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Abstract. English: We prove several results on weak symplectic fillings of contact 3–manifolds,

including: (1) Every weak filling of any planar contact manifold can be deformed to a blow up

of a Stein filling. (2) Contact manifolds that have fully separating planar torsion are not weakly
fillable—this gives many new examples of contact manifolds without Giroux torsion that have

no weak fillings. (3) Weak fillability is preserved under splicing of contact manifolds along sym-

plectic pre-Lagrangian tori—this gives many new examples of contact manifolds without Giroux
torsion that are weakly but not strongly fillable.

We establish the obstructions to weak fillings via two parallel approaches using holomorphic

curves. In the first approach, we generalize the original Gromov-Eliashberg “Bishop disk”
argument to study the special case of Giroux torsion via a Bishop family of holomorphic annuli

with boundary on an “anchored overtwisted annulus”. The second approach uses punctured
holomorphic curves, and is based on the observation that every weak filling can be deformed in

a collar neighborhood so as to induce a stable Hamiltonian structure on the boundary. This also

makes it possible to apply the techniques of Symplectic Field Theory, which we demonstrate in
a test case by showing that the distinction between weakly and strongly fillable translates into

contact homology as the distinction between twisted and untwisted coefficients.

Français : On montre plusieurs résultats concernant les remplissages faibles de variétés de
contact de dimension 3, notamment : (1) Les remplissages faibles des variétés de contact planaires

sont à déformation près des éclatements de remplissages de Stein. (2) Les variétés de contact

ayant de la torsion planaire et satisfaisant une certaine condition homologique n’admettent pas
de remplissages faibles – de cette manière on obtient des nouveaux exemples de variétés de

contact qui ne sont pas faiblement remplissables. (3) La remplissabilité faible est préservée par

l’opération de somme connexe le long de tores pré-Lagrangiens — ce qui nous donne beaucoup
de nouveaux exemples de variétés de contact sans torsion de Giroux qui sont faiblement, mais

pas fortement remplissables.
On établit une obstruction à la remplissabilité faible avec deux approches qui utilisent

des courbes holomorphes. La première méthode se base sur l’argument original de Gromov-

Eliashberg des � disques de Bishop�. On utilise une famille d’anneaux holomorphes s’appuyant
sur un � anneau vrillé ancré � pour étudier le cas spécial de la torsion de Giroux. La deuxième

méthode utilise des courbes holomorphes à pointes, et elle se base sur l’observation que dans

un remplissage faible, la structure symplectique peut être déformée au voisinage du bord, en
une structure Hamiltonienne stable. Cette observation permet aussi d’appliquer les méthodes

à la théorie symplectique de champs, et on montre dans un cas simple que la distinction entre
les remplissabilités faible et forte se traduit en homologie de contact par une distinction entre
coefficients tordus et non tordus.
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0. Introduction

The study of symplectic fillings via J–holomorphic curves goes back to the foundational result
of Gromov [Gro85] and Eliashberg [Eli90a], which states that a closed contact 3–manifold that is
overtwisted cannot admit a weak symplectic filling. Let us recall some important definitions: in
the following, we always assume that (W,ω) is a symplectic 4–manifold, and (M, ξ) is an oriented
3–manifold with a positive and cooriented contact structure. Whenever a contact form for ξ is
mentioned, we assume it is compatible with the given coorientation.

Definition 1. A contact 3–manifold (M, ξ) embedded in a symplectic 4–manifold (W,ω) is called
a contact hypersurface if there is a contact form α for ξ such that dα = ω|TM . In the case where
M = ∂W and its orientation matches the natural boundary orientation, we say that (W,ω) has
contact type boundary (M, ξ), and if W is also compact, we call (W,ω) a strong symplectic
filling of (M, ξ).

Definition 2. A contact 3–manifold (M, ξ) embedded in a symplectic 4–manifold (W,ω) is called
a weakly contact hypersurface if ω|ξ > 0, and in the special case where M = ∂W with the

natural boundary orientation, we say that (W,ω) has weakly contact boundary (M, ξ). If W
is also compact, we call (W,ω) a weak symplectic filling of (M, ξ).

It is easy to see that a strong filling is also a weak filling. In general, a strong filling can also be
characterized by the existence in a neighborhood of ∂W of a transverse, outward pointing Liouville
vector field, i.e. a vector field Y such that LY ω = ω. The latter condition makes it possible to
identify a neighborhood of ∂W with a piece of the symplectization of (M, ξ); in particular, one
can then enlarge (W,ω) by symplectically attaching to ∂W a cylindrical end.

The Gromov-Eliashberg result was proved using a so-called Bishop family of pseudoholomorphic
disks: the idea was to show that in any weak filling (W,ω) whose boundary contains an overtwisted
disk, a certain noncompact 1–parameter family of J–holomorphic disks with boundary on ∂W must
exist, but yields a contradiction to Gromov compactness. In [Eli90a], Eliashberg also used these
techniques to show that all weak fillings of the tight 3–sphere are diffeomorphic to blow-ups of a
ball. More recently, the Bishop family argument has been generalized by the first author [Nie06]
to define the plastikstufe, the first known obstruction to symplectic filling in higher dimensions.

In the mean time, several finer obstructions to symplectic filling in dimension three have been
discovered, including some which obstruct strong filling but not weak filling. Eliashberg [Eli96]
used some of Gromov’s classification results for symplectic 4–manifolds [Gro85] to show that on
the 3–torus, the standard contact structure is the only one that is strongly fillable, though Giroux
had shown [Gir94] that it has infinitely many distinct weakly fillable contact structures. The first
examples of tight contact structures without weak fillings were later constructed by Etnyre and
Honda [EH02], using an obstruction due to Paolo Lisca [Lis99] based on Seiberg-Witten theory.

The simplest filling obstruction beyond overtwisted disks is the following. Define for each n ∈ N
the following contact 3–manifolds with boundary:

Tn :=
(
T2 × [0, n], sin(2πz) dϕ+ cos(2πz) dϑ

)
,

where (ϕ, ϑ) are the coordinates on T2 = S1 × S1, and z is the coordinate on [0, n]. We will refer
to Tn as a Giroux torsion domain.

Definition 3. Let (M, ξ) be a 3–dimensional contact manifold. The Giroux torsion Tor(M, ξ) ∈
Z ∪ {∞} is the largest number n ≥ 0 for which we can find a contact embedding of the Giroux
torsion domain Tn ↪→M . If this is true for arbitrarily large n, then we define Tor(M, ξ) =∞.
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Figure 1. The region between the grey planes on either side represents half
a Giroux torsion domain. The grey planes are pre-Lagrangian tori with their
characteristic foliations, which show the contact structure turning along the z–
axis as we move from left to right. Domains with higher Giroux torsion can be
constructed by gluing together several half-torsion domains.

Remark. Due to the classification result of Eliashberg [Eli89], overtwisted contact manifolds have
infinite Giroux torsion, and moreover, one can assume in this case that the torsion domain Tn ⊂M
separates M . It is not known whether a contact manifold with infinite Giroux torsion must be
overtwisted in general.

The present paper was motivated partly by the following fairly recent result.

Theorem (Gay [Gay06] and Ghiggini-Honda [GH08]). A closed contact 3–manifold (M, ξ) with
positive Giroux torsion does not have a strong symplectic filling. Moreover, if it contains a Giroux
torsion domain Tn that splits M into separate path components, then (M, ξ) does not even admit
a weak filling.

The first part of this statement was proved originally by David Gay with a gauge theoretic
argument, and the refinement for the separating case follows from a computation of the Ozsváth-
Szabó contact invariant due to Paolo Ghiggini and Ko Honda. Observe that due to the remark
above on overtwistedness and Giroux torsion, the result implies the Eliashberg-Gromov theorem.

As this brief sampling of history indicates, holomorphic curves have not been one of the favorite
tools for defining filling obstructions in recent years. One might argue that this is unfortunate,
because holomorphic curve arguments have a tendency to seem more geometrically natural and
intuitive than those involving the substantial machinery of Seiberg-Witten theory or Heegaard
Floer homology—and in higher dimensions, of course, they are still the only tool available. A
recent exception was the paper [Wen10c], where the second author used families of holomorphic
cylinders to provide a new proof of Gay’s result on Giroux torsion and strong fillings. By similar
methods, the second author has recently defined a more general obstruction to strong fillings
[Wen10b], called planar torsion, which provides many new examples of contact manifolds (M, ξ)
with Tor(M, ξ) = 0 that are nevertheless not strongly fillable. The reason these results apply
primarily to strong fillings is that they depend on moduli spaces of punctured holomorphic curves,
which live naturally in the noncompact symplectic manifold obtained by attaching a cylindrical
end to a strong filling. By contrast, the Eliashberg-Gromov argument works also for weak fillings
because it uses compact holomorphic curves with boundary, which live naturally in a compact
almost complex manifold with boundary that is pseudoconvex, but not necessarily convex in
the symplectic sense. The Bishop family argument however has never been extended for any
compact holomorphic curves more general than disks, because these tend to live in moduli spaces
of nonpositive virtual dimension.

In this paper, we will demonstrate that both approaches, via compact holomorphic curves with
boundary as well as punctured holomorphic curves, can be used to prove much more general results
involving weak symplectic fillings. As an illustrative example of the compact approach, we shall
begin in §1 by presenting a new proof of the above result on Giroux torsion, as a consequence of
the following.

Theorem 1. Let (M, ξ) be a closed 3–dimensional contact manifold embedded into a closed sym-
plectic 4–manifold (W,ω) as a weakly contact hypersurface. If (M, ξ) contains a Giroux torsion
domain Tn ⊂M , then the restriction of the symplectic form ω to Tn cannot be exact.
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By a theorem of Eliashberg [Eli04] and Etnyre [Etn04a], every weak filling can be capped to
produce a closed symplectic 4–manifold. The above statement thus implies a criterion for (M, ξ)
to be not weakly fillable—our proof will in fact demonstrate this directly, without any need for the
capping result. We will use the fact that every Giroux torsion domain contains an object that we
call an anchored overtwisted annulus, which we will show serves as a filling obstruction analogous
to an overtwisted disk. Note that for a torsion domain Tn ⊂ M , the condition that ω is exact
on Tn is equivalent to the vanishing of the integral∫

T2×{c}
ω

on any slice T 2 × {c} ⊂ Tn. For a strong filling this is always satisfied since ω is exact on the
boundary, and it is also always satisfied if Tn separates M .

The proof of Theorem 1 is of some interest in itself for being comparatively low-tech, which is to
say that it relies only on technology that was already available as of 1985. As such, it demonstrates
new potential for well established techniques, in particular the Gromov-Eliashberg Bishop family
argument, which we shall generalize by considering a “Bishop family of holomorphic annuli” with
boundaries lying on a 1–parameter family of so-called half-twisted annuli. Unlike overtwisted
disks, a single overtwisted annulus does not suffice to prove anything: the boundaries of the
Bishop annuli must be allowed to vary in a nontrivial family, called an anchor, so as to produce a
moduli space with positive dimension. One consequence of this extra degree of freedom is that the
required energy bounds are no longer automatic, but in fact are only satisfied when ω satisfies an
extra cohomological condition. This is one way to understand the geometric reason why Giroux
torsion always obstructs strong fillings, but only obstructs weak fillings in the presence of extra
topological conditions. This method also provides some hope of being generalizable to higher
dimensions, where the known examples of filling obstructions are still very few.

In §2, we will initiate the study of weak fillings via punctured holomorphic curves in order to
obtain more general results. The linchpin of this approach is Theorem 2.9 in §2.2, which says
essentially that any weak filling can be deformed so that its boundary carries a stable Hamiltonian
structure. This is almost as good as a strong filling, as one can then symplectically attach a
cylindrical end—but extra cohomological conditions are usually needed in order to do this without
losing the ability to construct nice holomorphic curves in the cylindrical end. It turns out that the
required conditions are always satisfied for planar contact manifolds, and we obtain the following
surprising generalization of a result proved for strong fillings in [Wen10c].

Theorem 2. If (M, ξ) is a planar contact 3–manifold, then every weak filling of (W,ω) is sym-
plectically deformation equivalent to a blow up of a Stein filling of (M, ξ).

Corollary 1. If (M, ξ) is weakly fillable but not Stein fillable, then it is not planar.

Corollary 2. Given any planar open book supporting a contact manifold (M, ξ), the manifold is
weakly fillable if and only if the monodromy of the open book can be factored into a product of
positive Dehn twists.

The second corollary follows easily from the result proved in [Wen10c], that every planar open
book on a strongly fillable contact manifold can be extended to a Lefschetz fibration of the filling
over the disk. This fact was used in recent work of Olga Plamenevskaya and Jeremy Van Horn-
Morris [PVHM10] to find new examples of planar contact manifolds that have either unique fillings
or no fillings at all. Theorem 2 in fact reduces the classification question for weak fillings of planar
contact manifolds to the classification of Stein fillings, and as shown in [Wen] using the results
in [Wen10c], the latter reduces to an essentially combinatorial question involving factorizations of
monodromy maps into products of positive Dehn twists. Note that most previous classification
results for weak fillings (e.g. [Eli90a, Lis08, PVHM10]) have applied to rational homology spheres,
as it can be shown homologically in such settings that weak fillings are always deformable to strong
ones. Theorem 2 makes no such assumption about the topology of M .

Remark. It is easy to see that nothing like Theorem 2 holds for non-planar contact manifolds in
general. There are of course many examples of weakly but not strongly fillable contact manifolds;
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still more will appear in the results stated below. There are also Stein fillable contact manifolds
with weak fillings that cannot be deformed into blown up Stein fillings: for instance, Giroux shows
in [Gir94] that the standard contact 3–torus (T3, ξ1) admits weak fillings diffeomorphic to Σ×T2

for any compact oriented surface Σ with connected boundary. As shown in [Wen10c] however,
(T3, ξ1) has only one Stein filling, diffeomorphic to D × T2, and if Σ 6= D then Σ × T2 is not
homeomorphic to any blow-up of D × T2, since π2(Σ× T2) = 0.

Using similar methods, §2 will also generalize Theorem 1 to establish a new obstruction to
weak symplectic fillings in dimension three. We will recall in §2.3 the definition of a planar torsion
domain, which is a generalization of a Giroux torsion domain that furnishes an obstruction to
strong filling by a result in [Wen10b]. The same will not be true for weak fillings, but becomes
true after imposing an extra homological condition: for any closed 2–form Ω on M , one says
that M has Ω–separating planar torsion if ∫

L

Ω = 0

for every torus L in a certain special set of disjoint tori in the torsion domain.

Theorem 3. Suppose (M, ξ) is a closed contact 3–manifold with Ω–separating planar torsion for
some closed 2–form Ω on M . Then (M, ξ) admits no weakly contact type embedding into a closed
symplectic 4–manifold (W,ω) with ω|TM cohomologous to Ω. In particular, (M, ξ) has no weak
filling (W,ω) with [ω|TM ] = [Ω].

As is shown in [Wen10b], any Giroux torsion domain embedded in a closed contact manifold
has a neighborhood that contains a planar torsion domain, thus Theorem 3 implies another proof
of Theorem 1. If each of the relevant tori L ⊂M separates M , then

∫
L

Ω = 0 for all Ω and we say
that (M, ξ) has fully separating planar torsion.

Corollary 3. If (M, ξ) is a closed contact 3–manifold with fully separating planar torsion, then
it admits no weakly contact type embedding into any closed symplectic 4–manifold. In particular,
(M, ξ) is not weakly fillable.

Remark. The statement about non-fillability in Corollary 3 also follows from a recent computation
of the twisted ECH contact invariant that has been carried out in parallel work of the second author
[Wen10b]. The proof via ECH is however extremely indirect, as according to the present state of
technology it requires the isomorphism established by Taubes [Tau] from ECH to monopole Floer
homology, together with results of Kronheimer and Mrowka [KM97] that relate the monopole
invariants to weak fillings. Our proof on the other hand will require no technology other than
holomorphic curves.

We now show that there are many contact manifolds without Giroux torsion that satisfy the
above hypotheses. Consider a closed oriented surface

Σ = Σ+ ∪Γ Σ−

obtained as the union of two (not necessarily connected) surfaces Σ± with boundary along a
multicurve Γ 6= ∅. By results of Lutz [Lut77], the 3–manifold S1 × Σ admits a unique (up to
isotopy) S1–invariant contact structure ξΓ such that the surfaces {∗} ×Σ are all convex and have
Γ as the dividing set. If Γ has no component that bounds a disk, then the manifold (S1 × Σ, ξΓ)
is tight [Gir01, Proposition 4.1], and if Γ also has no two connected components that are isotopic
in Σ, then it follows from arguments due to Giroux (see [Mas09]) that (S1 × Σ, ξΓ) does not even
have Giroux torsion. But as we will review in §2.3, it is easy to construct examples that satisfy
these conditions and have planar torsion.

Corollary 4. For the S1–invariant contact manifold (S1 × Σ, ξΓ) described above, suppose the
following conditions are satisfied (see Figure 2):

(1) Γ has no contractible components and no pair of components that are isotopic in Σ.
(2) Σ+ contains a connected component ΣP ⊂ Σ+ of genus zero, whose boundary components

each separate Σ.
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Then (S1 × Σ, ξΓ) has no Giroux torsion and is not weakly fillable.

Figure 2. An example of a surface Σ
and multicurve Γ ⊂ Σ satisfying the
conditions of Corollary 4.

The example of the tight 3–tori shows that the ho-
mological condition in the Giroux torsion case cannot
be relaxed, and indeed, the first historical examples of
weakly but not strongly fillable contact structures can
in hindsight be understood via the distinction between
separating and non-separating Giroux torsion. In §3, we
will introduce a new symplectic handle attachment tech-
nique that produces much more general examples of weak
fillings:

Theorem 4. Suppose (W,ω) is a (not necessarily con-
nected) weak filling of a contact 3–manifold (M, ξ), and T ⊂ M is an embedded oriented torus
which is pre-Lagrangian in (M, ξ) and symplectic in (W,ω). Then:

(1) (W,ω) is also a weak filling of every contact manifold obtained from (M, ξ) by performing
finitely many Lutz twists along T .

(2) If T ′ ⊂ M is another torus satisfying the stated conditions, disjoint from T , such that∫
T
ω =

∫
T ′
ω, then the contact manifold obtained from (M, ξ) by splicing along T and T ′

is also weakly fillable.

See §3 for precise definitions of the Lutz twist and splicing operations, as well as more precise
versions of Theorem 4. We will use the theorem to explicitly construct new examples of contact
manifolds that are weakly but not strongly fillable, including some that have planar torsion but
no Giroux torsion. Let

Σ = Σ+ ∪Γ Σ−

be a surface divided by a multicurve Γ into two parts as described above. The principal circle
bundles PΣ,e over Σ are distinguished by their Euler number e = e(P ) ∈ Z which can be easily
determined by removing a solid torus around a fiber of PΣ,e, choosing a section outside this
neighborhood, and computing the intersection number of the section with a meridian on the
torus. The Euler number thus measures how far the bundle is from being trivial. Lutz [Lut77]
also showed that every nontrivial S1–principal bundle PΣ,e with Euler number e over Σ admits
a unique (up to isotopy) S1–invariant contact structure ξΓ,e that is tangent to fibers over the
multicurve Γ and is everywhere else transverse. For simplicity, we will continue to write ξΓ for the
corresponding contact structure ξΓ,0 on the trivial bundle PΣ,0 = S1 × Σ.

Theorem 5. Suppose
(
PΣ,e, ξΓ,e

)
is the S1–invariant contact manifold described above, for some

multicurve Γ ⊂ Σ whose connected components are all non-separating. Then
(
PΣ,e, ξΓ,e

)
is weakly

fillable.

Corollary 5. There exist contact 3–manifolds without Giroux torsion that are weakly but not
strongly fillable. In particular, this is true for the S1–invariant contact manifold (S1 × Σ, ξΓ)
whenever all of the following conditions are met:

(1) Γ has no connected components that separate Σ, and no pair of connected components that
are isotopic in Σ,

(2) Σ+ has a connected component of genus zero,
(3) Either of the following is true:

(a) Σ+ or Σ− is disconnected,
(b) Σ+ and Σ− are not diffeomorphic to each other.

Remark. Our proof of Theorem 5 will actually produce not just a weak filling of
(
PΣ,e, ξΓ,e

)
but also a connected weak filling of a disjoint union of this with another contact 3–manifold. By
Etnyre’s obstruction [Etn04b] (or by Theorem 2), it follows that

(
PΣ,e, ξΓ,e

)
is not planar whenever

Γ ⊂ Σ has no separating component.

One further implication of the techniques introduced in §2 is that weak fillings can now be
studied using the technology of Symplectic Field Theory. The latter is a general framework in-
troduced by Eliashberg, Givental and Hofer [EGH00] for defining contact invariants by counting
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(a) (b)

Figure 3. Surfaces Σ = Σ+ ∪Γ Σ− which yield S1–invariant contact manifolds
(S1 × Σ, ξΓ) that are weakly but not strongly fillable due to Corollary 5.

J–holomorphic curves in symplectizations and in noncompact symplectic cobordisms with cylin-
drical ends. In joint work of the second author with Janko Latschev [LW10], it is shown that SFT
contains an algebraic variant of planar torsion, which gives an infinite hierarchy of obstructions to
the existence of strong fillings and exact symplectic cobordisms in all dimensions.1 Stable Hamil-
tonian structures can be used to incorporate weak fillings into this picture as well: analogously to
the situation in Heegaard Floer homology, the distinction between strong and weak is then seen
algebraically via twisted (i.e. group ring) coefficients in SFT.

We will explain a special case of this statement in §2.5, focusing on the simplest and most widely
known invariant defined within the SFT framework: contact homology. Given a contact manifold
(M, ξ), the contact homology HC∗

(
M, ξ

)
can be defined as a Z2–graded supercommutative algebra

with unit: it is the homology of a differential graded algebra generated by Reeb orbits of a non-
degenerate contact form, where the differential counts rigid J–holomorphic spheres with exactly
one positive end and arbitrarily many negative ends. (See §2.5 for more precise definitions.) We
say that the homology vanishes if it satisfies the relation 1 = 0, which implies that it contains
only one element. In defining this algebra, one can make various choices of coefficients, and in
particular for any linear subspace R ⊂ H2(M ;R), one can define contact homology as a module
over the group ring2

Q[H2(M ;R)/R] =

{
N∑
i=1

cie
Ai
∣∣∣ ci ∈ Q, Ai ∈ H2(M ;R)/R

}
,

with the differential “twisted” by inserting factors of eA to keep track of the homology classes of
holomorphic curves. We will denote the contact homology algebra defined in this way for a given
subspace R ⊂ H2(M ;R) by

HC∗
(
M, ξ; Q[H2(M ;R)/R]

)
.

There are two obvious special cases that must be singled out: if R = H2(M ;R), then the co-
efficients reduce to Q, and we obtain the untwisted contact homology HC∗

(
M, ξ; Q

)
, in which

the group ring does not appear. If we instead set R = {0}, the result is the fully twisted con-
tact homology HC∗

(
M, ξ; Q[H2(M ;R)]

)
, which is a module over Q[H2(M ;R)]. There is also

an intermediately twisted version associated to any cohomology class β ∈ H2
dR(M), namely

HC∗
(
M, ξ; Q[H2(M ;R)/ kerβ]

)
, where we identify β with the induced linear map H2(M ;R) →

1Examples are as yet only known in dimension three, with the exception of algebraic overtwistedness, see [BN]

and [BvK10].
2In the standard presentation of contact homology, one usually requires the subspace R ⊂ H2(M ;R) to lie in

the kernel of c1(ξ), however this is only needed if one wants to lift the canonical Z2–grading to a Z–grading, which
is unnecessary for our purposes.



8 K. NIEDERKRÜGER AND C. WENDL

R, A 7→ 〈β,A〉. Observe that the canonical projections Q[H2(M ;R)] → Q[H2(M ;R)/ kerβ] → Q
yield algebra homomorphisms

HC∗
(
M, ξ; Q[H2(M ;R)]

)
→ HC∗

(
M, ξ; Q[H2(M ;R)/ kerβ]

)
→ HC∗

(
M, ξ; Q

)
,

implying in particular that whenever the fully twisted version vanishes, so do all the others. The
choice of twisted coefficients then has the following relevance for the question of fillability.

Theorem 6. 3 Suppose (M, ξ) is a closed contact 3–manifold with a cohomology class β ∈ H2
dR(M)

for which HC∗
(
M, ξ; Q[H2(M ;R)/ kerβ]

)
vanishes. Then (M, ξ) does not admit any weak sym-

plectic filling (W,ω) with [ω|TM ] = β.

Since weak fillings that are exact near the boundary are equivalent to strong fillings up to
symplectic deformation (cf. Proposition 3.1 in [Eli91]), the special case β = 0 means that the
untwisted contact homology gives an obstruction to strong filling, and we similarly obtain an
obstruction to weak filling from the fully twisted contact homology:

Corollary 6. For any closed contact 3–manifold (M, ξ):

(1) If HC∗
(
M, ξ; Q

)
vanishes, then (M, ξ) is not strongly fillable.

(2) If HC∗
(
M, ξ; Q[H2(M ;R)]

)
vanishes, then (M, ξ) is not weakly fillable.

This result does not immediately yield any new knowledge about contact topology, as so far
the overtwisted contact manifolds are the only examples in dimension 3 for which any version (in
particular the twisted version) of contact homology is known to vanish, cf. [Yau06] and [Wen10b].
We’ve included it here merely as a “proof of concept” for the use of SFT with twisted coefficients to
study weak fillings. For the higher order algebraic filling obstructions defined in [LW10], there are
indeed examples where the twisted and untwisted theories differ, corresponding to tight contact
manifolds that are weakly but not strongly fillable.

We conclude this introduction with a brief discussion of open questions.
Insofar as planar torsion provides an obstruction to weak filling, it is natural to wonder how

sharp the homological condition in Theorem 3 is. The most obvious test cases are the S1–invariant
product manifolds (S1×Σ, ξΓ), under the assumption that Σ \Γ contains a connected component
of genus zero, as for these the question of strong fillability is completely understood by results in
[Wen10b] and [Wen]. Theorems 3 and 5 give criteria when such manifolds either are or are not
weakly fillable, but there is still a grey area in which neither result applies, e.g. neither is able to
settle the following:

Question 1. Suppose Σ = Σ+ ∪Γ Σ−, where Σ \ Γ contains a connected component of genus
zero and some connected components of Γ separate Σ, while others do not. Is (S1 × Σ, ξΓ) weakly
fillable?

Another question concerns the classification of weak fillings: on rational homology spheres this
reduces to a question about strong fillings, and Theorem 2 reduces it to the Stein case for all planar
contact manifolds, which makes general classification results seem quite realistic. But already in
the simple case of the tight 3–tori, one can combine explicit examples such as Σ × T2 with our
splicing technique to produce a seemingly unclassifiable zoo of inequivalent weak fillings. Note
that the splicing technique can be applied in general for contact manifolds that admit fillings
with homologically nontrivial pre-Lagrangian tori, and these are never planar, because due to an
obstruction of Etnyre [Etn04b] fillings of planar contact manifolds must have trivial b02.

Question 2. Other than rational homology spheres, are there any non-planar weakly fillable con-
tact 3–manifolds for which weak fillings can reasonably be classified?

3While the fundamental concepts of Symplectic Field Theory are now a decade old, its analytical foundations

remain work in progress (cf. [Hof06]), and it has meanwhile become customary to gloss over this fact while using the
conceptual framework of SFT to state and “prove” theorems. We do not entirely mean to endorse this custom, but

at the same time we have followed it in the discussion surrounding Theorem 6, which really should be regarded as

a conjecture for which we will provide the essential elements of the proof, with the expectation that it will become
fully rigorous as soon as the definition of the theory is complete.



WEAK SYMPLECTIC FILLINGS AND HOLOMORPHIC CURVES 9

On the algebraic side, it would be interesting to know whether Theorem 6 actually implies any
contact topological results that are not known; this relates to the rather important open question
of whether there exist tight contact 3–manifolds with vanishing contact homology. In light of the
role played by twisted coefficients in the distinction between strong and weak fillings, this question
can be refined as follows:

Question 3. Does there exist a tight contact 3–manifold with vanishing (twisted or untwisted)
contact homology? In particular, is there a weakly fillable contact 3–manifold with vanishing
untwisted contact homology?

The generalization of overtwistedness furnished by planar torsion gives some evidence that the
answer to this last question may be no. In particular, planar torsion as defined in [Wen10b] comes
with an integer-valued order k ≥ 0, and for every k ≥ 1, our results give examples of contact
manifolds with planar k–torsion that are weakly but not strongly fillable. This phenomenon is
also detected algebraically both by Embedded Contact Homology [Wen10b] and by Symplectic
Field Theory [LW10], where in each case the untwisted version vanishes and the twisted version
does not. Planar 0–torsion, however, is fully equivalent to overtwistedness, and thus always causes
the twisted theories to vanish. Thus on the k = 0 level, there is a conspicuous lack of candidates
that could answer the above question in the affirmative.

Relatedly, the distinction between twisted and untwisted contact homology makes just as much
sense in higher dimensions, yet the distinction between weak and strong fillings apparently does
not. The simplest possible definition of a weak filling in higher dimensions, that ∂W = M with
ω|ξ symplectic, is not very natural and probably cannot be used to prove anything. A better
definition takes account of the fact that ξ carries a natural conformal symplectic structure, and
ω should be required to define the same conformal symplectic structure on ξ: in this case we say
that (M, ξ) is dominated by (W,ω). In dimension three this notion is equivalent to that of a
weak filling, but surprisingly, in higher dimensions it is equivalent to strong filling, by a result
of McDuff [McD91]. It is thus extremely unclear whether any sensible distinct notion of weak
fillability exists in higher dimensions, except algebraically:

Question 4. In dimensions five and higher, are there contact manifolds with vanishing untwisted
but nonvanishing twisted contact homology (or similarly, algebraic torsion as in [LW10])? If so,
what does this mean about their symplectic fillings?

Another natural question in higher dimensions concerns the variety of possible filling obstruc-
tions, of which very few are yet known. There are obstructions arising from the plastikstufe [Nie06],
designed as a higher dimensional analog of the overtwisted disk, as well as from left handed stabi-
lizations of open books [BvK10]. Both of these cause contact homology to vanish, and there is as
yet no known example of a “higher order” filling obstruction in higher dimensions, i.e. something
analogous to Giroux torsion or planar torsion, which might obstruct symplectic filling without
killing contact homology. One promising avenue to explore in this area would be to produce a
higher dimensional generalization of the anchored overtwisted annulus, though once an example
is constructed, it may be far from trivial to show that it has nonvanishing contact homology.

Question 5. Is there any higher dimensional analog of the anchored overtwisted annulus, and
can it be used to produce examples of nonfillable contact manifolds with nonvanishing contact
homology?
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1. Giroux torsion and the overtwisted annulus

In this section, which can be read independently of the remainder of the paper, we adapt the
techniques used in the non-fillability proof for overtwisted manifolds due to Eliashberg and Gromov
to prove Theorem 1.

We begin by briefly sketching the original proof for overtwisted contact structures. Assume
(M, ξ) is a closed overtwisted contact manifold with a weak symplectic filling (W,ω). The condition
ω|ξ > 0 implies that we can choose an almost complex structure J on W which is tamed by ω
and makes the boundary J–convex. The elliptic singularity in the center of the overtwisted disk
DOT ⊂M is the source of a 1–dimensional connected moduli space M of J–holomorphic disks

u :
(
D, ∂D

)
→
(
W,DOT

)
that represent homotopically trivial elements in π2

(
W,DOT

)
, and whose boundaries encircle the

singularity of DOT once. The space M is diffeomorphic to an open interval, and as we approach
one limit of this interval the holomorphic curves collapse to the singular point in the center of the
overtwisted disk DOT.

We can add to any holomorphic disk inM a capping disk in DOT, such that we obtain a sphere
that bounds a ball, and hence the ω–energy of any disk in M is equal to the symplectic area of
the capping disk. This implies that the energy of any holomorphic disk in M is bounded by the
integral of |ω| over DOT, so that we can apply Gromov compactness to understand the limit at
the other end ofM. By a careful study, bubbling and other phenomena can be excluded, and the
result is a limit curve that must have a boundary point tangent to the characteristic foliation at
∂DOT; but this implies that it touches ∂W tangentially, which is impossible due to J–convexity.

Below we will work out an analogous proof for the situation where (M, ξ) is a closed 3–
dimensional contact manifold that contains a different object, called an anchored overtwisted
annulus. Assuming (M, ξ) has a weak symplectic filling or is a weakly contact hypersurface in
a closed symplectic 4–manifold, we will choose an adapted almost complex structure and in-
stead of using holomorphic disks, consider holomorphic annuli with boundaries varying along a
1–dimensional family of surfaces. The extra degree of freedom in the boundary condition produces
a moduli space of positive dimension. If ω is also exact on the region foliated by the family of
boundary conditions, then we obtain an energy bound, allowing us to apply Gromov compactness
and derive a contradiction.

1.1. The overtwisted annulus. We begin by introducing a geometric object that will play the
role of an overtwisted disk. Recall that for any oriented surface S ↪→ M embedded in a contact
3–manifold (M, ξ), the intersection TS∩ξ defines an oriented singular foliation Sξ on S, called the
characteristic foliation. Its leaves are oriented 1–dimensional submanifolds, and every point where
ξ is tangent to S yields a singularity, which can be given a sign by comparing the orientations of
ξ and TS.

Definition 1.1. Let (M, ξ) be a 3–dimensional contact manifold. A submanifold A ∼= [0, 1]×S1 ↪→
M is called a half-twisted annulus if the characteristic foliation Aξ has the following properties:

(1) Aξ is singular along {0} × S1 and regular on (0, 1]× S1.
(2) {1} × S1 is a closed leaf.
(3) (0, 1) × S1 is foliated by an S1–invariant family of characteristic leaves that each meet
{0} × S1 transversely and approach ∂A asymptotically.

We will refer to the two boundary components ∂LA := {1} × S1 and ∂SA := {0} × S1 as the
Legendrian and singular boundaries respectively. An overtwisted annulus is then a smoothly
embedded annulus A ⊂M which is the union of two half-twisted annuli

A = A− ∪ A+

along their singular boundaries (see Figure 4).

Remark 1.2. As pointed out to us by Giroux, every neighborhood of a point in a contact manifold
contains an overtwisted annulus. Indeed, any knot admits a C0–small perturbation to a Legendrian
knot, which then has a neighborhood contactomorphic to the solid torus S1 × D 3 (ϑ;x, y) with
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Figure 5. An anchored overtwisted annulus A = A−0 ∪ A+
0 in a Giroux torsion

domain T1.

contact structure ker (dy − x dϑ). A small torus T2 ∼= S1 ×
{

(x, y)
∣∣ x2 + y2 = ε

}
is composed of

two annuli glued to each other along their boundaries, and the characteristic foliation on each of
these is linear on the interior but singular at the boundary. By pushing one of these annuli slightly
inward along one boundary component and the other slightly outward along the corresponding
boundary component, we obtain an overtwisted annulus.

Figure 4. An overtwisted annu-
lus A = A− ∪A+ with its singular
characteristic foliation.

The above remark demonstrates that a single overtwisted
annulus can never give any contact topological information.
We will show however that the following much more restrictive
notion carries highly nontrivial consequences.

Definition 1.3. We will say that an overtwisted annu-
lus A = A− ∪ A+ ⊂ (M, ξ) is anchored if (M, ξ) con-
tains a smooth S1–parametrized family of half-twisted annuli{
A−ϑ
}
ϑ∈S1 which are disjoint from each other and from A+,

such that A−0 = A−. The region foliated by
{
A−ϑ
}
ϑ∈S1 is then

called the anchor.

Example 1.4. Recall that we defined a Giroux torsion domain
Tn as the thickened torus T2×[0, n] =

{
(ϕ, ϑ; z)

}
with contact

structure given as the kernel of

sin(2πz) dϕ+ cos(2πz) dϑ .

For every ϑ ∈ S1, such a torsion domain contains an overtwisted annulus Aϑ which we obtain by
bending the image of

[0, 1]× S1 ↪→ Tn,
(
z, ϕ

)
7→
(
ϕ, ϑ; z

)
slightly downward along the edges {0, 1} × S1 so that they become regular leaves of the foliation.
This can be done in such a way that T2 × [0, 1] is foliated by an S1–family of overtwisted annuli,

T2 × [0, 1] =
⋃
ϑ∈S1

Aϑ ,

all of which are therefore anchored.

The example shows that every contact manifold with positive Giroux torsion contains an an-
chored overtwisted annulus, but in fact, as John Etnyre and Patrick Massot have pointed out to
us, the converse is also true: it follows from deep results concerning the classification of tight
contact structures on thickened tori [Gir00] that a contact manifold must have positive Giroux
torsion if it contains an anchored overtwisted annulus.

We will use an anchored overtwisted annulus as a boundary condition for holomorphic annuli.
By studying the moduli space of such holomorphic curves, we find certain topological conditions
that have to be satisfied by a weak symplectic filling, and which will imply Theorem 1.

1.2. The Bishop family of holomorphic annuli. In the non-fillability proof for overtwisted
manifolds, the source of the Bishop family is an elliptic singularity at the center of the overtwisted
disk. For an anchored overtwisted annulus, holomorphic curves will similarly emerge out of singu-
larities of the characteristic foliation, in this case the singular boundaries of the half-twisted annuli
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in the anchor, which all together trace out a pre-Lagrangian torus. We shall first define a boundary
value problem for pseudoholomorphic annuli with boundary in an anchored overtwisted annulus,
and then choose a special almost complex structure near the singularities for which solutions to
this problem can be constructed explicitly. If ω is exact on the anchor, then the resulting energy
bound and compactness theorem for the moduli space will lead to a contradiction.

For the remainder of §1, suppose (W,ω) is a weak filling of (M, ξ), and the latter contains an
anchored overtwisted annulus A = A− ∪ A+ with anchor {A−ϑ }ϑ∈S1 such that A−0 = A−. The
argument will require only minor modifications for the case where (W,ω) is closed and contains
(M, ξ) as a weakly contact hypersurface; see Remark 1.14.

1.2.1. A boundary value problem for anchored overtwisted annuli. We will say that an almost
complex structure J on W is adapted to the filling if it is tamed by ω and preserves ξ. The fact
that ξ is a positive contact structure implies that any J adapted to the filling makes the boundary
∂W pseudoconvex, with the following standard consequences:

Lemma 1.5 (cf. [Zeh03], Theorem 4.2.3). If J is adapted to the filling (W,ω) of (M, ξ), then:

(1) Any embedded surface S ⊂ M = ∂W on which the characteristic foliation is regular is a
totally real submanifold of (W,J).

(2) Any connected J–holomorphic curve whose interior intersects ∂W must be constant.
(3) If S ⊂ ∂W is a totally real surface as described above and u : Σ→W is a J–holomorphic

curve satisfying the boundary condition u(∂Σ) ⊂ S, then u|∂Σ is immersed and positively
transverse to the characteristic foliation on S.

Given any adapted almost complex structure J on (W,ω), the above lemma implies that the
interiors intA+ ⊂ A+ and intA−ϑ ⊂ A−ϑ are all totally real submanifolds of (W,J). We shall then
consider a moduli space of J–holomorphic annuli defined as follows. Denote by Ar the complex
annulus

Ar =
{
z ∈ C

∣∣ 1 ≤ |z| ≤ 1 + r
}
⊂ C

of modulus r > 0, and write its boundary components as ∂−r :=
{
z ∈ C

∣∣ |z| = 1
}

and ∂+
r :=

{
z ∈

C
∣∣ |z| = 1 + r

}
. We then define the space

M(J) =
⋃
r>0

{
u : Ar →W

∣∣ Tu ◦ i = J ◦ Tu, u(∂+
r ) ⊂ intA+,

u(∂−r ) ⊂ intA−ϑ for any ϑ ∈ S1
}/

S1,

where τ ∈ S1 acts on maps u : Ar → W by τ · u(z) := u(e2πiτz). This space can be given a
natural topology by fixing a smooth family of diffeomorphisms from a standard annulus to the
domains Ar,

(1.1) ψr : [0, 1]× S1 → Ar : (s, t) 7→ es log(1+r)+2πit ,

and then saying that a sequence uk : Ark →W converges to u : Ar →W in M(J) if rk → r and

uk ◦ ψrk(s, t+ τk)→ u ◦ ψr(s, t)
for some sequence τk ∈ S1, with C∞–convergence on [0, 1]× S1.

We will show below that J can be chosen to make M(J) a nonempty smooth manifold of
dimension one. This explains why the “anchoring” condition is necessary: it introduces an extra
degree of freedom in the boundary condition, without which the moduli space would generically be
zero-dimensional and the Bishop family could never expand to reach the edge of the half-twisted
annuli.

1.2.2. Special almost complex structures near the boundary. Suppose α is a contact form for (M, ξ).
The standard way to construct compatible almost complex structures on the symplectization(
R ×M,d(etα)

)
involves choosing a compatible complex structure Jξ on the symplectic vector

bundle
(
ξ|{0}×M , dα

)
, extending it to a complex structure on

(
T (R×M)|{0}×M , d(etα)

)
such

that
JXα = −∂t and J∂t = Xα
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for the Reeb vector field Xα of α, and finally defining J as the unique R–invariant almost complex
structure on R×M that has this form at {0}×M . Almost complex structures of this type will be
essential for the arguments of §2. For the remainder of this section, we will drop the R–invariance
condition but say that an almost complex structure on R×M is compatible with α if it takes the
above form on {0} ×M ; in this case it is tamed by d(etα) on any sufficiently small neighborhood
of {0} ×M . It is sometimes useful to know that an adapted J on any weak filling can be chosen
to match any given J of this form near the boundary.

Proposition 1.6. Let (M, ξ) be a contact 3–manifold with weak filling (W,ω). Choose any contact
form α for ξ and an almost complex structure J on R×M compatible with α. Then for sufficiently
small ε > 0, the canonical identification of {0}×M with ∂W can be extended to a diffeomorphism
from (−ε, 0]×M to a collar neighborhood of ∂W such that the push-forward of J is tamed by ω.

In particular, this almost complex structure can then be extended to a global almost complex
structure on W that is tamed by ω, and is thus adapted to the filling.

Proof. Writing Jξ := J |ξ, construct an auxiliary complex structure Jaux on TW |M as the direct

sum of Jξ on the symplectic bundle
(
ξ|{0}×M , ω

)
with a compatible complex structure on its

ω–symplectic complement
(
ξ⊥ω

∣∣
{0}×M , ω

)
. Clearly this complex structure is tamed by ω|M .

Define an outward pointing vector field along the boundary by setting

Y = −Jaux ·Xα .

Extend Y to a smooth vector field on a small neighborhood of M in W , and use its flow to define
an embedding of a subset of the symplectization

Ψ : (−ε, 0]×M →W,
(
t, p
)
7→ ΦtY (p)

for sufficiently small ε > 0. The restriction of Ψ to {0} ×M is the identity on M , and the push-
forward of J under this map coincides with Jaux along M , because Ψ∗∂t = Y . It follows that the
push-forward of J is tamed by ω on a sufficiently small neighborhood of M = ∂W , and we can
then extend it to W as an almost complex structure tamed by ω. �

1.2.3. Generation of the Bishop family. We shall now choose an almost complex structure J0 on
the symplectization of M that allows us to write down the germ of a Bishop family in R×M which
generates a component of M(J0). At the same time, J0 will prevent other holomorphic curves
in the same component of M(J0) from approaching the singular boundaries of the half-twisted
annuli A−ϑ . We can then apply Proposition 1.6 to identify a neighborhood of {0} × M in the
symplectization with a boundary collar of W , so that W contains the Bishop family.

The singular boundaries of A−ϑ define closed leaves of the characteristic foliation on a torus

T :=
⋃
ϑ∈S1

∂SA−ϑ ⊂M ,

which is therefore a pre-Lagrangian torus. We then obtain the following by a standard Moser-type
argument.

Lemma 1.7. For sufficiently small ε > 0, a tubular neighborhood N (T ) ⊂M of T can be identified
with T2 × (−ε, ε) with coordinates (ϕ, ϑ; r) such that:

• T = T2 × {0},
• ξ = ker [cos(2πr) dϑ+ sin(2πr) dϕ],
• A ∩N (T ) = {ϑ = 0}, and A−ϑ0

∩N (T ) = {ϑ = ϑ0, r ∈ (−ε, 0]} for all ϑ0 ∈ S1.

Using the coordinates given by the lemma, we can reflect the half-twisted annuli A−ϑ0
across T

within this neighborhood to define the surfaces

A+
ϑ0

:=
{
ϑ = ϑ0, r ∈ [0, ε)

}
⊂M .

Each of these surfaces looks like a collar neighborhood of the singular boundary in a half-twisted
annulus. Now choose for ξ a contact form α on M that restricts on N (T ) to

(1.2) α|N (T ) = cos(2πr) dϑ+ sin(2πr) dϕ .
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The main idea of the construction is to identify the set N (T ) with an open subset of the unit
cotangent bundle T3 = S

(
T ∗T2

)
of T2, with its canonical contact form αcan. We will then use an

integrable complex structure on T ∗T2 to find explicit families of holomorphic curves that give rise
to holomorphic annuli in R×M .

The cotangent bundle of T2 = R2/Z2 can be identified naturally with

C2/iZ2 = R2 ⊕ i(R2/Z2)

such that the canonical 1–form takes the form λcan = p1 dq1 +p2 dq2 in coordinates [z1, z2] =
[
p1 +

iq1, p2 +iq2

]
. The unit cotangent bundle S

(
T ∗T2

)
=
{

[p1 +iq1, p2 +iq2] ∈ T ∗T2
∣∣ |p1|2 +|p2|2 = 1

}
can then be parametrized by the map

T3 = T2 × S1 3 (ϕ, ϑ; r) 7→
[
sin 2πr + iϕ, cos 2πr + iϑ

]
∈ T ∗T2 ,

and the pull-back of λcan to T3 gives

αcan := λcan|TS(T∗T2) = cos(2πr) dϑ+ sin(2πr) dϕ .

The Liouville vector field dual to λcan is p1 ∂p1 +p2 ∂p2 , and we can use its flow to identify T ∗T2\T2

with the symplectization of S
(
T ∗T2

)
:

Φ : (R× S
(
T ∗T2

)
, d(etαcan))→ (T ∗T2 \ T2, dλcan), (t; p+ iq) 7→ etp+ iq .

Then it is easy to check that the restriction of the complex structure Φ∗i to {0} × T3 preserves
kerαcan and maps ∂t to the Reeb vector field of αcan, hence Φ∗i is compatible with αcan. Now for
the neighborhood N (T ) ∼= T2 × (−ε, ε), denote by

Ψ : (−ε, 0]×N (T ) ↪→ R× T3

the natural embedding determined by the coordinates (ϕ, ϑ; r). Proposition 1.6 then implies:

Lemma 1.8. There exists an almost complex structure J0 adapted to the filling (W,ω) of (M, ξ),
and a collar neighborhood N (∂W ) ∼= (−ε, 0] × M of ∂W such that on (−ε, 0] × N (T ) ⊂ W ,
J0 = Ψ∗Φ∗i.

Consider the family of complex lines Lζ :=
{

(z1, z2)
∣∣ z2 = ζ

}
in C2. The projection of these

curves into T ∗T2 ∼= C2/iZ2 are holomorphic cylinders, whose intersections with the unit disk

bundle D(T ∗T2) =
{
p + iq ∈ C2/iZ2

∣∣ |p|2 ≤ 1
}

define holomorphic annuli. In particular, for
sufficiently small δ > 0 and any

(c, τ) ∈ (0, δ]× S1 ,

the intersection L(1−c)+iτ ∩ D(T ∗T2) is a holomorphic annulus in Φ ◦ Ψ
(
(−ε, 0] × N (T )

)
, which

therefore can be identified with a J0–holomorphic annulus

u(c,τ) : Arc →W

with image in the neighborhood (−ε, 0] × N (T ), where the modulus rc > 0 depends on c and
approaches zero as c → 0. It is easy to check that the two boundary components of u(c,τ) map

into the interiors of the surfaces A+
τ and A−τ respectively in ∂W . Observe that all of these annuli are

obviously embedded, and they foliate a neighborhood of T in W . We summarize the construction
as follows.

Proposition 1.9. For the almost complex structure J0 given by Lemma 1.8, there exists a smooth
family of properly embedded J0–holomorphic annuli{

u(c,τ) : Arc →W
}

(c,τ)∈(0,δ]×S1

which foliate a neighborhood of T in W \ T and satisfy the boundary conditions

u(c,τ)

(
∂+
rc

)
⊂ intA+

τ , u(c,τ)

(
∂−rc
)
⊂ intA−τ .

In particular the curves u(c,0) for c ∈ (0, δ] all belong to the moduli space M(J0).
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Figure 6. The unit disk bundle in T ∗T2 is foliated by a family of holomorphic
annuli obtained from the complex planes Lζ . The neighborhood N (T ) can be
identified with a subset of the unit disk bundle S

(
T ∗T2

)
.

Denote the neighborhood foliated by the curves u(c,τ) by

U =
⋃

(c,τ)∈(0,δ]×S1
u(c,τ)(Arc) ,

and define the following special class of almost complex structures,

JU (ω, ξ) =
{

almost complex structures J adapted to the filling (W,ω) such that J ≡ J0 on U
}
.

The annuli u(c,τ) are thus J–holomorphic for any J ∈ JU (ω, ξ), and the space M(J) is therefore
nonempty. In this case, denote by

M0(J) ⊂M(J)

the connected component of M(J) that contains the curves u(c,0).

Lemma 1.10. Every curve u : Ar → W in M0(J) is proper, and its restriction to ∂Ar is
embedded.

Proof. Properness follows immediately from Lemma 1.5, and due to our assumptions on the char-
acteristic foliation of a half-twisted annulus, embeddedness at the boundary also follows from the
lemma after observing that the homotopy class of u|∂±r is the same as for the curves u(c,0), whose
boundaries intersect every characteristic leaf once. �

Proposition 1.11. For J ∈ JU (ω, ξ), suppose u ∈ M0(J) is not one of the curves u(c,0). Then
u does not intersect the interior of U .

Proof. The proof is based on an intersection argument. Each of the curves u(c,τ) foliating U can be
capped off to a cycle û(c,τ) that represents the trivial homology class in H2(W ). We shall proceed
in a similar way to obtain a cycle û for u, arranged such that intersections between the cycles û
and û(c,τ) can only occur when the actual holomorphic curves u and u(c,τ) intersect. Then if u
is not any of the curves u(c,0) but intersects the interior of U , it also is not a multiple cover of
any u(c,0) due to Lemma 1.10, and therefore must have an isolated positive intersection with some
curve u(c,τ). It follows that [ûc0 ] • [û] > 0, but since [ûc0 ] = 0 ∈ H2(W ), this is a contradiction.

We construct the desired caps as follows. Suppose u(∂−r ) ⊂ A−ϑ0
. We may assume without loss

of generality that u and u(c,τ) intersect each other in the interior, and since this intersection will
not disappear under small perturbations, we can adjust τ so that it equals neither 0 nor ϑ0. A cap
for u(c,τ) can then be constructed by filling in the space in A−τ ∪ A+

τ between the two boundary
components of u(c,τ); clearly the resulting homology class [û(c,τ)] is trivial.

The cap for u will be a piecewise smooth surface in ∂W constructed out of three smooth pieces:

• A subset of A+ filling the space between the singular boundary ∂SA+ and u(∂+
r ),

• A subset of A−ϑ0
filling the space between the singular boundary ∂SA−ϑ0

and u(∂−r ),

• An annulus in T = {r = 0} defined by letting ϑ vary over a path in S1 that connects 0
to ϑ0 by moving in a direction such that it does not hit τ .

By construction, the two caps are disjoint, and since both are contained in ∂W , neither intersects
the interior of either curve. �
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1.2.4. Local structure of the moduli space. We now show that M0(J) can be given a nice local
structure for generic data.

Proposition 1.12. For generic J ∈ JU (ω, ξ), the moduli spaceM0(J) is a smooth 1–dimensional
manifold.

Proof. Since M0(J) is connected by assumption, the dimension can be derived by computing
the Fredholm index of the associated linearized Cauchy-Riemann operator for any of the curves
u(c,0) ∈ M0(J). By Lemma 1.10, every curve u ∈ M0(J) is somewhere injective, thus standard
arguments as in [MS04] imply that for generic J ∈ JU (ω, ξ), the subset of curves in M0(J) that
are not completely contained in U is a smooth manifold of the correct dimension. Proposition 1.11
implies that the remaining curves all belong to the family u(c,0), and for these we will have to

examine the Cauchy-Riemann operator more closely since J cannot be assumed to be generic in U .
Abbreviate u = u(c,0) : Ar → W for any c ∈ (0, δ]. Since u is embedded, a neighborhood of u

in M0(J) can be described via the normal Cauchy-Riemann operator (cf. [Wen10a]),

(1.3) DN
u : W 1,p

`,ζ (Nu)→ Lp
(
HomC(TAr, Nu)

)
,

where p > 2, Nu → Ar is the complex normal bundle of u, DN
u is the normal part of the restriction

of the usual linearized Cauchy-Riemann operator D∂̄J(u) (which acts on sections of u∗TW ) to
sections of Nu, and the subscripts ` and ζ represent a boundary condition to be described below.
We must define the normal bundle Nu so that at the boundary its intersection with TA has real
dimension one, thus defining a totally real subbundle

` = Nu|∂Ar ∩ (u|∂Ar )∗TA ⊂ Nu|∂Ar .

To be concrete, note that in the coordinates (ϕ, ϑ; r) on N (T ), the image of u can be parametrized
by a map of the form

v : [−r0, r0]× S1 → (−ε, 0]×N (T ), (σ, τ) 7→ (a(σ); τ, 0;σ)

for some r0 > 0, where a(σ) is a smooth, convex and even function. Choose a vector field along v
of the form

ν(σ, τ) = ν1(σ) ∂r + ν2(σ) ∂t

which is everywhere transverse to the path σ 7→ (a(σ), σ) in the tr–plane, and require

ν(±r0, τ) = ∓∂r .

Then the vector fields ν and iν along v span a complex line bundle that is everywhere transverse
to v, and its intersection with TA at the boundary is spanned by ∂r. We define this line bundle to
be the normal bundle Nu along u, which comes with a global trivialization defined by the vector
field ν, for which we see immediately that both components of the real subbundle ` along ∂Ar
have vanishing Maslov index. To define the proper linearized boundary condition, we still must
take account of the fact that the image of ∂−r for nearby curves in the moduli space may lie in
different half-annuli A−ϑ : this means there is a smooth section ζ ∈ Γ(Nu|∂−r ) which is everywhere

transverse to `, such that the domain for DN
u takes the form

W 1,p
`,ζ (Nu) :=

{
η ∈W 1,p(Nu)

∣∣ η(z) ∈ `z for all z ∈ ∂+
r ,

η(z) + c ζ(z) ∈ `z for all z ∈ ∂−r and any constant c ∈ R
}
.

Leaving out the section ζ, we obtain the standard totally real boundary condition

W 1,p
` (Nu) := {η ∈W 1,p(Nu) | η(z) ∈ `z for all z ∈ ∂Ar} ,

and the Riemann-Roch formula implies that the restriction of DN
u to this smaller space has Fred-

holm index 0. Since the smaller space has codimension one in W 1,p
`,ζ (Nu), the index of DN

u on the

latter is 1, which proves the dimension formula forM0(J). Moreover, since Nu has complex rank
one, there are certain automatic transversality theorems that apply: in particular, Theorem 4.5.36
in [Wen05] implies that (1.3) is always surjective, and M0(J) is therefore a smooth manifold of
the correct dimension, even in the region where J is not generic. �
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1.2.5. Energy bounds. Assume now that ω is exact on the anchor, i.e. there exists a 1–form β on
the region

⋃
ϑ∈S1 A

−
ϑ with dβ = ω. The aim of this section is to find a uniform bound on the

ω–energy

Eω(u) =

∫
Ar

u∗ω

for all curves
u :
(
Ar, ∂

−
r ∪ ∂+

r

)
→ (W,A−ϑ ∪ A+)

in the connected moduli space M0(J) generated by the Bishop family.
Given such a curve u ∈M0(J), there exists a smooth 1–parameter family of maps

{ut : Ar →W}t∈[ε,1] ,

such that uε is a reparametrization one of the explicitly constructed curves u(c,0) that foliate U ,
and u1 = u. The map ū : [ε, 1]×Ar →W : (t, z) 7→ ut(z) then represents a 3–chain, and applying
Stokes’ theorem to the integral of d(ū∗ω) = 0 over [ε, 1]×Ar gives

Eω(u) = Eω(uε)−
∫

[ε,1]×∂Ar
ū∗ω .

The image ū
(
[ε, 1]× ∂Ar

)
has two components ū

(
[ε, 1]× ∂+

r

)
and ū

(
[ε, 1]× ∂−r

)
. The first lies in

a single half-twisted annulus A+, and thus the absolute value of
∫

[ε,1]×∂+
r
ū∗ω can be bounded by∫

A+ |ω|. For the second component, the image ū
(
[ε, 1] × ∂−r

)
lies in the anchor

⋃
ϑ∈S1 A

−
ϑ , so we

can write

Eω(u) ≤ Eω(uε) +

∫
A+

|ω|+
∫
∂−ε

u∗εβ −
∫
∂−r

u∗β .

Figure 7. The holomorphic annulus u :
(
Ar, ∂

−
r ∪ ∂+

r

)
→ (W,A−ϑ ∪ A+) is part

of a 1–parameter family ut of curves that start at an annulus uε that lies in the
Bishop family.

It remains only to find a uniform bound on the last term in this sum,
∫
∂−r
u∗β. Observe that

u(∂−r ) and the singular boundary ∂SA−ϑ enclose an annulus within A−ϑ , thus∣∣∣∣∫
∂+
r

u∗β

∣∣∣∣ ≤ ∫
∂SA−ϑ

|β|+
∫
A−ϑ
|ω| .

This last sum is uniformly bounded since the surfaces A−ϑ for ϑ ∈ S1 form a compact family.

1.2.6. Gromov compactness for the holomorphic annuli. The main technical ingredient still needed
for the proof of Theorem 1 is the following application of Gromov compactness.

Proposition 1.13. Suppose J is generic in JU (ω, ξ), ω is exact on the anchor, and

uk :
(
Ark , ∂

−
rk
∪ ∂+

rk

)
→ (W,A−ϑk ∪ A+)

is a sequence of curves in M0(J) with images not contained in U . Then there exist r > 0, ϑ ∈ S1

and a sequence τk ∈ S1 such that after passing to a subsequence, rk → r, ϑk → ϑ and the maps

z 7→ uk(e2πiτkz)

are C∞–convergent to a J–holomorphic annulus u : Ar →W satisfying u(∂−r ) ⊂ A−ϑ and u(∂+
r ) ⊂

A+.



18 K. NIEDERKRÜGER AND C. WENDL

The energies
∫
Ark

u∗kω are uniformly bounded due to the exactness assumption, and the proof

is then essentially the same as in the disk case, cf. [Eli90a] or [Zeh03]. A priori, uk could converge
to a nodal holomorphic annulus, with nodes on both the boundary and the interior. Boundary
nodes are impossible however for topological reasons, as each boundary component of uk must
pass exactly once through each leaf in an S1–family of characteristic leaves, and any boundary
component in a nodal annulus will also pass at least once through each of these leaves. Having
excluded boundary nodes, uk could converge to a bubble tree consisting of holomorphic spheres
and either an annulus or a pair of disks, all connected to each other by interior nodes. This
however is a codimension 2 phenomenon, and thus cannot happen for generic J since M0(J) is
1–dimensional. Here we make use of two important facts:

(1) Any component of the limit that has nonempty boundary must be somewhere injective,
as it will be embedded at the boundary by the same argument as in Lemma 1.10. Such
components therefore have nonnegative index.

(2) (W,ω) is semipositive (as is always the case in dimension 4), hence holomorphic spheres
of negative index cannot bubble off.

With this, the proof of Proposition 1.13 is complete.

1.2.7. Proof of Theorem 1. Assume (W,ω) is a weak filling of (M, ξ) and the latter has positive
Giroux torsion. As shown in Example 1.4, (M, ξ) contains an anchored overtwisted annulus. For
this setting, we defined in §1.2.1 a moduli space of J–holomorphic annuliM(J) with a 1–parameter
family of totally real boundary conditions. In §1.2.3, we found a special almost complex structure
J0 which admits a Bishop family of holomorphic annuli, and thus generates a nonempty connected
component M0(J0) ⊂ M(J0). This space remains nonempty after perturbing J0 generically
outside the region foliated by the Bishop family, thus producing a new almost complex structure J
and nonempty moduli space M0(J). We then showed in §1.2.4 that M0(J) is a smooth 1–
dimensional manifold, which is therefore diffeomorphic to an open interval, one end of which
corresponds to the collapse of the Bishop annuli into the singular circle at the center of the
overtwisted annulus. In particular, this implies thatM0(J) is not compact, and the key is then to
understand its behavior at the other end. The assumption that ω is exact on the anchor provides
a uniform energy bound, with the consequence that if all curves in u remain a uniform positive
distance away from the Legendrian boundaries of A+ and A−ϑ , Proposition 1.13 implies M0(J)
is compact. But since the latter is already known to be false, this implies that M0(J) contains
a sequence of curves drawing closer to the Legendrian boundary, and applying Proposition 1.13
again, a subsequence converges to a J–holomorphic annulus that touches the Legendrian boundary
of A+ or A−ϑ tangentially. That is impossible by Lemma 1.5, and we have a contradiction. Together
with the following remark, this completes the proof of Theorem 1.

Remark 1.14. If (M, ξ) ⊂ (W,ω) is a separating hypersurface of weak contact type, then half of
(W,ω) is a weak filling of (M, ξ) and the above argument provides a contradiction. To finish the
proof of the theorem, it thus remains to show that (M, ξ) under the given assumptions can never
occur as a nonseparating hypersurface of weak contact type in any closed symplectic 4–manifold
(W,ω). This follows from almost the same argument, due to the following trick introduced in
[ABW10]. If M does not separate W , then we can cut W open along M to produce a connected
symplectic cobordism (W0, ω0) between (M, ξ) and itself, and then attach an infinite chain of
copies of this cobordism to obtain a noncompact symplectic manifold (W∞, ω∞) with weakly
contact boundary (M, ξ). Though noncompact, (W∞, ω∞) is geometrically bounded in a certain
sense, and an argument in [ABW10] uses the monotonicity lemma to show that for a natural class
of adapted almost complex structures on W∞, any connected moduli space of J–holomorphic
curves with boundary on ∂W∞ and uniformly bounded energy also satisfies a uniform C0–bound.
In light of this, the above argument for the compact filling also works in the “noncompact filling”
furnished by (W∞, ω∞), thus proving that (M, ξ) cannot occur as a nonseparating weakly contact
hypersurface.

We will use this same trick again in the proof of Theorem 3. In relation to Theorem 2, it also
implies that in any closed symplectic 4–manifold, a weakly contact hypersurface that is planar
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must always be separating. This is closely related to Etnyre’s theorem [Etn04b] that planar
contact manifolds never admit weak semifillings with disconnected boundary, which also can be
shown using holomorphic curves, by a minor variation on the proof of Theorem 2.

Remark 1.15. It should be possible to generalize the Bishop family idea still further by considering
“overtwisted planar surfaces” with arbitrarily many boundary components (Figure 8). The disk
or annulus would then be replaced by a k–holed sphere Σ for some integer k ≥ 1, with Legendrian
boundary, of which k − 1 of the boundary components are “anchored” by S1–families of half-
twisted annuli. The characteristic foliation on Σ must in general have k − 2 hyperbolic singular
points. One would then find Bishop families of annuli near the anchored boundary components,
which eventually must collide with each other and could be glued at the hyperbolic singularities
to produce more complicated 1–dimensional families of rational holomorphic curves with multiple
boundary components, leading in the end to a more general filling obstruction.

One situation where such an object definitely exists is in the presence of planar torsion (see
§2.3), though we will not pursue this approach here, as that setting lends itself especially well to
the punctured holomorphic curve techniques explained in the next section.

Figure 8. An overtwisted planar surface anchored at two boundary components.

2. Punctured pseudoholomorphic curves and weak fillings

We begin this section by showing that up to symplectic deformation, every weak filling can
be enlarged by symplectically attaching a cylindrical end in which the theory of finite energy
punctured J–holomorphic curves is well behaved. This fact is standard in the case where the
symplectic form is exact near the boundary: indeed, Eliashberg [Eli91] observed that if (W,ω) is
a weak filling of (M, ξ) and H2

dR(M) = 0, then one can always deform ω in a collar neighborhood
of ∂W to produce a strong filling of (M, ξ), which can then be attached smoothly to a half-
symplectization of the form

(
[0,∞) ×M,d(etα)

)
. For obvious cohomological reasons, this is not

possible whenever [ω|M ] 6= 0 ∈ H2
dR(M). The solution is to work in the more general context

of stable Hamiltonian structures, in which M carries a closed maximal rank 2–form that is not
required to be exact. We will recall in §2.1 the important properties of stable hypersurfaces
and stable Hamiltonian structures, proving in particular (Proposition 2.6) that there exist stable
Hamiltonian structures representing every de Rham cohomology class. We will then use this in
§2.2 to prove Theorem 2.9, that weak boundaries can always be deformed to stable hypersurfaces.
A quick review of the definition and essential facts about planar torsion will then be given in §2.3,
leading in §2.4 to the proofs of Theorems 2 and 3.

2.1. Stable hypersurfaces and stable Hamiltonian structures. Let us recall some important
definitions. The first originates in [HZ94].

Definition 2.1. Given a symplectic manifold (W,ω), a hypersurface M is called stable if it is
transverse to a vector field Y defined near M whose flow ΦtY for small |t| preserves characteristic
line fields, i.e. if Mt := ΦtY (M) and `t ⊂ TMt is the kernel of ω|TMt

, then (ΦtY )∗`0 = `t.

As an important special case, if (W,ω) is a strong filling of (M, ξ), then ∂W is stable, as it is
transverse to an outward pointing Liouville vector field which dilates ω and therefore preserves
characteristic line fields. In this case we say the boundary of W is convex; if ∂W is instead
transverse to an inward pointing Liouville vector field, we say it is concave.
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Stable hypersurfaces were initially introduced in order to study dynamical questions, but it was
later recognized that they also yield suitable settings for the theory of punctured J–holomorphic
curves. In this context, the following more intrinsic notion was introduced in [BEH+03].

Definition 2.2. A stable Hamiltonian structure on an oriented 3–manifold M is a pair

H = (λ,Ω)

consisting of a 1–form λ and 2–form Ω such that

(1) dΩ = 0,
(2) λ ∧ Ω > 0,
(3) ker Ω ⊂ ker(dλ).

The second condition implies that Ω has maximal rank and is nondegenerate on the distribution

ξ := kerλ ,

so that (ξ,Ω) is a symplectic vector bundle. There is then a positively transverse vector field X
uniquely determined by the conditions

Ω(X, ·) = 0, λ(X) = 1 ,

and the flow of X preserves both ξ and Ω. Conversely, a triple (X, ξ,Ω) satisfying these prop-
erties uniquely determines (λ,Ω), and thus can be taken as an alternative definition of a stable
Hamiltonian structure.

If M ⊂ (W,ω) is a stable hypersurface and Y is the transverse vector field of Definition 2.1,
then we can orient M in accordance with the coorientation determined by Y and assign to it a
stable Hamiltonian structure (λ,Ω) defined as follows:

(2.1) λ :=
(
ιY ω

)∣∣
TM

, and Ω := ω|TM .

Now Ω is obviously closed and nondegenerate on ξ := kerλ, and the stability condition implies
that for any vector X in the characteristic line field on M ,(

LY ω
)
(X, ·)

∣∣
ξ

= 0 .

From this it is an easy exercise to verify that the pair (λ,Ω) satisfies the conditions of a stable
Hamiltonian structure.

Given a 3–manifold M with stable Hamiltonian structure (λ,Ω), the 2–form

(2.2) ω := Ω + d(tλ)

on (−ε, ε) × M is symplectic for sufficiently small ε > 0. Conversely, and more generally (cf.
Lemma 2.3 in [CM05]):

Lemma 2.3. Let (W,ω) be a symplectic 4–manifold whose interior contains a closed oriented
hypersurface M ⊂ W , and let λ be a nonvanishing 1–form on M that defines a cooriented (and
thus also oriented) 2–plane distribution ξ. Assume ω|ξ > 0. Then writing Ω = ω|TM , there exists
an embedding

Φ : (−ε, ε)×M ↪→W

for sufficiently small ε > 0, such that Φ(0, ·) is the inclusion and

Φ∗ω = Ω + d(tλ) .

Proof. Since ω is nondegenerate on ξ, there is a unique vector field Xω on M determined by the
conditions ω(Xω, ·) ≡ 0 and λ(Xω) ≡ 1. Choose a smooth section Y of TW |M such that Y also
lies in the ω–complement of ξ and ω(Y,Xω) ≡ 1. Extend this arbitrarily as a nowhere zero vector
field on some neighborhood of M . Then Y is transverse to M , and (ιY ω)|TM = λ.

Using the flow ΦtY of Y , we can define for sufficiently small ε > 0 an embedding

Φ : (−ε, ε)×M →W, (t, p) 7→ ΦtY (p) ,

and compare ω0 := Φ∗ω with the model ω1 := d(t λ)+Ω on (−ε, ε)×M , shrinking ε if necessary so
that ω1 is symplectic. Then ω1 and ω0 are symplectic forms that match identically along {0}×M ,
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and the usual Moser deformation argument provides an isotopy between them on a neighborhood
of {0} ×M . �

This result has an obvious analog for the case ∂W = M . Given this, if (W,ω) is any symplectic
manifold with stable boundary ∂W = M and H = (λ,Ω) is an induced stable Hamiltonian
structure, then one can glue a cylindrical end [0,∞) × M symplectically to the boundary as
follows. Choose ε > 0 sufficiently small so that

(2.3) (Ω + t dλ) |ξ > 0 for all |t| ≤ ε,
and let T denote the set of smooth functions

ϕ : [0,∞)→ [0, ε)

which satisfy ϕ(t) = t for t near 0 and ϕ′ > 0 everywhere. Then if a neighborhood of ∂W is
identified with (−ε, 0]×M as above, we can define the completed manifold

W∞ := W ∪
(
[0,∞)×M

)
by the obvious gluing, and assign to it a 2–form

(2.4) ωϕ :=

{
ω in W,

Ω + d(ϕλ) in [0,∞)×M

which is symplectic for any ϕ ∈ T due to (2.3). There is also a natural class J (ω,H) of almost
complex structures on W∞, where we define J to be in J (ω,H) if

(1) J is compatible with ω on W ,
(2) J is R–invariant on [0,∞) ×M , maps ∂t to X and restricts to a complex structure on ξ

compatible with Ω|ξ.
Then any J ∈ J (ω,H) is compatible with any ωϕ for ϕ ∈ T . Observe that whenever λ is a contact
form, the conditions characterizing J ∈ J (ω,H) on the cylindrical end depend on λ, but not on
Ω, as J |ξ is compatible with Ω|ξ if and only if it is compatible with dλ|ξ. In this case we simply
say that J is compatible with λ on the cylindrical end.

For J ∈ J (ω,H), we define the energy of a J–holomorphic curve u : Σ̇→W∞ by

E(u) = sup
ϕ∈T

∫
u∗ωϕ .

Then E(u) ≥ 0, with equality if and only if u is constant. It is straightforward to show that this
notion of energy is equivalent to the one defined in [BEH+03], in the sense that uniform bounds

on either imply uniform bounds on the other. Thus if Σ̇ is a punctured Riemann surface, finite
energy J–holomorphic curves have asymptotically cylindrical behavior at nonremovable punctures,
i.e. they approach closed orbits of the vector field X at {+∞}×M .

The most popular example of a stable Hamiltonian structure is (λ,Ω) = (α, dα), where α is a
contact form; this is the case that arises naturally on the boundary of a strong filling. One can
then obtain other stable Hamiltonian structures in the form

(2.5) (λ,Ω) = (α, F dα) ,

for any function F : M → (0,∞) such that dF ∧ dα = 0. In fact, since ker(dα) is a vector bundle
of rank 1 whenever ξ = kerα is contact, every stable Hamiltonian structure in this case has the
form of (2.5), and the vector field X is the usual Reeb vector field Xα. In this context it will
be useful to know that one can choose F so that F dα may lie in any desired cohomology class.
In order to formulate a sufficiently general version of this statement, we will need the following
definition.

Definition 2.4. Suppose K ⊂ (M, ξ) is a transverse knot. We will say that a contact form α for ξ
is in standard symmetric form near K if a neighborhood N (K) ⊂ M of K can be identified
with a solid torus S1 × D 3 (ϑ; ρ, ϕ), thus defining positively oriented cylindrical coordinates in
which K = {ρ = 0} and α takes the form

α = f(ρ) dϑ+ g(ρ) dϕ
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for some smooth functions f, g : [0, 1]→ R with f(0) > 0 and g(0) = 0.

Recall that by the contact neighborhood theorem, there always exists a contact form in standard
symmetric form near any knot transverse to the contact structure. The condition that α is a
positive contact form in these coordinates then amounts to the condition f(ρ)g′(ρ)−f ′(ρ)g(ρ) > 0
for ρ > 0, and g′′(0) > 0. An oriented knot is called positively transverse if its orientation
matches the coorientation of the contact structure; in this case its orientation must always match
the orientation of the ϑ–coordinate in the above definition.

Remark 2.5. Recall that a contact form α is called nondegenerate whenever its Reeb vector
field Xα admits only nondegenerate periodic orbits. The transverse knot K ⊂ M is always the
image of a periodic orbit if α is in standard symmetric form near K. Then after multiplying α
by a smooth function that depends only on ρ, one can always arrange without loss of generality
that K and all its multiple covers are nondegenerate orbits and are the only periodic orbits in a
small neighborhood of K. In this way we can always find nondegenerate contact forms that are
in standard symmetric form near K.

Proposition 2.6. Suppose (M, ξ) is a contact 3–manifold,

K = K1 ∪ · · · ∪Kn ⊂M

is an oriented positively transverse link, NK ⊂ M is a neighborhood of K and α is a contact
form for ξ that is in standard symmetric form near K. Then for any set of positive real numbers
c1, . . . , cn > 0, there exists a smooth function F : M → (0,∞) such that the following conditions
are satisfied:

(1) (α, F dα) is a stable Hamiltonian structure.
(2) F ≡ 1 on M \NK and F is a positive constant on a smaller neighborhood of K.
(3) [F dα] ∈ H2

dR(M) is Poincaré dual to c1 [K1] + · · ·+ cn [Kn] ∈ H1(M ;R).

Remark 2.7. Since every oriented link has a C0–small perturbation that makes it positively trans-
verse (see for example [Gei08]), every homology class in H1(M ;R) can be represented by a finite
linear combination

c1 [K1] + · · ·+ cn [Kn]

where c1, . . . , cn > 0 and K1 ∪ · · · ∪Kn is a positively transverse link.

Remark 2.8. A few days after the first version of this paper was made public, Cieliebak and
Volkov unveiled a comprehensive study of stable Hamiltonian structures [CV10] which includes an
existence result closely related to Proposition 2.6, and valid also in higher dimensions.

Proof of Proposition 2.6. We will have [F dα] = PD
(
c1[K1] + · · ·+ cn[Kn]

)
if and only if∫

S

F dα =

n∑
i=1

ci [Ki] • [S]

for every closed oriented surface S ⊂M . Then a function F with the desired properties can be con-
structed as follows. By assumption, each component Ki ⊂ K comes with a tubular neighborhood
N (Ki) ⊂ NK that is identified with S1 × D 3 (ϑ; ρ, ϕ), on which α has the form

α = fi(ρ) dϑ+ gi(ρ) dϕ

for some smooth functions fi, gi : [0, 1] → R with fi(0) > 0 and gi(0) = 0. Denote the union
of all these coordinate neighborhoods by N (K). Now choose h : M → (0,∞) to be any smooth
function with the following properties:

(1) The support of h is in the interior of N (K).
(2) On each neighborhood N (Ki), h depends only on the ρ–coordinate, and restricts to a

function hi(ρ) that is constant for ρ near 0 and satisfies

2π

∫ 1

0

hi(ρ) g′i(ρ) dρ = ci .
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Now for any closed oriented surface S ⊂M , we can deform S so that its intersection with N (K)
is a finite union of disks of the form {ϑ0} × D ⊂ S1 × D for each x = (ϑ0, 0, 0) ∈ Ki ∩ S, each
oriented according to the intersection index σ(x) = ±1. Thus if we set F = 1 + h, then∫

S

F dα =

∫
S

dα+

∫
S

h dα

=

n∑
i=1

∑
x∈Ki∩S

σ(x)

∫
D
hi(ρ) g′i(ρ) dρ ∧ dϕ

=

n∑
i=1

ci [Ki] • [S] ,

as desired. �

2.2. Collar neighborhoods of weak boundaries. The application of punctured holomorphic
curve methods to weak fillings is made possible by the following result.

Theorem 2.9. Suppose (W,ω) is a symplectic 4–manifold with weakly contact boundary (M, ξ),
K = K1 ∪ · · · ∪Kn ⊂ M is a positively transverse link with positive numbers c1, . . . , cn > 0 such
that the homology class

c1 [K1] + · · ·+ cn [Kn] ∈ H1(M ;R)

is Poincaré dual to [ω|TM ] ∈ H2
dR(M), N (K) is a tubular neighborhood of K, λ is a contact form

for ξ that is in standard symmetric form near K (cf. Definition 2.4), and N (M) ⊂W is a collar
neighborhood of ∂W . Then there exists a symplectic form ω̂ on W such that

(1) ω̂ = ω on W \ N (M),
(2) M is a stable hypersurface in (W, ω̂), with an induced stable Hamiltonian structure of the

form (C λ, F dλ) for some constant C > 0 and smooth function F : M → (0,∞) that is
constant near K and outside of N (K).

In light of Proposition 2.6, the result will be an easy consequence of the lemmas proved below,
which construct various types of symplectic forms on collar neighborhoods, compatible with given
distributions on the boundary. For later applications (particularly in §3), it will be convenient to
assume that the distribution ξ = kerλ is not necessarily contact; we shall instead usually assume
it is a confoliation, which means

λ ∧ dλ ≥ 0 .

Observe that if Ω is the restriction of a symplectic form ω on (−ε, 0]×M to the boundary, and λ
is a nonvanishing 1–form on M with ξ = kerλ, then ω|ξ > 0 if and only if

λ ∧ Ω > 0 .

Conversely, whenever this inequality is satisfied for a 1–form λ and 2–form Ω on M , one can define
a symplectic form on (−ε, 0]×M for sufficiently small ε > 0 by the formula

d(t λ) + Ω ,

where t denotes the coordinate on the interval (−ε, 0]. Lemma 2.3 shows that ω can always be
assumed to be of this form in the right choice of coordinates. The following lemma then provides
a symplectic interpolation between any two cohomologous symplectic structures of this form for
a fixed confoliation ξ, as long as we are willing to rescale the 1–form λ.

Lemma 2.10. Suppose M is a closed oriented 3–manifold, and fix the following data:

• U ,U ′ ⊂M are open subsets with U ⊂ U ′,
• ξ ⊂ TM is a cooriented confoliation, defined as the kernel of a nonvanishing 1–form λ

such that λ ∧ dλ ≥ 0,
• Ω0 and Ω1 are closed, cohomologous 2–forms that are both positive on ξ and satisfy

Ω1 = Ω0 + dη

for some 1–form η with compact support in U .
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Then for any ε > 0 sufficiently small, [−ε, 0] ×M admits a symplectic form ω which satisfies
ω|ξ > 0 on {0} ×M and the following additional properties:

(1) ω = d(tλ) + Ω0 in a neighborhood of {−ε} ×M and outside of [−ε, 0]× U ′,
(2) ω = d(ϕλ) + Ω1 in a neighborhood of {0} ×M , where ϕ : [−ε, 0] ×M → [−ε,∞) is a

smooth function that depends only on t in [−ε, 0]× U and satisfies ∂tϕ > 0 everywhere.

Proof. Assume ε > 0 is small enough so that λ∧ (Ω1− ε dλ) and λ∧ (Ω0− ε dλ) are both positive
volume forms. Choose smooth functions ϕ : [−ε, 0] ×M → [−ε,∞) and f : [−ε, 0] → [0, 1] such
that f(t) = 0 for t near −ε and f(t) = 1 for t near 0, while ϕ(t, p) = t whenever t is near −ε or
p ∈M \ U ′, and ∂tϕ > 0 everywhere. The latter gives rise to a smooth family of functions

ϕt = ϕ(t, ·) : M → R ,

for which we shall also assume that dϕt vanishes outside of U ′ \ U for all t ∈ [−ε, 0]. We must
then show that under these conditions, ϕ can be chosen so that the closed 2–form

ω := d
(
ϕλ
)

+ Ω0 + d
(
f η
)

is nondegenerate, where f is lifted in the obvious way to a function on [−ε, 0]×M . We compute,

ω ∧ ω = 2∂tϕdt ∧ λ ∧ [(1− f) Ω0 + f Ω1 + ϕt dλ]

+ 2f ′ dt ∧ η ∧
[
(1− f) Ω0 + f Ω1 + ϕt dλ

]
+ 2f ′ dt ∧ η ∧ dϕt ∧ λ ,

and observe that the first of the three terms is a positive volume form, while the second vanishes
outside of [−ε, 0]×U due to the compact support of η, and the third vanishes everywhere since the
supports of dϕt and η are disjoint. Thus if ϕ is chosen with ∂tϕ sufficiently large on [−ε, 0]× U ,
the first term dominates the second and we have ω ∧ ω > 0 everywhere. The condition ω|ξ > 0

on {0} ×M is now immediate from the construction. �

Combining Proposition 2.6 with this lemma in the special case U = M , Theorem 2.9 now follows
from the observation that if (λ,Ω) is a stable Hamiltonian structure such that λ is contact, and ϕ
is a strictly increasing smooth positive function on some interval in R, then the level sets {T}×M
are all stable hypersurfaces with respect to the symplectic form d(ϕλ) + Ω, inducing the stable
Hamiltonian structure (ϕ′(T )λ, ϕ(T ) dλ+ Ω) on such a hypersurface.

For the handle attaching argument in §3, we will also need a variation on Lemma 2.10 that
changes λ instead of ω.

Lemma 2.11. Suppose M is a closed oriented 3–manifold, and fix the following data:

• U ,U ′ ⊂M are open subsets with U ⊂ U ′,
• {ξτ}τ∈[0,1] is a 1–parameter family of confoliations, defined via a smooth 1–parameter

family of nonvanishing 1–forms λτ with λτ ∧ dλτ ≥ 0, all of which are identical outside
of U ,

• Ω is a closed 2–form that is positive on ξτ for all τ ∈ [0, 1].

Then for any ε > 0 sufficiently small, [−ε, 0] ×M admits a symplectic form ω which satisfies
ω|ξ1 > 0 on {0} ×M and the following additional properties:

(1) ω = d(t λ0) + Ω in a neighborhood of {−ε} ×M and outside of [−ε, 0]× U ′,
(2) ω = d(ϕλ1) + Ω in a neighborhood of {0} ×M , where ϕ : [−ε, 0] ×M → [−ε,∞) is a

smooth function that depends only on t in [−ε, 0]× U and satisfies ∂tϕ > 0 everywhere.

Proof. Assume ε > 0 is small enough so that λτ ∧ (Ω− ε dλτ ) > 0 for all τ ∈ [0, 1]. Pick a smooth
function

[−ε, 0]→ [0, 1] : t 7→ τ

such that τ = 0 for all t near −ε and τ = 1 for all t near 0, and use this to define a 1–form Λ on
[−ε, 0]×M by

Λ(t,m) = (λτ )m
for all (t,m) ∈ [−ε, 0]×M . Next, choose a smooth function ϕ : [−ε, 0]×M → [−ε,∞) such that
ϕ(t,m) = t whenever t is near −ε or m ∈M \ U ′, and ∂tϕ > 0 everywhere. Denote by

ϕt = ϕ(t, ·) : M → R ,



WEAK SYMPLECTIC FILLINGS AND HOLOMORPHIC CURVES 25

the resulting smooth family of functions, and assume also that dϕt vanishes outside of U ′ \ U for
all t ∈ [−ε, 0]. Now set

ω = d
(
ϕΛ
)

+ Ω

and compute:

ω ∧ ω = 2∂tϕdt ∧ λτ ∧ (Ω + ϕt dλτ ) + (ϕt dΛ)
2

+ 2ϕt dΛ ∧ Ω + 2ϕt dϕt ∧ λτ ∧ dΛ .

The first term is a positive volume form and can be made to dominate the second and third if ∂tϕ
is large enough; note that the second and third terms also vanish completely outside of [−ε, 0]×U
since λτ is then independent of τ , so that Λ reduces to a 1–form on M and both terms are thus
4–forms on a 3–manifold. For the same reason, the last term vanishes everywhere. �

2.3. Review of planar torsion. In this section we recall the important definitions and properties
of planar torsion; we shall give only the main ideas here, referring to [Wen10b] for further details.

Recall that an open book decomposition of a closed oriented 3–manifold M is a fibration
π : M \ B → S1, where the binding B ⊂ M is an oriented link, and the fibers are oriented
surfaces with embedded closures whose oriented boundary is B. The fibers are connected if and
only if M is connected, and we call the connected components of the fibers pages. We wish to
consider two topological operations that can be performed on an open book:

(1) Blowing up a binding circle γ ⊂ B: this means replacing γ by the unit circle bundle in its
normal bundle, or equivalently, removing a small neighborhood of γ so that M becomes

a manifold M̂ with 2–torus boundary. Defining B̂ = B \ γ, the fibration π : M \B → S1

now induces a fibration

π̂ : M̂ \ B̂ → S1 .

The structure associated with this fibration is called a blown up open book with bind-

ing B̂. Observe that ∂M̂ also carries a distinguished 1–dimensional homology class, arising
from the meridian on the tubular neighborhood of γ.

(2) The binding sum: consider two distinct binding circles γ1, γ2 ⊂ B, which come with
distinguished trivializations of their normal bundles νγ1, νγ2 determined by the open book.
Any orientation preserving diffeomorphism γ1 → γ2 is then covered by a unique (up to
homotopy) orientation reversing isomorphism

Φ : νγ1 → νγ2

which is constant with respect to the distinguished trivializations. Blowing up both γ1

and γ2, we obtain a manifold M̂ with two torus boundary components ∂1M̂ and ∂2M̂ ,
and Φ determines a unique (up to isotopy) orientation reversing diffeomorphism

Φ̂ : ∂1M̂ → ∂2M̂ ,

which we may assume restricts to orientation preserving diffeomorphisms between bound-

ary components of fibers of π̂. Gluing ∂1M̂ and ∂2M̂ together via Φ̂ then gives a new
closed manifold M̌ , containing a distinguished torus I ⊂ M̌ , called the interface, which
also carries distinguished 1–dimensional homology classes (unique up to sign) determined
by the meridians. Due to the orientation reversal, the fibration is not well defined on the
interface, but it determines a fibration

π̌ : M̌ \ (B̌ ∪ I)→ S1 ,

where B̌ := B \ (γ1 ∪ γ2). The associated structure is called a summed open book with
binding B̌ and interface I. If M1 and M2 are two distinct manifolds with open books, one
can attach them by choosing some collection of binding circles in M1, pairing each with a
distinct binding circle in M2 and constructing the binding sum for each pair. We use the
shorthand notation

M1 �M2

for any manifold and summed open book constructed from two open books in this way.
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Clearly both operations can also be performed on binding components of blown up or summed
open books, so iterating them finitely many times we can produce a more complicated manifold
(possibly with boundary), carrying a more general decomposition known as a blown up summed
open book. If M carries such a structure, then it comes with a fibration

π : M \ (B ∪ I)→ S1 ,

where the binding B is an oriented link and the interface I is a disjoint union of tori. The
connected components of fibers of π are again called pages, and their closures are generally
immersed surfaces, as they occasionally may have multiple boundary components that coincide as
oriented circles in the interface. We call a blown up summed open book irreducible if the fibers
π−1(∗) are all connected, and planar if they also have genus zero.

Generalizing the standard definition of a contact structure supported by an open book, we say
that a contact form α on M with induced Reeb vector field Xα is a Giroux form if it satisfies
the following conditions:

(1) Xα is positively transverse to the interiors of all pages,
(2) Xα is positively tangent to the boundaries of the closures of all pages,
(3) The characteristic foliation induced on I ∪ ∂M by kerα has closed leaves representing the

distinguished homology classes determined by meridians.

It follows that the interface and boundary are always foliated by closed orbits of the Reeb vector
field for any Giroux form. We say that a contact structure ξ is supported by the summed open
book whenever it is the kernel of a Giroux form.

Example 2.12. Suppose Σ is a compact, connected and oriented surface, possibly with boundary,
and ξ is a positive, cooriented and S1–invariant contact structure on S1 ×Σ, such that the curves
S1 × {z} are Legendrian for all z ∈ ∂Σ. We can then divide Σ into the following subsets:

Σ+ = {z ∈ Σ | S1 × {z} is positively transverse} ,
Σ− = {z ∈ Σ | S1 × {z} is negatively transverse} ,

Γ = {z ∈ Σ | S1 × {z} is Legendrian} .

By assumption, ∂Σ ⊂ Γ. The Lutz construction [Lut77] produces such a contact structure for
any given multicurve Γ that contains ∂Σ and divides Σ into two separate pieces Σ+ and Σ−. In
fact, one can find a contact form α for ξ such that for every t ∈ S1, the Reeb vector field Xα

is positively transverse to {t} × Σ+, negatively transverse to {t} × Σ− and tangent to {t} × Γ.
This is thus a Giroux form for a blown up summed open book, whose pages are the connected
components of {t} × (Σ \ Γ), with trivial monodromy. The interface is the union of all the tori
S1 × γ for connected components γ ⊂ Γ in the interior of Σ, and the binding is empty.

A blown up summed open book is called symmetric if its boundary and binding are both
empty, and it is obtained as a binding sum of two connected pieces M+ �M−, with open books
whose pages are diffeomorphic to each other. The two simplest examples of contact structures
supported by symmetric summed open books are the standard contact structures on S1 × S2 and
T3: the former can be obtained as a binding sum of two open books with disk-like pages, and the
latter as a binding sum of two open books with cylindrical pages and trivial monodromy.

Definition 2.13. A planar torsion domain is any contact 3-manifold (M, ξ), possibly with
boundary, together with a supporting blown up summed open book that can be obtained as a
binding sum of two separate nonempty pieces,

M = M0 �M1 ,

where M0 carries an irreducible planar summed open book without boundary, and M1 carries
an arbitrary blown up summed open book (possibly disconnected), such that the induced blown
up summed open book on M is not symmetric. The interior of M then contains a compact
submanifold with nonempty boundary,

MP ⊂M ,



WEAK SYMPLECTIC FILLINGS AND HOLOMORPHIC CURVES 27

called the planar piece, which is obtained from M0 by blowing up all of its summed binding
components. The closure of M \MP is called the padding.

We say that a contact 3–manifold (M, ξ) has planar torsion whenever it admits a contact
embedding of some planar torsion domain.

Note that the interface of the blown up summed open book on a planar torsion domain contains
the (nonempty) boundary of the planar piece, and may also have additional components in its
interior.

Definition 2.14. For any closed 2–form Ω on a closed contact 3–manifold (M, ξ), we say that
(M, ξ) has Ω–separating planar torsion if it contains a planar torsion domain such that

∫
L

Ω = 0
for every interface torus L in the planar piece. If each of these tori is nullhomologous in H2(M ;R),
then we say (M, ξ) has fully separating planar torsion.

Remark 2.15. The fully separating condition can only be satisfied when the planar piece MP ⊂M
has no interface tori in its interior and each of its boundary components separates M . This follows
from the observation that an interface torus in an irreducible blown up summed open book is always
homologically nontrivial.

Example 2.16. As shown in [Wen10b], any open neighborhood of a Lutz twist contains a fully
separating planar torsion domain whose planar piece has disk-like pages, and in fact planar torsion
of this type (called planar 0–torsion) is equivalent to overtwistedness. Similarly, a neighborhood
of a Giroux torsion domain always contains a planar torsion domain whose planar piece has
cylindrical pages (called planar 1–torsion).

Example 2.17. The S1–invariant contact manifold (S1 × Σ, ξ) of Example 2.12 is a planar torsion
domain whenever Σ \ Γ contains a connected component of genus zero whose closure is disjoint
from ∂Σ, but which is not diffeomorphic to both Σ+ and Σ−. The fully separating condition is
satisfied whenever every boundary component of the genus zero piece separates Σ.

The following is a combination of two of the main results in [Wen10b].

Theorem 2.18 ([Wen10b]). If (M, ξ) is a closed contact 3–manifold with planar torsion then it
is not strongly fillable. Moreover, if MP ⊂M denotes the planar piece of a planar torsion domain
in M and π : MP \ (B ∪ I) → S1 is the associated fibration with binding B and interface I,
then for any ε > 0, (M, ξ) admits a Morse-Bott contact form α and a generic R–invariant almost
complex structure J on R×M , compatible with α, such that:

• α is in standard symmetric form (see Definition 2.4) near B, and the components of B
are nondegenerate elliptic Reeb orbits of Conley-Zehnder index 1 (with respect to the triv-
ialization determined by the open book) and period less than ε.

• The interface and boundary tori I ∪ ∂M ⊂ MP are Morse-Bott submanifolds foliated by
Reeb orbits of period less than ε.

• All Reeb orbits in M outside of B ∪ I ∪ ∂MP have period at least 1.
• The interior of each planar page π−1(τ) is the projection to M of an embedded finite energy

punctured J–holomorphic curve

uτ : Σ̇→ R×M ,

with only positive ends and Fredholm index 2.

2.4. Proofs of Theorems 2 and 3. The important feature that Theorems 2 and 3 have in
common is that they involve weak fillings of contact manifolds that admit regular families of index 2
punctured holomorphic spheres. For Theorem 2, the idea will be to stabilize the boundary so that
the pages of a given planar open book can be lifted to holomorphic curves in the cylindrical end—we
can then repeat precisely the argument used for strong fillings in [Wen10c], as the resulting moduli
space spreads into the filling to form the fibers of a symplectic Lefschetz fibration. The idea for
Theorem 3 is similar, except that instead of a Lefschetz fibration, we will get a contradiction. First
however we must take care to stabilize the boundary in such a way that the desired holomorphic
curves in the cylindrical end will actually exist, and this is not trivial since by Theorem 2.9, we
can only choose the contact form freely outside of a neighborhood of a certain transverse link.



28 K. NIEDERKRÜGER AND C. WENDL

Lemma 2.19. Suppose Σ is a compact oriented surface with nonempty boundary, ϕ : Σ → Σ is
a diffeomorphism with support away from the boundary, and Σϕ denotes the mapping torus of ϕ,
i.e. the manifold (R× Σ)/ ∼ where (t+ 1, z) ∼ (t, ϕ(z)) for all t ∈ R, z ∈ Σ. Then for any given
connected component L ⊂ ∂Σϕ, every homology class h ∈ H1(Σϕ) can be represented as a sum of
cycles

h = hΣ + hL ,

where hΣ lies in a fiber of the natural fibration Σϕ → S1, and hL lies in L.

Proof. The fibration Σϕ → S1 gives rise to an exact sequence

H1(Σ)
ϕ∗−1−→ H1(Σ)

ι∗−→ H1(Σϕ)
Φ−→ H0(Σ) ∼= Z ,

where ι : Σ→ Σϕ is the inclusion and Φ computes the intersection number of any 1–cycle in the
interior of Σϕ with a fiber. Thus if we choose any reference cycle h0 ∈ H1(Σϕ) that passes once
transversely through each fiber, the exact sequence implies that any h ∈ H1(Σϕ) decomposes as a
sum of the form

h = ι∗(hΣ) + c h0

for hΣ ∈ H1(Σ) and c ∈ Z. The lemma follows since h0 can be represented by a loop in any given
connected component of ∂Σϕ. �

Assume (W,ω) is a weak filling of (M, ξ), and the latter either is planar or contains a planar
torsion domain with planar piece MP ⊂M , whose binding and interface are denoted by BP , IP ⊂
MP respectively. In the planar case it makes sense also to define MP = M and IP = ∅, so in
both cases MP carries a planar blown up summed open book with binding BP and interface IP .
After modifying ω via Theorem 2.9, we can assume ∂W is a stable hypersurface, with an induced
stable Hamiltonian structure of the form H = (λ, F dλ), where λ is a contact form for ξ that is
in standard symmetric form near some positively transverse link K = K1 ∪ · · · ∪Kn. The latter
must be chosen so that

(2.6) PD
(
[ω|TM ]

)
=

n∑
i=1

ci [Ki]

for some set of positive real numbers c1, . . . , cn > 0.

Lemma 2.20. If
∫
L
ω = 0 for every connected component L ⊂ IP ∪ ∂MP , then one can choose

the positively transverse link K to be a disjoint union of three links

K = KB ∪KP ∪K ′ ,
where KB is a subcollection of the oriented components of BP , KP lies in a single page in MP

and K ′ ⊂M \MP .

Proof. Note that in the planar case, MP = M and the condition on the boundary and interface
is vacuous: then applying Lemma 2.19 to the mapping torus of the monodromy of the open book,
we see that for any oriented binding component γ ⊂ BP , any h ∈ H1(M ;R) can be written as
h = c [γ] + hP for some c ∈ R and hP is represented by a cycle in a page. If c < 0, we can exploit
the fact that the total binding is the boundary of a page and thus rewrite c [γ] as a positive linear
combination of the other oriented binding components.

For the case of a planar torsion domain, we have ∂MP 6= ∅ and must show first that h =
PD
(
[ω|TM ]

)
under the given assumptions can be represented by a cycle that does not intersect

IP ∪ ∂MP . The above argument then completes the proof.
To find a representative cycle disjoint from IP ∪∂MP , suppose K = K1∪· · ·∪Kn is any oriented

link with c1 [K1] + · · · + cn [Kn] Poincaré dual to [ω|TM ] for some real numbers c1, . . . , cn 6= 0.
Then for each connected component L ⊂ IP ∪ ∂MP , Poincaré duality implies∑

i

ci [Ki] • [L] =

∫
L

ω = 0 .

We can assume K and L have only transverse intersections x ∈ K ∩ L. Now for each component
Ki, we can replace Ki by a homologous link for which all intersections of Ki with L have the same
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sign: indeed, if x, y ∈ Ki ∩L are two intersections of opposite sign, we can eliminate both of them
by splicing Ki with a path between x and y along L. Having done this, we can also split Ki into
multiple parallel components so that each intersects L either not at all or exactly once. Then by
switching orientations of Ki and signs of ci, we can arrange for this intersection to be positive.
Let us therefore assume that each component Ki has at most one intersection with L, which is
transverse and positive, so ∑

{i;Ki∩L6=∅}

ci = 0 .

Now if any intersection x ∈ K ∩ L exists, there must be another y ∈ K ∩ L for which the real
coefficient has the opposite sign; for concreteness let us assume x ∈ K1, y ∈ K2, c1 > 0 and c2 < 0.
We can then eliminate one of these intersections via the following two steps: first, replace K2 by
a disjoint union of two knots K ′2 and K ′′2 , where K ′2 := K2 and K ′′2 is a parallel copy of it, and set
c′2 := −c1, c′′2 := c2 + c1. This introduces one additional intersection y′′ ∈ K ′′2 ∩ L. But now since
c′2 = −c1, we can eliminate x and y by splicing in a path between them along L to connect K1 and

K ′2. The result of this operation is a new link K̃ = K̃1 ∪ · · · ∪ K̃ñ with real numbers c̃1, . . . , c̃ñ 6= 0
such that

ñ∑
i=1

c̃i[K̃i] =

n∑
i=1

ci[Ki]

and K̃ ∩ L contains one point fewer than K ∩ L. One can then repeat this process until the
intersection of K with IP ∪ ∂MP is empty. By switching orientations of the components Ki

again, we can then assume the real coefficients c1, . . . , cn are all positive. �

The lemma has the following consequence: for any fixed page Σ ⊂ MP , we can now freely
choose the contact form λ on some open set U ,

Σ ∪BP ∪ IP ∪ ∂MP ⊂ U ⊂MP ,

to be the one provided by Theorem 2.18, for which there exists a generic almost complex structure
J compatible with H such that the pages in U lift to embedded J–holomorphic curves of index 2 in
the symplectization. Enlarge W to W∞ by attaching a cylindrical end, and extend the compatible
J from the end to a generic almost complex structure J ∈ J (ω,H) on W∞. After pushing up
by R–translation, the J–holomorphic pages in R × U may be assumed to live in [c,∞) ×M for
arbitrarily large c > 0 and thus can also be regarded as J–holomorphic curves in W∞. Since the
asymptotic orbits of these curves have much smaller periods than all other Reeb orbits in M , the
connected 2–dimensional moduli space M of J–holomorphic curves in W∞ that contains these
curves satisfies a compactness theorem proved in [Wen10b]: namely, M is compact except for
codimension 2 nodal degenerations and curves that “escape” to +∞ (and thus converge to curves
in R ×M). Moreover, the curves in M foliate W∞ except at a finite set of nodal singularities,
which are transverse intersections of two leaves. A similar statement holds for the curves in R×M
that form the “boundary” of M: observe that for any m ∈ M \ (BP ∪ IP ∪ ∂MP ), one can
find a sequence tk → ∞ such that each of the points (tk,m) is in the image of a unique curve
uk ∈M, and the latter sequence must converge to a curve in R×M whose projection to M passes
through m. By positivity of intersections using [Sie09], any two of these curves in R ×M are
either identical or disjoint, and their projections to M are all embedded, thus forming a foliation
of M \ (BP ∪ IP ∪ ∂MP ) by holomorphic curves whose asymptotic orbits all lie in the same
Morse-Bott families. At this point the two proofs diverge in separate directions.

Proof of Theorem 2. Following the proof of Theorem 1 in [Wen10c], the curves in the compactifi-
cation of the moduli space M form the fibers of a Lefschetz fibration

Π : W∞ → D ,

and the vanishing cycles in this fibration are all homologically nontrivial if W is minimal. It then
follows from Eliashberg’s topological characterization of Stein manifolds [Eli90b] that (W,ω) is
deformation equivalent to a symplectic blow-up of a Stein domain. �
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Proof of Theorem 3. Since the planar piece of a planar torsion domain has nonempty boundary
∂MP by assumption, one can pick any component L ⊂ ∂MP and define an asymptotic evaluation
map as in [Wen10c], which defines an embedding ofM into a certain line bundle over the S1–family
of orbits in L. It follows that the compactified moduli space M is diffeomorphic to an annulus,
and its curves are the fibers of a Lefschetz fibration

Π : W∞ → [0, 1]× S1 ,

whose boundary is a symmetric summed open book. As shown in [Wen] using ideas due to Gompf,
such a Lefschetz fibration always admits a symplectic structure, unique up to symplectic deforma-
tion, which produces a strong filling of the contact manifold supported by the symmetric summed
open book. But (M, ξ) is not strongly fillable due to Theorem 2.18, so we have a contradiction.

It remains to exclude the possibility that (M, ξ) could embed into a closed symplectic 4–manifold
(W,ω) as a nonseparating weakly contact hypersurface. This is ruled out by almost the same
argument, using the “infinite chain” trick of [ABW10]: as explained in Remark 1.14, we can cut
W open along M and use it to construct a noncompact but geometrically bounded symplectic
manifold (W∞, ω∞) with weakly contact boundary (M, ξ), then attach a cylindrical end and
consider the above moduli space of holomorphic curves in W∞. The monotonicity lemma gives
a C0–bound for these curves, but the same arguments that we used above also imply that they
must foliate W∞, which is already a contradiction since W∞ is noncompact by construction. �

2.5. Contact homology and twisted coefficients. In this section we will justify Theorem 6
by using the deformation result Theorem 2.9 to show that any weak filling (W,ω) of (M, ξ) gives
rise to an algebra homomorphism from contact homology with suitably twisted coefficients to a
certain Novikov completion of the group ring Q

[
H2(M ;R)/ ker[ω|TM ]

]
. Thus if 1 = 0 in twisted

contact homology, the same must be true in the Novikov ring and we obtain a contradiction.
Since our main goal is to illustrate the role of twisted coefficients in SFT rather than provide a
rigorous proof, we shall follow the usual custom of ignoring transversality problems—let us merely
point out at this juncture that abstract perturbations are required (e.g. within the scheme under
development by Hofer-Wysocki-Zehnder, cf. [Hof06]) in order to make the following discussion
fully rigorous.

We first briefly review the definition of contact homology, due to Eliashberg [Eli98] and Eliashberg-
Givental-Hofer [EGH00]. In order to allow maximal flexibility in the choice of coefficients and avoid
certain complications of bookkeeping (e.g. torsion in H1(M)), we will set up the theory with only
a Z2–grading instead of the usual Z–grading—this choice makes no difference to the vanishing
of the homology and its consequences. Assume (M, ξ) is a closed (2n − 1)–dimensional manifold
with a positive and cooriented contact structure, and α is a contact form for ξ such that all
closed orbits of the Reeb vector field Xα are nondegenerate. Each closed Reeb orbit γ then has
a canonically defined mod 2 Conley-Zehnder index, CZ(γ) ∈ Z2, which defines the even or odd
parity of the orbit. An orbit is called bad if it is the double cover of an orbit with different
parity than its own; all other orbits are called good. For any linear subspace R ⊂ H2(M ;R),

the group ring Q[H2(M ;R)/R] consists of all finite sums of the form
∑N
i=1 cie

Ai with ci ∈ Q and
Ai ∈ H2(M ;R)/R, where multiplication is defined so that eAeB = eA+B . Now let

CC∗
(
M,α; Q[H2(M ;R)/R]

)
denote the free Z2–graded supercommutative algebra with unit generated by the elements of
Q[H2(M ;R)/R], which we define to have even degree, together with the symbols qγ for every
good Reeb orbit γ, to which we assign the degree

|qγ | = n− 3 + CZ(γ) ∈ Z2 .

Note that orbits with the same image but different periods (i.e. distinct covers of the same orbit)
give rise to distinct generators in this definition.

To define a differential on CC∗
(
M,α; Q[H2(M ;R)/R]

)
, we must make a few more choices. First,

let C1, . . . , CN denote a basis of cycles generating H1(M ;R), and for each good orbit γ, choose a

real singular 2–chain Fγ in M such that ∂Fγ = γ −
∑N
i=1 diCi for a (unique) set of coefficients

di ∈ R. Choose also an R–invariant almost complex structure J on R ×M which is compatible
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with α. Then any punctured finite energy J–holomorphic curve u : Σ̇ → R ×M represents a
2–dimensional relative homology class, which can be completed uniquely to an absolute homology
class [u] ∈ H2(M ;R) by adding the appropriate combination of spanning 2–chains Fγ . Given
A ∈ H2(M ;R)/R and a collection of good Reeb orbits γ+, γ−1 , . . . , γ

−
k for some k ≥ 0, we denote

by

MA(γ+; γ−1 , . . . , γ
−
k )

the moduli space of unparametrized finite energy punctured J–holomorphic spheres in homology
classes representing A ∈ H2(M ;R)/R, with one positive cylindrical end approaching γ+, and k
ordered negative cylindrical ends approaching γ−1 , . . . , γ

−
k respectively.4 The components of this

moduli space can be oriented coherently [BM04], and we call a curve inMA(γ+; γ−1 , . . . , γ
−
k ) rigid

if it lives in a connected component of the moduli space that has virtual dimension 1. The rigid
curves in MA(γ+; γ−1 , . . . , γ

−
k ) up to R–translation can then be counted algebraically, producing

a rational number

#

(
MA(γ+; γ−1 , . . . , γ

−
k )

R

)
∈ Q .

(Note that since we are allowing the homology class to vary in an equivalence class within
H2(M ;R), MA(γ+; γ−1 , . . . , γ

−
k ) may in general contain a mixture of rigid and non-rigid curves;

we ignore the latter in the count.) We then define the differential on generators qγ by

(2.7) ∂qγ =

∞∑
k=0

∑
(γ1,...,γk)

∑
A∈H2(M ;R)/R

κγ
k!
·#
(
MA(γ; γ1, . . . , γk)

R

)
eAqγ1 · · · qγk ,

where the second sum is over all ordered k–tuples (γ1, . . . , γk) of good orbits, and κγ ∈ N denotes
the covering multiplicity of γ. It follows from the main compactness theorem of Symplectic Field
Theory [BEH+03] that this sum is finite, and moreover that the resulting map

∂ : CC∗
(
M,α; Q[H2(M ;R)/R]

)
→ CC∗

(
M,α; Q[H2(M ;R)/R]

)
,

extended uniquely to the complex as a Q[H2(M ;R)/R]–linear derivation of odd degree, satisfies
∂2 = 0. The homology of this complex,

HC∗
(
M, ξ; Q[H2(M ;R)/R]

)
:= H∗

(
CC∗

(
M,α; Q[H2(M ;R)/R]

)
, ∂
)

is a Z2–graded algebra with unit which is an invariant of the contact structure ξ, called the
contact homology of (M, ξ) with coefficients in Q[H2(M ;R)/R]. We say that this homology
vanishes if it contains only one element; this is equivalent to the relation 1 = 0, which is true if
and only there exists an element Q ∈ CC∗

(
M,α; Q[H2(M ;R)/R]

)
such that ∂Q = 1. In general,

this means there exists a rigid J–holomorphic plane that cannot be “cancelled” in an appropriate
sense by other rigid curves with the same positive asymptotic orbit.

Suppose now that n = 2 and (W,ω) is a weak filling of (M, ξ). By Theorem 2.9, we can deform
ω to make the boundary stable, inducing a stable Hamiltonian structure H = (α,Ω) on M such
that α is a nondegenerate contact form for ξ, and Ω is a closed maximal rank 2–form with

[Ω] = [ω|TM ] ∈ H2
dR(M) .

We can therefore extend W by attaching a cylindrical end [0,∞)×M) with a symplectic structure
of the form d(ϕ(t)α) + Ω for some small but increasing function ϕ. Denote the extended manifold
by W∞, and choose a generic compatible almost complex structure J ∈ J (ω,H) on W∞.

The following observation is now crucial: since Ω and dα are conformally equivalent as symplec-
tic structures on ξ, the compatibility condition for J on the cylindrical end [0,∞) ×M depends
only on α, not on Ω. Thus J determines an almost complex structure on the symplectization
R×M of precisely the type that is used to define the differential on CC∗

(
M,α; Q[H2(M ;R)/R]

)
,

and the breaking of J–holomorphic curves in W∞ into multi-level curves will generally produce
curves that are counted in the computation of HC∗

(
M, ξ; Q[H2(M ;R)/R]

)
. The only difference

4Since various conflicting conventions appear throughout the literature, we should emphasize that our moduli

spaces are defined with ordered punctures and no asymptotic markers. The combinatorial factors in (2.7) and (2.8)
are written with this in mind.
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between this and the case of a strong filling is the definition of energy, which does involve Ω, but
this makes no difference for the count of curves in R×M .

Relatedly, one can now define another version of contact homology with coefficients that depend
on the filling: defining a complex CC∗

(
M,α; Q[H2(W ;R)/ kerω]

)
the same way as above but

replacing Q[H2(M ;R)/R] with Q[H2(W ;R)/ kerω], (2.7) yields a differential

∂W : CC∗
(
M,α; Q[H2(W ;R)/ kerω]

)
→ CC∗

(
M,α; Q[H2(W ;R)/ kerω]

)
by interpreting the term eA as an element of Q[H2(W ;R)/ kerω] through the canonical map
H2(M ;R) → H2(W ;R) induced by the inclusion M ↪→ W . We denote the homology of this
complex by

HC∗
(
M, ξ; Q[H2(W ;R)/ kerω]

)
= H∗

(
CC∗

(
M,α; Q[H2(W ;R)/ kerω]

)
, ∂W

)
,

and observe that since the canonical map H2(M ;R) → H2(W ;R) takes ker Ω into kerω, there is
also a natural algebra homomorphism

HC∗
(
M, ξ; Q[H2(M ;R)/ ker Ω]

)
→ HC∗

(
M, ξ; Q[H2(W ;R)/ kerω]

)
.

The right hand side therefore vanishes whenever the left hand side does.
With this understood, we shall now count rigid J–holomorphic curves in W∞ to define an

algebra homomorphism from HC∗
(
M, ξ; Q[H2(W ;R)/ kerω]

)
into a certain Novikov completion

of Q[H2(W ;R)/ kerω]. Choose a basis of 1–cycles Z1, . . . , Zm for the image of H1(M ;R) in
H1(W ;R), and for each of the basis cycles Ci in M , choose a real 2–chain Gi in W such that
∂Gi = Ci−

∑m
j=1 djZj for some (unique) coefficients dj ∈ R. Then for any finite energy punctured

J–holomorphic curve u : Σ̇ → W∞ with positive cylindrical ends approaching Reeb orbits in M ,
these choices allow us again to define an absolute homology class [u] ∈ H2(W ;R) by adding the
relative homology class to the appropriate sum of the spanning 2–chains Fγ and Gi.

For any Reeb orbit γ in M and A ∈ H2(W ;R)/ kerω, denote by

MA(γ)

the moduli space of unparametrized finite energy J–holomorphic planes in W∞ in homology classes
representing A, with a positive end approaching the orbit γ. We call such a plane rigid if its con-
nected component of the moduli space has virtual dimension 0. Since the natural homomorphism
[ω] : H2(W ;R) → R descends to H2(W ;R)/ kerω, the holomorphic curves in MA(γ) satisfy a
uniform energy bound depending on A and γ, thus the compactness theory implies that MA(γ)
contains finitely many rigid curves. These can again be counted algebraically (ignoring the non-
rigid curves) to define a rational number #MA(γ) ∈ Q. Now for any good Reeb orbit γ in M ,
define the formal sum

(2.8) ΦW (qγ) =
∑

A∈H2(W )/ kerω

κγ ·#
(
MA(γ)

)
eA .

This sum is not generally finite unless ω is exact, but it does belong to the Novikov ring Λω, which
we define to be the completion of Q[H2(W ;R)/ kerω] obtained by including infinite formal sums{ ∞∑

i=1

cie
Ai
∣∣∣ ci ∈ Q \ {0}, Ai ∈ H2(W ;R)/ kerω, 〈[ω], Ai〉 → +∞

}
.

One can extend ΦW uniquely as an algebra homomorphism

ΦW : CC∗
(
M,α; Q[H2(W ;R)/ kerω]

)
→ Λω ,

which we claim descends to the homology HC∗
(
M, ξ; Q[H2(W ;R)/ kerω]

)
. This follows by con-

sidering the boundary of the union of all 1–dimensional connected components ofMA(γ): indeed,
this boundary is precisely the set of all broken rigid curves, consisting of an upper level in R×M
that has a positive end approaching γ and an arbitrary number of negative ends, which are capped
off by a lower level formed by a disjoint union of planes in W∞. Counting these broken rigid curves
yields the identity

ΦW ◦ ∂W = 0 ,
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implying that ΦW descends to an algebra homomorphism

ΦW : HC∗
(
M, ξ; Q[H2(W ;R)/ kerω]

)
→ Λω .

Theorem 6 follows immediately, because we now have a sequence of algebra homomorphisms

HC∗
(
M, ξ; Q[H2(M ;R)/ ker Ω]

)
→ HC∗

(
M, ξ; Q[H2(W ;R)/ kerω]

)
→ Λω ,

for which 1 6= 0 on the right hand side.

3. Toroidal symplectic 1–handles

In this section we introduce a symplectic handle attachment technique that can be used to
construct weak fillings of contact manifolds. To apply the method in general, we need the following
ingredients:

• A weakly fillable contact manifold (M, ξ), possibly disconnected,
• Two disjoint homologically nontrivial pre-Lagrangian tori T+, T− ⊂ (M, ξ) with charac-

teristic foliations that are linear and rational,
• Choices of 1–cycles K± ⊂ T± that intersect each leaf once,
• A (possibly disconnected) weak filling (W,ω) of (M, ξ) such that ω restricts to an area

form on the tori T± and (with appropriate choices of orientations)
∫
T+
ω =

∫
T−
ω.

Note that examples of this setup are easy to find: for instance if (W±, ω±) are a pair of strong
fillings of contact manifolds (M±, ξ±) which contain pre-Lagrangian tori T± ⊂ M± with [T±] 6=
0 ∈ H2(W±;R), one may assume after a perturbation that the characteristic foliations on T± are
rational. Furthermore one can deform the symplectic structures ω± so that they vanish on T±,
and find closed 2–forms σ± on W± such that σ±|T± > 0 and

∫
T±
σ± = 1. Then for any ε > 0

sufficiently small,

(W+, ω+ + ε σ+) t (W−, ω− + ε σ−)

is a weak filling of (M, ξ) := (M+, ξ+) t (M−, ξ−) with the desired properties. We will use a
construction of this sort in the proof of Theorem 5.

Given this data, we will show that a new symplectic manifold with weakly contact boundary
can be produced by attaching to W a toroidal 1–handle

T2 × [0, 1]× [0, 1]

along T+tT−. The effect of this on the contact manifold can be described as a contact topological
operation called splicing, which essentially cuts (M, ξ) open along T+ and T− and then reattaches
it along a homeomorphism that swaps corresponding boundary components. The result of this
operation depends on the isotopy class of the map used when identifying the boundary tori, but a
choice can be specified uniquely by requiring that this map take the generators of H1(T−,Z) rep-
resented by the cycle K− and a leaf of the characteristic foliation to the corresponding generators
of H1(T+,Z).

We shall describe this topological operation in §3.1, and prove a general result on toroidal
symplectic handle attaching in §3.2, leading in §3.3 to the proof of Theorem 5. As an easy by-
product of the setting we use for handle attaching, we will also see why fillability is preserved
under Lutz twists along symplectic pre-Lagrangian tori.

3.1. Pre-Lagrangian tori, splicing and Lutz twists. Assume (M, ξ) is a contact 3–manifold,
let T ⊂ M be an embedded and oriented pre-Lagrangian torus with rational linear characteristic
foliation, and choose a 1–cycle K ⊂ T that intersects each characteristic leaf once. We can find a
contactomorphism between a neighborhood of T and the local model(

T2 × (−ε, ε), ker(dϑ+ r dϕ)
)
,

where we use the coordinates (ϕ, ϑ; r) on the thickened torus T2× (−ε, ε), such that T is identified
with T2×{0} with its natural orientation, and the ϑ–cycles are homologous to K up to sign. This
identification is uniquely defined up to isotopy. We shall refer to the coordinates (ϕ, ϑ; r) chosen
in this way as standard coordinates near (T,K).
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Now suppose (T+,K+) and (T−,K−) are two pairs as described above, with T+ ∩ T− = ∅, and
choose disjoint neighborhoods N (T±) together with standard coordinates (ϕ, ϑ; r). The coordi-
nates divide each of the neighborhoods N (T±) into two halves:

N+(T±) :=
{
r ∈ [0, ε)

}
⊂ N (T±) and N−(T±) :=

{
r ∈ (−ε, 0]

}
⊂ N (T±) .

We can then construct a new contact manifold (M ′, ξ′) by the following steps (see Figure 9):

(1) Cut M open along T+ and T−, producing a manifold with four pre-Lagrangian torus
boundary components ∂N+(T+), ∂N−(T+), ∂N+(T−) and ∂N−(T−).

(2) Attach N−(T−) to N+(T+) and N−(T+) to N+(T−) so that the standard coordinates
glue together smoothly.

The resulting contact manifold (M ′, ξ′) is uniquely defined up to contactomorphism, and it also
contains a distinguished pair of pre-Lagrangian tori T ′±, namely

T ′+ := N+(T+) ∩N−(T−) ⊂M ′ and T ′− := N−(T+) ∩N+(T−) ⊂M ′ .

Figure 9. Splicing along tori.

Definition 3.1. We will say that (M ′, ξ′) constructed above is the contact manifold obtained
from (M, ξ) by splicing along (T+,K+) and (T−,K−).

Example 3.2. Consider the tight contact torus (T3, ξn) for n ∈ N, where

ξn = ker
[
cos(2πnρ) dϑ+ sin(2πnρ) dϕ

]
in coordinates (ϕ, ϑ, ρ) ∈ T3. Then T0 := {ρ = 0} is a pre-Lagrangian torus, to which we assign
the natural orientation induced by the coordinates (ϕ, ϑ). If (M, ξ) is another connected contact
3–manifold with an oriented pre-Lagrangian torus T ⊂ M , then splicing (M, ξ) t (T3, ξn) along
T and T0 produces a new connected contact manifold, namely the one obtained from (M, ξ) by
performing n Lutz twists along T . If T ⊂M is compressible then the resulting contact manifold
is overtwisted; by contrast, Lutz twists along incompressible tori can be used to construct tight
contact manifolds with arbitrarily large Giroux torsion. Note that in this example the choice of
the transverse cycles on T and T0 does not influence the resulting manifold.

Remark 3.3. Note that if (M, ξ) is a contact 3–manifold with an S1–action such that the oriented
pre-Lagrangian tori T+, T− ⊂M consist of Legendrian S1–orbits, then the splicing operation can
be assumed compatible with the circle action, in the sense that the manifold (M ′, ξ′) obtained by
splicing is then also an S1–manifold, with the tori T ′± consisting of Legendrian orbits.

If sections σ± of the S1–action are given in a neighborhood of the tori T+, T− in (M, ξ), then
we can obtain any desired intersection number e+ between σ− ∩N−(T−) and σ+ ∩N+(T+) in T ′+
by letting the cycle K− be the intersection σ−∩T−, and choosing a cycle K+ that has intersection
number e+ with σ+. The intersection number e− between σ+ ∩N−(T+) and σ− ∩N+(T−) in T ′−
will always be equal to −e+.

Note in particular that we can arrange for the sections σ± to glue smoothly after splicing by
choosing both cycles K± ⊂ T± to be the intersections σ± ∩ T±.
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3.2. Attaching handles. Given δ > 0, we will use the term toroidal 1–handle to refer to the
smooth manifold with boundary and corners,

Hδ = T2 × [−δ, δ]× [−δ, δ] .
Let (ϕ, ϑ; r, r′) denote the natural coordinates on Hδ, and label the smooth pieces of its boundary
∂Hδ = ∂NHδ ∪ ∂SHδ ∪ ∂WHδ ∪ ∂EHδ as follows:

∂NHδ = {r′ = +δ}, ∂SHδ = {r′ = −δ}, ∂WHδ = {r = −δ}, and ∂EHδ = {r = +δ} .
Observe that if we assign the natural boundary orientations to each of these pieces, then the
induced coordinates (ϕ, ϑ; r) are negatively oriented on ∂NHδ but positively oriented on ∂SHδ;
similarly, the coordinates (ϕ, ϑ; r′) are negatively oriented on ∂WHδ, and positively oriented on
∂EHδ.

Suppose (M, ξ) is a contact manifold, W = (−ε, 0]×M is a collar neighborhood with ∂W = M ,
and T+, T− ⊂M are oriented pre-Lagrangian tori with transverse 1–cycles K± ⊂ T± and standard
coordinates (ϕ, ϑ; r) on a pair of disjoint neighborhoods

T2 × (−ε, ε) ∼= N (T±) ⊂M .

Choosing δ with 0 < δ < ε, we can attach Hδ to W along (T+,K+) and (T−,K−) via the
orientation reversing embeddings

Φ : ∂NHδ ↪→ N (T+), (ϕ, ϑ; r, δ) 7→ (ϕ, ϑ; r)

Φ : ∂SHδ ↪→ N (T−), (ϕ, ϑ; r,−δ) 7→ (ϕ, ϑ;−r) .

Then if W ′ = W∪ΦHδ, after smoothing the corners, the new boundary M ′ = ∂W ′ is diffeomorphic
to the manifold obtained fromM by splicing along (T+,K+) and (T−,K−), where the distinguished
tori T ′± ⊂M ′ are naturally identified with

T ′± = T2 ×
{

(±δ, 0)
}
⊂ ∂WHδ ∪ ∂EHδ ⊂M ′ .

The main result of this section is that such an operation can also be defined in the symplectic and
contact categories.

Theorem 3.4. Suppose (W,ω) is a symplectic manifold with weakly contact boundary (M, ξ), and
T+, T− ⊂M are disjoint, oriented pre-Lagrangian tori with rational linear characteristic foliations
and transverse 1–cycles K± ⊂ T±, such that T± are also symplectic with respect to ω, with∫

T+

ω =

∫
T−

ω > 0 .

Then after a symplectic deformation of ω near T+ ∪ T−, ω extends to a symplectic form ω′ on the
manifold

W ′ = W ∪Hδ

obtained by attaching a toroidal 1–handle Hδ to W along (T+,K+) and (T−,K−), so that (W ′, ω′)
then has weakly contact boundary (M ′, ξ′), where the latter is obtained from (M, ξ) by splicing
along (T+,K+) and (T−,K−).

As we saw in Example 3.2, Lutz twists along a pre-Lagrangian torus T ⊂ (M, ξ) can always
be realized by splicing (M, ξ) together with a tight contact 3–torus, and due to the construction
of Giroux [Gir94], the latter admits weak fillings for which the pre-Lagrangian tori {ρ = const}
are symplectic. Thus whenever (M, ξ) has weak filling (W,ω) and T ⊂ M = ∂W is a torus that
is both pre-Lagrangian in (M, ξ) and symplectic in (W,ω), the above theorem can be used to
construct weak fillings of every contact manifold obtained by performing finitely many Lutz twists
along T . We will see however that the setup needed to prove the theorem yields a much more
concrete construction of such a filling:

Theorem 3.5. Suppose (W,ω) is a symplectic manifold with weakly contact boundary (M, ξ), and
T ⊂M is a pre-Lagrangian torus which is also symplectic with respect to ω. Then for any n ∈ N,
(W,ω) can be deformed symplectically so that it is also positive on ξn, where the latter is obtained
from ξ by performing n Lutz twists along T .
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To prove both of these results, we begin by constructing a suitable symplectic deformation of
a weak filling near any symplectic pre-Lagrangian torus. The local setup is as follows: let

M = T2 × [−5ε, 5ε]

with coordinates (ϕ, ϑ; r) and contact structure ξ = kerλ, where

λ = dϑ+ r dϕ .

Define also

W = (−ε, 0]×M
with coordinates (t;ϕ, ϑ; r), and identifying M with ∂W = {0}×M , assume Ω is a closed 2–form
on M such that Ω|ξ > 0, and

ω = d(t λ) + Ω

is a symplectic form on W . Lemma 2.3 guarantees that ω can always be put in this form without
loss of generality. Moreover, assume Ω is positive on the torus

T := T2 × {0} ⊂M .

By shrinking ε if necessary, we can then assume without loss of generality that ω is positive on
each of the tori {t} × T2 × {r} for t ∈ (−ε, 0] and r ∈ [−5ε, 5ε]. Define the constant

(3.1) A =

∫
T

ω > 0 .

Let us now define a family of 1–forms on M ,

λσ = dϑ+ gσ(r) dϕ

for σ ∈ [0, 1], where gσ : [−5ε, 5ε] → R is a smooth 1–parameter family of odd functions such
that:

(1) gσ(r) = r, and gσ(0) = 0 for all σ ∈ [0, 1] when |r| ≥ 4ε,
(2) g′σ > 0 for all σ ∈ (0, 1],
(3) g1(r) = r for all r,
(4) g0(r) = 0 for all |r| ≤ 3ε.

Then λ1 = λ, λσ is a contact form for all σ ∈ (0, 1] and λ0 defines a confoliation, which is
integrable in the region

{
|r| ≤ 3ε

}
. Let ξσ = kerλσ. By shrinking ε again if necessary, we can

assume without loss of generality that each ξσ is sufficiently C0–close to ξ so that

Ω|ξσ > 0

for all σ ∈ [0, 1].
Next, choose a smooth cutoff function

β : [−5ε, 5ε]→ [0, 1]

that has support in [−3ε, 3ε] and is identically 1 on [−2ε, 2ε]. We use this to define a smooth
2–parameter family of 1–forms for (σ, τ) ∈ [0, 1]× [0, 1],

(3.2) λτσ = (1− τ)β(r) dr +
[
1− (1− τ)β(r)

]
λσ,

and distributions ξτσ = kerλτσ. The following lemma implies that ξτσ is a contact structure whenever
both σ and τ are positive.

Lemma 3.6. Suppose f(r) and g(r) are any two smooth real valued functions on [−5ε, 5ε] such
that the 1–form

α = f(r) dϑ+ g(r) dϕ

on T2 × [−5ε, 5ε] is contact. Then for any t ∈ [0, 1), the 1–form

αt := tβ(r) dr +
[
1− tβ(r)

]
α

is also contact.
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Proof. Noting that dr ∧ dα = 0, we compute

αt ∧ dαt =
[
tβ dr + (1− tβ)α

]
∧
[
(1− tβ) dα− tβ′ dr ∧ α

]
= (1− tβ)2 α ∧ dα 6= 0 . �

By Gray’s stability theorem, each of the contact structures ξτσ for σ, τ > 0 are related to ξ = ξ1
1

by isotopies with support in T2 × [−4ε, 4ε]. Thus after a compactly supported isotopy, we can
view ξ as a small perturbation of the confoliation ξ̄ := ξ0

0 = ker λ̄, where we define

λ̄ = λ0
0 = β(r) dr +

[
1− β(r)

]
(dϑ+ g0(r) dϕ) .

This 1–form is identical to λ in
{
|r| ≥ 4ε

}
, but defines a foliation in

{
|r| ≤ 3ε

}
and takes the

especially simple form

λ̄ = dr in T2 × [−2ε, 2ε] .

The main technical ingredient we need is then the following deformation result.

Proposition 3.7. Given the local model of a symplectic pre-Lagrangian torus T ⊂ M = ∂W
described above, for any sufficiently large constant C > 0 there exists a symplectic form ω̄ on W
with the following properties:

(1) ω̄ = ω outside some compact neighborhood of T in W ,
(2) ω̄|ξ̄ > 0,

(3) ω̄ = Adϕ ∧ dϑ+ C dt ∧ dr on some neighborhood of T .

Proof. Note that Ω restricts on each of the 2–plane fields ξτσ = kerλτσ to a positive form. This
is clear, because λτσ as defined in (3.2) is pointwise a convex combination of dr and λσ, where
λσ ∧ Ω and dr ∧ Ω are both positive, the latter due to the assumption that the tori T2 × {r}
are all symplectic, the former because ε was chosen small enough to guarantee that Ω|ξσ > 0.

We therefore find a smooth homotopy from ξ to ξ̄, supported in a neighborhood of T , through
confoliations on which Ω is always positive.

Next, let us replace Ω by a cohomologous closed 2–form that takes a much simpler form near T .
Indeed, since

∫
T

Ω = A =
∫
T
Adϕ ∧ dϑ and T generates H2(M), there exists a 1–form η on M

such that

Adϕ ∧ dϑ = Ω + dη .

Choose a smooth cutoff function F : [−5ε, 5ε]→ [0, 1] that has compact support in [−2ε, 2ε] and
equals 1 on [−ε, ε], and define the closed 2–form

Ω̄ = Ω + d(F (r) η) ,

which equals Ω outside of
{
|r| ≤ 2ε

}
and Adϕ ∧ dϑ in

{
|r| ≤ ε

}
. We claim

Ω̄
∣∣
ξ̄
> 0 .

Indeed, outside of the region
{
|r| ≤ 2ε

}
this statement is nothing new, and otherwise λ̄ = dr, so

we compute

λ̄ ∧ Ω̄ = dr ∧
[
(1− F (r)) Ω +AF (r) dϕ ∧ dϑ

]
> 0 .

The result now follows by applying Lemmas 2.11 and 2.10, in that order. This deforms ω near T
to a symplectic structure of the form

ω̄ = d(ϕ λ̄) + Ω̄ ,

where ϕ(t;ϕ, ϑ; r) depends only on t near T and satisfies ∂tϕ > 0, so plugging in the local formulas
λ̄ = dr and Ω̄ = Adϕ ∧ dϑ, the above becomes

ω̄ = ∂tϕdt ∧ dr +Adϕ ∧ dϑ .

One can also easily arrange for ∂tϕ to be constant near T so long as it is sufficiently large, and
the result is thus proved. �
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Proof of Theorem 3.5. The following argument generalizes the construction of weak fillings on
tight 3–tori described by Giroux [Gir94]. Consider the confoliation ξ̄ and deformed symplectic
structure ω̄ constructed in Proposition 3.7. Then ω̄ is also positive on any contact structure ξ′

that is sufficiently C0–close to ξ̄ as a distribution. It suffices therefore to find, for any n ∈ N, a
contact structure ξn that is C0–close to ξ̄ and isotopic to the one obtained by performing n Lutz
twists on ξ along T . This is easy: for σ ∈ [0, 1], define a smooth family of confoliation 1–forms ασ
which match λσ outside the coordinate neighborhood T2 × [−ε, ε], and in T2 × [−ε, ε] are contact
and take the form

Fσ(r) dϑ+Gσ(r) dϕ ,

such that the curve r 7→ (F0(r), G0(r)) ∈ R2 winds n times counterclockwise about the origin for
r ∈ [−ε, ε]. Then ασ is contact for every σ ∈ (0, 1] and defines a contact structure isotopic to the
one we are interested in. It follows now from Lemma 3.6 that for all σ ∈ (0, 1] and τ ∈ (0, 1],

ατσ := (1− τ)β(r) dr + [1− (1− τ)β(r)]ασ

is a contact form, but as σ → 0 and τ → 0 it converges to λ̄. �

Proof of Theorem 3.4. We assume (W,ω) is a symplectic manifold with weakly contact boundary
(M, ξ), and T+, T− ⊂M ⊂W are oriented tori which are pre-Lagrangian in (M, ξ) and symplectic
in (W,ω), such that ∫

T−

ω =

∫
T+

ω = A > 0 .

Then for a sufficiently large constant C > 0, we can use Proposition 3.7 to deform ω near T+

and T− to a new symplectic structure ω̄, which takes the form

ω̄ = C dt ∧ dr +Adϕ ∧ dϑ
in local coordinates near T+ and T−, and satisfies ω̄|ξ̄ > 0. Here ξ̄ is a confoliation with the
following properties:

• ξ̄ = ξ outside a small coordinate neighborhood N ⊂M of T+ ∪ T−,
• ξ̄ admits a C0–small perturbation to a contact structure, which is isotopic to ξ by an

isotopy supported in N ,
• ξ̄ = ker dr on an even smaller coordinate neighborhood of T+ ∪ T−.

Choose δ > 0 sufficiently small so that the coordinate neighborhoods T2 × [−δ, δ] of T− and T+

are contained in the region where ξ̄ = ker dr and ω̄ = C dt ∧ dr + Adϕ ∧ dϑ. Then we define the
following smooth model of a toroidal 1–handle (see Figure 10):

Hδ =
{

(ϕ, ϑ; r, r′) ∈ T2 × [−δ, δ]× [−δ, δ]
∣∣∣ |r| ≤ h(r′)

}
,

where h : [−δ, δ] → (0, δ] is a continuous, even and convex function that is smooth on (−δ, δ)
and has its derivative blowing up at r′ = ±δ, such that its graph merges smoothly into the lines
r′ = ±δ. Denote the smooth pieces of ∂Hδ by

∂NHδ = {r′ = +δ}, ∂SHδ = {r′ = −δ}, ∂WHδ = {r = −h(r′)}, and ∂EHδ = {r = +h(r′)} .
This model can be attached smoothly to W as in Figure 10, so that

W ′ := W ∪Hδ

has smooth boundary M ′ := ∂W ′. The symplectic structure ω̄ then extends to W ′ by defining

ω̄ = C dr′ ∧ dr +Adϕ ∧ dϑ
on Hδ, which restricts positively to the smooth confoliation ξ̄′ on M ′ defined by

ξ̄′ =

{
ξ̄ on M \ (∂NHδ ∪ ∂SHδ),

T (T2 × {∗}) on ∂WHδ ∪ ∂EHδ.

The latter admits a C0–small perturbation to a contact form which is isotopic to the one obtained
by splicing (M, ξ) along T+ and T−. �
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Figure 10. The handle Hδ is attached
in the ambient space T2 × R2 to two
model neighborhoods.

3.3. Proof of Theorem 5. Assume Σ = Σ+ ∪Γ Σ− is
a closed oriented surface that is the union of two sur-
faces with boundary along a multicurve Γ ⊂ Σ whose
connected components are all nonseparating, and let(
PΣ,e, ξΓ,e

)
denote the S1–principal bundle PΣ,e over Σ

with Euler number e together with the S1–invariant con-
tact structure ξΓ,e that is everywhere transverse to the
S1–fibers with exception of the tori that lie over the
multicurve Γ. Under these assumptions, we will use
the handle attaching technique described in §3.2 to con-
struct a weak filling of

(
PΣ,e, ξΓ,e

)
. The idea is to obtain(

PΣ,e, ξΓ,e
)

by a sequence of splicing operations from a
simpler disconnected contact manifold for which a (dis-
connected) strong filling is easy to construct by hand.
For this strong filling, the components of Γ give rise to
pre-Lagrangian tori, and the significance of the nonsepa-
rating assumption will be that it allows us to perturb the
strong filling to a weak one for which these tori become
symplectic, and are thus suitable for handle attaching.

The building blocks are obtained in the following way. Let S be a connected, oriented compact
surface with non-empty boundary. The symmetric double of S is the closed surface

SD := S ∪∂S S ,

where S is a second copy of S taken with reversed orientation, and the two are glued along their
boundaries via the identity map. The multicurve ΓS := ∂S ⊂ SD determines an S1–invariant
contact manifold (S1 × SD, ξΓS ) in the standard way.

Proposition 3.8. The contact manifold (S1 × SD, ξΓS ) obtained from a symmetric double has a
strong symplectic filling homeomorphic to [0, 1]× S1 × S.

Proof. Regard S together with a positive volume form ΩS as a symplectic manifold. Choose a
plurisubharmonic Morse function f : S → [0, C] whose critical values all lie in the interval [0, ε]
with ε < C, such that f−1(C) = ∂S. Take now the annulus R× S1 with symplectic form dx∧ dϕ,
and with plurisubharmonic function g(x, ϕ) = x2. The product manifold(

(R× S1)× S,Ω + dx ∧ dϕ
)

is a symplectic manifold with a plurisubharmonic function given by F := f+x2. The critical values
of this function all lie in [0, ε], so that N := F−1(C) will be a smooth compact hypersurface. In
fact, it is easy to see that N is diffeomorphic to S1×SD. The standard circle action on the annulus
R× S1 splits off naturally, so that N is the product of a circle with a closed surface.

We can explicitly give two embeddings of the 3–manifold S1×S into F−1(C) ⊂ (R×S1)×S as

the graphs of the two maps S1×S → (R× S1)×S, (ϕ, p) 7→
(
±
√
C − f(p), ϕ, p

)
distinguished by

the different signs in front of the square root. The boundary of S1 × S is mapped by both maps
to the set {0} × S1 × ∂S so that the two copies are glued along their boundary.

The contact form is defined as α := −dcF |TN = −dF ◦ J |TN . It is S1–invariant (for the
standard complex structure on R × S1), and the vector ∂ϕ is parallel to N , and never lies in the
kernel of α with the exception of the points where d(x2) vanishes, which happens to be exactly
along the boundary of S. By [Lut77], this proves that the hypersurface N is contactomorphic to
(S1 × SD, ξΓS ). �

Now denote by

Σ1, . . . ,ΣN

the closures of the connected components of Σ\Γ, whose boundaries Γj := ∂Σj are all disconnected
due to the assumption that components of Γ are nonseparating. Then for each j = 1, . . . , N ,
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construct the doubled manifold ΣDj , and define the disconnected contact manifold

(M0, ξ0) =

N⊔
j=1

(S1 × ΣDj , ξΓj ) ,

which by the proposition above can be strongly filled. Let (Wj , ωj) denote the resulting strong
filling of S1 × ΣDj . For each connected component γ ⊂ Γj , which is also a component of Γ, the

torus S1 × γ ⊂ ∂Wj is a Lagrangian submanifold in (Wj , ωj).

Lemma 3.9. There exists a cohomology class [β] ∈ H2
dR

(
PΣ,e

)
such that

∫
T
β 6= 0 for every torus

T that lies over a connected component γ ⊂ Γ.

Proof. By Poincaré duality, it suffices to find a homology class A ∈ H1

(
PΣ,e;R

)
whose intersection

number A • [Tγ ] ∈ R is nonzero for every torus Tγ lying over a connected component γ ⊂ Γ. For
each component γ ∈ Γ, pick an oriented loop Cγ in PΣ,e with [Cγ ]• [Tγ ] = 1; this necessarily exists
since γ and hence also Tγ is nonseparating. Then we construct A by the following algorithm:
starting with any connected component γ1 ⊂ Γ, let A1 = [Cγ1 ]. Then A1 • [Tγ ] 6= 0 for some
subcollection of the components γ ⊂ Γ, including γ1. If there remains a component γ2 ⊂ Γ such
that A1 • [Tγ2 ] = 0, then we set

A2 = A1 + d2 [Cγ2 ] ,

where d2 > 0 is chosen sufficiently small so that for every component γ ⊂ Γ with A1 • [Tγ ]
nonzero, A2 • [Tγ ] is also nonzero. The result is that A2 • [Tγ ] is nonzero for a strictly larger set of
components than A1 • [Tγ ]. Thus after repeating this process finitely many times, we eventually
find A ∈ H1

(
PΣ,e;R

)
with all intersection numbers A • [Tγ ] nonzero. �

Using the cohomology class [β] given by the lemma, orient every torus Tγ ⊂ PΣ,e that projects
onto a connected component γ ⊂ Γ in such a way that

∫
Tγ
β > 0. We find a closed 2–form

σ representing [β] that is positive on each of the oriented pre-Lagrangian tori Tγ . Since every
component Σj has non-empty boundary, it follows that the restriction PΣ,e|Σj is trivial so that

we can identify it with

PΣ,e|Σj
∼= S1 × Σj ,

and we can then pull-back σ to each component S1 × Σj to obtain a collection of 2–forms σj on
the fillings Wj

∼= [0, 1]× S1 × Σj , all of which are positive on the tori S1 × γ ⊂ Wj . The same is
then true for the 2–forms ωj + ε σj , with ε > 0 chosen sufficiently small so that

(W0, ω0) :=

N⊔
j=1

(Wj , ωj + ε σj)

is a weak filling of (M0, ξ0).
Observe now that each torus Tγ for a connected component γ ⊂ Γ corresponds to two pre-

Lagrangian tori in (M0, ξ0), which are symplectic in (W0, ω0) and have matching integrals of ω0

by construction. This allows us to attach toroidal 1–handles to (W0, ω0) along corresponding
pairs of tori via Theorem 3.4, which by Remark 3.3 can be done in a way that is compatible with
circle actions. To prescribe the isotopy class of the gluing maps, choose for all except one of the
tori Tγ ⊂ M0 the curves {∗} × ∂Σj as the transverse cycle. This way the splicing will glue the
sections {∗}×Σj together smoothly along each of the pre-Lagrangian tori. If the transverse cycle
is also chosen to be of the form {∗}× ∂Σj on the last torus, then the section will in fact glue to a
global section, and the resulting manifold will be a weak filling of two disjoint copies of the contact
manifold (S1×Σ, ξΓ). If we instead choose a different transverse cycle on the last torus, we obtain
a connected symplectic manifold with weak contact boundary consisting of the disjoint union of
the circle bundles

(
PΣ,e, ξΓ,e

)
and

(
PΣ,−e, ξΓ,−e

)
with the corresponding contact structures. We

claim that the Euler number e is given by the intersection number of the two sections touching the
last pre-Lagrangian torus T0, which is equal to the intersection number of the chosen transverse
cycle with the curve {∗} × ∂Σj . The Euler number is obtained by chosing a section over a disk
D, a section over the complement of this disk, and computing the intersection number of both
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sections in the torus that lies over the boundary ∂D. Our construction yields so far a section
of the spliced manifold defined everywhere except at the last pre-Lagrangian torus T0. We can
push both parts of the section a bit away from T0, and connect them with a strip crossing this
torus. The new section obtained this way is defined over the whole surface Σ with the exception
of a disk D, and it is easy to see that the intersection number between the section we have just
constructed, and a section over D is equal to the intersection number of the two initial sections in
the pre-Lagrangian torus T0.

Finally, capping the weak contact boundary
(
PΣ,−e, ξΓ,−e

)
using [Eli04, Etn04a], we obtain a

weak filling of
(
PΣ,e, ξΓ,e

)
, thus the proof of Theorem 5 is complete.
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