HIGHER STRUCTURE: EXERCISE 3

DINGYU YANG

We will have Exercise session this Friday.

Exercise 1: Let (C, m) and (E, n) be A_{∞} algebras, and let $F, \tilde{F} : (C, m) \to (E, n)$ be A_{∞} morphisms. Let $D := \{D_k : C^{\otimes k} \to E\}_{k \geq 1}$, where D_k is linear and of degree deg D - k. Define d_{NT} by $d_{NT}D := \{(d_{NT}D)_k\}_{k \geq 1}$, where

$$(d_{NT}D)_k = \sum_{r,1 \le i \le r} \sum_{s_1, \cdots, s_r, \sum_{i=1}^r s_i = k} (-1)^a n_r \circ (F_{s_1} \otimes \cdots \otimes F_{s_{i-1}} \otimes D_{s_i} \otimes \tilde{F}_{s_{i+1}} \otimes \cdots \otimes \tilde{F}_{s_r}) - \sum_{p,q} (-1)^b D_{k+1-p} \circ_{q+1} m_p,$$

 $a = (\sum_{j=1}^{s_1+\dots+s_{i-1}} (\deg x_j - 1))(\deg D - 1)$ and $b = \sum_{i=1}^{q} (\deg x_i - 1) + \deg D - 1$. The notation of *NT* refers to that such a *D* with $d_{NT}D = 0$ is a good notion of morphism¹ between A_{∞} -morphisms *F* and \tilde{F} .

- (a) Show that $d_{NT} \circ d_{NT} = 0$. (Actually, $d_{NT} = \mathbf{d}_1$ is part of A_{∞} structures $\mathbf{d} := {\mathbf{d}_k}_{k\geq 1}$ for target-composing two such *D*'s.)
- (b) Show that $F \tilde{F} = d_{NT}T$ is equivalent to $\Delta \circ \hat{T} = \hat{F} \otimes \hat{T} + \hat{T} \otimes \hat{\tilde{F}}$ and $\hat{F} \hat{\tilde{F}} = \hat{d}_n \circ \hat{T} + \hat{T} \circ \hat{d}_m$.

Exercise 2: Let (C, m) be an A_{∞} algebra. Let $\Phi = \{\Phi_k : C^{\otimes k} \to C\}_{k \ge 1}$ be a formal diffeomorphism, namely, a sequence of linear map Φ_k with Φ_1 isomorphism (of graded module/vector space). On C, construct the A_{∞} algebra structure $\Phi_*m := \{(\Phi_*m)_k\}_{k \ge 1}$ inductively so that $\Phi : (C, m) \to (C, \Phi_*m)$ is an A_{∞} morphism (actually an isomorphism). (Hint: Denote $\tilde{m}_k := (\Phi_*m)_k$. \tilde{m}_k is determined by $\tilde{m}_k \circ (\Phi_1)^{\otimes k}$, which is determined by lower order terms using A_{∞} morphism identity, for the inductive step.) Find the two sided-inverse of Φ under the composition $(\Phi^1, \Phi^2) \mapsto \Phi^1 \circ \Phi^2$ where $(\Phi^1 \circ \Phi^2)_k := \sum_{s_1, \cdots, s_r, s_1 + \cdots + s_r = k} \Phi_r^1 \circ (\Phi_{s_1}^2 \otimes \cdots \otimes \Phi_{s_r}^2)$.

Exercise 3: Using homological perturbation lemma (and possibly also using Exercise 2), show that quasi-isomorphisms between A_{∞} algebras are invertible up to homotopy (here up to homotopy means that the identity holds with an error of the form $d_{NT}T$ for some T of degree -1).

Exercise 4: (Guide exercise and also good preparation for Friday's lecture) Show that for a cohomologically unital (C,m) there exists a formal diffeomorphism Φ such that Φ_*m is strictly unital.

(Hint: Suppose (C, m, e) is an A_{∞} algebra with a (d, n)-strict unit, namely, $m_2(e, x) = (-1)^{\deg x} m_2(x, e) = x$ and $m_i \circ_{j+1} e = 0$ for all (i, j) with i < dand (d, j) with j < n. Define $\Phi = (\Phi_k)_{k\geq 1}$ with non-trivial terms $\Phi_1 = \mathrm{Id}$, $\Phi_{d-1} = (-1)^{\sum_{i=1}^n (\deg x_i - 1)} m_d \circ_{n+1} e$ and $\Phi_d := (-1)^{\sum_{i=1}^n (\deg x_i - 1)} m_{d+1} \circ_{n+1} e$.

Date: October 30, 2019.

¹A natural transformation if we regard an A_{∞} algebra as an A_{∞} category with one object * and then C = Mor(*, *).

Show that (C, Φ_*m, e) is (d, n+1)-strictly unital, where one notes that (d, 0)-strict unitality is same as (d-1, d-1)-strict unitality.)

Exercise 5: Show that (C^+, m^+) appeared in the definition of homotopy unital A_{∞} algebra is quasi-isomorphic to (C, m).

Exercise 6: Let X be a space and $x_0 \in X$. $(X, m : X \times X \to X, x_0)$ is called an H-space, if $m(x_0, \cdot) = m(\cdot, x_0) = \operatorname{Id}_X$. A relaxed version is called homotopy H-space, where $m(x_0, \cdot)$ and $m(\cdot, x_0)$ are only required to be homotopic to Id_X by homotopy $H_1, H_2 : X \times [0, 1] \to X$ respectively, here $H_i(\cdot, 1) = \operatorname{Id}_X$. Then define $X^+ := (X \sqcup [0, 1])/x_0 \sim 0$, define the multiplication m^+ on X^+ by $m^+|_{X^2} = m$, $m^+(s, t) = st$ for $s, t \in [0, 1]$ and $m^+(x, t) = H_2(x, t)$ and $m^+(s, y) = H_1(y, s)$.

Note that $(X^+, m^+, 1)$ is an H-space and X^+ is homotopy equivalent to X.

 (C^+, m^+) being a strictly unital A_{∞} algebra constructed from a homotopy unital A_{∞} algebra from (C, m) is an algebraic analogue of the above. Try to make connection more precise.

Bonus: Recall in lecture 2, we introduced the based loop space ΩN which is a homotopy H-space. Suppose $C_*(\Omega N)$, m is a chain model with Pontryagin product up to homotopy, and denote $C^* = C_{-*}(\Omega N)$ to convert it to a cochain with the same A_{∞} algebra structure m. Try to construct a quasi-isomorphic cochain model with A_{∞} structure and a strict unit.