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ON NON-SEPARATING CONTACT HYPERSURFACES IN SYMPLECTIC4{MANIFOLDSPETER ALBERS, BARNEY BRAMHAM, AND CHRIS WENDLAbstrat. We show that ertain lasses of ontat 3{manifolds do not admit non-separatingontat type embeddings into any losed sympleti 4{manifolds, e.g. this is the ase for allontat manifolds that are (partially) planar or have Giroux torsion. The latter impliesthat manifolds with Giroux torsion do not admit ontat type embeddings into any losedsympleti 4{manifolds. Similarly, there are sympleti 4{manifolds that an admit smoothlyembedded non-separating hypersurfaes, but not of ontat type: we observe that this is thease for all sympleti ruled surfaes.1. Introdution1.1. Main results. Let (W;!) denote a losed sympleti manifold of dimension four. Alosed hypersurfae M � W is of ontat type if it is transverse to a Liouville vetor �eld,i.e. a smooth vetor �eld Y de�ned near M suh that LY ! = !. Then �Y ! is a ontat formon M , and we will denote the resulting ontat struture by � = ker �Y !; it is independentof Y up to isotopy. If M separates W into two omponents, then it is said to form a onvexboundary on the omponent where Y points outward, and a onave boundary on the otheromponent. By onstrutions due to Etnyre-Honda [EH02℄ and Eliashberg [Eli04℄, everyontat 3{manifold an our as the onave boundary of some ompat sympleti manifold.This is not true for onvex boundaries: for instane, Gromov [Gro85℄ and Eliashberg [Eli90℄showed that overtwisted ontat manifolds an never our as onvex boundaries, and a �nerobstrution omes from Giroux torsion [Gay06℄.In this paper, we address the question of whether a given ontat 3{manifold (M; �) an o-ur as a non-separating ontat hypersurfae in any losed sympleti manifold, and similarly,whether a given sympleti 4{manifold (W;!) admits non-separating ontat hypersurfaes.Observe that separating ontat hypersurfaes always exist in abundane, e.g. the boundariesof balls in Darboux neighborhoods. We will see in Example 1.2 that non-separating ontathypersurfaes sometimes exist, but there are restritions, as the following Theorem shows.Theorem 1. Suppose (M; �) is a losed ontat 3{manifold whih has any one of the followingproperties:(1) (M; �) has Giroux torsion(2) (M; �) is planar or partially planar (see De�nition 1.6 below)(3) (M; �) admits a sympleti ap ontaining a sympletially embedded sphere of non-negative self-intersetion numberThen every ontat type embedding of (M; �) into any losed sympleti 4{manifold is sepa-rating.2000 Mathematis Subjet Classi�ation. Primary 32Q65; Seondary 57R17.Key words and phrases. sympleti manifolds, ontat manifolds, pseudoholomorphi urves, separatinghypersurfaes. 1

2 PETER ALBERS, BARNEY BRAMHAM, AND CHRIS WENDLRemark 1.1. Theorem 1 admits an easy generalization as follows. We will say that (M; �)has any given property after ontat surgery if the property holds for some ontat manifold(M 0; �0) obtained from (M; �) by a (possibly trivial) sequene of ontat onneted sum op-erations and ontat (�1){surgeries. The signi�ane of these operations (see e.g. [Gei08℄)is that they imply the existene of a sympleti obordism from (M; �) to (M 0; �0): reallthat a sympleti obordism from (M�; ��) to (M+; �+) is in general a ompat sympletimanifold (W;!) with �W = (�M�)tM+, suh that there is a Liouville vetor �eld near �Wde�ning (M�; ��) and (M+; �+) as onave and onvex boundary omponents respetively.The speial ase where M� = ; is a onvex �lling of (M+; �+). If M+ = ; we instead get aonave �lling of (M�; ��), also known as a sympleti ap.It will follow from the more general Theorem 7 below that Theorem 1 also holds wheneverproperties (1) or (2) hold after ontat surgery. (For property (3) this statement is trivial.)The following example shows that non-separating ontat type hypersurfaes do exist ingeneral.Example 1.2 (Etnyre). Suppose (W0; !0) is a ompat sympleti manifold with a onvexboundary that has two onneted omponents. In this ase we say that (W0; !0) is a on-vex semi�lling of eah of its boundary omponents; the existene of suh objets was �rstestablished by MDu� [MD91℄. Produe a new sympleti manifold (W1; !1) with onvexboundary by attahing a sympleti 1{handle along a pair of 3{balls in di�erent omponentsof �W0. Now ap W1 with a onave �lling of �W1 as provided by [EH02℄: this produes alosed sympleti manifold (W;!), whih ontains both of the omponents of �W0 as non-separating ontat hypersurfaes (see Figure 1).

Figure 1. The onstrution from Example 1.2 of a sympleti manifold withnon-separating ontat hypersurfaes.The example demonstrates that (M; �) an our as a non-separating hypersurfae in somelosed sympleti manifold whenever it arises from a onvex �lling with disonneted bound-ary. There are, however, ontat manifolds that never arise in this way: MDu� [MD91℄showed that this is the ase for the tight 3{sphere, and the result was generalized by Etnyre[Etn04℄ to all planar ontat manifolds, i.e. those whih are supported by planar open books.The latter suggests that planar open books may provide an obstrution to non-separatingontat embeddings, and this is indeed true due to Theorem 1. As we'll see shortly, thereare also non-planar ontat manifolds (e.g. the standard ontat 3{torus) whih satisfy theassumptions of Theorem 1, and thus also the following orollary:Corollary 2. Given the assumptions of Theorem 1 (see also Remark 1.1), every onvexsemi�lling of (M; �) has onneted boundary.Atually one an use the same methods to give a slightly simpler proof of Corollary 2 whihis independent of the theorem; we'll do this in x5.
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ON NON-SEPARATING CONTACT HYPERSURFACES IN SYMPLECTIC 4{MANIFOLDS 3In the ase of Giroux torsion, a result of Gay [Gay06℄ shows that (M; �) does not admitany onvex �llings,1 thus Theorem 1 has the following stronger onsequene:Corollary 3. If (M; �) has Giroux torsion (possibly after ontat surgery), then it does notadmit a ontat embedding into any losed sympleti 4{manifold.Theorem 1 will follow from some more tehnial results stated in x2.2, whih also inludes amore general statement involving ontat hypersurfaes in a sympleti manifold with onvexboundary. The unifying idea an be summarized as follows. Whenever a non-separatinghypersurfae M � W exists, one an use it to onstrut a speial nonompat sympletimanifold (V; !) with onvex boundary M . We do this by �rst utting W open along M toprodue a sympleti obordism (V1; !) from a onave opy ofM to a onvex opy ofM , andthen removing the onave boundary by attahing an in�nite hain of opies of (V1; !) alongmathing onave and onvex boundaries; a piture of this onstrution appears as Figure 4in x5, where it is explained in detail. Now our assumptions on (W;!) or (M; �) guarantee theexistene of an embedded holomorphi urve in (V; !) with ertain properties: in partiular,we'll show in x4 that this urve belongs to a smooth and ompat 2{dimensional moduli spaeof urves that foliate (V; !). But this would imply that (V; !) is ompat, and thus yields aontradition.Remark 1.3. A ontat manifold (M; �) is said to be weakly �llable if it ours as theboundary of a ompat sympleti manifold (W;!) suh that !j� > 0 on �W . A fundamentalresult of Eliashberg [Eli90℄ and Gromov [Gro85℄ shows that overtwisted ontat manifoldsare never weakly �llable: the original proof is based on the existene of a so-alled Bishopfamily of pseudoholomorphi disks with boundary on an overtwisted disk in �W , and derivesa ontradition using Gromov ompatness (a omplete exposition may be found in [Zeh03℄).In the setting desribed above, one an adapt the Eliashberg-Gromov argument to show thatovertwisted ontat manifolds do not our as hypersurfaes of weak ontat type in any losedsympleti manifold. If we remove the word \weak", then this is also implied by Corollary 3sine overtwisted ontat manifolds have in�nite Giroux torsion.The third ondition in Theorem 1 is satis�ed by any ontat 3{manifold that has a on-tat embedding into the standard sympleti R4 : indeed, the latter an be identi�ed withC P 2 n C P 1 , and C P 1 is a sympletially embedded sphere with self-intersetion 1. As YashaEliashberg has pointed out to us, Theorem 1 in this ase also morally follows, via the in�nitehain onstrution skethed above, from Gromov's lassi�ation [Gro85℄ of sympleti mani-folds that are Eulidean at in�nity|one just has to be a little more areful in the nonompatsetting (f. Prop. 5.3). Natural examples are the unit otangent bundles of all losed surfaesthat admit Lagrangian embeddings into R4 , i.e. the torus, and the onneted sums of theKlein bottle with a positive number of oriented surfaes of positive, even genus. Furtherexamples of sympleti aps ontaining nonnegative sympleti spheres have appeared in thework of Ohta-Ono et al [OO05, BO℄ on ontat manifolds obtained from algebrai surfaesingularities.We now explain the notion of a partially planar ontat manifold, whih is due to the thirdauthor (see [Wenf℄). Reall that an open book deomposition for M onsists of the data(B; �) where B � M is an oriented link, and � : M n B ! S1 is a �bration for whih eah�ber ��1(point) is an embedded surfae whose losure inM has oriented boundary B. These1An alternative proof losely related to the arguments in this paper appears in [Wen℄.

4 PETER ALBERS, BARNEY BRAMHAM, AND CHRIS WENDL�bers are alled the pages of the open book (B; �), and B is alled the binding. We reall thefollowing important onept introdued by Giroux [Gir℄.De�nition 1.4. A ontat struture � on M is said to be supported by an open bookdeomposition (B; �) if it admits a ontat form � suh that the assoiated Reeb vetor �eldis positively transverse to the pages and is positively tangent to the link B.In partiular, the omponent irles of B are losed Reeb orbits for suh a ontat form �.These are referred to as the binding orbits.De�nition 1.5. A ontat manifold (M; �) is said to be planar if it admits a supporting openbook deomposition for whih eah page has genus zero.Giroux established that every ontat struture on a losed 3-manifold is supported by someopen book deomposition. Entyre showed in [Etn04℄ that all overtwisted ontat struturesare planar, though not all ontat strutures are.The notion of a planar ontat manifold an be generalized using the ontat �ber sum;the following is a speial ase of a onstrution originally due to Gromov [Gro86℄ and Geiges[Gei97℄ (see also [Gei08℄). For i = 1; 2, suppose (Mi; �i) are ontat manifolds with supportingopen book deompositions �i : Mi n Bi ! S1, and i � Bi are onneted omponents of thebindings. Eah i is a transverse knot, thus one an identify neighborhoods N (i) with solidtori via an orientation preserving map� : N (1) [N (2)! S1 � D ;thus de�ning oordinates (�; �; �), where � 2 S1 and (�; �) are polar oordinates on D (forsimpliity we shall take � 2 S1 = R=Z, thus the atual angle is this times 2�). We will assumewithout loss of generality (and perhaps after a small isotopy of the open books) that theseoordinates have the following properties:(1) The ontat struture �i is the kernel of �i = f(�) d� + g(�) d� for some pair offuntions f and g with f(0) > 0 and g(0) = 0.(2) The pages of �i have the form f� = onstg near i.Note that the ontat ondition requires f(�)g0(�) � f 0(�)g(�) > 0 for � > 0 and g00(0) > 0.Using these hoies, a new ontat manifold(M1; �1)#�(M2; �2)an be de�ned in two steps:(i) Modify (Mi; �i) by \blowing up" i to produe a ontat manifold (Mi; ^�i) with pre-Lagrangian torus boundary: we do this by removing a solid torus neighborhood f� ��g and replaing it with S1� [0; �℄�S1 by the natural identi�ation of the oordinates(�; �; �) 2 S1 � [0; �℄ � S1. We also modify �i for � 2 [0; �) to de�ne a smoothontat form near �Mi by making C0{small hanges to f and g so that they beomerestritions of even and odd funtions respetively, with g0(0) > 0. In terms of theReeb vetor �eld de�ned by �i, the result of this hange is to replae the single Reeborbit originally at f� = 0g by a torus S1 � S1 foliated by Reeb orbits of the formS1 � fptg.(ii) Attah (M1; ^�1) to (M2; ^�2) along their boundaries as follows: �rst, de�ne new oordi-nates (^�; ^�; ^�) 2 S1�R�S1 near �Mi so that they are the same as the old oordinates



ON NON-SEPARATING CONTACT HYPERSURFACES IN SYMPLECTIC 4{MANIFOLDS 5on M1, but on M2 we set (^�; ^�; ^�) := (�;��;��);so ^� � 0 near �M2. We now attah M1 to M2 via a di�eomorphism suh that(^�; ^�; ^�) 2 S1 � [��; �℄ � S1 beome well de�ned oordinates after attahing. Ourassumptions on the modi�ed funtions f and g imply also that f(^�) d^�+g(^�) d^� givesa smooth ontat form on M1#�M2 whih mathes the original outside the regionf^� 2 (��; �)g.In a straightforward way, one an generalize this de�nition to a sum of two or more openbooks on ontat manifolds (M1; �1); : : : ; (MN ; �N ) along multiple binding omponents: theneah of these omponents beomes a boundary omponent in its respetive \blown up" man-ifold Mi, and it beomes a speial pre-Lagrangian torus in the sum#�(Mi; �i):De�nition 1.6. We say that (M; �) is partially planar if it an be onstruted in the abovemanner as a ontat �ber sum along binding orbits of open book deompositions, at least oneof whih is planar.Obviously, every planar ontat manifold is also partially planar. Sine there exist ontat3{manifolds that admit semi�llings with disonneted boundary, a onsequene of Corollary 2is now the following:Corollary 4. Not every ontat manifold is partially planar.Example 1.7. MDu� showed in [MD91℄ that for any losed oriented surfae � of genus atleast two, if ST �� denotes the unit otangent bundle, then there is a sympleti struture on[0; 1℄ � ST �� whih is onvex on the boundary and indues the anonial ontat strutureat f1g � ST ��. More generally, Geiges [Gei95℄ onstruted a lass of losed 3{manifolds Mwhih admit pairs of ontat forms �� suh that�+ ^ d�+ = ��� ^ d�� > 0 and �+ ^ d�� = �� ^ d�+ = 0:In this situation, [0; 1℄�M admits a sympleti struture suh that both boundary omponentsare onvex, giving a onvex �lling of (M; ker �+) t (�M; ker ��). It follows from Corollary 2that none of these ontat manifolds are partially planar. Moreover by Example 1.2, eah ofthem admits a non-separating ontat type embedding into some losed sympleti manifold.The next example shows that there are also partially planar ontat manifolds that are notplanar.Example 1.8. The standard ontat S1 � S2 is planar: it admits a supporting open bookdeomposition with two binding orbits onneted by ylindrial pages. If we take two opiesof this, pair up both of their respetive binding omponents and onstrut the �ber sum,we obtain the standard ontat T 3, whih is not planar due to a result of Etnyre [Etn04℄.In fat, eah of the tight ontat tori (T 3; �n), where �n = ker [os(2�n�) dx+ sin(2�n�) dy℄in oordinates (x; y; �) 2 S1 � S1 � S1, an be obtained as a �ber sum of 2n opies of thestandard S1�S2; see Figure 2. By a result of Kanda [Kan97℄, this inludes every tight ontatstruture on T 3.By the above example, every ontat struture on T 3 is partially planar. In fat, otherthan the standard torus (T 3; �1), all ontat 3{tori also have Giroux torsion, thus �1 is the

6 PETER ALBERS, BARNEY BRAMHAM, AND CHRIS WENDL

Figure 2. At left, we see four opies of the tight S1�S2, represented by openbooks with two binding omponents and ylindrial pages. For eah dottedoval surrounding two binding omponents, we onstrut the ontat �ber sumto produe the manifold at right, ontaining four speial pre-Lagrangian tori(the blak line segments) that separate regions foliated by ylinders. The resultis the tight 3{torus (T 3; �2). In general, one an onstrut (T 3; �n) from 2nopies of the tight S1 � S2.only onvex �llable ontat struture on T 3. Theorem 1 therefore implies that every ontattype embedding of T 3 into a losed sympleti 4{manifold separates (and the indued ontatstruture must be �1). This result is not true for embeddings of weak ontat type: in fatall of the tight tori (T 3; �n) admit weak sympleti semi�llings with disonneted boundary[Etn℄, and thus by the onstrution in Example 1.2, they also admit non-separating weaklyontat type embeddings.Reall however that if (W;!) is a weak �lling of (M; �) and M is a homology 3{sphere,then ! an always be deformed in a ollar neighborhood of �W to produe a onvex �lling of(M; �); see for instane [Gei08, Lemma 6.5.5℄. Thus our results have orresponding versionsfor weakly ontat hypersurfaes that are homology 3{spheres. For example, sine the onlytight ontat struture on S3 is planar, every weakly ontat type embedding of S3 into alosed sympleti 4{manifold must separate.Here is a more general example that also implies the observation made above about the3{torus. Let � = �+ [� ��denote any losed oriented surfae obtained as the union of two nonempty surfaes withboundary �� along a multiurve � � �. By results of Giroux [Gir01℄ and Honda [Hon00℄,the manifold M� := S1 � � admits a unique (up to isotopy) S1{invariant ontat struture�� whih makes � the dividing set on fonstg��. We laim that (M�; ��) is partially planarwhenever there exists a onneted omponent of � n � having genus zero. Indeed, for anyonneted omponent �0 � �n�, the losure of S1��0 may be viewed as an open book withpage �0 and trivial monodromy, blown up at all its binding irles; the entirety of (M�; ��)an thus be obtained by attahing these blown up open books. (The tight 3{tori arise fromthe ase where � �= T 2 and � is a union of parallel urves that are primitive in H1(T 2).)



ON NON-SEPARATING CONTACT HYPERSURFACES IN SYMPLECTIC 4{MANIFOLDS 7Moreover, using Etnyre's obstrution [Etn04℄ it is easy to onstrut many examples (M�; ��)whih are partially planar (as just explained) but not planar. Theorem 1 now implies:Corollary 5. If �n� has a onneted omponent of genus zero, then the S1{invariant ontatmanifold (S1 ��; ��) does not admit any non-separating ontat type embeddings into losedsympleti 4{manifolds.Finally, the following demonstrates that in some settings where non-separating hypersur-faes an be embedded smoothly, they an never be ontat type. In ontrast to Theorem 1,here the assumptions are on the ambient sympleti 4-manifold and not the ontat manifold.Theorem 6. If the losed and onneted sympleti 4-manifold (W;!) ontains a symple-tially embedded sphere S � W with self-intersetion number S � S � 0, then every losedontat type hypersurfae in W is separating.The reason for this is losely related to MDu�'s results [MD90℄, whih imply that (W;!)in this situation is always rational or ruled (up to sympleti blowup). In fat, the ase whereS � S > 0 follows immediately from [MD90℄, whih shows that W is then a blowup of eitherS2�S2 or C P 2 and thus simply onneted, so it does not admit non-separating hypersurfaesat all (ontat or otherwise). The ase S � S = 0 is more interesting: the key fat here isthat one an hoose a ompatible almost omplex struture J for whih any given ontathypersurfaeM �W is J{onvex, andW is foliated by a family of embedded J{holomorphispheres (possibly inluding some isolated nodal spheres unless (W;!) is minimal). If M doesnot separate, then there exists a onneted in�nite over (fW; ~J) of (W;J), onstruted bygluing together in�nitely many opies of W n M in a sequene. Now the J{holomorphispheres inW lift to fW and form a foliation, whih must inlude a J{holomorphi sphere thattouhes a lift of M tangentially from below, violating J{onvexity. That's a quik sketh ofthe proof|we'll give an alternative proof in x5 that �ts into a usefully generalized ontext anddoesn't assume the results of [MD90℄. There are obvious examples of smoothly embeddednon-separating hypersurfaes in ruled surfaes, e.g. ` � S2 � � � S2, where � is any losedoriented surfae of positive genus and ` � � is a non-separating losed urve. It follows thata hypersurfae isotopi to this one is never ontat type.1.2. Open questions. Let �(3) denote the olletion of losed 3{manifolds with positive,ooriented ontat strutures, and onsider the inlusions�nonsep(3) ( �embed(3) ( �(3);where �embed(3) denotes all (M; �) 2 �(3) that admit a ontat type embedding into somelosed sympleti manifold, and �nonsep(3) denotes those that admit a non-separating embed-ding. The results stated in x1.1 imply that both inlusions are proper.Observe that if (M; �) is onvex �llable then it is also in �embed(3), sine a �lling analways be apped to produe a losed sympleti manifold. Conversely, if (M; �) admits aseparating ontat type embedding, then it is �llable. While the same is not stritly truefor a non-separating embedding, the onstrution depited in Figure 4 of x5 an be viewedas a �lling that is nonompat but geometrially bounded, whih makes it a good setting forJ{holomorphi urves. In this ontext, any �lling obstrution that involves J{holomorphiurves an also serve as an obstrution to non-separating ontat embeddings (f. Corollary 3),thus implying that (M; �) 62 �embed(3). This motivates the onjeture that, in fat, �embed(3)is the same as the set of onvex �llable ontat 3{manifolds.

8 PETER ALBERS, BARNEY BRAMHAM, AND CHRIS WENDLConjeture 1. If (M; �) is not onvex �llable, then it admits no ontat type embeddingsinto any losed sympleti manifold.Equivalently, this would mean there is no ontat 3{manifold that admits only non-separating ontat type embeddings.A more ambitious onjeture would arise from Example 1.2, whih is the only method weare yet aware of for onstruting non-separating ontat embeddings: (M; �) 2 �nonsep(3)whenever it admits a onvex semi�lling with disonneted boundary. The latter lass ofontat manifolds is evidently somewhat speial, and one wonders whether it might be equalto �nonsep(3).Question 1. Is there a ontat 3{manifold that admits a non-separating ontat type em-bedding but not a onvex semi�lling with disonneted boundary?Finally, observe that while Theorem 6 rules out the existene of a non-separating ontathypersurfae (M; �) � (W;!) if (W;!) is rational or ruled, it still allows the possibility that(M; �) 2 �nonsep(3) but admits a separating embedding into (W;!). There is some reasonto suspet that this ould still never happen. There are indeed ases where the existeneof a ontat embedding of (M; �) into some partiular sympleti manifold implies (M; �) 62�nonsep(3), e.g. this is true if (M; �) ,! (R4 ; !0). Moreover, the simplest known example of amanifold in �nonsep(3), the unit otangent bundle of a higher genus surfae, has been shownby Welshinger [Wel07℄ to admit no ontat type embeddings into rational or ruled sympleti4{manifolds.Question 2. Is there a ontat 3{manifold that admits a ontat type embedding into somerational/ruled sympleti 4{manifold and also admits a non-separating ontat type embed-ding into some other losed sympleti manifold?2. Pseudoholomorphi urves in sympletizations2.1. Tehnial bakground. In this setion we ollet a number of important tehnialde�nitions. A positive ontat form on a 3{manifold M is a 1{form � for whih � ^ d� > 0.The 2-plane distribution � := ker � is then a ontat struture. The equations �X�d� = 0 and�(X�) = 1 uniquely determine a vetor �eld X�, alled the Reeb vetor �eld assoiated to �.Sine X� is everywhere transverse to �, one obtains a splitting TM = RX� � �. Moreover,(�; d�j�) is a sympleti vetor bundle, and the ow of X� preserves �, hene also (�; d�j�).A periodi Reeb orbit of period T > 0 for a ontat form � is a smooth map  : R=TZ!Msatisfying _(t) = X�((t)). We identify all possible reparametrizations t 7! (t + onst). AReeb orbit is alled simply overed if it has degree 1 onto its image, i.e. it is an embedding.If  overs a simply overed orbit with period � > 0, we all � the minimal period of .Sine the Reeb ow preserves the sympleti vetor bundle (�; d�j�), linearizing about aperiodi orbit  determines a sympleti linear map d�T (p) : �p ! �p for eah p in the imageof . Then  is said to be nondegenerate if 1 is not an eigenvalue of this map; this onditionis independent of the point p. More generally, an orbit  of period T is Morse-Bott if it liesin a submanifold N �M foliated by T{periodi orbits, suh that the 1{eigenspae of d�T (p)is preisely TpN . We then all N a Morse-Bott submanifold. A ontat form � is said to benondegenerate if all of its periodi Reeb orbits are nondegenerate, and Morse-Bott if everyperiodi orbit belongs to a Morse-Bott submanifold.



ON NON-SEPARATING CONTACT HYPERSURFACES IN SYMPLECTIC 4{MANIFOLDS 9Given a sympleti trivialization � of (�; d�) along a T{periodi orbit , the linearizedow d�t(p) for t 2 [0; T ℄ de�nes a ontinuous family of sympleti matries, whih has a wellde�ned Conley-Zehnder index if  is nondegenerate: we denote this index by ��CZ() 2 Z.It is onvenient also to express this in terms of asymptoti operators: assoiated to anyT{periodi Reeb orbit  is a linear operator A : �(x��) ! �(x��), where x : R=Z ! Mis the reparametrization x(t) := (T t). If r is a symmetri onnetion on TM and J is aomplex struture on � !M ompatible with the sympleti struture d�j�, then A an bede�ned on smooth setions by A� = �J(rt� � Tr�X�):This expression is independent of the hoie of onnetion. Choosing a unitary trivialization� of x��, A is identi�ed with the operatorC1(S1;R2)! C1(S1;R2 ) : � 7! �J0 ddt� � S � �; (2.1)where S(t) is some smooth loop of symmetri 2{by{2 matries. Thus the equation A� = 0de�nes a linear Hamiltonian ow, and one an show that the resulting family of sympletimatries mathes the family obtained from d�t(p). It follows that A has trivial kernel if andonly if  is nondegenerate, and we an use the linear Hamiltonian ow determined by (2.1)to de�ne an integer ��CZ(A), whih mathes ��CZ(). The advantage of this de�nition is thatit does not referene the orbit diretly, but makes sense for any operator that takes the formof (2.1) in the trivialization: in partiular we an de�ne ��CZ(A � ) 2 Z whenever  2 R isnot an eigenvalue of A , even if  is degenerate. For this we will use the shorthand notation��CZ( � ) := ��CZ(A � ):We now reall some of the important spetral properties of asymptoti operators. For moredetails and proofs we refer to [HWZ95℄.A extends to an unbounded self-adjoint operator on the omplexi�ed Hilbert spae L2(x��);its spetrum �(A) onsists of real eigenvalues of multipliity at most 2 that aumulateonly at in�nity. Generalizing the statement above about nondegeneray, if  belongs to aMorse-Bott submanifold of dimension n 2 f1; 2; 3g, then the 0{eigenspae of A is (n � 1){dimensional.Geometri properties of the eigenspaes are losely related to the Conley-Zehnder index.Indeed, any eigenfuntion � of A has a well de�ned winding number wind�(�) 2 Z relativeto the trivialization, whih is independent of the hoie of � in its eigenspae. Thus we mayspeak of the winding number wind�(�) 2 Z for eah eigenvalue � 2 �(A), and it turns outthat the map �(A) ! Z : � 7! wind�(�) is non-dereasing and attains every value exatlytwie (ounting multipliity). The following integers���() := maxfwind�(�) j � < 0 is an eigenvalue of Ag��+() := minfwind�(�) j � > 0 is an eigenvalue of Agare therefore determined by the eigenfuntions with eigenvalues losest to 0 that are negativeand positive respetively. The number p() := ��+() � ���() is alled the parity of ; it isindependent of � and neessarily equals 0 or 1 if  is nondegenerate. More generally, we anreplae A by A �  for some  2 R and similarly de�ne ���( � ) and p( � ); then if 62 �(A), a result in [HWZ95℄ implies the relation��CZ( � ) = 2���( � ) + p( � ) = 2��+( � )� p( � ): (2.2)

10 PETER ALBERS, BARNEY BRAMHAM, AND CHRIS WENDLObserve that every Morse-Bott submanifold of dimension 2 admits a nonzero vetor �eldand is thus either a torus or a Klein bottle. The following haraterization of Morse-Bott toriis a simple onsequene of the spetral properties of A (f. [Wenb, Prop. 4.1℄).Proposition 2.1. Suppose  is a Morse-Bott periodi orbit of X� belonging to a Morse-Bottsubmanifold N � M di�eomorphi to T 2. Then the Morse-Bott property is satis�ed for allovers of all orbits in N , and they all have the same minimal period.We will also need a relative version of the standard generiity result for nondegenerateontat forms.Lemma 2.2. Suppose N � M is a union of 2{tori whih are Morse-Bott submanifolds forsome ontat form �0. Then for any T0 > 0, there exists an arbitrarily small perturbation �of �0 suh that � = �0 on a neighborhood of N and every periodi orbit of X� with periodless than T0 is Morse-Bott.Proof. Sine all orbits in N are Morse-Bott (inluding all multiple overs, due to Prop. 2.1),for any T0 > 0 we an �nd an open neighborhood U of N suh that U nN ontains no periodiorbits with period less than T0. By Theorem 13 in the appendix, one an then �nd a generismall perturbation of �0 with support in M n U so that all orbits passing through M n U arenondegenerate. �We now reall the basi notions of holomorphi urves in sympletizations and their asymp-toti properties. The sympletization of a ontat manifold (M; � = ker�) is the produt spaeR �M equipped with the exat sympleti form d(ea�), where a : R �M ! R refers to theR oordinate. An almost omplex struture J on the sympletization is said to be admissibleif it is R{invariant, restrits to the sympleti vetor bundle (�; d�) as a ompatible omplexstruture, and satis�es J�a = X�. Any admissible J tames the sympleti form d(ea�), andmore generally tames every sympleti form d('�) where ' : R ! (0;1) is smooth with'0 > 0.A pseudoholomorphi (or J{holomorphi or simply holomorphi) urve from a punturedRiemann surfae ( _�; j), into an almost omplex manifold (W;J) is a solution u : _� ! W tothe nonlinear Cauhy-Riemann equation Tu Æ j = J(u) Æ Tu. Here we take _� := � n � forsome �nite set of points � � �, where (�; j) is a losed onneted Riemann surfae.For the rest of this setion, let us onsider only the ase where the target is the sympleti-zation of (M;�), and J is an admissible almost omplex struture on R �M . The simplestase of a puntured J{holomorphi urve in this setting is the so-alled trivial ylinderu : S2 n f0;1g �= R � S1 ! R �M : (s; t) 7! (Ts; (T t));where T > 0 and  is any T{periodi Reeb orbit. Following [Hof93,BEH+03℄, the energy ofa J{holomorphi urve u : _� ! R �M an be de�ned as follows. Fix any onstant C > 0,and let E(u) := sup'2T Z _� u�d('�) (2.3)where T is the set of smooth maps ' : R ! (0; C) with '0 > 0. Sine J is ompatible withd('�) for all ' 2 T , the integrand in (2.3) is always nonnegative, thus u is onstant if andonly if its energy vanishes. Observe that the integrand of R _� u�d� is also nonnegative, andthis integral is �nite if u has �nite energy: it vanishes identially if and only if u is a branhedover of a trivial ylinder.



ON NON-SEPARATING CONTACT HYPERSURFACES IN SYMPLECTIC 4{MANIFOLDS 11De�nition 2.3. We will say that u : _� ! R �M is a �nite energy J{holomorphi urve ifit is proper and E(u) <1.Note that properness only fails when there exist puntures having neighborhoods whihare mapped into a ompat set, in whih ase these puntures an be removed by Gromov'sremovable singularity theorem. Sine d('�) is exat, Stokes' theorem implies that not allpuntures are removable unless u is onstant.Let us reall now the behaviour of a �nite energy J{holomorphi urve u : _�! R�M in theneighborhood of a punture. Eah punture z 2 � has a neighborhood on whih the R{value ofu tends to +1 or �1, and we say that z is a positive/negative punture respetively. Denotethe resulting partition into positive and negative puntures by � = �+ [ ��. Restriting toa neighborhood of a punture, we obtain a urve whose domain is the puntured losed dis,whih is biholomorphi to both Z+ := [0;1)�S1 and Z� := (�1; 0℄�S1 with the standardomplex struture. It is onvenient to hoose the domain of the restrited urve to be Z+ orZ� for z 2 �+ or z 2 �� respetively, and we will write u : Z� ! R �M . It was shown byHofer in [Hof93℄ that for any sequene jskj ! 1, there exists a subsequene suh that u(sk; �)onverges in C1(S1;M) to (T �), where  is a T{periodi Reeb orbit for some T > 0. Wesay in this ase that u is asymptoti to , and  is an asymptoti orbit of u.In the following statement, we hoose any R{invariant onnetion on R �M to de�ne theexponential map, and use the term asymptotially trivial oordinates to refer to a di�eomor-phism (�; �) : Z� ! Z� suh that �(s; t) � s and �(s; t) � t approah onstants as jsj ! 1and their derivatives of all orders deay to zero.Theorem ([HWZ96a,HWZ96b,Mor03℄). Suppose u : Z� ! R �M has �nite energy and isasymptoti to a Morse-Bott Reeb orbit  of period T > 0. Then there exist asymptotiallytrivial oordinates (�; �) suh that for suÆiently large j�j, either u(�; �) = (T�; (T�)) oru(�; �) = exp(T�;(T�)) [e��(e�(�) + r(�; �))℄ ; (2.4)where e� is an eigenfuntion of A with eigenvalue � 2 �(A) suh that �� < 0, and the\remainder" term r(�; �) 2 �(T�) deays to zero uniformly with all derivatives as j�j ! 1.De�nition 2.4. When (2.4) holds, we all e� the asymptoti eigenfuntion of u at thepunture, and say that u has transversal onvergene rate j�j. In the ase where u(�; �) =(T�; (T�)), we de�ne the asymptoti eigenfuntion to be 0 and the transversal onvergenerate to be 1.Observe that the asymptoti eigenfuntion e� is determined uniquely one a parametriza-tion of  is �xed. We know also from the monotoniity of winding numbers that wind�(e�) ����() if the punture is positive, and wind�(e�) � ��+() if it is negative.Let �� : TM ! � denote the natural projetion with respet to the splitting TM = RX���and suppose u = (uR; uM ) : _� ! R �M is a �nite energy J{holomorphi urve. Then theomposition �� Æ TuM de�nes a setion of the bundle of omplex linear homomorphisms(T _�; j) ! (u��; J). As shown in [HWZ95℄, this setion satis�es a linear Cauhy-Riemanntype equation, and thus is either trivial or has a disrete set of zeros, all of positive order.The former holds if and only if any asymptoti eigenfuntion of u vanishes, in whih asethey all do: then R _� u�d� = 0 and u is a branhed over of a trivial ylinder. Otherwise, (2.4)implies that �� Æ TuM has �nitely many zeros, and we denote the algebrai ount of these bywind�(u) 2 Z:Clearly wind�(u) � 0, with equality if and only if uM : _�!M is an immersion.

12 PETER ALBERS, BARNEY BRAMHAM, AND CHRIS WENDL2.2. Property (?) and the main results. We now use holomorphi urves to de�ne twotehnial onditions on ontat manifolds whih imply the results stated in x1. Property (?)and its weak version, introdued below, will serve as obstrutions to the existene of non-separating ontat embeddings. They are implied by eah of the ontat topologial assump-tions mentioned in Theorem 1, and in fat are more general (see also [Wenf℄).De�nition 2.5. A losed three-dimensional ontat manifold (M; �) satis�es property (?) ifthere exists a ontat form � with ker � = � and an admissible R{invariant almost omplexstruture J on the sympletization R � M , whih admits a �nite energy J{holomorphipuntured sphere u = (uR; uM ) : _� = S2 n fz1; : : : ; zNg ! R �Mwith the following properties:(1) uM is an embedding, and the losure of uM ( _�) � M is an embedded surfae whoseoriented boundary is a union of Reeb orbits, alled the \asymptoti orbits" of u.(2) Eah asymptoti orbit of u is nondegenerate or Morse-Bott.(3) If T1; : : : ; TN are the periods of the asymptoti orbits of u, then every Reeb orbit notin the same Morse-Bott submanifold with one of these has period stritly greater thanT1 + : : : + TN .(4) u has no asymptoti orbit that is nondegenerate with Conley-Zehnder index zero,relative to the natural trivialization determined by the image of uM near the punture.(5) If any asymptoti orbit of u belongs to a 2{dimensional Morse-Bott manifold N �Mdisjoint from uM ( _�), then N is a torus and ontains no other asymptoti orbits of u.Remarks.� The fat that Reeb orbits omprise the oriented boundary of uM ( _�) implies that everypunture of u is positive. Moreover, eah punture is asymptoti to a distint Reeborbit, whih is simply overed.� The asymptoti formula (2.4) implies that on eah ylindrial end of _�, uM does notinterset the orresponding asymptoti orbit, thus it de�nes a natural trivializationof � along this orbit. One an then show (f. (2.2)) that relative to this trivialization,the orbit always has nonnegative Conley-Zehnder index if it is nondegenerate|thusour de�nition requires this index to be anything stritly larger than the minimumpossible value.De�nition 2.6. We say that a losed three-dimensional ontat manifold (M; �) satis�esweak property (?) if there is a sympleti obordism (W;!) from (M; �) to a ontat manifold(M 0; �0), suh that either (W;!) ontains a sympletially embedded sphere of nonnegativeself-intersetion number or (M 0; �0) satis�es property (?).For example, (M; �) satis�es weak property (?) if it admits a sympleti ap ontaining anonnegative sympleti sphere, or if it an be made to satisfy property (?) after a sequeneof ontat (�1){surgeries or onneted sum operations. Obviously property (?) implies weakproperty (?), and it's plausible that the onverse may also be true, though this is presumablyhard to prove.We an now state some more tehnial results that imply Theorem 1. These will be provedin x5, using the mahinery of x4.Theorem 7. Let (W;!) be a losed and onneted sympleti 4-manifold whih ontains alosed ontat type hypersurfae M �W satisfying weak property (?). Then M separates W .



ON NON-SEPARATING CONTACT HYPERSURFACES IN SYMPLECTIC 4{MANIFOLDS 13Theorem 8. Let (W;!) be a ompat and onneted sympleti 4-manifold with onvex bound-ary ontaining a onneted omponent M � �W that satis�es weak property (?). Then �Wis onneted.Theorem 9. Let (W;!) be a ompat and onneted 4-manifold with onvex boundary (M; �)satisfying weak property (?). Then any losed ontat type hypersurfae H in W nM separatesW into a onvex �lling of H and a sympleti obordism from H to M . In partiular, H alsosatis�es the weak (?) property.Remark 2.7. A ompat onneted sympleti manifold with onvex boundary an neverontain a sympleti sphere of nonnegative self-intersetion. This follows easily from thearguments we will use to prove the above results: otherwise one would �nd a family ofembedded holomorphi spheres foliating the positive end of the sympletization of the onvexboundary, and thus violating the maximum priniple.Remark 2.8. Note that property (?) depends only on the ontat struture: we do notassume in any of these theorems that the ontat form indued on M by a Liouville vetor�eld is the same one whih appears in De�nition 2.5.We will show in x3 that any ontat manifold (M; �) with Giroux torsion satis�es Prop-erty (?). It turns out that this is also true for a ontat �ber sum of open books (M; �) =#�(Mi; �i) whenever any of the summands (Mi; �i) is planar. This follows from an importantrelationship between open books and holomorphi urves: namely, it is shown in [Abb,Wend℄that if the open book on (Mi; �i) is planar, one an take its pages to be projeted imagesof embedded index 2 holomorphi urves. A minor variation on this onstrution in [Wene℄extends it to the blown up manifold (Mi; ^�i): the di�erene here is that eah holomorphi pageis asymptoti to a di�erent orbit in a Morse-Bott family foliating the boundary. Moreover,one an easily arrange the ontat form in this onstrution so that all the asymptoti orbitsare either ellipti or Morse-Bott and have muh smaller period than any other Reeb orbitin #�(Mi; �i). It follows that #�(Mi; �i) satis�es property (?) if any of its onstituent openbooks is planar. 3. Giroux torsionFollowing a onstrution in ([Wen℄) but being more areful about periods, we now establishthe following.Proposition 3.1. Let (M; �) be a losed ontat manifold having Giroux torsion. Then (M; �)satis�es property (?).Proof. By de�nition, Giroux torsion means that (M; �) ontains a subset T that an beidenti�ed with a thikened torus S1 � S1 � [0; 1℄, on whih � has the form� = ker [os(2��)dx+ sin(2��)dy℄ (3.1)in oordinates (x; y; �) 2 S1 � S1 � [0; 1℄. Let us assume � = ker � for some ontat form �that is Morse-Bott outside of T , and in T has the form � = f(�) dx + g(�) dy for smoothfuntions f; g : [0; 1℄! R with(�) := (f(�); g(�)) = h(�)e2�i� 2 R2 ;where h(�) > 0 and h(�) = 1 for � near 0 and 1. The path  is thus losed and bounds astar-shaped region in R2 , and we will show that � has the desired properties if  bounds asuitably oblong oval.

14 PETER ALBERS, BARNEY BRAMHAM, AND CHRIS WENDLThe Reeb vetor �eld of � on T is given byX� = 1D(�)(g0(�)�x � f 0(�)�y); (3.2)where D(�) := f(�)g0(�)�f 0(�)g(�) > 0. Sine this has no �� omponent, eah torus N(�0) :=f(x; y; �0) j (x; y) 2 S1�S1g � T is invariant under the Reeb ow. Moreover, the Reeb owon eah N(�) is linear and has losed orbits if and only if dx(X�)=dy(X�) 2 Q [ f1g. From(3.2), this ratio is �g0(�)=f 0(�) = � slope(0(�)), so N(�) has losed orbits preisely whenslope(0(�)) is rational or in�nite. In this ase every orbit in N(�) is losed and representsthe same lass in H1(N(�)) = Z2, whih we will denote by a pair of integers (p(�); q(�)) withgd(jp(�)j; jq(�)j) = 1 and p(�)q(�) = � slope(0(�)) 2 Q [ f1g: (3.3)Sine d� vanishes on N(�), all losed simply overed orbits in N(�) have the same period,whih we will denote by T (�) > 0. If � : R=Z! N(�) parametrizes suh an orbit, we omputeT (�) = Z 10 ��� = p(�)f(�) + q(�)g(�): (3.4)Lemma 3.2. Fix � > 0 small and assume that in addition to the above onditions, (�) =h(�)e2�i� bounds a onvex set symmetri about both axes, h(1=4) = h(3=4) = � and 0(�)and 00(�) are always linearly independent. Then:(1) � is Morse-Bott.(2) X� = 1��y on N(1=4) and �1��y on N(3=4).(3) T (1=4) = T (3=4) = �, and T (�) > 1=4 for all other � at whih N(�) has losed orbits.Proof. It follows by straightforward omputation from the assumption that 0(�) and 00(�)are linearly independent that eah N(�) with losed orbits is a Morse-Bott submanifold. Theseond laim follows immediately from (3.2) sine symmetry requires g0(1=4) = g0(3=4) = 0,and it is then lear that T (1=4) = T (3=4) = �.To show that all other values of � have T (�) > 1=4, observe �rst that by symmetry, wean always assume g0 and �f 0 have the same sign as f and g respetively. Thus sign(p) =sign(dx(X�)) = sign(g0) = sign(f) and sign(q) = sign(dy(X�)) = sign(�f 0) = sign(g), soformula (3.4) beomes T (�) = jp(�)jjf(�)j+ jq(�)jjg(�)j: (3.5)Let � denote the diamond shaped region in the xy{plane for whih jxj + jyj � 1=2 (seeFigure 3). We deal separately with two ases.Case (�) 2 �: In this region, outside of the speial values � = 1=4; 3=4 we have 0 <j slope(0(�))j < 2�, and by onvexity, jg(�)j > �=2. With the slope nonzero, it follows from(3.3) that both p and q are nonzero: in partiular jpj � 1. Then from the previous inequality,jqj = jqjjpj jpj = 1j slope(0(�))j jpj > 12� jpj � 12� ;and using (3.5), T (�) � jq(�)jjg(�)j > 12� �2 = 1=4:Case (�) =2 �: After verifying expliitly that T (0) = T (1) = 1, we an exlude these twoases and assume one more that both p(�) and q(�) are nonzero. Then (3.5) givesT (�) � jf(�)j+ jg(�)j > 1=2
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Figure 3. The urve  and (shaded) region � in Lemma 3.2.by the de�nition of �. �Using the lemma, we an arrange � in T without hanging it in M n T so that T (1=4) =T (3=4) = � is less than half the period of every other periodi orbit in M . Now opyingthe onstrution in [Wen, Example 2.11℄, we onstrut a family of embedded J{holomorphiylinders in R � T that foliate the region between N(1=4) and N(3=4), eah of the formu : R � S1 ! R �M : (s; t) 7! (�(s) + a0; x0; t; �(s));where a0 2 R and x0 2 S1 are arbitrary onstants, � : R ! R is a �xed funtion that goesto +1 at both ends and � : R ! (1=4; 3=4) is a �xed orientation reversing di�eomorphism.Any of these ylinders satis�es the requirements of property (?). �4. Fredholm theory, intersetion numbers and ompatnessIn this setion, assume (W;!) is a onneted (and possibly nonompat) sympleti 4{manifold with onvex boundary �W =M . The boundary need not be onneted or nonempty;for simpliity we will assume that it is ompat, though we will later be able to relax thisassumption. Choosing a Liouville vetor �eld Y and a smooth funtion f : M ! R, we de�nea ontat form � onM by �Y !jM = ef� and denote by � = ker� the indued ontat struture.We an then use the reverse ow of Y to identify a neighborhood of �W sympletially witha neighborhood of the boundary of (f(t;m) 2 R �M j t � f(m)g; d(et�)). Thus we ansmoothly attah the ylindrial endE+ := (f(t;m) 2 R �M j t � f(m)gwith sympleti form d(et�), forming an enlarged sympleti manifold (W1; !) whih natu-rally ontains ([T;1) �M;d(et�)) for suÆiently large T .Assumption 4.1. With (W;!) as desribed above, assume either of the following:(1) (W;!) ontains a sympletially embedded sphere u0 : S2 ! W with self-intersetionnumber zero.(2) (M; �) satis�es property (?).In the �rst ase, we an de�ne _� := S2 with the standard omplex struture, hoose anyadmissible R{invariant almost omplex struture J+ on ([T;1)�M;d(et�)) and extend it to

16 PETER ALBERS, BARNEY BRAMHAM, AND CHRIS WENDLan !{ompatible almost omplex struture J onW1 suh that u0 is (after reparametrization)a J{holomorphi urve. In the seond ase, we an (by appropriate hoie of the funtionf) take � and J+ to be the partiular ontat form and almost omplex struture arisingfrom De�nition 2.5, and again extend J+ to an !{ompatible struture J on W1. After asuÆiently large R{translation, the J+{holomorphi urve given by De�nition 2.5 may thenbe regarded as a J{holomorphi urveu0 = (uR; uM ) : _�! [T;1)�M �W1;where _� = S2 n fz1; : : : ; zNg with the standard omplex struture of S2.Given any smooth funtion ' : R ! (0;1) that is monotone inreasing and satis�es'(t) = et for t � T , we an de�ne a new sympleti form on W1 by!' = (! in W ,d('�) in E+. (4.1)Observe that J is also ompatible with !'.De�nition 4.2. The energy of a J{holomorphi urve u : _�!W1 isE(u) = sup'2T Z _� u�!';where !' is as de�ned in (4.1) and T is the set of all smooth funtions ' : R ! (0;1) thatsatisfy '0 > 0, '(t) = et for t � T and sup' � e2T .This is equivalent to the de�nition of energy given in [BEH+03℄, in the sense that uniformbounds on either imply uniform bounds on the other. As in x2.1, we will always assume that�nite energy J{holomorphi urves inW1 are proper and thus have no removable puntures:then they also satisfy the asymptoti formula (2.4) and thus have well de�ned asymptotieigenfuntions and transversal onvergene rates at eah punture.Denote by M� the moduli spae of all proper, somewhere injetive �nite energy J{ho-lomorphi urves in W1, with arbitrary onformal strutures on the domains and any twourves onsidered equivalent if they are related by a biholomorphi reparametrization thatpreserves eah punture. We assign to M� the natural topology de�ned by C1{onvergeneon ompat subsets and C0{onvergene up to the ends, and denote by M�0 � M� theonneted omponent ontaining u0. Observe that sine R u�!' depends only on ' andthe relative homology lass represented by u, the energy E(u) is uniformly bounded for allu 2M�0.We shall now de�ne speial subsetsM �M� andM0 �M�0, onsisting of J{holomorphiurves that satisfy asymptoti onstraints. If u0 has no puntures, we an simply set M =M� and M0 = M�0. Otherwise, let us �x the following notation: for eah punture z 2 �of u0, denote the orresponding asymptoti orbit of u0 by z, with asymptoti operator Az,asymptoti eigenfuntion ez and transversal onvergene rate ��z, so �z 2 �(Az). Chooseany unitary trivialization � for � along eah of the orbits z. We will de�ne a new partition� = �C [ �Uin terms of the asymptoti behavior of u0, alling these the onstrained and unonstrainedpuntures respetively. Namely, de�ne z 2 � to be in �C if and only if z is either nondegen-erate or belongs to a Morse-Bott submanifold N �M that intersets uM ( _�).



ON NON-SEPARATING CONTACT HYPERSURFACES IN SYMPLECTIC 4{MANIFOLDS 17Lemma 4.3. If z belongs to a Morse-Bott submanifold N � M of dimension at least 2,then N intersets uM ( _�) if and only if wind�(ez) < 0, where � is the unique trivialization inwhih the nontrivial setions in kerAz have zero winding.Proof. It is obvious from the asymptoti formula (2.4) that uM intersets N if wind�(ez) <0. To prove the onverse, observe �rst that sine uM is embedded, it annot interset its ownasymptoti orbits. One then has to show that if u0 intersets any trivial ylinder R�0 over anorbit 0 in N , then it also has an \asymptoti intersetion" with R�z , whih annot be trueif wind�(ez) = 0. This follows easily from the intersetion theory of puntured holomorphiurves, see [Sie,SW℄ for details. �Lemma 4.4. For eah z 2 �C , there exists a number z < 0 suh that z 62 �(Az), ���(z �z) = wind�(ez) and ��+(z � z) = wind�(ez) + 1.Proof. Choose � so that wind�(ez) = 0; in the language of De�nition 2.5, this is the speialtrivialization determined by the asymptoti behavior of uM near z. Then ���(z) � 0, and if zis nondegenerate, (2.2) implies ��CZ(z) � 0, with equality if and only if ���(z) = ��+(z) = 0.The latter is therefore exluded by the ondition ��CZ(z) 6= 0 from De�nition 2.5. It followsthat if � 2 �(Az) is the largest eigenvalue with wind�(�) = wind�(ez), then � < 0 and wean hoose z to be any number slightly larger than �.For the ase where z is Morse-Bott, the fat that uM intersets the Morse-Bott submanifoldmeans 0 = wind�(ez) < wind�(0) due to Lemma 4.3. Thus the eigenvalue � de�ned above isagain negative and we an hoose z to be slightly larger. �In the following, let z < 0 denote the number given by Lemma 4.4 for eah onstrainedpunture z 2 �C , and for z 2 �U set z := � > 0 small enough so that (0; �) never intersets�(Az).De�nition 4.5. The onstrained moduli spae M onsists of all urves u 2 M� having atmost #� puntures, whih an be identi�ed with a subset of � in suh a way that at everyz 2 �C that is a punture of u, the asymptoti orbit of u is z, with transversal onvergenerate stritly greater than jzj. LetM0 �M denote the onneted omponent ontaining u0.Proposition 4.6. Every urve u 2M0 is embedded.Proof. By De�nition 2.5, eah asymptoti orbit for the urves inM0 is either �xed or allowedto vary in a Morse-Bott torus that ontains no other asymptoti orbits, thus the orbits of eahu 2 M0 are all distint and simply overed. It follows that embedded urves form an opensubset of M0, whih is also non-empty sine it ontains u0. By positivity of intersetions, itis also losed, so the laim follows from the assumption that M0 is onneted. �Topologially, M is a losed subspae of M�. Reall that M� an loally be identi�ed(up to symmetries) with the zero set of the nonlinear Cauhy-Riemann operator ��J , regardedas a smooth setion of a ertain Banah spae bundle. The same is true for M, but withBanah spaes of maps whose behavior at the ends satis�es exponential weighting onstraintsdetermined by the numbers z. We refer to [Wenb,Weng℄ for details on the general analytialsetup, and [HWZ99,Wena,Weng℄ for the exponential weights. A given urve u 2M is alledFredholm regular if the linearization of ��J at u is surjetive. In general, this linearization isa Fredholm operator, whose index (with orretion terms for the dimensions of Teihm�ullerspae and the automorphism group) de�nes the \virtual dimension" of the moduli spae

18 PETER ALBERS, BARNEY BRAMHAM, AND CHRIS WENDLnear u. We'll denote this virtual dimension by ind (u; ), and all it the (onstrained) indexof u. If u is Fredholm regular, then the impliit funtion theorem implies that M near u isa smooth manifold, whose dimension is given by the index.Theorem 10. Every u 2 M0 is Fredholm regular and has ind (u; ) = 2. Moreover, aneighborhood of u in M0 forms a smooth 2{parameter family fu�g�2D , with u0 = u, suhthat:(1) The images u� ( _�) foliate a neighborhood of u( _�) in W .(2) For any punture z 2 �U , the set of all urves fu�g�2D that approah the same orbitas u at z is a smooth 1{dimensional submanifold.Proof. We �rst verify the laim that ind (u; ) = 2. For the ase where u is a losedembedded sphere with self-intersetion zero, this follows immediately from the adjuntionformula: 0 = u�u = 1(u�TW1)�2, thus 1(u�TW1) = 2 and ind (u) = �2+21(u�TW1) =2. In the ase where u0 arises from property (?), it suÆes to prove that ind (u0; ) = 2 withu0 regarded as a J+{holomorphi urve in R�M . Reall from [Wena℄ that one an assoiatewith u0 an integer N (u0; ), alled the (onstrained) normal Chern number, whih satis�es2N (u0; ) = ind (u0; )� 2 + 2g +#�0(); (4.2)where g is the genus of _� (in this ase zero) and �0() is the subset of puntures z 2 � atwhih p(z � z) = 0. It also satis�esN (u0; ) = wind�(u0) +Xz2� ����(z � z)� wind�(ez)� : (4.3)By Lemma 4.4 and the fat that uM : _�! M is an embedding, the right hand side of (4.3)vanishes, implying N (u0; ) = 0. We laim also that #�0() = 0, i.e. all puntures satisfyp(z� z) = 1; for z 2 �C this already follows from Lemma 4.4. For unonstrained punturesz 2 �U , Lemma 4.3 implies that ez has the same winding number as a nontrivial setion inkerAz: these also span the two eigenspaes of Az � z = Az � � with negative eigenvalueslosest to zero. It follows that every positive eigenvalue of Az � � has stritly larger winding,thus p(z � �) = 1 as laimed. Now (4.2) implies ind (u0; ) = 2.The remainder of the proof onsists of minor generalizations of well established results from[HWZ99,Wen05℄, so we shall merely sketh the main ideas. Sine u 2 M0 is embedded, theregularity question an be redued to the study of the normal Cauhy-Riemann operator DNuas in [HLS97,HWZ99,Wenb℄. The domain of DNu is an exponentially weighted Banah spaeof setions of the normal bundleNu ! _�, and the setions in kerDNu have only positive zeroes,whose algebrai ount is bounded in general by N (u; ), f. [Wenb℄. In our ase N (u; ) =N (u0; ) = 0, thus every setion in kerDNu is zero free; a simple linear independene argumentthen shows that dimkerDNu � 2 = indDNu , hene DNu is surjetive. This shows that M0 is asmooth 2{manifold near u, and TuM0 is identi�ed with a spae of smooth nowhere vanishingsetions kerDNu � �(Nu), implying the laim that the urves near u foliate a neighborhood.Finally we note that for eah z 2 �U , one an apply an additional onstraint to studysubspaes of urves in M0 that �x the position of the asymptoti orbit. In the linearizationthis amounts to replaing z = � by z = ��; this idea is explained in detail in [Wen05,Weng℄.The problem with the additional onstraint then has index 1 and is again regular by anargument using the formal adjoint of DNu , as in [Wenb℄. �



ON NON-SEPARATING CONTACT HYPERSURFACES IN SYMPLECTIC 4{MANIFOLDS 19Note that in the above proof, Fredholm regularity does not require any generiity as-sumptions, rather it omes for free due to \automati" transversality (f. [Wenb℄). As aonsequene, u0 an be deformed with suÆiently small perturbations of J and � so thatTheorem 10 still applies. After suh a perturbation (using Lemma 2.2), we an thereforeassume the following from now on:(1) All orbits of period less than some large onstant C > 0 are Morse-Bott.(2) J is generi outside of [T;1)�M , so that in partiular every urve u 2M that isn'twholly ontained in [T;1)�M has ind (u; ) � 0.The exat details of our generi perturbation of J are somewhat deliate and spei� to theappliation we have in mind; this will be explained in Lemma 5.2 in x5. Note that the purposeof this assumption has nothing to do with the urves inM0, whih are already regular|ratherwe will see below that generiity is needed to gain ontrol over the degenerations that anour in the natural ompati�ation of M0.Due to the Morse-Bott assumption, the ompatness theorem of [BEH+03℄ now applies toany sequene of J{holomorphi urves in W1 that satisfy a suitable C0{bound and energybound: in partiular, suh a sequene has a subsequene that onverges to a nodal holomorphibuilding, typially with multiple levels. In our situation, the bottom level will be a nodal J{holomorphi urve in W1, and all levels above this are nodal J+{holomorphi urves inR �M .Theorem 11. Suppose uk 2M0 is a sequene whose images are all ontained in W0[E+ forsome ompat subset W0 �W . Then a subsequene of uk onverges to one of the following:(1) another smooth urve in M0,(2) a holomorphi building with empty bottom level and one nontrivial upper level thatonsists of a smooth, embedded J+{holomorphi urve in R �M satisfying the ondi-tions of property (?), or(3) a nodal J{holomorphi urve in W1 with exatly two omponents, both in M andboth embedded with (onstrained) index 0.Moreover the set of index 0 urves that an appear as omponents of nodal urves in the thirdase is �nite.Before we prove the theorem we state the following important orollary. For this, we denoteby S �W1 the set through whih the �nitely many limit urves from part (3) of Theorem 11pass, and let C �W1 n S onsist of all points that are ontained in urves from M0.Corollary 12. In addition to the assumptions of Theorem 11, assume that the images of allurves inM0 are ontained in W0[E+ for some ompat subset W0 �W . Then C =W1nS,and thus W is ompat.Proof. We laim that C is a non-empty, open and losed subset of W1 n S. It is learlynon-empty sineM0 also is, by onstrution. Openness is a diret onsequene of Theorem 10part (1). To prove that C is losed, we hoose a sequene (pn) � C with pn ! p� 2W1 n S.Then by de�nition, there exist urves un 2 M0 with pn 2 im (un). A subsequene of unonverges to a holomorphi building u�, whih by Theorem 11 is either a smooth urve ora nodal urve with one level. Sine p� is in the image of u� and p� 62 S, we onlude thatu� 2M0 and p� 2 imu� � C.Now, sine S is a �nite union of images of holomorphi urves, W1 n S is onneted andit follows from the above laim that C = W1 n S. Sine by assumption C � W0 [ E+, weonlude that W is ompat. �

20 PETER ALBERS, BARNEY BRAMHAM, AND CHRIS WENDLIn proving Theorem 11, we will make use of a few onepts from the intersetion theory ofpuntured holomorphi urves; this theory is developed in detail in the papers [Sie,SW℄, andthe last setion of [Wenb℄ also ontains a summary. Assume v1; v2 2 M. Then there is analgebrai intersetion number i(v1;  j v2; ) 2 Zwhih has the following properties:(1) i(v1;  j v2; ) is unhanged under ontinuous variations of v1 and v2 in M.(2) If v1 and v2 are not both overs of the same somewhere injetive urve, theni(v1;  j v2; ) � 0;and the inequality is strit if they interset.Unlike the usual homologial intersetion theory applied to losed holomorphi urves,the last statement is not an \if and only if": it is possible in general for v1 and v2 to bedisjoint even if i(v1;  j v2; ) > 0, though this phenomenon is in some sense non-generi. Theintersetion number an also be de�ned for urves in the sympletization R�M , possibly withboth positive and negative puntures. In this ase one has invariane under R{translation,so if i(v1;  j v2; ) = 0 then the projeted images of v1 and v2 in M never interset.Lemma 4.7. i(u0;  j u0; ) = 0.Proof. Sine u0 has only simply overed Reeb orbits and all of them are distint, it satis�esthe following somewhat simpli�ed version of the adjuntion formula from [Sie,SW℄,i(u0;  j u0; ) = 2Æ(u0) + N (u0; ): (4.4)Here Æ(u0) is the algebrai ount of double points and singularities of u0 (see [MS04℄), whihvanishes sine u0 is embedded. As we saw in the proof of Theorem 10, N (u0; ) also vanishes,so the laim follows. �Lemma 4.8. If v 2 M0 is ontained in [T;1) �M � W1, then its projetion to M isembedded.Proof. Write v = (vR; vM ) : _� ! [T;1) �M . By assumption, v an be deformed ontin-uously to u0 through M, thus i(v;  j v; ) = i(u0;  j u0; ) = 0 by the previous lemma,and N (v; ) = N (u0; ) = 0. Now (4.3) implies that wind�(v) = 0, thus vM is immersed,and the vanishing self-intersetion number implies that v has no intersetions with any of itsR{translations, so vM is also injetive. �Proof of Theorem 11. By [BEH+03℄, uk has a subsequene onverging to some holomorphibuilding, whih we'll denote by u. Our �rst task is to show that unless u is a 2{level buildingwith empty bottom level as desribed in ase (2), it an have no nontrivial upper levels. Thisis already lear in the ase where u is losed, as onvexity prevents uk from venturing intothe region [T;1)�M at all. Let us therefore assume that uk has puntures and that u hasnontrivial upper levels. If no omponent in these upper levels has any negative puntures, thenthere must be only one nontrivial level, whih onsists of one or more onneted omponentsv1; : : : ; vN attahed to eah other by nodes. All of these omponents have puntures, sinethe sympleti form in R �M is exat; moreover, the positive ends of eah vi orrespond tosome subset of the positive ends of u0, and sine these are all simply overed and distint,



ON NON-SEPARATING CONTACT HYPERSURFACES IN SYMPLECTIC 4{MANIFOLDS 21eah vi is somewhere injetive and satis�es the asymptoti onstraints de�ned by . Now(4.2) and (4.3) give 0 � 2wind�(vi) � 2N (vi; ) = ind (vi; )� 2;hene ind (vi; ) � 2. Sine ind (u0; ) = 2 as well, we onlude that u an have at most oneonneted omponent, with no nodes, i.e. it is a smooth J+{holomorphi urve in R�M withonly positive puntures. Up to R{translation, u an therefore be identi�ed with some smoothurve inM0 whose image is ontained in [T;1)�M , and the projetion into M is embeddeddue to Lemma 4.8. It follows that this urve satis�es the onditions of property (?).Alternatively, suppose u has nontrivial upper levels and the top level ontains a J+{holomorphi urve u+ in R � M whih is not the trivial ylinder over an orbit and hasboth positive and negative puntures. Repeating the above argument about behavior at thepositive ends, u+ is somewhere injetive. Applying Stokes' theorem to R u�+d� � 0, the neg-ative asymptoti orbits of u+ have total period bounded by the total period of the positiveorbits, implying that all of the negative orbits belong to the same Morse-Bott manifolds asthe orbits of u0. We laim that after some R{translation, u+ intersets u0. This will implya ontradition almost immediately, as positivity of intersetions then gives an intersetionof uk with some R{translation of u0 for suÆiently large k, ontraditing Lemma 4.7 sinei(uk;  j u0; ) = i(u0;  j u0; ) = 0.To prove the laim, it suÆes to show that the projeted images of u+ and u0 in Minterset eah other. Suppose  is an asymptoti orbit of u0 that lies in the same Morse-Bott submanifold N � M as one of the negative asymptoti orbits 0 of u+. Denote theorresponding asymptoti eigenfuntions by e and e0 respetively. We onsider the followingases:Case 1: N is a irle. Then  is nondegenerate and 0 is the k{fold over of  forsome k 2 N. Choose a trivialization � along  so that wind�(e) = 0. By Lemma 4.4,A has two eigenvalues (ounting multipliity) � < 0 with wind�(�) = 0. Then the k{foldovers of their eigenfuntions are eigenfuntions of A0 with negative eigenvalues and zerowinding, implying that every positive eigenvalue of A0 has stritly positive winding. Thuswind�(e0) � ��+(0) > 0, foring the projetions of u0 and u+ in M to interset eah othernear N .Case 2: N is a torus disjoint from uM . Now 0 an be deformed through a 1{parameter family of orbits to a k{fold over of  for some k 2 N. Choose a trivialization �along every simply overed orbit in N so that setions in the 0{eigenspaes have zero winding.By Lemma 4.3, A has an eigenvalue � < 0 suh that wind�(e) = wind�(�) = 0, and takingk{fold overs of eigenfuntions, we similarly �nd eigenfuntions of A0 that have zero windingand eigenvalues k� < 0 and 0. This implies that wind�(e0) � ��+(0) > 0, whih fores theprojetion of u+ inM to interset N , i.e. u+ intersets a trivial ylinder R�1 for some orbit1 � N . Then by the homotopy invariane of the intersetion number, u+ also intersetsR � . This intersetion is transverse unless it ours at a point where �� Æ Tu+ = 0, but thesimilarity priniple implies that there are �nitely many suh points (see [HWZ95℄). Thus ifneessary we an use Theorem 10 to perturb u0 and thus move  to a nearby orbit, so thatthe intersetion of R �  with u+ is transverse. This implies a transverse intersetion of theprojeted image of u+ in M with , and therefore an intersetion of the projetions of u+and u0 nearby.

22 PETER ALBERS, BARNEY BRAMHAM, AND CHRIS WENDLCase 3: N is a Morse-Bott manifold interseting uM . The argument is similar toase 2, only now we use the intersetion of uM with N to show that uM intersets 0 and thusalso the projeted image of u+ near 0.We've shown now that u annot have any nontrivial upper level exept in ase (2), so it musttherefore be a 1{level building in W1, i.e. a nodal J{holomorphi urve. The dedution ofase (3) now proeeds almost exatly as in the proof of [Wen, Theorem 7℄. To summarize, theonneted omponents of u are all either puntured urves with positive ends at distint simplyovered orbits (and thus somewhere injetive), or losed urves (whih must be nononstantby an index argument). The latter ould in general be multiple overs, but if v is a k{fold branhed over of some losed somewhere injetive urve v0, then we �nd ind (v) =k � ind (v0) + 2(k � 1). Due to our generiity assumption, all somewhere injetive urves haveindex at least 0, so we �nd that the total index of u beomes more than 2 unless there isat most one node onneting two omponents, and in this ase both omponents must besomewhere injetive. The adjuntion formula (4.4) an now be used to show that these twoomponents, v1 and v2, are both embedded, satisfy i(vi;  j vi; ) = �1, i(vi;  j u0; ) = 0 andi(v1;  j v2; ) = 1; moreover, they are both Fredholm regular and have (onstrained) index 0.There's one minor point to address whih was irrelevant in [Wen℄: if there are no puntures,we haven't ruled out the possibility that u is a smooth multiple over, i.e. u = v Æ ' for somelosed somewhere injetive sphere v and holomorphi branhed over ' : S2 ! S2. Sine1(u�TW1) = 2, this is allowed numerially only if 1(v�TW1) = 1 and ' has degree 2. Butthen we get a simple ontradition using the adjuntion formula: sine u � u = 0, the sameholds for v, thus 0 = v � v = 2Æ(v) + 1(v�TW1)� 2 = 2Æ(v) � 1where Æ(v) is the algebrai ount of double points and singularities. The right hand side isodd; in partiular it an never be zero.It remains to show that the set of all index 0 urves arising from nodal degenerations of ukis �nite. Indeed, suppose vk is a sequene of �nite energy J{holomorphi urves in W1 withuniform energy and C0{bounds suh that(1) The puntures of vk are identi�ed with a subset of � and satisfy the asymptotionstraints of De�nition 4.5.(2) i(vk;  j u0; ) = 0.(3) ind (vk; ) = 0.Then we laim that vk has a onvergent subsequene. The argument is familiar: we rule outnontrivial upper levels exatly as before by showing that any nontrivial omponent v+ in suha level must interset u0. Thus the only remaining possible non-smooth limit is a nodal urvein W1, but the same index argument now implies that there is at most one omponent, thusno nodes, and the limit is somewhere injetive. It follows that this set of urves is a ompatsmooth 0{dimensional manifold, i.e. a �nite set. �5. Proofs of the main results5.1. Proofs of Theorems 6 and 7. We onsider a losed and onneted sympleti 4{manifold (W;!) whih ontains a losed ontat type hypersurfae M suh that W n Mis onneted. Under the assumptions of Theorem 6 or 7, we will onstrut from this anonompat sympleti manifold with onvex boundary to whih Corollary 12 applies, givinga ontradition. The general idea of the onstrution is outlined in Figure 4.



ON NON-SEPARATING CONTACT HYPERSURFACES IN SYMPLECTIC 4{MANIFOLDS 23To start with, we ompatify W n M by adding to eah end a opy of M , obtaining aompat and onneted sympleti manifold (W1; !) with one onvex boundary omponentM+ and an idential onave boundary omponent M�. Indutively, we de�ne the ompatsympleti manifold Wn by Wn := Wn�1 [M�=M+ W1, denoting the sympleti form on Wnagain by !. Note that Wn�1 is a ompat sympleti submanifold of Wn in a natural way.Thus the set (W; !) := [n�1(Wn; !) (5.1)is a nonompat sympleti manifold with onvex boundary M orresponding to the onvexboundary of W1.Assume that W ontains a sympletially embedded sphere S � W with S � S = N � 0.Sine ! is exat on M , Stokes' theorem implies that S annot be ontained entirely in M .We an thus blow up W at N distint points in S that are not in M , modifying both Wand S so that S � S = 0 without loss of generality. Now we laim that S an be \lifted" toa sympleti sphere eS in (W; !) with eS � eS = 0. To see this, onstrut a sympleti in�niteover (fW; e!) of (W;!) by gluing together a sequene of opies f(W j1 ; !)gj2Z of (W1; !), withthe onave boundary of W j1 attahed to the onvex boundary of W j+11 for eah j 2 Z. Sinethe sphere is simply onneted, S has a lift eS � fW , and moreover, (fW; e!) naturally ontains(W; !), whih we may assume ontains eS without loss of generality.Similarly, if M with its indued ontat struture satis�es weak property (?), then afterattahing a sympleti obordism to the onvex boundary of (W; !), we may assume withoutloss of generality that either (W; !) ontains a sympleti sphere of zero self-intersetion (afterblowing up) or property (?) holds for �W.In either ase, (W; !) now satis�es Assumption 4.1. As explained in x4, we an then attahto �W a ylindrial end E+ that ontains ([T;1) �M;d(et�)) for suÆiently large T 2 Rand a suitable ontat form �, obtaining an enlarged sympleti manifold (W1; !), with an!{ompatible almost omplex struture J0 that is admissible and R{invariant on [T;1)�M ,and a non-empty moduli spae M0 � M of J0{holomorphi urves in W1. Moreover forsome n0 2 N, we an assume that J0 belongs to the following set.De�nition 5.1. Let J per be the spae of ompatible almost omplex strutures on (W1; !)whih math J0 on ([T;1) �M;d(et�)) and whose restritions to W �= Wn+1 nWn � W1are independent of n for n � n0(J0). Suh a J will be alled periodi.Lemma 5.2. For a generi J 2 J per, all J{holomorphi urves inM are Fredholm regular.Proof. Reall that the J{holomorphi urves in M are somewhere injetive, see x4. Theproof of transversality is a small variation on the standard tehnique, as in [MS04℄: the keyis to show that the universal moduli spae f(u; J) j u is J{holomorphig is a smooth Banahmanifold for periodi J and u satisfying the relevant onditions. This will use the fat thata perturbation of J an be loalized at an injetive point of u without interfering at otherpoints in the image of u. Then regular values of the projetion (u; J) 7! J are generi by theSard-Smale theorem, and for these, all J{urves are Fredholm regular.Assume J 2 J per and u 2 M is not fully ontained in [T;1) �M . If u also intersetsWn0 [ E+, then it suÆes to perturb J only in this region and thus preserve periodiity ofJ . Thus it remains only to show that J per permits suÆient perturbations of J when theimage of u is ontained in W nWn0 , in whih ase u must be a somewhere injetive losedurve. Sine J is required to be periodi, the only danger not present in the standard ase is

24 PETER ALBERS, BARNEY BRAMHAM, AND CHRIS WENDLthat u may have periodi points, in the following sense. Reall that W1 ontains in�nitelymany idential opies of a ertain manifold V , in the form Wn := Wn+1 nWn. Thus eahpoint x 2 V appears in�nitely often in W1, and we all these di�erent points translates ofx. Then z 2 _� is a periodi point of u if a translate of u(z) is ontained in the image im (u)of u. In this ase a periodi perturbation of J annot be loalized in the image of u.We laim that for any somewhere injetive losed holomorphi urve in W nWn0 , the setof injetive points whih are not periodi is open and dense. To see this, we an onsider theovering spae � : fW ! W whih was onstruted above De�nition 5.1. Sine J is periodi,the projetion � Æ u is a holomorphi urve in W . It will suÆe to show that also � Æ u issomewhere injetive, sine then the set of injetive points of � Æ u is open and dense, andinjetive points of � Æ u give rise to non-periodi injetive points of u. Denote by � : fW ! fWthe dek transformation that maps fWn to fWn+1. Then if � Æ u is multiply overed, thefat that u is somewhere injetive implies (using unique ontinuation) that u and �k Æ u areequivalent urves for some integer k 6= 0. But then u is also equivalent to �nk Æ u for anyn 2 Z, implying that the image of u in fW is unbounded. Sine u was assumed to be losed,this is a ontradition and shows that � Æ u is indeed somewhere injetive.With this, the usual proof that the universal moduli spae is a smooth Banah manifoldgoes through unhanged. �For the remainder of this setion we assume that the almost omplex struture J (formerlyalled J0) is periodi and generi.Proposition 5.3. There exists N0 2 N suh that for all u 2M�0 we haveim (u) �WN0 [E+: (5.2)Proof. We denote the onvex boundary of Wn � W by M+ and the onave boundary byM�n . Reall that M+ is the same for all Wn. Then we laim that there exists a positiveonstant 0 > 0 suh that all u 2 M�0 with im (u) \M+ and im (u) \M�n both nonemptyhave energy E(u) � 0n : (5.3)This follows from the monotoniity lemma (see Lemma 5.4 below) and the fat that the almostomplex struture is periodi. Indeed, we �x a opy of W1 in Wn and denote for the momentits onvex and onave boundary by �W+ and �W� respetively. We laim that there exists~ > 0 suh that any holomorphi urve v with v�1(�W+) 6= ; and v�1(�W�) 6= ; has at leastenergy E(v) � ~. To see this we observe that eah suh v has to pass through a point in Wwith distane �0 > 0 to the boundary �W+[�W� of W . Thus we onlude from Lemma 5.4that E(v) � C�20 for eah v, where C and �0 only depend on the almost omplex struture J .Sine J is periodi, and a map u 2 M�0 with im (u) \M+ 6= ; and im (u) \M�n 6= ; passesthrough the boundaries of n opies of W1, equation (5.3) follows. Using the uniform energybound for u 2M�0, this implies the proposition in the ase where u0 has puntures, as everyu 2M�0 is then either on�ned to E+ or passes through M+.A small modi�ation is required for the ase without puntures: here u0 2M�0 is a sphere,and we an hoose its lift from W to W1 so that without loss of generality, the image ofu0 intersets W1 (i.e. the �rst opy). Then we laim that every u 2 M�0 intersets W1.Otherwise, the fat that M�0 is onneted implies the existene of some holomorphi sphereinM�0 that touhes M�1 tangentially from insideW2 nW1, and this is impossible by onvexity.



ON NON-SEPARATING CONTACT HYPERSURFACES IN SYMPLECTIC 4{MANIFOLDS 25We onlude that every u 2 M�0 whih esapes from W1 [ E+ must also pass through M�1 ,so the above argument goes through by using M�1 in plae of M+. �For the sake of ompleteness, we inlude here the monotoniity lemma, see [Hum97℄ for aproof.Lemma 5.4. For any ompat almost omplex manifold (W;J) with Hermitian metri g,there are onstants �0 and C > 0 suh that the following holds. Assume (S; j) is a ompatRiemann surfae, possibly with boundary, and u : S ! W is a pseudoholomorphi urve.Then for every z 2 Int(S) and r 2 (0; �0) suh that u(�S) \Br(u(z)) = ;, the inequalityArea (u(S) \Br(u(z))) � Cr2holds.Sine WN0 is ompat, Proposition 5.3 allows us to apply Corollary 12. But this impliesthat W is ompat, and is thus a ontradition, onluding the proof of Theorems 6 and 7.5.2. Proof of Theorem 8. Theorem 8 follows immediately from Theorem 7 and Exam-ple 1.2, sine a sympleti semi�lling with disonneted boundary an always be turned intoa losed sympleti 4{manifold ontaining non-separating ontat hypersurfaes. One annonetheless give a slightly easier proof as follows.Assume that the boundary �W is disonneted and ontains a omponent M satisfyingproperty (?). Thus W satis�es Assumption 4.1, and after attahing ylindrial ends, weobtain a moduli spae M0 of J{holomorphi urves that �ll the enlarged manifold W1.Moreover, all J{holomorphi urves have positive puntures going to the end orrespondingto M . Sine they �ll W1, some of these urves must therefore touh �W nM tangentially,whih is impossible if �W is onvex.5.3. Proof of Theorem 9. Let (W;!) be a ompat onneted 4-manifold with onvexboundary (M; �) satisfying the weak (?) property. After attahing a sympleti obordism to�W , we may without loss of generality remove the word \weak". Now assume thatH �W nMis a non-separating ontat hypersurfae. Thus we an ut W open along H and ompatifyto obtain a onneted sympleti obordism W1 with two onvex boundary omponents H+and M , and one onave boundary omponent H�.Now we an repeat the onstrution in the proof of Theorems 6 and 7, namely we gluein�nitely many opies of W1 along H, obtaining a nonompat sympleti manifold W withone onvex boundary omponent H and in�nitely many onvex boundary omponents whihare opies of M . From here, we proeed exatly as in the previous proofs, using the modulispae of holomorphi urves arising from property (?) on the �rst opy of M . The only newfeature is that �W is not ompat, but sine it onsists of opies of the same ompat andonvex omponents, the results of x4 still hold, as onvexity prevents the holomorphi urvesin M0 from ever approahing the other opies of M . In partiular, Corollary 12 applies andagain yields a ontradition.Appendix A. Relative nondegeneray of ontat formsOur main argument uses holomorphi urves asymptoti to Morse-Bott families of periodiorbits. We prefer not to assume from the start that the ontat form is globally Morse-Bott.Thus, we need a perturbation result that preserves a given Morse-Bott submanifold and makes
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Figure 4. The ompat sympleti manifold (W;!) ontains the non-separating ontat hypersurfae (M; �). W n M is ompati�ed to produe(W1; !), whih has two boundary omponents ontatomorphi to M , oneonvex and one onave. Suessively attahing n opies of W1 to itself pro-dues (Wn; !). Then property (?) gives rise to a moduli spae of �nite energyurves whih, due to the monotoniity lemma, annot esape from Wn [ E+if n is suÆiently large.� nondegenerate everywhere else. For this, it suÆes to show that one an perturb � in somepreompat subset to make all orbits that pass through that subset nondegenerate.



ON NON-SEPARATING CONTACT HYPERSURFACES IN SYMPLECTIC 4{MANIFOLDS 27Theorem 13. Suppose M is a (2n � 1){dimensional manifold with a smooth ontat form�, and U �M is an open subset with ompat losure. Then there exists a Baire subset�reg(U) � ff 2 C1(M) j f > 0 and f jMnU � 1gsuh that for eah f 2 �reg(U), every periodi orbit of Xf� passing through U is nondegenerate.Proof. We give a proof in two steps, �rst showing that a generi hoie of the funtion fmakes all simply overed orbits of Xf� passing through U nondegenerate. Then we extendthis to multiple overs by a further perturbation.The �rst step is an adaptation of the standard Sard-Smale argument. Let � = ker �, andfor some large k 2 N, de�ne the Banah spaeCkU (M) = nf 2 Ck(M;R) �� f jMnU � 0oand Banah manifold�k(U) = ff 2 Ck(M;R) j f > 0 and f � 1 2 CkU (M)g;whose tangent spae at any f 2 �k(U) an be identi�ed with CkU (M). We will onsider thenonlinear operator �(x; T; f) := _x� TXf�(x)as a setion of a Banah spae bundle over H1(S1;M)�(0;1)��k(U) whose �ber at (x; T; f)is L2(x�TM). SineXf� depends on the �rst derivative of f , it is of lass Ck�1 and the setion� is therefore of lass Ck�2. Choosing any symmetri onnetion r on M , the linearizationof � at (x; T; f) 2 ��1(0) with respet to the �rst variable de�nes the operatorDx : H1(x�TM)! L2(x�TM) : ^x 7! rt^x� Tr^xXf�: (A.1)Sine _x = TXf�(x), we an identify the normal bundle of x with x�� and thus de�ne asplitting x�TM = TS1 � x��. A short alulation then allows us to rewrite Dx with respetto the splitting in the blok form Dx = ��t 00 DNx � ; (A.2)where DNx : H1(x��) ! L2(x��) is de�ned again by (A.1), and is a Fredholm operator ofindex 0. The orbit x is nondegenerate if and only if DNx is an isomorphism.The total linearization of � at (x; T; f) 2 ��1(0) is nowD�(x; T; f)(^x; ^T ; ^f) = Dx^x� ^TXf�(x)� T bX(x);where we de�ne the vetor �eld bX := ��X(f+� ^f)�j�=0. It follows from the de�nition of theReeb vetor �eld that bX takes the form � ^fXf�+V ^f where V ^f 2 �(�) is uniquely determinedby the ondition d(f�)(V ^f ; �)���� = d ^f���� : (A.3)We de�ne the universal moduli spae of parametrized Reeb orbits asM := ��1(0), and letM� �M denote the open subset onsisting of triples (x; T; f) for whih x is simply overedand x(S1) \ U 6= ;. Similarly, denoteM�(f) = f(x; T ) j (x; T; f) 2M�g:We laim that D�(x; T; f) is surjetive whenever (x; T; f) 2M�, heneM� is a Ck�2{smoothBanah manifold. To see this, note that one an always �nd � 2 H1(TS1) and ^T 2 R so that

28 PETER ALBERS, BARNEY BRAMHAM, AND CHRIS WENDLTx(�t�)� ^TXf�(x) takes any desired value in L2(x�(RXf�)), thus it suÆes to show that the\normal part" H1(x��)� CkU (M)! L2(x��) : (^x; ^f) 7! DNx ^x� TV ^fis surjetive. If it isn't, then there exists a setion � 6= 0 2 L2(x��) suh that hDNx ^x; �iL2 = 0for all ^x 2 H1(x��) and hV ^f ; �iL2 = 0 for all ^f 2 CkU(M) vanishing outside of U . The�rst relation implies that � is in the kernel of the formal adjoint of DNx , a �rst order lineardi�erential operator, hene � is smooth and nowhere vanishing. But then if x(t0) 2 U , thenusing (A.3), ^f an be hosen near x(t0) so that the seond relation requires � to vanish on aneighborhood of t0, giving a ontradition.Now applying the Sard-Smale theorem to the natural projetionM� ! �k(U) : (x; T; f) 7!f , we �nd a Baire subset �kreg(U) � �k(U) for whih every simply overed Reeb orbit passingthrough U is nondegenerate.For the seond step, denote by dist( ; ) the distane funtions resulting from any hoie ofRiemannian metris on S1 and M , and de�ne for eah positive integer N 2 N a subsetMN (f) �M�(f)onsisting of Reeb orbits (x; T ) that satisfy the following onditions:(1) T � N .(2) There exists t 2 S1 suh thatinft02S1nftg dist(x(t); x(t0))dist(t; t0) � 1N :(3) There exists t 2 S1 suh that dist(x(t);M n U) � 1=N .Moreover, let �reg;N(U) � �1(U) denote the spae of all smooth funtions f 2 �k(U) forwhih all overs of orbits in MN (f) up to multipliity N are nondegenerate. Sine nonde-generay is an open ondition and any sequene (xk; Tk) 2 MN (fk) with fk ! f in C1 hasa onvergent subsequene by the Arzel�a-Asoli theorem, �reg;N (U) is an open set. We laimit is also dense. Indeed, any f 2 �1(U) has a perturbation f� 2 �k(U) for whih all thesimple orbits in MN (f�) are nondegenerate due to step 1. In this ase MN (f�) is a smoothompat 1{manifold, i.e. a �nite union of irles, whih are the parametrizations of �nitelymany distint nondegenerate orbits, and the spae is stable under small perturbations of f�.Thus by a further perturbation, we an make f� smooth and arrange that none of the orbitsinMN (f�) have a Floquet multiplier that is a kth root of unity for k 2 f1; : : : ; Ng. The latteran be ahieved using a normal form for f�� as in [HWZ96a, Lemma 2.3℄ near eah individualorbit: in partiular, we an perturb so that eah orbit remains unhanged but the linearizedreturn map hanges arbitrarily within the spae of sympleti linear maps. This proves that�reg;N (U) is dense in �1(U), and we an now onstrut �reg(U) as a ountable intersetionof open dense sets: �reg(U) = \N2N �reg;N (U): �AknowledgmentsWe would like to thank Klaus Mohnke for bringing the question of non-separating ontathypersurfaes to our attention, John Etnyre for providing Example 1.2, Klaus Niederkr�uger,
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