
HIGHER STRUCTURES IN GEOMETRY AND MODULI SPACES

DINGYU YANG

1. Lecture 1 (version 1.1)

The material of this introductory lecture borrows from Part 1 of Vallette’s very
readable https://arxiv.org/abs/1202.3245, but is phrased in the cochain con-
vention for the strict associativity of the de Rham (or the singular) cochains. The
series of lecture notes will hopefully be improved and slightly expanded over time,
so please feel free to let me know if any typos, errors, remarks, or any important
omissions from the content delivered in the actual lectures. Glad the appearance
of this note meets the 2-week lag promise.

Definition 1.1 (Homotopy retract). Suppose (A, dA) and (H, dH) are differential
graded (DG) vector spaces over a field k (or DG modules over a commutative unital
ring k), where the differentials are of degree +11. Suppose we have chain maps
p : (A, dA)→ (H, dH) and ι : (H, dH)→ (A, dA), and a linear map/endomorphism
h : (A, dA)→ (A, dA) of degree −1. It can be pictured as

(A, dA) (H, dH)
p

ι
h

(p, i, h) is called a homotopy retract from (A, dA) to (H, dH) if

IdA − ι ◦ p = dA ◦ h+ h ◦ dA

and ι is a quasi-isomorphism between DG vector spaces (namely, the induced map
ι : H∗(H, dH) → H∗(A, dA) between the cohomologies is an isomorphism, e.g.
p ◦ ι = IdH in addition to the above).

Definition 1.2 (DGA). A differential graded (k-)algebra (or k-DGA, or just DGA)
(A, dA, ν : A ⊗ A → A) is a tuple where (A, dA) is a differential graded k-vector
space with the differential of degree +1, and ν : A ⊗ A → A is linear of degree 0
and associative

ν ◦ (ν ⊗ IdA) = ν ◦ (IdA ⊗ ν)

(not necessarily graded commutative), such that dA is a derivation with respect to ν,
namely, it satisfies the Leibniz rule: dA◦ν = ν ◦(dA⊗IdA)+(−1)deg x1ν ◦(IdA⊗dA)
when acting on a homogeneous x1 ⊗ x2.

One can define dAν := dA ◦ ν − ν ◦ (dA ⊗ IdA)− (−1)deg x1ν ◦ (IdA ⊗ dA). (The
Koszul sign rule (for maps) will be explained in Lecture 3 and the signs in the
identities can be read as ±1 for now.) The derivation property is just dAν = 0.

Date: November 1, 2019.
1Here the degree of a map f is deg f(x)− deg x.
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Suppose (A, dA, ν) is a DGA and (H, dH) is a DG vector space. (p, i, h) is
a homotopy retract from (A, dA) to (H, dH). How can we transfer the algebra
structure ν from (A, dA) to (H, dH)?

For µ2 : H⊗2 → H, not much choice is given: µ2 := p ◦ ν ◦ (ι⊗2).
We use a tree in the direction from top to bottom to pictorially indicate the

input-output relation:

ν = µ2 = := (−1)deg x1

ι ι

p

Using this device, the derivation and associativity properties of ν are depicted
as:

Derivation:

dA

=

dA

+(−1)deg x1

dA

Associativity: =

One sees that µ2 is not associative because ι ◦ p is the identity only up to homo-
topy. Is there a way to rectify this? The answer is yes. One can define µ3 by the
following:

:=
h

ι ι

ι

p

−
h

ιι

ι

p

Here the internal edge being labeled by h means that before we connect a pair
of an input and an output, we insert the action of h.

If we define analogously

dHµ3 := dH ◦ µ3 − µ3 ◦ (dH ⊗ Id⊗2H )− (−1)deg x1µ3 ◦ (IdH ⊗ dH ⊗ IdH)

− (−1)deg x1+deg x2µ3 ◦ (Id⊗2H ⊗ dH),

the failure of the associativity for µ2 is the (co)boundary of µ3 (as a map):

µ2 ◦ (µ2 ⊗ IdH)− µ2 ◦ (IdH ⊗ µ2) = dHµ3.

Having introduced higher multiplications, there will be a measure of failure of
higher associativity and a still 1-level-up higher multiplication whose coboundary
will offset the failure.

In general, the higher multiplication µk is defined by a signed sum over the planar
binary trees with k leaves and 1 root, where leaves are precomposed by ι, the root
is (post)composed with p and internal edges are labeled by h. Here planar means
embedded into the plane, binary means only two branches can appear at one time
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when ‘growing’ from the root upwards, and only the finitely many combinatorial
(not geometric) types are summed over.

With this definition of µk which is depicted by a k-to-1 tree with a black dot
at the branch (just as µ2 and µ3 above), we have the following identity where the
right hand side is the k-th higher associator (the failure of higher associativity).

· · ·1 k

dH
( )

=
∑

m + n = k + 1
1 ≤ j ≤ n

n ≥ 2
m ≥ 2

± · · · · · ·1 nj

· · ·1 m

Denote µ1 = ±dH (see Lecture 3 for the exact sign(s)), the above picture is
precisely the defining A∞ (associativity) relation for A∞ algebra (H, {µk}k≥1).
Moving the left hand side of the picture to the right, one can see the A∞ relation is
about a quadratic relation among pairs of (µp, µq) with p+q = k+1 for each k; and it
can also be viewed as it is where µk provides a primitive of the ‘higher associativity’
of {µd}2≤d≤k−1 being a coboundary (as a map). The process of obtaining an A∞
algebra on H from an (A∞) algebra structure on A via a homotopy retract is called
a homotopy transfer, and {µk}k≥1 is the transferred structure.

We specialize (A, dA, µ) to the de Rham cochain complex (Ω∗(M), d,∧) (or the
singular cochain complex with the also chain-level associative product structure),
and (H, dH = 0) being the cohomology H(Ω∗(M), d), and we can make a choice of
homotopy retract as follows:
dA : An → Bn+1 ⊂ An+1 onto the subspace Bn+1 = dA(An) of coboundaries

with the kernel Zn consisting of cocycles. Thus one can make a choice of an
isomorphism An ∼= Zn ⊕ Bn+1. As Hn := Zn/Bn, we can make another choice
of an identification Zn ∼= Bn ⊕Hn. After making choices for each n, An ∼= Bn ⊕
Hn ⊕Bn+1, and dA under these identifications becomes IdBn+1 ◦ prBn+1 . Define

h := IdBn ◦ prBn : An → An−1

via these identifications and ι = IdHn : Hn → An and p := prHn : An → Hn. One
has IdA − ι ◦ p = dA ◦ h + h ◦ dA and p ◦ ι = IdHn . Thus (p, ι, h) is a homotopy
retract.

Using the homotopy transfer via (p, ι, h) as above, we have an A∞ algebra
(H, {µk}k≥1) with µ1 = ±dH = 0. Here, µk is a higher Massey product defined
via a choice of (p, ι, h). The usual cohomological product µ2 is associative, because
µ1 = 0; but µ3 might be non-trivial. See Exercise sheet 1 for the Borromean ring
example with a non-trivial µ3.

In fact, a result says that a stronger version of A∞ algebra on the cochain
complex that respects the shuffle products detects the rational homotopy type
for simply connected spaces. So the usual cohomology product which truncates
the higher information is not the right way to capture the product structure on
cochains. This result that C∞ algebra on cohomology is a complete invariant
for simply connected rational homotopy types is due to Kadeishvili in 2008, see
https://arxiv.org/abs/0811.1655 (and the journal version can be found via
mathscinet).
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To see that µ3 really agrees with the classical Massey product, we first recall the
latter. The Massey product is a secondary operation defined for a triple of cohomol-
ogy classes x, y and z with ν(x, y) = 0 and ν(y, z) = 0, where the underlines denote
the quotients in cohomology. So taking representatives without the underlines, we
have ν(x, y) = du and ν(y, z) = dv, note that −ν(u, z) + (−1)deg xν(x, v) is a co-
cycle due to associativity of ν. We define m3(x, y, z) := −ν(u, z) + (−1)deg xν(x, v)
where the last quotient lives in

Hdeg x+deg y+deg z−1/(ν(Hdeg x+deg y−1, Hdeg z) + ν(Hdeg x, Hdeg y+deg z−1)),

for any (x, y, z) ∈ Hdeg x×Hdeg y×Hdeg z satisfying the pair of vanishing conditions
and is well-defined independent of choices. Using the definition µ3 in the transfer,
we have µ3 := p

(
h(x · y) · z)−x ·h(y · z)

)
, where x · y := (−1)deg xν(x, y) for clarity.

Then

µ3(x, y, z) = p
(
(−1)deg x+deg x+deg y−1ν(u, z) + (−1)deg y+deg xν(x, v)

)
= (−1)deg yp(−ν(u, z) + (−1)deg xν(x, v)).

Here x = ι(x) etc, u = h(ν(x, y)) and v = h(ν(y, z)). Here, after making a choice of
a homotopy retract, µ3 is defined, its value lifts to H, it does not need the vanishing
condition for its definition, and the expression before precomposing p is not closed
in general. But in the case where ν(x, y) = du, the homotopy retract condition
applying to ν(x, y) gives ν(x, y) = dA(h(ν(x, y))), so h(ν(x, y)) is a possible choice
for u; similarly h(ν(y, z)) for v (while the well-definedness of m3 is done by taking
the quotient in the image); and the projection by p just takes the associated coho-
mology class and lands in H prior to taking the further quotient by decomposables.
Therefore, the form of µ3 agrees with m3 up to a sign. A similar discussion can be
had for the higher Massey products, and the readers are encouraged to try it for
µ4.
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