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Notations

We use the following notations:

2

e K will denote a number field, R its ring of integers and I'yx = Gal(K/K) the absolute Galois

group.

for every group scheme G over a base S we denote by s: S — G the identity sections. We
use the same letter s for different group schemes, but this should not cause confusion.

if A/K is an abelian variety, we denote by A its Néron model and by .A° the connected
component of the identity. Recall from Eva’s talk [Viar] that A is a smooth and separated
group scheme over R such that

(i) There is an identification Ax = A.

(ii) (Néron mapping property): for every smooth scheme S over R and the restriction to
the generic fiber induces an isomorphism

Homg(S, A) — Homg(Sk, A)

For every t € Spec R we set A; dof AY. Recall from Eva’s talk [Mar] that for every t € Spec R

we have the Chevalley decomposition
1— A A — AP 0
that is functorial in A. We say that A is semistable or that it has semistable reduction if

A2 is a torus for every t € Spec R.

Motivation

Let A/K be an abelian variety. Then, for a prime ¢ we have defined the Tate module:

TALImA(K) VALY TA0zQ
n

During Niels’ talk [Lin] we have conditionally proven these two theorems:

Theorem 2.1 (Tate’s conjecture). Let A and B be two abelian varieties over K and let ¢ be a prime. Then
the natural map

Hom(A,B) ® Z; — Homzr, (T, A, TyB)

is an isomorphism.

Theorem 2.2 (Semisimplicity Theorem). Let A be an abelian variety over K and let £ be a prime. Then
the action of ' on V, A is semisimple.



What we needed for the proofs was this:

Lemma 2.1 (Key Lemma). Let A be an abelian variety over K and ¢ a prime. Let W C V;(A) be a
I'k-invariant subspace and for every n > 0 define the subgroups

Gn = WNT(A)/ L (WNT(A)) — T, (A)/£"(To(A)) = AlC"](K)

(these are actually finite subgroup schemes of A). Then the quotients A/ G, are only finitely many, up to
isomorphism.

The strategy to prove this is to find an height function for abelian varieties, i.e. a function
h: { abelian varieties over K } — R

such that

(1) theset { A |dimA =g, h(A) < N } is finite up to isomorphism.

(2) his bounded on A/G,.
In this talk we are going to present a notion of height for abelian varieties due to Faltings, named
(unsurprisingly) the Faltings height. But first we make a reduction:
2.1 Reduction to the semistable case
In Eva’s talk [Mar], we have seen the following fundamental result about semistability:
Theorem 2.3. Let A be an abelian variety over K.

(i) there exists a finite field extension K' /K such that Ag: has semistable reduction.

(ii) if A has semistable reduction, then for any finite field extension K' /K with ring of integers R', if we
denote by A’ the Neron model of Ags, then A° = A9,

Let’s study the behaviour of semistability under isogenies:

Proposition 2.1. Let f: A — B be an isogeny between two abelian varieties over K and let F: A° — B°
be the corresponding map between the Néron models. Suppose that A has semistable reduction, then:

(i) B has semistable reduction.

(ii) F: A° — B is a flat and surjective morphism whose kernel G is a flat, quasi-finite and separated
group scheme over R.

(iii) if d = deg f, then G is killed by d.

Proof. (i) Let f: A — B be an isogeny. Then we know that there is another isogeny g: B — A
such that fog¢ = [d]p and go f = [d]4 for d = deg f. Then if we denote by F: A — B°
and G: BY — A° the extensions of f and g to the Néron models, we see that F o G = [d] 4
and Go F = [d|g. Now consider for every t € T the induced maps on the Chevalley

decompositions
1 At Ay AP 0
7| Bl E
1 Bt B Bb 0
G| G| G
1 Aaft Ay AP 0



On the abelian parts we see that
Fto Gt = [d]be Gi' o F{* = [d]Afh

and the first relation tells us that F* is surjective, since [] pev is surjective on an abelian
variety, whereas the second tells us that Ker F** C Ker [#] Asbs SO that Ker F* is finite. This

proves that F? is an isogeny and the same is true for G?. In particular, this tells us that
dim A%’ = dim B’ and moreover we see that

dim A; = dim Ax = dim A = dim B = dim Bx = dim B;

by smoothness of the Néron models, so then see that dim A = dim B2 as well. Now,
suppose that Biff has a nontrivial unipotent part U: then we can write B3 = U x T (since it
is a commutative affine group over a perfect field [Con, Proposition 2.16]) and since there
are no nontrivial homomorphisms between a torus and an unipotent group [Con, Lemma
2.15], we see that Im Ffff C T, that is of dimension strictly less than dim Bfff = dim Afff .
However this is absurd since

Gt o P = [d] o

and [n] it is surjective, as A2t is a torus.

(ii) Observe that
B0 GIff = [d] g

is surjective, since Biff is a torus, and then Ff is surjective as well. This proves that F; is
surjective, and we also know that it is flat (by generic flatness and translations) and finite,
since dim A; = dim B;. Since this holds for every ¢, we see that F is clearly surjective and it
is also flat by the Fiberwise Friterion for Flatness [ , Lemma 36.13.3].

Then we know immediately that Ker F is flat, and since for every ¢t € Spec R we have
(Ker F); = Ker F, this shows also that Ker F is quasifinite (in general it is not finite: these
fibers could be varying order in general, and Ker F is flat). Since A° and B° are separated
over R, it also follows that Ker F is separated over R.

(iii) This follows immediately from the fact that G C Ker [d] 4.

Now we make our reduction: first we need a lemma from Representation Theory:

Lemma 2.2. Let G be an abstract group and let H < G be a normal subgroup of finite index. Then for a
G-module V over a field k of characteristic zero, we have that V is semisimple as a G-module if and only if
V is semisimple as an H-module.

Proof. 1f V is semisimple as a G-module then it is also semisimple as an H module by Clifford’s
Theorem. The converse is an exercise in Representation Theory O

Lemma 2.3. If Theorems 2.1 and 2.2 hold for a finite extension K' /K, then they hold for K as well.

Proof. First observe that the Tate’s Conjecture follows from the Semisimplicity Theorem ( see for
example [Lin]), so that it is enough to consider the latter. Let K” O K be a finite Galois extension
containing K’ and consider the absolute Galois groups I's and I'g»: we know that 'y is a normal
subgroup of finite index in both I'y, so that V;(A) is a semisimple I'g»-module from the previous
lemma, but again from the previous lemma it follows that V;(A) is a semisimple I'x-module. [

This, together with Theorem 2.3 (i) and Proposition 2.1 (i), shows that we we can look at an
height function defined just over semistable abelian varieties

h: { semistable abelian varieties over K } — R

so that in the following all our abelian varieties will be semistable.
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3 Faltings height

The idea of height function is to give a measure of the arithmetic complexity of an object. Let’s
look at a stupid example:

Example 3.1. Write every rational number r € Q as r = , for a, b coprime integers. Then we define
the height of r as
H(r) = max{ |al, b] }
In this way we have defined a function H: Q — R and moreover for every N € IN we have
that
{re Q| H(r) < N} is finite

3.1 Height of a metrized line bundle

First recall that a place on R is an equivalence class of absolute values v: K — IR. Every place in
R corresponds to one of the following normalized places:

e finite places: for every maximal ideal p € Spec R we define
[[pr K— R [a], = [R:p] %
e infinite real places: for every real embedding j: K —— R we define
[ K— R a]; = [j(a)]
where the absolute value on the right is the usual absolute value on R.

e infinite complex places: for every couple of conjugate non-real embeddings j,j: K — C
we define )
[y K —R el =)

If v is a place, then we write v | co to say that v is an infinite place and v { o to say that
v is a finite place. Moreover, if d € Z, we write that v | d to say that v is finite and that the
corresponding maximal ideal p divides d in R. If v | oo, then we denote by K, the completion of K
w.r.t. v: we have that K, = R, C depending on v being real or complex.

We have the following result:

Proposition 3.1 (Product formula). For every a € K it holds that

[T la,=1

v place of R

Now we can define the notion of metrized line bundle on Spec R: recall that there is a
correspondence between fractional ideals of R in K, projective modules of rank 1 over R and line
bundles on Spec R, and in the following we will sometimes identify there objects.

Let M be such a line bundle and suppose that for every infinite place v of R we have a norm
|I|l, on M ®g K, (observe that this is a vector space, real or complex according to v).

Moreover, for every finite valuation v, let R, be the localization of R at the prime corresponding
to v. Then is a DVR and M, = M ®g Ry, is a projective module of rank 1 over R,, hence it is free:
write M, = R, - m, for a certain m, € M,. Then for every m € M, m # 0 we denote by mﬂv the
unique element of K such that m = mﬂv -my, in M, ®g, K.

Definition 3.1 (Height of a metrized line bundle). With notations as before, we define the number

H(M) def 1 : :{1, %fv%sreal
wa mﬂv UHZ;'oonva 2, if vis complex
where we can take any m € M, m # 0. Then we define the height of M as
def 1
h(iM) = ———1log H(M
(M) ¥ g log H(M)



Remark 3.1. The above is well-defined, i.e. it is independent of m and of the m,.

Indeed, it is clear that the height is independent of the m,, because choosing another generator
m;, changes - by multiplication with an invertible element. To see that it is independent of m,
consider M as a fractional ideal of R: then every other element of M is of the form am for a certain
a € K. Now we see that

P .
[Tllamll, = [Tlaol || TTlalolimll, "2 TT

v v|oo vfco v|oo vfoo

am

T}

vfco

m

[Tlimll,

U p]oo

My

Remark 3.2. The above proof shows that to compute (M) we can choose any element of K @r M.

Remark 3.3. Suppose that M is actually free over R and that M = R - m. Then fr every v { oo as a
generator of M, we can take the element m, = 7 itself and we see that

1

HM)= ———
( ) Hv\oo”mHv

so that ,
h(M) = —m stlogHmHv

v]oo
Lemma 3.1. Let K'/K be a finite field extension with ring of integers R'. Then
h(M ®g R") = h(M)
with the natural structure of metrized line bundle on M ®g R’.
Proof. Exercise in Algebraic Number Theory. O

Lemma 3.2. Let M and N be two metrized line bundles. Then h(M ®g N) = h(M) + h(N) (with the
natrural structure of metrized line bundle on M @r N).

Proof. Easy check. O

3.2 Faltings height of an abelian variety

Now, for any abelian variety A over K of dimension g we have the Néron model A and the
connected part A°. These are group schemes over R, with identity section

s:Spec R — A’ C A

Then, consider the relative canonical sheaf w4,z = Qi sz this is a line bundle on A that pulls
back to a line bundle s*w 4,z on Spec R.
We want to make this into a metrized line bundle: observe that we have

S*CUA/R QRr K = S*(,UA/K = HO(A,(UA/K)
so that, if we consider an infinite place v we see that
s*wa/r Or Ko = HY(Ak,, way, /x,)

and here we can put the norm

lly: H(Ak, way, /) — R lwll, =

s
7

g

>
_&



Remark 3.4. Observe that K, = C, and indeed fixing an embedding K — C makes A into an
abelian variety over C. Under this point of view, the norm corresponds more ore less to the
volume of A. For example, when A = C/T is an elliptic curve, taking the holomorphic differential
dz we see that

dz NdzZ
C/T

= || (@xtidy) A (dx —idy)| = | [ —2idxndy| = 2| [ dAd‘zz-VICF
[ xeridn) nix—idy)| =| [ —idxnay| =2| [ dxndy =2 ol(c/r)

Definition 3.2 (Faltings height). We define the Faltings height of the abelian variety A/K as

h(A) = h(s*wa/r) = [K:lQ]logH(s*wA/R)

Lemma 3.3. The Faltings height is unchanged under finite field extensions.

Proof. Let A be a semistable abelian variety defined over a number field K and let K’ /K be a finite
field extension with ring of integers R’. If A’ is the Néron model of Ay, then we know from

Theorem 2.3 that A”° = AY,. This implies that s*w 4 /r = s*w_4,r @r R’ so that we can conclude
by Lemma 3.1. O

Remark 3.5. The definition of Faltings height makes sense for any abelian variety over K, not
necessarily semistable. however, it is not true that it is invariant under finite field extensions, since
the Néron model could behave badly. That’s why for any abelian variety A/K one defines the
stable Faltings height of A as

hp(A) = h(Ak)

where K'/K is any finite extension such that Ag: has semistable reduction. However since all our
abelian varieties are semistable, we will not consider this notion.
3.3 Reduction to the principally polarized case

Recall that we want to prove the following two facts:

(1’) up to isomorphism, there are finitely many semistable abelian varieties A/K of dimension g
such that 1(A) < N.

(2) if A/K is a semistable abelian variety then { /(A/G,) | n > 0} is bounded.
Now we want to show how to reduce to the case of principally polarized abelian varieties:
Proposition 3.2. Let A, B be two abelian varieties over K. Then
h(A x B) = h(A) + h(B)

Proof. This follows from the fact that the Néron model of A x B is the product of the Néron
models A x B. So that

s*waxp/r =8 (wWa/r Wwpg/r) = s"wa/r @8 wp/R
and this is an isomorphism of metrized line bundles, so that we conclude by Lemma 3.2. O
Proposition 3.3. Let A/K be an abelian variety. Then
h(A) = h(AY)
Proof. See [ , Proposition II1.3.7]. O
Corollary 3.1. Suppose that the following holds:

(17) up to isomorphism of polarized abelian varieties, there are finitely many semistable principally
polarized abelian varieties A/K of dimension g such that h(A) < N.
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Then (1’) above holds as well.

Proof. Recall from Gregor’s talk [Bru, Theorem 6.2] that if A/K is an abelian variety that admits a
principal polarization, then up to isomorphism (of polarized varieties) there are only finitely many
principally polarized abelian varieties (A, L). So that it is enough to prove that the statement

(1”) up to isomorphism, there are finitely many semistable principally polarizable abelian
varieties A/K of dimension g such that 1(A) < N.

implies our statement (1”). Recall again from Gregor’s talk [Bru, Theorem 4.1], that if A is any
abelian variety, then (A x AY)* is principally polarized. Moreover we see from Proposition 3.3 that
h((Ax AV)*) = 8- (A) and dim(A x AY)* = 8- dim A. Then to conclude it is enough to show
that up to isomorphism there are finitely many abelian variety A/K such that (A x AY)* = Z
for a fixed Z. To prove this, it is enough to prove that (A x A")* has finitely many factors, up to
isomorphism, but this is true by [Bru, Theorem 6.4]. ]

4 The isogeny formula

Now we want to give a formula for how the Faltings height changes under isogeny: let f: A — B
be an isogeny between abelian variety over K and let F: A° — B° be the induced map on the
Néron models.

Proposition 4.1 (Isogeny formula). With the above notations, we have that

(B) ~ h(4) = ;3 log(deg f) — 7 08(1s" O )

Proof. We split the proof in two parts:

(a) First one checks that both sides of the formula are invariant under finite field extensions
K'/K. Then, extending to the Hilbert class field of K, we can assume that s*w 4, and s*wg,r
are both free over R: say that s*w4,r = R-wy4 and s*wp,/r = R - wp for certain differentials
w4 and wp on A and B respectively. In particular, we know from Remark 3.3 that

1

%
h(A) = 1 / ANox| = —— 1 / N
(A) Zev og’ ) wa Nwa K Q) Eosv og’ ) WA NWL

v\oo

and the same for h(B).

Now fix an infinite place v | oo and a corresponding embedding j,: K —— C : if we look at
A(K,) and B(K) as complex tori, we see that

1
Nwp = A wg = A F*
/B(KU)WB “r /f(A(Kv)wB V5= Tdeg ) Jacy | " frws

Since f*wp € R- w4, we can write f*wp = a- w4 for a certain a € R. Then we see that

1 jo(a) - jo(a) i) __
(degf)/fwBAf “ET (degf) /A<1<v>wA/\wA_ (deg f) /Am)wAAwA

Now we can compute

2[K : Q](h(B) U%Sv[ log B(E)WBAWB +log /A(KU)WA/\WA:|
= Y &y [2log|ju(a)| +log(deg f)]
v|oo
= [K: Q]log(deg f) — 2log [ Jlju(a)[*
v|oo

= [K: Q]log(deg f) — 21log|Normg g (a)|



(b) To conclude, we just need to show that [Normgq(a)| = [s*Qf; |. Consider the canonical
exact sequence of sheaves on A"

F* Qo g — Qo — Qoo — 0
Then pulling back to Spec R we get (notice that Fos = s):
S*Q}SO/R — S*QZO/R — S*Q}L‘O/Bo —0

now, if we consider the generic point Spec K we see that S*Q}L‘O /a0 QR K = o s = 0 (indeed,
the isogeny f: A — B is etale since K has characteristic zero ). This shows that S*Qi‘o /B0
has finite support, and then we can consider it as a finite abelian group: looking at s*()}

. BY/R
*
and s Q.AO/R

as free Z-modules , we see that
|S*Q.A0/BO| = |detZ(S*Q%gO/R — S*Q}L‘O/RM
= |detz(s"wpo g — s"w 40/R)]
= |detz (R -5 R)| = |Norm a
|detz( K/Q

Now, to conclude it’s enough to show that 5*0340 /B0 = s*Q}J /R but this follows immediately
by base change.

O]

Now we want to study better the term \S*ng /r|: observe that it has finite support on Spec R,
by the above proof, and we would like to identify this support.

Lemma 4.1. Let k be a field of characteristic p > 0 and let G be a finite group scheme over k, killed by d.
Suppose that p 1 d, then G is étale.

Proof. Recall [Ago, Proposition 2.2] that we have an exact sequence of group schemes
1—-G"—G—G"—1

so that it is enough to prove that G° = 0. We see that G? is again killed by d and moreover we
know [Ago, Proposition 2.4] that its rank is of the form p” for a certain » > 0. In particular p” and
d are coprime, so that we can find a,b € Z such that ad + bp” = 1: however, we also know that G°
is killed by p" [Ago, Corollary 2.4], so that it must be G* = 1. O

Proposition 4.2. With notations as in the previous section, let d = deg f, and for every place v above d
let R, be the localization of R at v, I/{\v its completion and G, = G ®r 1/{; . Then

(i) the support of S*ng /R lies over the complement of Spec Ry.

(ii) we have that

1 _ 1
5* QL | = ]g oL o
v

Proof. 1. This follows immediately from the previous Lemma 4.1, once we recall that G is killed

by d (Proposition 2.1).

2. From the previous point it follows that S*ng R = @vld S*ng /R ®r Ry. However, since

s*Q}J/R ®R Ry has finite length we see that s*ng/R ® R, = (S*Q}]/R ® Ry) ®r, Ry = S*Qlé;/%
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