplectic.
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Exercise B.47. Prove the lemma. Hint: CP1 is compact.

Proof of Proposition B.42. By Theorem B.23, we can assume after choosing suit-
able C1-smooth coordinates near 0 P D and smooth coordinates near up0q P M that

upzq “ pzk, pupzqq P C
2

for some integer k ě 2, where the almost complex structure J matches i at 0 P C2, and pu
is a map Dρ Ñ C of class C1 on a disk of some radius ρ ą 0, such that the other branches

ujpzq :“ upe2πij{kzq “ pzk, pujpzqq, pujpzq :“ pupe2πij{kzq,
for j “ 1, . . . , k ´ 1 are related by

(B.26) pujpzq ´ pupzq “ zk`ℓjCj ` |z|k`ℓjrjpzq
for some ℓj P N, Cj P Czt0u and rj : Dρ Ñ C with rjpzq Ñ 0 as z Ñ 0. Here we’ve
used the assumption that u is injective in order to conclude that puj ´ pu is not identically
zero. By shrinking ρ ą 0 if necessary, we can also assume u is embedded on Dρzt0u,
and that the symplectic form ω0, which tames J by assumption, also tames i on some
neighborhood of upDρq. Fix a smooth cutoff function β : Dρ Ñ r0, 1s that equals 1 on Dρ{2

and has compact support in the interior. Then for ǫ P C sufficiently close to 0, consider
the C1-close perturbation

uǫpzq :“ pzk, pupzq ` ǫβpzqzq,
which satisfies uǫp0q “ 0 and is immersed if ǫ ‰ 0. Since u is embedded on DρzDρ{2, we may
assume for |ǫ| sufficiently small that uǫ has no self-intersections outside of the region where
β ” 1. Then a self-intersection uǫpzq “ uǫpζq with z ‰ ζ occurs wherever ζ “ e2πij{kz ‰ 0
for some j “ 1, . . . , k ´ 1 and pupzq ` ǫz “ pujpzq ` ǫe2πij{kz, which by (B.26) means

zk`ℓjCj ` |z|k`ℓjrjpzq ` ǫ
`
e2πij{k ´ 1

˘
z “ 0.

Assume ǫ P Czt0u is chosen generically so that the zeroes of this function are all simple (see
Exercise B.49 below). Then each zero other than the “trivial” solution at z “ 0 represents
a transverse (positive or negative) self-intersection of uǫ, and the algebraic count of these
(discounting the trivial solution) for |ǫ| sufficiently small is k ` ℓj ´ 1 ě k. Adding these
up for all j “ 1, . . . , k ´ 1, we obtain

(B.27) δpu, 0q :“ 1

2

ÿ

pz,ζq

ιpuǫ, z ; uǫ, ζq “ 1

2

k´1ÿ

j“1

pk ` ℓj ´ 1q ě 1

2
kpk ´ 1q.

It remains to show that uǫ satisfies u˚
ǫω0 ą 0, which is equivalent to showing that

im duǫpzq Ă C2 is an ω0-symplectic subspace for all z. By Theorem B.23, there exist
constants ℓ P N and C P Czt0u such that

(B.28) pupzq “ zk`ℓC ` op|z|k`ℓq,
and we claim that the formula

(B.29) dpupzq “ pk ` ℓqzk`ℓ´1C ` op|z|k`ℓ´1q
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also holds. If pu were smooth, this would follow immediately from (B.28) via Taylor’s
theorem, but we have to work a little bit harder since pu is only of class C1. Recall that
pu is a composition of the form pu “ u2 ˝ ϕ, where we can take ϕ : Dρ Ñ D to be a C1-
smooth local diffeomorphism with ϕp0q “ 0 and dϕp0q “ 1, and u2 : Dǫ Ñ C is a map
of class C8, i.e. the second coordinate of the original J-holomorphic curve before it was
non-smoothly reparametrized. Since ϕpzq “ z`op|z|q and ϕ´1pzq “ z`op|z|q, we can write
ϕ´1pzq “ z ` |z| ¨ rpzq with limzÑ0 rpzq “ 0 and write (B.28) as pupzq “ zk`ℓC ` |z|k`ℓRpzq
with limzÑ0Rpzq “ 0, implying

u2pzq “ pupz ` |z| ¨ rpzqq “ pz ` |z| ¨ rpzqqk`ℓ
C ` |z ` |z| ¨ rpzq|k`ℓ

Rpz ` |z| ¨ rpzqq
“ zk`ℓC ` op|z|k`ℓq.

Now since u2 is smooth, this expression can be interpreted as saying that zk`ℓC is the
lowest-order nontrivial term in its Taylor series, and we can then draw a similar conclusion
for du2: namely for C 1 :“ pk ` ℓqC and a function R1pzq P C with limzÑ0R

1pzq “ 0, we
have

du2pzq “ zk`ℓ´1C 1 ` op|z|k`ℓ´1q “ zk`ℓ´1C 1 ` |z|k`ℓ´1R1pzq.
Finally, reverse the process: writing ϕpzq “ z` |z| ¨r1pzq with limzÑ0 r

1pzq “ 0, the relation
(B.29) follows from

dpupzq “ du2pz ` |z| ¨ r1pzqq ˝ dϕpzq

“
”
pz ` |z| ¨ r1pzqqk`ℓ´1

C 1 ` |z ` |z| ¨ r1pzq|k`ℓ´1
R1pzq

ı
˝ dϕpzq

“
”
pz ` |z| ¨ r1pzqqk`ℓ´1

C 1 ` |z ` |z| ¨ r1pzq|k`ℓ´1
R1pzq

ı

`
”
pz ` |z| ¨ r1pzqqk`ℓ´1

C 1 ` |z ` |z| ¨ r1pzq|k`ℓ´1
R1pzq

ı
˝ pdϕpzq ´ dϕp0qq

“ zk`ℓ´1C 1 ` op|z|k`ℓ´1q,
where the existence of a suitable remainder function depends on the fact that dϕpzq´dϕp0q
is a continuous function of z that vanishes at z “ 0.

We would now like to compare uǫ with the holomorphic polynomial

Pǫ : Dρ Ñ C
2 : z ÞÑ pzk, zk`ℓC ` ǫzq,

which, due to (B.29), satisfies

duǫpzq ´ dPǫpzq “ |z|k`ℓ´1Rpzq
for a remainder term Rpzq P C2 that satisfies limzÑ0Rpzq “ 0 and does not depend on ǫ.
Abbreviating Aǫpzq :“ dPǫpzq and Bǫpzq :“ duǫpzq, this gives an estimate of the form

|Aǫpzq ´ Bǫpzq| ď c1|z|k`ℓ´1

for some constant c1 ą 0 independent of ǫ. Computing dPǫp0q, we find similarly a constant
c2 ą 0 independent of ǫ such that

|Aǫpzqv| ě c2|z|k´1|v| for all v P C,
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thus InjpAǫpzqq ě c2|z|k´1, and

|Aǫpzq ´ Bǫpzq|
InjpAǫpzqq ď c3|z|ℓ

for some constant c3 ą 0 independent of ǫ. Now since Pǫ is holomorphic (for the standard
complex structure) for all ǫ, imAǫpzq Ă C2 is always complex linear, so the above estimates
imply together with Lemmas B.45 and B.46 that for a sufficiently small radius ρ0 ą 0, the
images of duǫpzq for all z P Dρ0zt0u and ǫ P Dρ0 are ω0-symplectic. This is also true for
z “ 0 if ǫ ‰ 0, since then duǫp0q “ dPǫp0q is complex linear.

To conclude, fix ρ0 ą 0 as above and choose ǫ P Czt0u sufficiently close to 0 so that
outside of Dρ0 , uǫ is C

1-close enough to u for its tangent spaces to be ω0-symplectic (recall
that J is also ω0-tame). The previous paragraph then implies that the tangent spaces of
uǫ are ω0-symplectic everywhere. �

Exercise B.48. Verify that the formula obtained in (B.27) for δpu, 0q does not depend
on any choices.

Exercise B.49. Assume f : U Ñ C is a C1-smooth map on a domain U Ă C con-
taining 0, with fp0q “ 0 and dfp0q “ 0. Show that for almost every ǫ P C, the map
fǫ : U Ñ C : z ÞÑ fpzq ` ǫz has 0 as a regular value. Hint: Use the implicit function
theorem to show that the set

X :“ tpǫ, zq P C ˆ pUzt0uq | fǫpzq “ 0u
is a smooth submanifold of C2, and a point pǫ, zq P X is regular for the projection π : X Ñ
C : pǫ, zq ÞÑ ǫ if and only if z is a regular point of fǫ. Then apply Sard’s theorem to π.1

Exercise B.50. Find examples to show that the bound δpu, 0q ě kpk´1q
2

in Proposi-
tion B.42 is sharp, and that there is no similar upper bound for δpu, 0q in terms of k.
(Compare Exercise B.40.)

1Note that while Sard’s theorem is often stated only for C8-smooth maps, it is valid more generally
for continuously differentiable maps f : M Ñ N of class Cm´n`1 for m :“ dimM and n :“ dimN ; see
[Sar42].
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This appendix is meant in part as a survey and also as a quick reference guide for
the intersection theory of punctured holomorphic curves. Except where otherwise noted,
the proofs of everything stated below are due to Siefring [Sie11], and the details (modulo
proofs of the relative asymptotic formulas) can be found in Lectures 3 and 4 of these notes.
Since intersection theory has also played a large role in the development of Hutchings’s
embedded contact homology (ECH), we will simultaneously take the opportunity to clarify
some of the connections between Siefring’s theory and equivalent notions that often appear
(sometimes with very different notation) in the ECH literature. For an important word of
caution about notational differences between these notes and [Sie11], see Remark 4.7.

C.1. Preliminaries

Assume M is a closed oriented 3-manifold with a stable Hamiltonian structure pω, λq,
i.e. a 2-form ω and 1-form λ that satisfy dω “ 0, λ ^ ω ą 0 and kerω Ă ker dλ. (The
reader unfamiliar with or uninterested in stable Hamiltonian structures is free to assume
pω, λq “ pdα, αq where α is a contact form.) This data determines an oriented 2-plane field

ξ “ ker λ Ă TM

and a Reeb vector field R such that

ωpR, ¨q ” 0 and λpRq ” 1.

We assume throughout the following that all closed orbits of R are nondegenerate. As
mentioned in the footnote to Theorem 4.1, the major results continue to hold without
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serious changes if orbits are Morse-Bott, as long as homotopies of asymptotically cylindrical
maps are required to fix the asymptotic orbits in place. There also exists a generalization
of the theory that lifts the latter condition (see [Wen10a, §4.1] and [SW]).

Suppose γ is a closed orbit of R and τ is a choice of trivialization of ξ along γ. The
Conley-Zehnder index of γ relative to this trivialization will be denoted by

µτCZpγq P Z.

If γ has period T ą 0, then any choice of ω-compatible complex structure J on ξ and
parametrization γ : S1 :“ R{Z Ñ M satisfying λp 9γq ” T gives rise to an L2-symmetric

Aγ “ ´Jp∇t ´ T∇Rq : Γpγ˚ξq Ñ Γpγ˚ξq,
where ∇ is any symmetric connection on M and Aγ does not depend on this choice. As
proved in [HWZ95], the nontrivial eigenfunctions of Aγ have winding numbers (rela-
tive to τ) that depend only on their eigenvalues, defining a nondecreasing map from the
spectrum σpAγq Ă R to Z that takes every value exactly twice (counting multiplicity of
eigenvalues). One can therefore define the integers

ατ´pγq “ max
 
windτ peq

ˇ̌
Aγe “ λe with λ ă 0

(
,

ατ`pγq “ min
 
windτ peq

ˇ̌
Aγe “ λe with λ ą 0

(
,

ppγq “ ατ`pγq ´ ατ´pγq.
Since γ is nondegenerate, 0 is not an eigenvalue of Aγ, hence the parity ppγq is either 0
or 1, and [HWZ95] proves the relation

µτCZpγq “ 2ατ´pγq ` ppγq “ 2ατ`pγq ´ ppγq.
For this reason, the number ατ´pγq sometimes appears in the literature as tµτCZpγq{2u.

Given a closed Reeb orbit γ, we denote its k-fold cover for k P N by γk.

Remark C.1. The parity of Reeb orbits is closely related to the dichotomy between
elliptic and hyperbolic orbits. Recall that since the linearized Reeb flow restricts to an
ω-symplectic map on the transverse planes ξ along a periodic orbit γ, the product of the
eigenvalues of this map is always 1. We call γ elliptic if the eigenvalues are a conjugate
pair of non-real numbers on the unit circle, and hyperbolic if they are both real but
distinct from ˘1. (We exclude eigenvalues ˘1 from this dichotomy; in this case either γ
or γ2 is degenerate.) If γ is an orbit whose covers are all nondegenerate, then one sees by
taking powers of the eigenvalues that γ is elliptic if and only if all of its covers are elliptic.
One can show moreover that γ has even parity if and only if both of the eigenvalues are
positive, thus even orbits are always hyperbolic, and the same applies to all of their covers
(see Exercise 3.18). It follows that elliptic orbits always have odd parity. Hyperbolic orbits
with odd parity are sometimes also called negative hyperbolic orbits; their even covers
have even parity and are referred to in the literature on symplectic field theory as bad orbits,
for reasons having to do with orientations of moduli spaces (see e.g. [Wenb, Chapter 11]).

We say that an almost complex structure J on R ˆ M is compatible with the stable
Hamiltonian structure pω, λq if
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‚ JpBrq “ R for the coordinate vector field Br in the R-direction;
‚ Jpξq “ ξ and J |ξ is compatible with ω|ξ;
‚ J is invariant under the translation action pr, pq ÞÑ pr ` c, pq for all c P R.

More generally, we consider almost complex 4-manifolds pxW,Jq with cylindrical ends as

in [BEH`03]. Concretely, this means xW decomposes into the union of a compact subset
with a positive end r0,8q ˆ M` and a negative end p´8, 0s ˆ M´, where M˘ are closed
3-manifolds equipped with stable Hamiltonian structures pω˘, λ˘q and the restriction of
J to each cylindrical end is compatible with these structures. This will be our standing

assumption about pxW,Jq in the following. For a punctured Riemann surface p 9Σ, jq, we
consider proper maps u : 9Σ Ñ xW that are asymptotically cylindrical in the sense that
they approximate trivial cylinders over closed Reeb orbits near each of their (positive or
negative) non-removable punctures; see §2.4 for a more precise definition of this term in
the contact case.

C.2. The intersection pairing

Given the almost complex 4-manifold pxW,Jq with cylindrical ends as described above,
let τ denote a choice of trivialization for the complex line bundles ξ˘ “ ker λ˘ along each
simply covered closed Reeb orbit in M˘. This induces a trivialization of ξ˘ along every
closed Reeb orbit by pulling back along multiple covers. The choice is arbitrary, but it
is necessary in order to write down most formulas in the intersection theory, even though

none of the important quantities depend on it. We assume u : 9Σ “ ΣzΓu Ñ xW is a smooth
asymptotically cylindrical map with positive and/or negative punctures Γu “ Γ`

u YΓ´
u Ă Σ,

and for each puncture z P Γu, let γz denote corresponding asymptotic Reeb orbit. We also

fix a second such map v : 9Σ1 Ñ xW , denote its punctures by Γv “ Γ`
v Y Γ´

v Ă Σ1 and use
the same notation tγzuzPΓv

for its asymptotic orbits.1

Given any quantity q˘pγq which depends on both a Reeb orbit γ and a choice of sign
` or ´, we will use the shorthand notation

ÿ

zPΓ˘
u

q˘pγzq :“
ÿ

zPΓ`
u

q`pγzq `
ÿ

zPΓ´
u

q´pγzq.

A similar convention applies to summations over pairs of punctures in ΓuˆΓv with matching
signs, and this will occur several times in the following.

The intersection product of two asymptotically cylindrical maps u and v is a symmetric
pairing defined by

(C.1) u ˚ v :“ u ‚τ v ´
ÿ

pz,ζqPΓ˘
u ˆΓ˘

v

Ωτ˘pγz, γζq P Z,

where the individual terms are defined as follows.

1Note that each of the orbits γz may be multiply covered, and the covering multiplicity is regarded as
part of the data that defines γz.
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The relative intersection number

u ‚τ v P Z

is the algebraic count of intersections between u and a generic perturbation of v that
shifts it by an arbitrarily small positive distance in directions dictated by the chosen
trivializations τ near infinity, hence the count is finite and depends only on the relative
homology classes represnted by u and v and the homotopy class of the trivializations τ .
The relative intersection number also appears in the ECH literature and is denoted there
by Qτ pu, vq, cf. [Hut02,Hut14]. Note that u ‚τ u is also well defined, and is sometimes
denoted by Qτ puq in ECH.

The integers Ωτ˘pγ, γ1q are defined for every pair of Reeb orbits γ, γ1 and also depend
on the trivializations τ . They satisfy Ωτ˘pγ, γ1q “ 0 whenever γ and γ1 are not covers of
the same orbit, while for any simply covered orbit γ with integers k,m P N,

(C.2) Ωτ˘pγk, γmq :“ min
 

¯kατ¯pγmq,¯mατ¯pγkq
(
.

The dependence on τ in the Ωτ˘ terms cancels out the dependence in u ‚τ v, so that u ˚ v is
independent of τ ; it is determined solely by the relative homology classes of u and v and
their sets of asymptotic orbits. In particular, it is invariant under homotopies of u and v
through families of smooth asymptotically cylindrical maps with fixed asymptotic orbits.

If u and v are also J-holomorphic and are not covers of the same simple curve, then we
can also write

u ˚ v “ u ¨ v ` ι8pu, vq,
where both terms are nonnegative: the first denotes the actual algebraic count of inter-
sections between u and v (of which the asymptotic results in [Sie08] imply there are only
finitely many), and the second is an asymptotic contribution counting the number of “hid-
den” intersections that may emerge from infinity under a generic perturbation. A corollary
is that if u ˚ v “ 0, then u and v are disjoint unless they cover the same simple curve.
The converse of this is false in general, but one can use Fredholm theory with exponential
weights to show that for generic J , ι8pu, vq “ 0 for all simple curves u and v belonging to
some open and dense subsets of their respective moduli spaces.

To write down the asymptotic contribution ι8pu, vq explicitly, one must first define its
relative analogue ιτ8pu, vq, which depends only on the germ of u and v near infinity and on
the trivializations τ . We have

ιτ8pu, vq “
ÿ

pz,ζqPΓ˘
u ˆΓ˘

v

ιτ8pu, z ; v, ζq,

where for each pair of punctures z P Γ˘
u and ζ P Γ˘

v with the same sign,

ιτ8pu, z ; v, ζq P Z

is the algebraic count of intersections between u|Uz
and a generic perturbation of v|Uζ

,
with Uz and Uζ chosen to be suitably small neighborhoods of the respective punctures
such that u|Uz

and v|Uζ
are disjoint, and the perturbation of v|Uζ

chosen to push it a small
positive distance in directions dictated by the trivialization τ near infinity. The fact that
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this number is well defined depends on the existence of neighborhoods on which u and
v are disjoint, hence it requires them to be geometrically distinct curves, and of course
ιτ8pu, z ; v, ζq “ 0 whenever the asymptotic orbits γz and γζ are disjoint. If on the other
hand γz “ γk and γζ “ γm for some simply covered orbit γ and integers k,m P N, then
ιτ8pu, z ; v, ζq can be computed in terms of the relative winding of v about u near infinity;
a precise formula is derived in the discussion surrounding Equation (4.3). Combining
this formula with the relative asymptotic analysis from [Sie08] then yields the bound
ιτ8pu, z ; v, ζq ě Ωτ˘pγz, γζq, giving rise to the local asymptotic contribution

ι8pu, z ; v, ζq :“ ιτ8pu, z ; v, ζq ´ Ωτ˘pγz, γζq,
which is independent of τ and is nonnegative, with equality if and only if all theoretical
bounds on the winding of asymptotic eigenfunctions controlling the approach of v to u at
infinity are achieved. The geometric interpretation is that ι8pu, z ; v, ζq is the algebraic
count of intersections between u and v that will appear in neighborhoods of these two
punctures if u and v are perturbed to J 1-holomorphic curves for some generic perturbation
J 1 of J . The total number of hidden intersections is then

ι8pu, vq “
ÿ

pz,ζqPΓ˘
u ˆΓ˘

v

ι8pu, z ; v, ζq.

C.3. The adjunction formula

The adjunction formula for a closed simple J-holomorphic curve u : Σ Ñ W can be
written as

rus ¨ rus “ 2δpuq ` cNpuq,
where rus ¨ rus P Z denotes the homological self-intersection number of rus P H2pW q,
cNpuq :“ c1prusq ´ χpΣq is the so-called normal Chern number, and δpuq is the algebraic
count of double points and critical points, cf. (2.3). For a simple asymptotically cylindrical

J-holomorphic curve u : 9Σ Ñ xW with punctures Γu, the formula generalizes to

(C.3) u ˚ u “ 2 rδpuq ` δ8puqs ` cNpuq ` rσ̄puq ´ #Γus ,
where u ˚ u is the intersection product defined in (C.1) with u “ v, and the terms on
the right hand side will be explained in a moment. The most important thing to know
about (C.3) is that the terms u˚u, cNpuq and σ̄puq are all homotopy invariant by definition,
implying that δpuq`δ8puq is also homotopy invariant, while σ̄puq´#Γu, δpuq and δ8puq are
always nonnegative. Moreover, as in the closed case, δpuq “ 0 if and only if u is embedded.
It follows that δpuq ` δ8puq “ 0 gives a homotopy-invariant condition guaranteeing that u
is embedded. The converse is false, as u can be embedded and have δ8puq ą 0, but one
can again use Fredholm theory with exponential weights to show that generically the latter
cannot happen for curves in some open and dense subset of the moduli space.

The normal Chern number is defined in the punctured case by

(C.4) cN puq :“ cτ1pu˚TxW q ´ χp 9Σq `
ÿ

zPΓ˘
u

˘ατ¯pγzq,
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and it depends on the relative homology class of u and the topology of the domain 9Σ, but

not on the trivializations τ . Here cτ1pu˚TxW q denotes the relative first Chern number

of the complex vector bundle u˚TxW Ñ 9Σ with respect to the natural trivializations at
infinity induced by τ . Recall that if E Ñ 9Σ is a complex line bundle equipped with a
preferred trivialization τE near infinity, one can define cτE1 pEq P Z as the algebraic count
of zeroes of any generic section of E that is constant and nonzero with respect to τE near
infinity. The relative first Chern number of higher rank bundles is then defined via the

direct sum property cτE‘τF
1 pE ‘F q “ cτE1 pEq ` cτF1 pF q. Since u˚TxW has a natural spliting

over the positive/negative cylindrical ends into the direct sum of a trivial complex line

bundle with ξ˘ “ ker λ˘, τ naturally induces a trivialization of u˚TxW over the ends and

we define cτ1pu˚TxW q accordingly. (The same quantity is often denoted by cτ puq in the ECH
literature, cf. [Hut02,Hut14].) The normal Chern number is often most convenient to
calculate via the formula

(C.5) 2cNpuq “ indpuq ´ 2 ` 2g ` #Γeven,

where indpuq denotes the virtual dimension of the moduli space containing u (see (A.5)),
g is the genus of its domain, and Γeven Ă Γu is the set of punctures z P Γu that satisfy
ppγzq “ 0, i.e. the Conley-Zehnder index of the corresponding Reeb orbit is even. This
relation is an easy consequence of the Fredholm index formula and the usual relations
between Conley-Zehnder indices and the winding numbers ατ˘pγq, cf. (3.18). The proper
interpretation of cN puq is as a homotopy-invariant algebraic count of zeroes of the normal
bundle of an immersed perturbation of u, including zeroes that are “hidden at infinity”
but may emerge under small perturbations of u as a holomorphic curve.

The term σ̄puq is called the spectral covering number and is a sum of terms

σ̄puq :“
ÿ

zPΓ˘
u

σ̄¯pγzq,

each of which is a positive integer that depends only on the orbit γz and can be greater
than 1 only if γz is multiply covered. Specifically, for any simply covered orbit γ and k P N,
σ̄˘pγkq is the covering multiplicity of any of the nontrivial asymptotic eigenfunctions e of
Aγk that satisfy windτ peq “ ατ˘pγkq. It turns out that the dependence of σ̄˘pγkq on the
orbit γ is fairly mild, as one can show that

(C.6) σ̄˘pγkq “ gcdpk, ατ˘pγkqq,
cf. Remark 4.3. Thus σ̄puq ´#Γ vanishes, for instance, whenever all the asymptotic orbits
of u are simply covered.

The singularity index δpuq is defined just as in the closed case, as a signed count
of double points of u plus positive contributions for each critical point, interpreted as the
count of double points that appear near each critical point after an immersed perturbation
(cf. Lemma 2.6). The only difference from the closed case is that since 9Σ is noncompact,
it is less obvious that δpuq is well defined, but the relative asymptotic results of [Sie08]
imply that double points and critical points of a simple curve cannot occur near infinity,
hence δpuq is finite.
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The term δ8puq is an algebraic count of “hidden” double points, i.e. it is the number
of extra contributions to δpuq that will emerge from infinity if u is perturbed to a J 1-
holomorphic curve for a generic perturbation J 1 of J . There are two possible sources of
such hidden double points: first, any pair of distinct punctures z, ζ P Γ˘

u with the same sign
such that the corresponding asymptotic orbits γz and γζ are identical up to multiplicity
contributes ι8pu, z ; u, ζq as in the definition of u˚v. Note that ι8pu, z ; u, ζq is well defined
as long as u is simple and z ‰ ζ , since the two punctures then have neighborhoods Uz and
Uζ such that upUzq X upUζq “ H. Additional hidden intersections can emerge from any
single puncture z such that γz is multiply covered, since u in the neighborhood of such a
puncture has multiple branches that become arbitrarily close to each other near infinity.
Denoting the contribution from such punctures by δ8pu, zq, we have

δ8puq “ 1

2

ÿ

z,ζPΓ˘
u , z‰ζ

ι8pu, z ; u, ζq `
ÿ

zPΓ˘
u

δ8pu, zq.

In particular, δ8puq “ 0 whenever all asymptotic orbits of u are distinct and simply covered,
though it can also be zero without this condition. As with ι8pu, z ; v, ζq, writing down a
precise formula for δ8pu, zq requires first defining a relative version that depends on the
trivialization τ : we define

ιτ8pu, zq P Z

as the algebraic count of intersections between u|Uz
and a generic small perturbation of

itself, where Uz is a neighborhood of z on which u is embedded, and the perturbation is
chosen to shift u a small positive distance in directions dictated by τ . As with ιτ8pu, z ; v, ζq,
one can compute ιτ8pu, zq in terms of the winding numbers of asymptotic eigenfunctions
that control the relative approach of different branches of u|Uz

to each other near infinity,
cf. (4.6). One derives from this the theoretical bound ιτ8pu, zq ě Ωτ˘pγzq, where for any
simply covered orbit γ and k P N,

(C.7) Ωτ˘pγkq :“ ¯pk ´ 1qατ¯pγkq `
“
σ̄¯pγkq ´ 1

‰
.

The precise definition of δ8pu, zq is then

δ8pu, zq :“ 1

2

“
ιτ8pu, zq ´ Ωτ˘pγzq

‰
,

which is a nonnegative integer and is independent of τ .
As mentioned in Remark 4.14, the computation of ιτ8pu, zq in terms of winding numbers

also leads to an alternative interpretation of it as the writhe of a braid, which we will
say more about in §C.6. Up to issues of bookkeeping, (C.3) is also equivalent to the
so-called relative adjunction formula first written down by Hutchings, see in particular
[Hut02, Remark 3.2]. The innovation of [Sie11] was to transform this into a relation
between homotopy-invariant quantities that have geometric meanings independent of any
choice of trivializations.
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C.4. Covering relations

We now state a few useful results about multiply covered holomorphic curves that are
not mentioned elsewhere in these notes, but are easy to prove based on the definitions
given above. The results of the present section are due to the author, and complete proofs
may be found in [Wen10a, §4.2].

If u and v are two closed J-holomorphic curves in a closed almost complex 4-manifold
and ru is a d-fold multiple cover of u, then the relation

rrus ¨ rvs “ drus ¨ rvs
is obvious since rrus “ drus P H2pW q. Things are less straightforward in the punctured
case because u ˚ v depends on more than just homology, and e.g. Exercise 4.19 exhibits a
specific scenario in which the ˚-product fails to satisfy the obvious analogue of the above
relation. One can still however prove the following:

Proposition C.2. Suppose u, ru and v are asymptotically cylindrical J-holomorphic

curves in xW such that ru is a d-fold cover of u for d P N. Then

ru ˚ v ě dpu ˚ vq.
The proof of this inequality is based on the formula (C.1), in which the relative inter-

section numbers are easily seen to satisfy the straightforward relation ru ‚τ v “ dpu ‚τ vq,
thus the tricky part is to understand what happens to the terms Ωτ˘pγz, γζq when each of
the orbits γz is replaced by a collection of covers of γz whose multiplicities add up to d. The
answer is a bit intricate if one aims to write it down precisely, because the winding num-
bers ατ˘pγq do not in general behave linearly with respect to iteration of the orbit, but for
the purposes of the inequality in Proposition C.2, the information in the following lemma
suffices. This lemma is closely related to Exercise 3.18, and it can be derived from the
properties of asymptotic eigenfunctions and their winding numbers proved in [HWZ95]
(in particular Theorem 3.15).

Lemma C.3. For every closed Reeb orbit γ and every k P N, there exist integers
q˘pγ; kq P t0, . . . , k ´ 1u such that

α˘pγkq “ kα˘pγq ¯ q˘pγ; kq.
It is also sometimes useful to have a similar covering relation for the normal Chern

number, since the latter appears in the adjunction formula. Recall that if ϕ : pΣ1, j1q Ñ
pΣ, jq is a d-fold holomorphic branched cover, then the Riemann-Hurwitz formula gives

(C.8) ´ χpΣ1q ` dχpΣq “ Zpdϕq,
where Zpdϕq denotes the algebraic count of branch points of ϕ,

Zpdϕq :“
ÿ

zPdϕ´1p0q

ordpdϕ; zq ě 0.

One easy proof of this formula views dϕ as a section of the line bundle HomCpTΣ1, ϕ˚TΣq,
whose first Chern number is the left hand side of (C.8). If u : pΣ, jq Ñ pW,Jq is a closed
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J-holomorphic curve and ru “ u ˝ ϕ, this leads to the relation

cN pruq “ d ¨ cN puq ` Zpdϕq.
In the punctured case, one can easily show that (C.8) continues to hold for a branched
cover of punctured surfaces, but additional terms appear in the normal Chern number due
to the fact that ατ˘pγdq ‰ dατ˘pγq in general. As in Proposition C.2, the result is then most
easily stated as an inequality.

Proposition C.4. Suppose u and ru “ u˝ϕ are asymptotically cylindrical J-holomorphic

curves in xW , where ϕ : 9Σ1 Ñ 9Σ is a d-fold holomorphic branched cover of punctured Rie-
mann surfaces whose algebraic count of branch points is Zpdϕq ě 0. Then

cN pruq ě d ¨ cN puq ` Zpdϕq.
Remark C.5. One can extract from the proofs in [Wen10a, §4.2] various conditions to

characterize when the inequalities in Propositions C.2 and C.4 are strict or not. The easiest
comes from the observation that the integers q˘pγ; kq in Lemma C.3 vanish whenever γ
has even parity. It follows for instance that Proposition C.2 becomes an equality whenever
every simple Reeb orbit that has a cover appearing among the asymptotic orbits of u and v
(with the same sign!) is even. Similarly, Proposition C.4 is an equality if all the asymptotic
orbits of u are even.

C.5. The intersection product of buildings

Another topic not mentioned elsewhere in these notes is the extension of the ˚-pairing to
the compactified moduli space MgpxW,Jq of holomorphic buildings defined in [BEH`03].
Following [Sie11], one can define this in fairly general terms as follows.

If u P MgpxW,Jq and v P Mg1pxW,Jq are two nodal J-holomorphic curves in xW ,
i.e. holomorphic buildings with no upper or lower levels, then the definition of u˚v requires
no change from before. Recall that the domain of a punctured nodal curve u is a possibly
disconnected punctured Riemann surface 9S endowed with a finite set of points ∆ Ă 9S, the
nodal points, which are grouped into pairs on which u has matching values (see §A.1).

A nodal curve then belongs to MgpxW,Jq if the surface obtained by performing connected

sums on 9S at each of the nodal pairs is connected with genus g and every component of
9Sz∆ on which u is constant has negative Euler characteristic. For the present discussion,
there is no need to impose either of these conditions, thus we are free to consider nodal
curves that are non-stable and/or disconnected (even after gluing together their nodes). If

u : 9S Ñ xW is a nodal curve and 9S0 Ă 9S is a connected component of its domain (ignoring

nodes), then let us call the restriction u| 9S0
: 9S0 Ñ xW a connected component of u.

Now it is easy to check that if u and v are nodal curves whose connected components are
u1, . . . , um and v1, . . . , vn respectively, the ˚-pairing is additive in the obvious way, namely

u ˚ v “
mÿ

i“1

nÿ

j“1

ui ˚ vj .
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Things become more interesting if we consider buildings with multiple levels. Sup-

pose pxW0, J0q and pxW1, J1q are two almost complex 4-manifolds with cylindrical ends such

that the positive end of pxW0, J0q matches the negative end of pxW1, J1q, meaning that the
underlying 3-manifolds and stable Hamiltonian structures are the same, and so are the
restrictions of J0 and J1 to translation-invariant almost complex structures on the relevant

ends. We will then refer to the symbol xW0 d xW1 as the concatenation of xW0 with xW1,

and say that u0 d u1 is a holomorphic building in xW0 d xW1 if u0 and u1 are (possibly

disconnected and/or nodal) asymptotically cylindrical holomorphic curves in pxW0, J0q and

pxW1, J1q respectively, equipped with the extra structure of a bijection between the positive
punctures of u0 and the negative punctures of u1 that sends each puncture to one that has
the same asymptotic orbit. We shall refer to u0 and u1 as the (lower and upper) levels of
u0 du1 and call the Reeb orbits along which they connect to each other breaking orbits.
These definitions extend in an obvious way to allow concatenations with more than two

inputs, making d an associative operation. In this language, MgpxW,Jq consists of all
holomorphic buildings in

pR ˆ M´q d . . .d pR ˆ M´q d xW d pR ˆ M`q d . . .d pR ˆ M`q

that are connected with arithmetic genus g and satisfy the usual stability condition, where
RˆM˘ is an abbreviation for the symplectization ofM˘ with the same R-invariant almost

complex structure that appears at the corresponding end of xW , and any nonnegative
numbers of such symplectization levels are allowed to appear in the concatenation.

Recall that the stability condition on elements of MgpxW,Jq precludes (among other
things) the existence of any level that lives in an R-invariant symplectization and consists
of nothing more than a disjoint union of orbit cylinders with no nodes. It is necessary
to exclude buildings that don’t satisfy this condition in order for the natural topology on

MgpxW,Jq to be Hausdorff, but for our present purposes, it will be useful to avoid imposing
any such requirement on buildings in concatenations. We are then free to define the

following operation: given a building u “ u1d. . .duN in xW1d. . .dxWN and k P t0, . . . , Nu,
we construct the building

u1 “ u1 d . . .d uk d v d uk`1 d . . .d uN in xW1 d . . .d xWk d pV d xWk`1 d . . .d xWN ,

where pV is the symplectization corresponding to the positive end of xWk and negative end

of xWk`1, and v is a disjoint union of orbit cylinders in pV , one for each of the breaking
orbits that connect uk to uk`1. Here the cases k “ 0 and k “ N are also allowed in order
to accommodate adding a trivial level at the very bottom or top of the building, and one
should also keep in mind that v could be an empty curve—this is the case if uk has no
positive ends and uk`1 has no negative ends. Any building obtained from u by a finite
sequence of such operations will be called an extension of u.

Given two buildings u “ u1 d . . . d uN and v “ v1 d . . . d vN in a concatenation
xW1 d . . .dxWN , we make an arbitrary choice of trivializations τ along all closed Reeb orbits
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at the ends of each of xW1,. . . ,xWN and define

(C.9) u ˚ v :“
Nÿ

i“1

ui ‚τ vi ´
ÿ

pz,ζqPΓ`
uN

ˆΓ`
vN

Ωτ`pγz, γζq ´
ÿ

pz,ζqPΓ´
u1

ˆΓ´
v1

Ωτ´pγz, γζq.

Here the dependence on τ at the positive ends of the top level and negative ends of the
bottom level is cancelled by the Ωτ˘ terms for the same reasons as in (C.1), while changing τ
at any of the breaking orbits between levels k´1 and k alters uk´1‚τ vk´1 and uk‚τvk in ways
that cancel out, thus the total expression is independent of choices. This definition does

not yet allow us to define u ˚ v for an arbitrary pair of stable buildings u P MgpxW,Jq and

v P Mg1pxW,Jq, because these may in general have differing numbers of levels. However,
one can always add extra trivial symplectization levels to one or both of them to produce
a pair of non-stable buildings that live in the same concatenation of cobordisms. With this
understood, we define

(C.10) u ˚ v :“ u1 ˚ v1 P Z for u P MgpxW,Jq and v P Mg1pxW,Jq,
where u1 and v1 are any choices of extensions of u and v that make u1 ˚ v1 well defined in
the sense of (C.9).

Proposition C.6. The pairing u ˚v defined in (C.10) for stable holomorphic buildings

in xW has the following properties:

(1) It is independent of the choices of extensions u1 and v1.

(2) It is continuous with respect to the natural topologies onMgpxW,Jq and Mg1pxW,Jq,
e.g. if uk P MgpxW,Jq is a sequence converging to a building u P MgpxW,Jq in the
sense of [BEH`03], then uk ˚ v “ u ˚ v for large k.

(3) It is superadditive with respect to concatenation, i.e. for any (not necessarily stable)
buildings u´, v´ and u`, v` such that the concatenations u´ du` and v´ d v` and
the intersection numbers u˘ ˚ v˘ in the sense of (C.9) are well defined, one has

pu´ d u`q ˚ pv´ d v`q ě u´ ˚ v´ ` u` ˚ v`,

with equality whenever all the simple orbits with covers appearing as breaking orbits
in both u´ d u` and v´ d v` are even, and strict inequality if any of these simple
orbits is elliptic.

Remark C.7. We have stated the above result with reference to one of the three
compactified moduli spaces of holomorphic buildings defined in [BEH`03], i.e. for the
degeneration of curves in a completed nontrivial symplectic cobordism. The result can be
adapted in obvious ways for the other two scenarios, namely for degenerations of curves
in a symplectization (so that each level is defined only up to R-translation and there is
no distinguished “main level”), and degenerations with respect to neck-stretching. In the
symplectization case, the freedom to choose different extensions of u and v is more useful
than one might at first imagine.
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For example, in Lemma 5.15, we considered two curves uP and v in a symplectization
R ˆ M , where uP was a page of a holomorphic open book (which has only positive punc-
tures), and v was any other curve whose positive ends are all asymptotic to simple orbits
in the binding of the open book. Having shown in the previous lemma that uP ˚uγ “ 0 for
all of the trivial cylinders uγ over asymptotic orbits γ of uP , we then used a homotopy of
asymptotically cylindrical maps (Figure 5.4 in Lecture 5) to prove that u˚v is a sum of such
terms, and therefore vanishes. An alternative argument for the second step is illustrated
in Figure C.1: define extensions u1

P of uP and v1 of v as buildings in pR ˆ Mq d pR ˆMq,
where u1

P :“ H d uP has a trivial level added below the original curve (the trivial level is
the empty curve since uP has no negative ends), and v1 :“ v d v` with v` as the disjoint
union of trivial cylinders over the positive asymptotic orbits of v. Instead of exploiting
homotopy invariance as we did in Lemma 5.15, one could now apply Proposition C.6 and
write

uP ˚ v “ u1
P ˚ v1 ě pH ˚ vq ` puP ˚ v`q “ uP ˚ v`,

where the last equality follows since the empty curve has zero intersection number with
everything else. The inequality is in this case an equality because every simple orbit that
has a cover appearing as a breaking orbit of both u1

P and v1 is even—this is a statement
about the empty set, and is therefore true. This proves uP ˚ v “ uP ˚ v`, and the latter
again vanishes due to Lemma 5.14. Morally, one can think of the replacement of v with
v` as an “unbounded homotopy,” i.e. it shifts v by R-translation infinitely far downward
so that v now occupies a lower level. In this sense, the independence of u ˚ v with respect
to choices of extensions is just another manifestation of homotopy invariance.

The possibility of strict inequality in the third item of Proposition C.6 reveals an-
other interesting “hidden intersection” phenomenon: intersections between buildings can
be hidden in the breaking orbits between levels. Concretely, suppose uk and vk are two

sequences of smooth curves in the completed cobordism xW that converge to two-level build-

ings u “ u´ d u` and v “ v´ d v` respectively in xW d pRˆM`q, such that u˘ and v˘ are
disjoint and satisfy u˘ ˚ v˘ “ 0. Then the curves in each individual level do not have any
hidden intersections, meaning one could make arbitrary small perturbations of the data on
xW or R ˆ M` and rely on u˘ remaining disjoint from v˘. But it is nonetheless possible
that uk and vk intersect each other for all k large, in which case these intersections must

escape from every compact subset of xW as k Ñ 8, so as not to survive as intersections of
u´ with v´. At the same time, the intersections of uk with vk cannot congregate as k Ñ 8
in any compact subset of R ˆ M` after shifting the positive cylindrical end to focus on
the convergence of the upper level, as otherwise they would survive as intersections of u`

with v`. Instead, intersections congregate in the increasingly wide area “between levels”
as k Ñ 8, so that they do not appear at all in the limit. Despite this, they are accounted
for by u ˚ v, which must in this case be strictly larger than u´ ˚ v´ ` u` ˚ v` “ 0. This
phenomenon has sometimes been exploited in applications, e.g. to define a version of con-
tact homology on the complement of a set of fixed Reeb orbits (see [HMS15]). Relatedly,
one can use a “local” version of the adjunction formula to show that the breaking orbits
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Figure C.1. An alternative to the homotopy argument depicted in Fig-
ure 5.4 of Lecture 5, using the intersection number between buildings to
prove Lemma 5.15.

of a single building with embedded levels can also hide double points of simple curves that
degenerate to them; see [CW].

Looking at the definition (C.9), one sees that in the context of Proposition C.6,

pu´ d u`q ˚ pv´ d v`q ´ u´ ˚ v´ ´ u` ˚ v` “
ÿ

pz,ζq

Brpγz, γζq, where

Brpγ, γ1q :“ Ωτ`pγ, γ1q ` Ωτ´pγ, γ1q,
(C.11)

and the sum is over all pairs of breaking punctures, i.e. all pz, ζq with z P Γ`
u´

– Γ´
u`

and

ζ P Γ`
v´

– Γ´
v`
. The so-called breaking contribution Brpγz, γζq P Z is independent of

the choice of trivialization τ and vanishes if γz and γζ are disjoint, whereas if γz “ γk and
γζ “ γm for some k,m P N and a simple orbit γ, one extracts from (C.2) the formula

Brpγk, γmq “ min
 
kατ`pγmq, mατ`pγkq

(
´ max

 
kατ´pγmq, mατ´pγkq

(
.

Using the relation ppγq “ ατ`pγq ´ ατ´pγq, it is now a straightforward exercise to prove the
inequality

(C.12) min
 
kppγmq, mppγkq

(
ď Brpγk, γmq ď max

 
kppγmq, mppγkq

(
.

The breaking contributions are thus manifestly nonnegative; moreover, they vanish when-
ever γ is even and are strictly positive if γ is elliptic and all its covers are nondegenerate,
since the latter guarantees that the covers are also odd (see Remark C.1). This is the
reason for the inequality stated in Proposition C.6.
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Remark C.8. If uγ and uγ1 denote the trivial cylinders over two Reeb orbits γ and
γ1, then taking the same set of trivializations at positive end negative ends always gives
uγ ‚τ uγ1 “ 0 since uγ1 admits a global perturbation that is compatible with τ near infinity
and everywhere disjoint from uγ. Plugging in the definition of the ˚-pairing, one obtains
from this a geometric interpretation of the breaking contribution Brpγ, γ1q, namely

(C.13) Brpγ, γ1q “ ´uγ ˚ uγ1,

along with the useful corollary that uγ ˚ uγ1 is never positive (cf. Exercise 4.19).

An analogue of Proposition C.6 for the normal Chern number is sometimes needed for

applications of the adjunction formula. For a nodal curve u : 9S Ñ xW with nodal points
∆ Ă 9S, (C.4) is not quite the right definition because χp 9Sq does not generally match the

Euler characteristic of the surface obtained from 9S by performing connected sums at all
nodal pairs. To achieve this and thus ensure that cN is continuous under degenerations
from smooth curves to nodal curves, one defines

(C.14) cNpuq :“ cτ1pu˚TxW q ´ χp 9Sz∆q `
ÿ

zPΓ`
u

ατ´pγzq ´
ÿ

zPΓ´
u

ατ`pγzq.

If u has connected components u1, . . . , um, we then have the relation

(C.15) cNpuq “
mÿ

i“1

cNpuiq ` 2 p#∆q .

For a building u1d . . .duN in xW1d . . .dxWN , the above definition now generalizes naturally
as

(C.16) cNpu1 d . . .d uNq :“
Nÿ

k“1

”
cτ1pu˚

kT
xWkq ´ χp 9Σkz∆kq

ı
`

ÿ

zPΓ`
uN

ατ´pγzq ´
ÿ

zPΓ´
u1

ατ`pγzq,

where for each k “ 1, . . . , N , 9Σk denotes the (possibly disconnected) domain of the level

uk, and ∆k Ă 9Σ is the set of nodal points in that domain. This leads to:

Proposition C.9. The normal Chern number is continuous with respect to the nat-

ural topology of MgpxW,Jq. Moreover, it is superadditive with respect to concatenation:
in particular, for any pair of (not necessarily stable) buildings u´ and u` for which the
concatenation u´ d u` is well defined, one has

cNpu´ d u`q “ cN pu´q ` cNpu`q `
ÿ

z

ppγzq ě cNpu´q ` cN pu`q,

where the sum is over all breaking punctures that connect u´ to u`, i.e. z P Γ`
u´

– Γ´
u`
.

C.6. Comparison with the ECH literature

Intersection theory plays a major role in Hutchings’s theory of embedded contact homol-
ogy (ECH), and in fact early developments in ECH (notably the paper [Hut02]) provided
some of the inspiration behind Siefring’s intersection theory of punctured holomorphic
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curves. Though the ˚-pairing and Siefring’s adjunction formula do not usually appear in
papers on ECH, the relative intersection numbers and relative adjunction formula appear
quite prominently, with differing notational conventions, and many of the same winding
bounds that underlie Siefring’s theory also play crucial roles in ECH. The aim of this
section is to provide a glossary for translating between these two contexts.

Aside from notation, the major difference between the ECH literature and our treat-
ment in these notes is that ECH expresses all relative asymptotic quantities such as ιτ8pu, vq
and ιτ8puq in terms of topological invariants of certain braids. Concretely, for two asymp-
totically cylindrical curves u and v that do not have identical images, we have written the
count of intersections near infinity that appear under small perturbations moving v in the
direction of asymptotic trivializations τ as

ιτ8pu, vq “
ÿ

pz,ζqPΓ˘
u ˆΓ˘

v

ιτ8pu, z ; v, ζq,

where ιτ8pu, z ; v, ζq P Z denotes the contribution coming from the specific punctures z P Γ˘
u

and ζ P Γ˘
v . The latter can only be nonzero if γz and γζ are covers of the same underlying

simple orbit γ, thus let us assume this henceforth. We wrote down Siefring’s formula for
ιτ8pu, z ; v, ζq in terms of relative winding numbers in (4.3). Hutchings expresses the same
formula as follows. Writing u and v in holomorphic cylindrical coordinates ps, tq P Z˘ near
the punctures z and ζ respectively,2 we can fix some s0 " 0 and consider the restrictions of u
and v to t˘s0uˆS1 Ă Z˘; this defines a disjoint pair of (possibly multiply covered) oriented

loops in the positive or negative cylindrical end of xW . Projecting them to the 3-manifold
M˘ then gives disjoint oriented loops βz, βζ : S1 Ñ M˘ that live in an arbitrarily small
tubular neighborhood of γ. If we now use the trivialization τ to identify the neighorhood
of γ with S1 ˆ D, then βz and βζ become a pair of disjoint braids—strictly speaking,
they are in general “multiply covered braids,” but one can perturb to make each of them
embedded and thus view them as honest braids without changing any essential features of
this discussion. The linking number between these two braids,

ℓτ pβz, βζq P Z,

is defined as one half the signed number of crossings of strands of βz with strands of βζ ,
where the sign convention is that counterclockwise twists count positively. (As mentioned
in [Hut02, §3.1], this convention differs from much of the knot theory literature, but
it is used consistently in papers on ECH and we shall stick with it here as well.) The
precise relation between this linking number and Siefring’s relative asymptotic intersection
numbers is then given by

(C.17) ιτ8pu, z ; v, ζq “ ¯ℓτ pβz, βζq,
where the sign ¯ is opposite the signs ˘ of the two punctures.

2Recall that we denote Z` :“ r0,8q ˆ S1 and Z´ :“ p´8, 0s ˆ S1, where the convention is to use the
former near positive punctures and the latter near negative punctures.
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The relative adjunction formula in (4.7) also includes the term

ιτ8puq “
ÿ

z,ζPΓ˘, z‰ζ

ιτ8pu, z ; u, ζq `
ÿ

zPΓ˘

ιτ8pu, zq,

which is defined only when u is a simple curve; the contribution ιτ8pu, zq P Z for each
puncture z can only be nonzero when the orbit γz is multiply covered, as it is the count
of intersections in a neighborhood of z between u and a small perturbation of itself that is
pushed in the direction of the trivialization τ near infinity. Siefring’s formula for ιτ8pu, zq
in terms of winding numbers appears in (4.6), and its topological interpretation is (up to
a sign) as the writhe of the braid βz described in the previous paragraph,

wτpβzq P Z.

Here the fact that u is simple guarantees that it is embedded in a neighborhood of the
puncture z, thus the braid βz is automatically embedded, and its writhe is defined as the
signed number of crossings of strands, using the same sign convention mentioned above.
This is then related to ιτ8pu, zq by

(C.18) ιτ8pu, zq “ ¯wτpβzq.
What Hutchings in [Hut02,Hut14] calls the “total” writhe wτ puq P Z of a simple holo-
morphic curve u is defined by adding up the writhes at all positive punctures, plus linking
numbers for pairs of distinct punctures that have coinciding asymptotic orbits (up to mul-
tiplicity), and then subtracting all of the corresponding terms for the negative punctures.
This produces

wτ puq “ ´ιτ8puq,
thus the relative adjunction formula for a simple curve u : 9Σ Ñ xW in ECH language takes
the form

cτ puq “ χpuq ` Qτ puq ` wτ puq ´ 2δpuq,
where:

‚ cτ puq :“ cτ1pu˚TxW q is the relative first Chern number;

‚ χpuq :“ χp 9Σq is the Euler characteristic of the domain;
‚ Qτ puq :“ u ‚τ u is the relative self-intersection number;
‚ wτ puq is the total writhe as explained above;
‚ δpuq is the usual algebraic count of double points and critical points.

The reader can now check that this formula is equivalent to (4.7).
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for closed holomorphic curves, 89
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of a closed holomorphic curve, 88
of a punctured holomorphic curve, 94

Baire category theorem, 88

Baire set, see also comeager
biholomorphic, 18
binding of an open book, 71
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of a complex manifold, 15
of a symplectic manifold, 16

bordered Lefschetz fibration, 72
allowable, 76
of a symplectic filling, 77

braid
linking number, 155
writhe, 156

breaking contribution, 153
breaking orbit, 97
breaking orbits, 150
can hide intersections, 152–153

Cauchy-Riemann type operator, 100
complex linear, 100, 101, 110
of class Cm, 101

circle compactification of a punctured Riemann
surface, 38

comeager, 88
compactification of moduli spaces, 18, 89, 96,
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compatible almost complex structure, 13, 37,

142
completion of a symplectic cobordism, 36
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complex manifold, 13
complex structure
on a manifold, 13
on a vector bundle, 13
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cylindrical ends, 150

concave boundary, 33
Conley-Zehnder index, 50
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connected components of a nodal holomorphic
curve, 149

contact action functional, 44
contact form, 33
contact manifold, 33
planar, 77

contact structure, 33
on S1 ˆ S2, 35
on S3, 34
on lens spaces, 35
planar, 77
supported by an open book, 72

contact-type boundary, see also convex
boundary

convex boundary, 33
covering multiplicity
of a Reeb orbit, 59
of an asymptotic eigenfunction, 59, 146

critical order, 115, 116
critical points of a holomorphic curve, 27, 88
cylindrical coordinates on a punctured Riemann

surface, 37, 155
cylindrical ends
of a Riemann surface, 37
of an almost complex manifold, 37, 143

double points
hidden at infinity, 60
of a holomorphic curve, 27

elliptic orbit, 142
energy
of a closed holomorphic curve, 89
of a punctured holomorphic curve, 96

even Reeb orbit, see also parity of a Reeb orbit
exceptional sphere, 15
extension of a holomorphic building, 150
extremal winding, 64
extremal winding numbers of a Reeb orbit, 50,

142

fibration
Lefschetz, 12
symplectic, 12

Fredholm regular, 88–89, 95–96

generalized tangent-normal splitting, 116
generic, 89
Giroux form, 72
Gromov’s compactness theorem, 90–91

hidden at infinity
double points, 60
intersections, 58, 64
zeroes of a section, 52

Hofer energy, see also energy of a punctured
holomorphic curve

holomorphic building
breakings orbits of, 150
extension of, 150
in a concatenation, 150
levels, 96, 150
stable, 96, 150

holomorphic curve, 17
asymptotic eigenfunction at a puncture, 48
asymptotic representative at a puncture, 47
asymptotically cylindrical, 38, 143
critical order of a critical point, 115, 116
critical points of, 27, 88
decay rate at a puncture, 48
double points of, 27
energy of, 89, 96
generalized normal bundle of, 116
immersed points of, 27, 88
index of, 54, 87, 94
local singularity index at a point, 28, 136–140
multiply covered, 18, 87, 94–95, 135–136
nodal, 18–19, 89, 149
normal Chern number of, 29, 53, 145
regular, see also Fredholm regular
relative asymptotic eigenfunction of two
punctures, 48

relative decay rate of two punctures, 48
simple, 18, 87–88, 95
singularity index of, 28, 146
spectral covering number of, 59, 146
tangent space at a critical point, 115–118

holomorphic open book, 79
holomorphic vector bundle, 101, 110
horizontal boundary of a Lefschetz fibration, 72
hyperbolic orbit, 142

immersed points of a holomorphic curve, 27, 88
index
of a closed holomorphic curve, 87
of a punctured holomorphic curve, 54, 94

injectivity modulus, 137
intersection number
asymptotic contribution to, 64
homological, 25
local, see also local intersection index
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of asymptotically cylindrical maps (˚-pairing),
58, 64

intersections
hidden at infinity, 58, 64
hidden between levels of a building, 152–153
positivity of, 27, 133–135

irreducible components of a Lefschetz singular
fiber, 13

J-holomorphic curve, see also holomorphic curve

Lefschetz fibration, 12
allowable, 76
as filling of an open book, 77
bordered, 72
horizontal boundary of, 72
irreducible components of a singular fiber, 13
monodromy, 73–75
of a symplectic filling, 77
regular fiber of, 13
singular fiber of, 13, 89, 97
symplectic, 15
vanishing cycle, 74
vertical boundary of, 72

linking number of two braids, 155
Liouville form, 33
Liouville vector field, 32
local intersection index, 25
local singularity index, 28, 136–140

Micallef-White theorem, 114, 116
minimal symplectic manifold, 16
moduli space
compactification of, 18, 89, 96, 149
of closed holomorphic curves, 17
virtual dimension of, 87, 88, 94

monodromy, 73–75
Morse function, 42
Morse-Bott Reeb orbits, 142
multiply covered holomorphic curve, 18, 87,

94–95, 135–136
multiply covered Reeb orbit, 50

negative hyperbolic orbit, 142
negative punctures of a holomorphic curve, 37
nodal holomorphic curve, 18–19, 89
nodal points, 149
nodes of a holomorphic curve, 19, 89, 149
nondegenerate Reeb orbit, 45
Conley-Zehnder index of, 50

normal Chern number

as a count of zeroes, 54
of a closed holomorphic curve, 29
of a punctured holomorphic curve, 53, 145

odd Reeb orbit, see also parity of a Reeb orbit
open book decomposition, 71
binding of, 71
filled by a Lefschetz fibration, 77
holomorphic, 79
monodromy of, 73–75
pages of, 71
planar, 77
supporting a contact structure, 72

orbit cylinder, 37, 69, 81, 98

pages of an open book, 71
parity of a Reeb orbit, 50, 142
planar contact manifold, 77
planar open book, 77
positive punctures of a holomorphic curve, 37
positivity of intersections, 27, 133–135
asymptotic, 64

pseudoholomorphic curve, see also holomorphic
curve

Reeb orbit
asymptotic, 37
asymptotic operator of, 45, 142
breaking, 97, 150
Conley-Zehnder index of, 50
covering multiplicity of, 59
elliptic, 142
even/odd, 50
extremal winding numbers of, 50, 142
hyperbolic, 142
Morse-Bott, 142
multiply covered, 50
negative hyperbolic, 142
nondegenerate, 45
parity of, 50, 142
simply covered, 50
spectral covering number of, 59, 146

Reeb vector field
of a contact form, 36
of a stable Hamiltonian structure, 141

regular fiber of a Lefschetz fibration, 13
relative adjunction formula, 66, 156
relative asymptotic eigenfunction, 48
relative decay rate, 48
relative first Chern number, 52, 146
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relative homology class, 38
relative intersection number, 61, 144
Riemann surface, 17
circle compactification of, 38
punctured, 37

ruled surface, 12

second category, see also comeager
self-intersection number
homological, 15, 21, 28
of asymptotically cylindrical maps, 60, 68, 80,
145

relative, 66, 156
SFT compactness theorem, 96–98
similarity principle, 22–23, 109–114
asymptotic analogue, 46

simple holomorphic curve, 18, 87–88, 95
is locally injective, 135–136

simply covered Reeb orbit, 50
singular fiber of a Lefschetz fibration, 13, 89, 97
singularity index of a simple holomorphic curve,

28, 146
asymptotic contribution to, 68

Sobolev spaces, 45, 101, 102
somewhere injective, see also simple

holomorphic curve
spectral covering number, 59, 146
stability
of a holomorphic building, 98
of a nodal holomorphic curve, 90

stable Hamiltonian structure, 141
standard contact structure
on S1 ˆ S2, 35
on S3, 34
on lens spaces, 35

Stein filling, 76, 78
symplectic blowup, 16
symplectic cap, 34
symplectic cobordism, 33
symplectic completion, see also completion of a

symplectic cobordism
symplectic deformation equivalence, 34
symplectic fibration, 12
symplectic filling, 34
Lefschetz fibrations on, 77
Stein, 76, 78
weak, 78
Weinstein, 76, 78

symplectic form, 11

supported by a bordered Lefschetz fibration,
76

supported by a Lefschetz fibration, 14
symplectic Lefschetz fibration, 15
symplectic manifold, 11
minimal, 16

symplectic ruled surface, 12, 17
symplectic structure
on a manifold, 11
on a vector bundle, 13

symplectic submanifold, 11
symplectically immersed, 28, 137
symplectization of a contact manifold, 36
symplectomorphism, 12

tame almost complex structure, 13
tangent space of a holomorphic curve, 115–118
transversality
automatic, 89, 96
for holomorphic curves, see also Fredholm
regular

for intersections, 25
transverse, 25
trivial cylinder, see also orbit cylinder

unique continuation, 27, 88

vanishing cycle, 74
vertical boundary of a Lefschetz fibration, 72
virtual dimension, 87, 88, 94

weak symplectic filling, 78
Weinstein filling, 76, 78
writhe of a braid, 156

zeroes of a section
hidden at infinity, 52
positivity of, 22, 116
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