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retisation and Solver Methods for aModel for Solid-Gas-Phase of a CrystalGrowth Apparatus.J�urgen GeiserHumboldt-Universit�at zu Berlin, Department of Mathemati
s, Unter den Linden 6,D-10099 Berlin, GermanyAbstra
tWe present dis
retisation and solver methods for a model for a solid-gas phase ofa 
rystal growth apparatus. The model-equations are 
oupled Eulerian- and Heat-transfer-equations with 
ux-boundary 
onditions. For more detailed dis
ussion we
onsider simpler equations and present time- and spa
e-de
omposition methods asa solver methods to de
ouple the multi-physi
s pro
esses. We present the error-analysis for the dis
retisation methods and solver methods. Numeri
al experimentsare done for the eulerrian- and heat-transfer-equation with de
omposition meth-ods. We present a real-life appli
ation of a 
rystal growth apparatus, based on theunderlying stationary heat 
ondu
tion. Finally we dis
uss the further works in theerror-analysis and the appli
ation to a more 
omplex model of 
rystal growth.Key words: de
omposition methods, �nite volume dis
retisation, error-analysis,heat-eqaution, 
rystal growthPACS: 02.60.Cb, 02.60.-x, 44.05.+e, 47.10.ab, 47.11.Df, 47.11.St, 47.27.te1 Introdu
tionModeling and numeri
al simulation of solid-gas phase in 
omplex apparatushave be
ome powerful tools in aiding the design and optimization of numer-ous industrial pro
esses su
h as 
rystal growth, e.g. by the physi
al vaportransport (PVT) method Klein et al. [19℄. Be
ause of the 
omplex pro
essesa 
arefully study is important to design 
orre
t the numeri
al simulations,Parashar et al. [29℄. Based on this ba
kground the 
ombination of dis
retisa-tion and solver methods is an important task. We propose the de
ompostionmethods of breaking down 
ompli
ate multiphysi
s in simpler physi
s. Thetime-de
omposition methods are based on Operator-Splitting methods andPreprint submitted to Elsevier S
ien
e 18 May 2006



their extended versions with more stabilised behaviour, see Farago & Geiser[12℄. With this methods a useful de
oupling of the time-s
ales are possible andthe solvers 
ould be 
on
entrate on the di�erent time-s
ales. Further the spa
e-de
omposition methods are based on the S
hwarz wave form relaxation meth-ods and their a

urate error-estimates, see Daoud & Geiser [8℄. The methodsde
ouple into domains with the same equation-parameters, therefore e�e
tivespa
tial dis
retisation and solver methods are appliable.The paper is organized as follows: The mathemati
al model is stated in Se
-tion 2, the spa
e-dis
retisation methods are done with �nite volume dis-
retization and des
ribed in Se
tion 3, followed by the time-dis
retisationmethods as Runge-Kutta- and BDF-methods presented in Se
tion 4. Thetime-de
omposition methods are introdu
ed as Operator-Splitting methodwith extended variations in Se
tion 5. In Se
tion 6, we des
ribe the spa
e-de
ompostion methods in the sense of S
hwarz wave form relaxation methodsand des
ribe the analyti
al error-estimates. In Se
tion 7 we des
ribe the nu-meri
al methods in whi
h we verify our de
omposition methods and simulatea realisti
 
rystal-growth apparatus.2 Mathemati
al modelThe motivation for this study 
omes from the te
hni
al demand to simulate a
rystal growth apparatus for SiC single 
rystals. The single 
rystals are usedas a high-valued and expensive material for optoele
troni
s and ele
troni
s,see M�uller et al. [27℄. The sili
on 
arbide (SiC) bulk single 
rystal are produ
edby a growth pro
ess through physi
al vapor transport (PVT), 
alled modi�edLely-method. The modeling for the thermal pro
esses within the growth appa-ratus is done in Klein & Philip [20℄ and Philip [30℄. The underlying equationsof the model are given as follows:a.) In this work, we assume that the temperature evolution inside the gasregion 
g 
an be approximated by 
onsidering the gas as pure argon. Theredu
ed heat equation is�g�tUg � r � (�grT ) = 0; (1)Ug = zAr RAr T; (2)where T is the temperature, t is the time, and Ug is the internal energy of theargon gas. The parameters are given as �g being the density of the argon gas,�g being the thermal 
ondu
tivity, zAr being the 
on�guration number, andRAr being the gas 
onstant for argon.b.) The temperature evolution inside the region of solid materials 
s, e.g. in-2



side the sili
on 
arbide 
rystal, sili
on 
arbide powder, graphite, and graphiteinsulation, is des
ribed by the heat equation�s �tUs � r � (�srT ) = f; (3)Us = Z T0 
s(S) dS; (4)where �s is the density of the solid material, Us is the internal energy, �s isthe thermal 
ondu
tivity, and 
s is the spe
i�
 heat.The equations hold in the domains of the respe
tive materials and are 
oupledby interfa
e 
onditions, e.g. requiring the 
ontinuity for the temperature andfor the normal 
omponents of the heat 
ux on the interfa
es between opaquesolid materials. On the boundary of the gas domain, i.e. on the interfa
ebetween the solid material and the gas domain, we 
onsider the interfa
e
ondition�g rT � ng +R� J = �s rT � ng; (5)where ng is the normal ve
tor of the gas domain, R is the radiosity, and J isthe irradiosity. The irradiosity is determined by integrating R along the wholeboundary of the gas domain, see Klein & Philip [20℄. Moreover, we haveR=E + Jref; (6)E= � � T 4 (Stefan-Boltzmann equation); (7)Jref=(1� �) J; (8)where E is the radiation, Jref is the re
exed radiation, � is the emissivity, and� is the Boltzmann radiation 
onstant.In the next se
tion, we fo
us on de
oupling the 
ompli
ate pro
ess in simplerpro
esses. We dis
retise and solve the simpler equations by more a

uratemethods with embedded analyti
al solutions, see Geiser [15℄, Geiser [16℄.
3 Spa
e dis
retizationIn the spa
e dis
retisation methods we dis
uss the �nite volume methods as
onservation preserved methods for the balan
e-equations.3



3.1 Dis
retization with Finite Volume MethodsThe Finite Volume methods are robust dis
retisation methods for 
onservativeproblems. We apply the dis
retisation be
ause of the simple modi�
ations forthe di�erent material behaviour, for instan
e the anisotropi
 thermal 
ondu
-tivity is important.There exists standard te
hniques in
luding the �nite element method Ciarletet al. [7℄ (used in Dupret et al. [9℄) and the �nite volume method Eymard et al.[10℄ to treat su
h problems. The extension of su
h standard methods to mate-rials with anisotropi
 thermal 
ondu
tivity 
an be straightforward for simplegeometries (e.g. if the geometry admits a dis
retization into a stru
tured gridof re
tangles or parallelepipeds). However, the treatment of anisotropi
 mate-rials within 
omplex geometries as they are typi
al in industrial appli
ationsare ne
essary are mu
h more involved. To the authors' knowledge, even fortwo-dimensional domains, all the methods previously des
ribed in the liter-ature are restri
ted to simple 
lasses of domains, need to be adapted to �tthe type of anisotropy, or show instabilities for strongly anisotropi
 materials(see, e.g., Aavatsmark et al. [1, 2℄, Braianov & Volkov [5℄, Faille [11℄ and [10,Se
. 11℄).We use a 
onstrained Delaunay triangulation to dis
retize polyhedral domains,followed by a Vorono�� 
onstru
tion to de�ne �nite volumes, is a well-knownpro
edure (see [FL01, Se
. 3.2℄ and referen
es therein). Here, we brie
y reviewsome de�nitions and properties that are subsequently used in the formulationof the �nite volume s
heme for the anisotropi
 
ase.Following [FL01, Se
. 3.2℄, an admissible dis
retization of material domain
m, m 2 M , 
onsists of a �nite family �m := (�m;i)i2Im of subsets of 
msatisfying a number of assumptions, subsequently denoted by (DA-�).Notation 1 For d 2 f1; 2g, let �d denote d-dimensional Lebesgue measure.(DA-1) For ea
h m 2 M , �m = (�m;i)i2Im forms a �nite 
onforming triangu-lation of 
m. In parti
ular, for ea
h i 2 Im, �m;i is an open triangle.Moreover, letting I := Sm2M Im, � := (�i)i2I forms a 
onformingtriangulation of 
.(DA-2) For ea
h m 2M , the triangulation �m = (�m;i)i2Im respe
ts �Dir and�Rob in the sense that, for ea
h i 2 Im, either �1(�Dir \ ��m;i) = 0 or�1(�Rob \ ��m;i) = 0.For ea
h �m;i, let V (�m;i) = nvmi;j : j 2 f1; 2; 3go denote the set of verti
es of�m;i, and let V := Sm2M; i2Im V (�m;i) be the set of all verti
es in the trian-gulation. One 
an then de�ne the 
ontrol volumes as the Vorono�� 
ells with4



respe
t to the verti
es. Using k � k2 to denote Eu
lidean distan
e, de�nefor all v 2 V : !v := nx 2 
 : kx� vk2 < kx� zk2 for ea
h z 2 V n fvgo;for all m 2M : !m;v := !v \ 
m; Vm := fz 2 V : !m;z 6= ;g:Letting T := (!v)v2V , Tm := (!m;v)v2Vm , m 2 M , T forms a partition of 
,and Tm forms a partition of 
m.Remark 2 Sin
e T is a Vorono�� dis
retization, ea
h interse
tion �!v \ �!z,(v; z) 2 V 2, v 6= z, is 
ontained in the set fx 2 
 : kv � xk2 = kz � xk2g. Inparti
ular, z�vkz�vk2 = n!v ��reg!v\�reg!z , where �reg denotes the regular boundaryof a polyhedral set, i.e. the points of the boundary, where a unique outer unitnormal ve
tor exists, �reg; := ;; and n!v ��reg!v\�reg!z is the outer unit normalto !v restri
ted to the fa
e �reg!v \ �reg!z (see Fig. 1).Notation 3 If A � R2 , then 
onvA denotes the 
onvex hull of A. For ea
hpair of points (x; y) 2 R2 �R2 , let [x; y℄ := 
onvfx; yg denote the line segmentbetween x and y.

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

����
����
����
����

�����
�����
�����

�����
�����
�����

v

z
u1u2

v

z
u1

(a) (b)

u0
u2

Interior boundary of Vorono�� 
ells�0 = 
onvfv; z; u0g; �1 = 
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onvfv; z; u2g
�2�1�2�1 !z

!v
!u0

!u2
!z

n!u1 ��reg!u1\�reg!v
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Fig. 1. The pi
tures show the Vorono�� 
ells of the triangulation verti
esu0; u1; u2; v; z. In (a), the triangulation violates the 
onstrained Delaunay property(�1 + �2 > �, 
f. (DA-1) and Rem. 4); in (b) the 
onstrained Delaunay propertyis satis�ed if, and only if, the edge [v; z℄ is not a material interfa
e (�=2 < �1,�1 + �2 < �).(DA-1) For ea
h m 2M , the triangulation �m has the 
onstrained Delaunayproperty: If ~Vm := Si2Im V (�m;i); then, for ea
h (v; z) 2 ~V 2m su
h thatv 6= z, the following 
onditions (a) and (b) are satis�ed:(a) If the boundaries of the Vorono�� 
ells 
orresponding to v and zhave a one-dimensional interse
tion, i.e. if �1(�!m;v \ �!m;z) 6= 0,then [v; z℄ is an edge of at least one � 2 �m.5



(b) If [v; z℄ is an edge of at least one � 2 �m, then the boundariesof the 
orresponding Vorono�� 
ells have a nonempty interse
tion,i.e. �!m;v \ �!m;z 6= ;.Also see Fig. 1, Rem. 4, and [FL01, Se
. 3.2℄.Remark 4 Due to the two-dimensional setting, (DA-1) 
an be expressed equiv-alently in terms of the angles in the triangulation: For ea
h m 2M , if 
 is aninterior edge of the triangulation �m, and � and � are the angles opposite to
, then � + � � �. If 
 � �
m is a boundary edge of �m, and � is the angleopposite 
, then � � �=2.The following Rem. 5 allows the in
orporation of the interfa
e 
ondition (78)into the �nite volume s
heme.Remark 5 Using Rem. 2, it is not hard to show that (DA-1) and (DA-1)imply the following assertions (a) and (b):(a) For ea
h m 2 M , the set Vm de�ned in (9a) is identi
al to the set ~Vmde�ned in (DA-1).(b) Let � be a one-dimensional material interfa
e: � = �
m\�
 ~m, �1(�) 6= 0.For ea
h v 2 V , if some !v has a one-dimensional interse
tion with theinterfa
e �, then it lies on both sides of the interse
tion; in other words,�reg!m;v \ � = �reg! ~m;v \ �, in parti
ular, �1(�!m;v \ �) 6= 0 if, and onlyif �1(�! ~m;v \�) 6= 0. However, Fig. 1(a) shows that this 
an generally notbe expe
ted in 
ases where the 
onstrained Delaunay property is violated:If the edge [v; w℄ =: � 
onstitutes a material interfa
e, then both !u1 and!u2 have one-dimensional interse
tions with �, but lie on just one side of�.Integrating (76) over !m;v and applying the Gauss-Green integration theoremyields � Z�!m;v(Km(�)r �) � n!m;v = Z!m;v fm; (10)where n!m;v denotes the outer unit normal ve
tor to !m;v.4 Time-dis
retisation methodsFor the time-dis
retization of the spatial dis
retised equation we apply Runge-Kutta methods and BDF methods.For the equation treated with operator-splitting, we propose we propose higherorder methods as best �tted methods for ea
h time-s
ale. A next important
lass of time-dis
retisation methods are the IMEX (impli
it-expli
it) methods6



as 
ombination of mixed dis
retisation methods for a sti�-operators (impli
itmethod) and nonsti�-operators (expli
it method).Based on the iterative methods the start-solution for the �rst iteration-stepis important to obtain higher order results, see se
tion 5. For the next iter-ation steps the order have to in
reased till the proposed order of the time-dis
retization.The methods are des
ribed in the following se
tions.4.1 Runge-Kutta methodWe use the impli
it trapezoidal rule:01 12 1212 12 (11)Further more we use the following Gau� Runge-Kutta method :12 � p36 14 14 � p3612 + p36 14 + p36 1412 12 (12)
To use this Runge-Kutta methods with our operator-splitting method we haveto take into a

ount that we solve in ea
h iteration step equations of the form�tui = Aui + b. Where b = Bui�1 is a dis
rete fun
tion as we only have adis
rete solution for ui�1.For the impli
it trapezoidal rule this is no problem, be
ause we do not needthe values at any sub-points. Where on the other hand for the Gau� methodwe need to now the values of b at the sub-points t0 + 
1h and t0 + 
2h with
 = (12 � p36 ; 12 + p36 )T . Therefor we must interpolate b. To do so we 
hoosethe 
ubi
 spline fun
tions.Numeri
al experiments show that this works properly with non-sti� problems,but worth with sti�-problems. 7



4.2 BDF methodBe
ause the higher order Gau� Runge-Kutta method 
ombined with 
ubi
spline interpolation does not work properly with sti� problems we use thefollowing BDF method of order 3 whi
h does not need any sub-points andtherefor no interpolation is needed.BDF31=k(11=6un+2 � 3un+1 + 3=2un � 1=3un�1 = A(un+3) (13)For the prestepping, i.e. to obtain u1; u2, we use the above impli
it trapezoidalrule.4.3 Impli
it-expli
it methodsThe impli
it-expli
it (IMEX) s
hemes have been widely developed for timeintegration of spatial dis
retised partial di�erential equations of di�usion-
onve
tion type. These methods are applied to de
ouple the impli
it and ex-pli
it terms. So for example the 
onve
tion-di�usion equation, one use theexpli
it part for the 
onve
tion term and the impli
it part for the di�usion.In our appli
ation we divide between the sti� and nonsti� term, so we applythe impli
it part for the sti� operators and the expli
it part for the nonsti�operators.4.3.1 FS-RK-methodWe propose the A-stable FSRK-s
heme, see ? ℄, of �rst and se
ond order forour appli
ations.The tableau in the But
her-form is given as1 1 01 1 0 0 149 �8845 0 125 0 0 59 013 �40775 0 14425 0 0 �3115 0 125order1 1 0 0 0 0 1 0 0order2 110 0 910 0 0 14 0 34
(14)

8



To obtain se
ond order 
onvergen
e in numeri
al examples it is important tosplit the operator in the right way as we will show later.4.3.2 SBDF-MethodWe use the following SBDF method whi
h is a modi�
ation of the BDF3method.As prestepping method we use again the impli
it trapezoidal rule.1=k(11=6un+1 � 3un + 3=2un�1 � 1=3un�2) (15)= 3A(un)� 3A(un�1) + A(un�2) +B(un+1) (16)Again it is important to split the operator in the right way.
5 Time-De
omposition methods: Operator-Splitting MethodsThe operator-splitting methods are used to solve 
omplex models in the geo-physi
al and environmental physi
s, they are developed and applied in Strang[36℄ and Verwer & Sportisse [37℄. This ideas based in this arti
le are solvingsimpler equations with respe
t to re
eive higher order dis
retization methodsfor the remain equations. For this aim we use the operator-splitting methodand de
ouple the equation as follows des
ribed.5.1 Splitting methods of �rst order for linear equationsFirst we des
ribe the simplest operator-splitting, whi
h is 
alled � for thefollowing system of ordinary linear di�erential equations:�t
(t) = A 
(t) + B 
(t) ; (17)whereby the initial-
onditions are 
n = 
(tn). The operators A and B arespatially dis
retised operators, e.g. they 
orrespond to the dis
retised in spa
e
onve
tion and di�usion operators (matri
es). Hen
e, they 
an be 
onsideredas bounded operators.The sequential operator-splitting method is introdu
ed as a method whi
hsolve the two sub-problems sequentially, where the di�erent sub-problems are
onne
ted via the initial 
onditions. This means that we repla
e the originalproblem (17) with the sub-problems 9



�
�(t)�t = A
�(t) ; with 
�(tn) = 
n ; (18)�
��(t)�t = B
��(t) ; with 
��(tn) = 
�(tn+1) ;whereby the splitting time-step is de�ned as �n = tn+1�tn. The approximatedsplit solution is de�ned as 
n+1 = 
��(tn+1).Clearly, the 
hange of the original problems with the sub-problems usuallyresults some error, 
alled splitting error. Obviously, the splitting error of the� method 
an be derived as follows (
f. e.g.? ℄)�n= 1� (exp(�n(A+B))� exp(�nB) exp(�nA)) 
(tn)= 12�n[A;B℄ 
(tn) +O(� 2) : (19)whereby [A;B℄ := AB � BA is the 
ommutator of A and B. Consequently,the splitting error is O(�n) when the operators A and B do not 
ommute,otherwise the method is exa
t. Hen
e, by de�nition, the � is 
alled �rst ordersplitting method .In the next subse
tion we present the iterative-splitting method.5.2 Iterative splitting methodThe following algorithm is based on the iteration with �xed splitting dis
retiza-tion step-size � , namely, on the time interval [tn; tn+1℄ we solve the followingsub-problems 
onse
utively for i = 0; 2; : : : 2m. (
f. Kanney et al. [18℄ andFarago & Geiser [12℄.)�
i(t)�t = A
i(t) + B
i�1(t); with 
i(tn) = 
n (20)and 
0(tn) = 
n ; 
�1 = 0:0;�
i+1(t)�t = A
i(t) + B
i+1(t); (21)with 
i+1(tn) = 
n ;where 
n is the known split approximation at the time level t = tn. The splitapproximation at the time-level t = tn+1 is de�ned as 
n+1 = 
2m+1(tn+1).(Clearly, the fun
tion 
i+1(t) depends on the interval [tn; tn+1℄, too, but, forthe sake of simpli
ity, in our notation we omit the dependen
e on n.)10



In the following we will analyze the 
onvergen
e and the rate of the 
onver-gen
e of the method (20){(21) for m tends to in�nity for the linear operatorsA;B : X ! X where we assume that these operators and their sum aregenerators of the C0 semigroups. We emphasize that these operators aren'tne
essarily bounded, so, the 
onvergen
e is examined in general Bana
h spa
esetting.Theorem 6 Let us 
onsider the abstra
t Cau
hy problem in a Bana
h spa
eX �t
(t) = A
(t) +B
(t); 0 < t � T
(0) = 
0 (22)where A;B;A + B : X ! X are given linear operators being generators ofthe C0-semigroup and 
0 2 X is a given element. Then the iteration pro
ess(20){(21) is 
onvergent and the and the rate of the 
onvergen
e is of se
ondorder.Remark 7 When A and B are matri
es (i.e. (20){(21) is a system of theordinary di�erential equations), for the growth estimation we 
an use the
on
ept of the logarithmi
 norm. (See e.g.Hundsdorfer & Verwer [17℄.) Hen
e,for many important 
lass of matri
es we 
an prove the validity.Remark 8 We note that a huge 
lass of important di�erential operators gen-erate 
ontra
tive semigroup. This means that for su
h problems -assuming theexa
t solvability of the split sub-problems- the iterative splitting method is
onvergent in se
ond order to the exa
t solution.
5.3 Weighted Iterative splitting methodWe assume an improved iterative splitting method with respe
t to more stablebehavior in the 
ontinuous 
ase.As a �rst method the unsymmetri
 weighted iterative splitting method isintrodu
ed. The algorithm is based on the iteration with �xed splitting dis-
retization step-size � . On the time interval [tn; tn+1℄ we solve the followingsub-problems 
onse
utively for i = 0; 2; : : : 2m.11



�
i(t)�t = A
i(t) + ! B
i�1(t); with 
i(tn) = 
n (23)and 
0(tn) = 
0 ; 
�1 = 0;�
i+1(t)�t = ! A
i(t) + B
i+1(t); (24)with 
i+1(tn) = ! 
n + (1� !) 
i(tn+1) ;where 
n is the known split approximation at the time level t = tn. The splitapproximation at the time-level t = tn+1 is de�ned as 
n+1 = 
2m+1(tn+1). Ourparameter ! 2 [0; 1℄. For ! = 0 we have the A-B-splitting and for ! = 1 wehave the iterative splitting method.In the same manner the initial 
onditions of the weighted iterative splittingmethod are weighted between the sequential splitting and iterative splittingmethod.5.4 Stability TheoryIn the following we present the stability analysis for the 
ontinuous 
ase with
ommutative operators. First we apply the re
ursion for the general 
ase andthen we 
on
entrate on the 
ommutative 
ase.5.4.1 Re
ursionWe study the stability for the linear system (23) and (24). We treat the spe
ial
ase for the initial-values with 
i(tn) = 
n and 
i+1(tn) = 
n for an overview.The general 
ase 
i+1(tn) = !
n+(1�!)
i(tn+1) 
ould be treated in the samemanner.We 
onsider the suitable ve
tor norm jj � jj on IRM , together with its indu
edoperator norm. The matrix exponential of Z 2 IRM�M is denoted by exp(Z).We assume thatjj exp(� A) � 1jj and jj exp(� B) � 1jj for all � > 0:It 
an be shown that the system (17) implies jj exp(� (A + B))jj � 1 and isitself stable.For the linear problem (23) and (24) it follows by integration that12




i(t) = exp((t� tn)A)
n + Z ttn exp((t� s)A) ! B
i�1(s) ds ; (25)
i+1(t) = exp((t� tn)B)
n + Z ttn exp((t� s)B) ! A
i(s) ds : (26)With elimination of 
i we get
i+1(t) = exp((t� tn)B)
n + ! Z ttn exp((t� s)B) A exp((s� tn)A) 
n ds+!2 Z ts=tn Z ss0=tn exp((t� s)B) A exp((s� s0)A) B 
i�1(s0) ds0 ds :(27)For the following 
ommuting 
ase we 
ould evaluate the double integral R ts=tn R ss0=tnas R ts0=tn R ts=s0 and 
ould derive the weighted stability-theory.5.4.2 Commuting operatorsFor more transparen
y of the formula (27) we 
onsider a well-
onditionedsystem of eigenve
tors and the eigenvalues �1 of A and �2 of B instead of theoperators A;B themselves. Repla
ing the operators A and B by �1 and �2respe
tively, we obtain after some 
al
ulations
i+1(t)= 
n 1�1 � �2 (!�1 exp((t� tn)�1) + ((1� !)�1 � �2) exp((t� tn)�2))+ 
n !2 �1�2�1 � �2 Z ts=tn (exp((t� s)�1) � exp((t� s)�2)) ds : (28)Note that this relation is symmetri
 in �1 and �2.5.4.3 A(�)-stabilityWe de�ne zk = ��k, k = 1; 2. We start with 
0(t) = un and we obtain
2m(tn+1)=Sm(z1; z2) 
n ; (29)where Sm is the stability fun
tion of the s
heme with m-iterations. We use(28) and obtain after some 
al
ulations13



S1(z1; z2)=!2 
n + ! z1 + !2 z2z1 � z2 exp(z1) 
n (30)+ (1� ! � !2) z1 � z2z1 � z2 exp(z2) 
n
S2(z1; z2)=!4 
n + ! z1 + !4 z2z1 � z2 exp(z1) 
n (31)+ (1� ! � !4) z1 � z2z1 � z2 exp(z2) 
n+ !2 z1 z2(z1 � z2)2 ((!z1 + !2z2) exp(z1)+(�(1� ! � !2)z1 + z2) exp(z2)) 
n+ !2 z1 z2(z1 � z2)3 ((�!z1 � !2z2)(exp(z1)� exp(z2))+((1� ! � !2)z1 � z2)(exp(z1)� exp(z2))) 
nLet us 
onsider the A(�)-stability given by the following eigenvalues in a wedgeW = f� 2 C : j arg(�) � �gFor the A-stability we have jSm(z1; z2)j � 1 whenever z1; z2 2 W�=2.The stability of the two iterations is given in the following theorem with respe
tto A and A(�)-stability.Theorem 9 We have the following stability :For S1 we have the A-stabilitymaxz1�0;z22W� jS1(z1; z2)j � 1 ; 8 � 2 [0; �=2℄ with ! = 14p3For S2 we have the A(�)-stabilitymaxz1�0;z22W� jS2(z1; z2)j � 1 ; 8 � 2 [0; �=2℄ with ! � � 18 tan2(�)+1�1=8Proof 10 We 
onsider a �xed z1 = z; Re(z) < 0 and z2 ! �1 . Then weobtainS1(z;1) = !2(1� ez) (32)and 14



S2(z;1) = !4(1� (1� z)ez) (33)If z = x + iy; x < 0 then :1.) For S1jS1(z;1)j2 = !4(1� 2 exp(x)
osy + exp(2x)) (34)Hen
ejS1(z;1)j � 1, !4 � 11� 2 exp(x) 
os y + exp(2x) (35)Be
ause of x < 0 and y 2 IR we 
ould estimate �2 � 2 exp(x) 
os(y) andexp(2x) � 0.From (35) we obtain ! � 14p3 .2.) For S2jS2(z;1)j2=!8f1� 2 exp(x)[(1� x) 
os y + y sin y℄ (36)+ exp(2x)[(1� x)2 + y2℄gafter some 
al
ulations we 
ould obtainjS2(z;1)j � 1, exp(x) � ( 1!8 � 1) exp(�x)(1� x)2 + y2 + 2 j1� xj+ jyj(1� x)2 + y2 (37)we 
ould estimate for x < 0 and y 2 IR j1�xj+jyj(1�x)2+y2 � 3=2 and 12 tan2(�) < exp(�x)(1�x)2+y2where tan(�) = y=x.Finally, we get the bound ! � � 18 tan2(�)+1�1=8.6 Domain De
omposition methods : S
hwarz wave form relaxationmethodsIn this se
tion we shall present the ne
essary 
onditions for the 
onvergen
eof the overlapping S
hwarz wave form relaxation method for the solution ofthe 
onve
tion-rea
tion di�usion equation with 
onstant 
oeÆ
ients. We willutilize the 
onvergen
e analysis for the solution of the de
oupled and 
oupledsystem of 
onve
tion rea
tion di�usion equation to elaborate the impa
t of the
oupling on the 
onvergen
e of the overlapping S
hwarz wave form relaxation.15



6.1 Overlapping S
hwarz wave form relaxation for the s
alar 
onve
tion re-a
tion di�usion equationWe 
onsider the 
onve
tion di�usion rea
tion equation, given byut = Duxx � �ux � �u ; (38)de�ned on the domain 
 = [0; L℄ for T = [T0; Tf ℄, with the following initialand boundary 
onditionsu(0; t) = f1(t); u(L; t) = f2(t); u(x; T0) = u0 :To solve the model problem using overlapping S
hwarz wave form relax-ation method, we subdivide the domain 
 in two overlapping sub-domains
1 = [0; L2℄ and 
2 = [L1; L℄, where L1 < L2 and 
1 T
2 = [L1; L2℄ is theoverlapping region for 
1 and 
2:To start the wave form relaxation algorithm we �rstly 
onsider the solutionof the model problem (38) over 
1 and 
2 as followsvt = Dvxx � �vx � �v over 
2 ; t 2 [T0; Tf ℄v(0; t) = f1(t) ; t 2 [T0; Tf ℄v(L2; t) = w(L2; t) ; t 2 [T0; Tf ℄v(x; T0) = u0 x 2 
1; (39)
wt = Dwxx � �wx � �w over 
2 ; t 2 [T0; Tf ℄w(L1; t) = v(L1; t) ; t 2 [T0; Tf ℄w(L; t) = f2(t) ; t 2 [T0; Tf ℄w(x; T0) = u0 x 2 
2; (40)where v(x; t) = u(x; t)j
1 and w(x; t) = u(x; t)j
2.Then the S
hwarz wave form relaxation is given byvk+1t = Dvk+1xx � �vk+1x � �vk+1 over 
1 ; t 2 [T0; Tf ℄vk+1(0; t) = f1(t) ; t 2 [T0; Tf ℄vk+1(L2; t) = wk(L2; t) ; t 2 [T0; Tf ℄vk+1(x; T0) = u0 x 2 
1; (41)

16



wk+1t = Dwk+1xx � �wk+1x � �wk+1 over 
2 ; t 2 [T0; Tf ℄wk+1(L1; t) = vk(L1; t) ; t 2 [T0; Tf ℄wk+1(L; t) = f2(t) ; t 2 [T0; Tf ℄wk+1(x; T0) = u0 x 2 
2: (42)
We are interested in estimating the de
ay of the error of the solution overthe overlapping subdomains by the overlapping S
hwarz wave form relaxationmethod over long time interval.Let us assume that ek+1(x; t) = u(x; t)� vk+1(x; t) and dk+1(x; t) = u(x; t)�wk+1(x; t) is the error of (41) and (42) over 
1 and 
2 respe
tively. The 
or-responding di�erential equations satis�ed ek+1(x; t) and dk+1(x; t) are givenby ek+1t = Dek+1xx � �ek+1x � �ek+1 over 
1 ; t 2 [T0; Tf ℄ek+1(0; t) = 0 ; t 2 [T0; Tf ℄ek+1(L2; t) = dk(L2; t) ; t 2 [T0; Tf ℄ek+1(x; T0) = 0 x 2 
1; (43)

dk+1t = Ddk+1xx � �dk+1x � �dk+1 over 
2 ; t 2 [T0; Tf ℄dk+1(L1; t) = ek(L1; t) ; t 2 [T0; Tf ℄dk+1(L; t) = 0 ; t 2 [T0; Tf ℄dk+1(x; T0) = 0 ; x 2 
2: (44)
De�ning for bounded fun
tions h(x; t) : 
� [T0; T ℄! R the normjjh(:; :)jj1 := supx2
;t2[T0;Tf ℄ jh(x; t)j:The theory behind our error-estimates are based on the positivity lemma byPao (or the maximum prin
iple theorem), see Pao [28℄, that is introdu
ed asLemma 11 Let u 2 C(
T ) \ C1;2(
T ), where 
T = 
 � (0; T ℄ and �
T =�
 � (0; T ℄, be su
h thatut �D uxx + � ux + 
 u � 0 ; in 
T (45)�0 �u�� + �0 u � 0 ; on �
T (46)u(x; 0) � 0 ; in 
 (47)17



where �0 � 0, �0 � 0, �0 + �0 > 0 on �
T , and 
 � 
(x; t) is a boundedfun
tion in 
T , Then u(x; t) � 0 in 
TThe 
onvergen
e and error-estimates of ek+1 and dk+1 given by (43) and (44)respe
tively, are presented by the following theoremTheorem 12 Let ek+1 and dk+1 be the error from the solution of the sub-problems (39) and (40) by S
hwarz wave form relaxation over 
1 and 
2,respe
tively, then jjek+2(L1; t)jj1 � 
jjek(L1; t)jj1 ;and jjdk+2(L2; t)jj1 � 
jjdk(L1; t)jj1 ;where 
 = sinh(�L1)sinh(�L2) sinh(�(L2 � L)sinh(�(L1 � L)) < 1 ;with � = p�2+4D�2D :Proof 13 For the error ek+1 and dk+1; 
onsider the following di�erential equa-tions de�ned by êk+1 and d̂k+1 given byêk+1t = Dêk+1xx � �êk+1x � �êk+1 over 
1 ; t 2 [T0; Tf ℄êk+1(0; t) = 0 ; t 2 [T0; Tf ℄êk+1(L2; t) = jjdk(L2; t)jj1 ; t 2 [T0; Tf ℄êk+1(x; T0) = e(x�L2)� sinh(�x)sinh(�L2) jjdk(L2; t)jj1 ; x 2 
1 (48)
and d̂k+1t = Dd̂k+1xx � �d̂k+1x � �d̂k+1 over 
2 ; t 2 [T0; Tf ℄d̂k+1(L1; t) = jjek(L1; t)jj1 ; t 2 [T0; Tf ℄d̂k+1(L; t) = 0 ; t 2 [T0; Tf ℄d̂k+1(x; T0) = e(x�L1)� sinh�(x�L)sinh�(L1�L) jjek(L1; t)jj1 ; x 2 
2 (49)
where � = �2D and � = p�2+4D�2D : 18



The solution to (48) and (49) is the steady state solution given byêk+1(x) = e(x�L2)� sinh(�x)sinh(�L2) jjdk(L2; t)jj1 ;and d̂k+1(x) = e(x�L1)� sinh�(x� L)sinh �(L1 � L) jjek(L1; t)jj1 ;respe
tively.Hen
e, de�ne E(x; t) = êk+1 � ek+1 thereforeEt �DExx + �Ex + �E � 0 ; over 
1 ; t 2 [T0; Tf ℄E(0; t) = 0 ; t 2 [T0; Tf ℄E(L2; t) � 0 ; t 2 [T0; Tf ℄E(x; T0) � 0 ; x 2 
1 (50)
satis�es the Lemma 11 therefore E(x; t) � 0i.e. jek+1j � êk+1 ;for all (x; t) and similarly we 
on
lude thatjdk+1j � d̂k+1 ;for all (x; t):Then jek+1(x; t)j � e(x�L2)� sinh(�x)sinh(�L2) jjdk(L2; t)jj1 ; (51)and jdk+1(x; t)j � e(x�L1)� sinh�(x� L1)sinh �(L1 � L) jjek(L1; t)jj1 ; (52)Evaluate dk(x; t) at L2jdk(L2; t)j � sinh �(L2 � L)sinh �(L1 � L) jjek�1(L1; t)jj1 ; (53)and substitute in (51) 
on
luding that19



jek+1(x; t)j � e(x�L2)� sinh(�x)sinh(�L2)e(L2�L1)� sinh �(L2 � L)sinh �(L1 � L) jjek�1(L1; t)jj1 ;thereforejek+1(L1; t)j � e(L1�L2)� sinh(�L1)sinh(�L2)e(L2�L1)� sinh �(L2 � L)sinh �(L1 � L) jjek�1(L1; t)jj1 ;i.e. jek+2(L1; t)j � sinh(�L1)sinh(�L2) sinh�(L2 � L)sinh�(L1 � L) jjek(L1; t)jj1 :Similarly for dk+1(x; t) we 
on
lude thatjdk+2(L2; t)j � sinh(�L1)sinh(�L2) sinh�(L2 � L)sinh�(L1 � L) jjdk(L1; t)jj1 :Theorem 12 shows that the 
onvergen
e of of the overlapping S
hwarz methoddepend on 
 = sinh(�L1)sinh(�L2) sinh�(L2�L)sinh�(L1�L) : Due to the 
hara
teristi
 of the sinh fun
-tion we will have sharp de
ay of the error for any L1 < L2; and also for largesize of overlapping.7 Numeri
al Results7.1 Test-example : Conve
tion-rea
tion equation for the simulation of thegas-mixtureWe apply the operator-splitting methods for the 
onmve
tion-rea
tion equa-tion.We deal with a �rst order partial di�erential-equation given as a transportequation in the following:�tu1=�v1�xu1 � �u1 ; (54)�tu2=�v2�xu2 + �u1 ; (55)u1(x; 0)= 1 ; for 0:1 � x � 0:3 ; (56)u1(x; 0)= 0 ; otherwise ;u2(x; 0)= 0 ; for x 2 [0; X℄ ; (57)20



where � 2 IR+ and v1; v2 2 IR+. We have the time-interval t 2 [0; T ℄ and thespa
e-interval x 2 [0; X℄.We rewrite the equation-system (54){(57) in operator notation, and end upwith the following equations :�tu=Au+Bu ; (58)u(x; 0)= (1; 0)T ; for 0:1 � x � 0:3 ; (59)u(x; 0)= (0; 0)T ; otherwise ; (60)where u = (u1; u2)T .Our splitted operators areA = 0B��v1�x 00 �v2�x1CA ; B = 0B��� 0� 01CA : (61)We use the �nite di�eren
e method as spatial dis
retization method and solvethe time-dis
retization analyti
ally.The spatial dis
retization is done as follows, we 
on
entrate on the intervalx 2 [0; 1:5℄ and we 
onsider a uniform partition of it with step �x = 0:1. Forthe transport-term we use an upwind �nite di�eren
e dis
retization given as :�xui = ui � ui�1�x : (62)We use for the initial-values the given impulses :u1(x) = 8><>: 1 ; 0:1 � x � 0:30 ; otherwise : (63)and u2(x) = 0 ; x 2 [0; 1:5℄ (64)For the iterative operator-splittingmethod and the appli
ation to our transport-equation we deal for the dis
retised equation with two indi
es. The index i isfor the spatial dis
retization and the index j is for the iteration-steps.We �rst solve all the equations with the index i, that means all 16 equationsfor ea
h point. Then we do our iterative steps and we have the �rst time-step.21



We are �nished for 1 time-partition and we repeat this 4 times more for the
omputations of 5 partitions et
.In the following equations we write the iterative operator splitting algorithmby taking into a

ount the dis
retization in spa
e. The time-dis
retizationis solved analyti
ally. On the time interval [tn; tn+1℄ we solve the followingproblems 
onse
utively for j = 1; 3; 5; : : :. The split approximation at the timelevel t = tn+1 is de�ned as un+1i � ui;iter(tn+1).We have the following algorithm :�tu1;i;j =�v1=�x(u1;i;j � u1;i�1;j)� �u1;i;j�1 ; (65)�tu2;i;j =�v2=�x(u2;i;j � u2;i�1;j) + �u1;i;j�1 ; (66)�tu1;i;j+1=�v1=�x(u1;i;j � u1;i�1;j)� �u1;i;j+1 ; (67)�tu2;i;j+1=�v2=�x(u2;i;j � u2;i�1;j) + �u1;i;j+1 ; (68)u1;i;j(0)=1 ; for i = 1; 2; 3; (69)u1;i;j(0)=0 ; otherwise; (70)u2;i;j(0)=0 ; for i = 0; : : : ; 15 ; (71)where � = 0:5 and v1 = 0:5 and v2 = 1:0. For the time-interval we use t 2 [0; 1℄.The analyti
al solution of the equation-system (54){(57) isu1(x; t) = 8><>: exp(��t) ; for 0:1 + v1t � x � 0:3 + v1t ;0 ; otherwiseand u2(x; t) = �(L1;2 + L2;2 +M12;2)
L1;2 = 8><>:� 1� exp(��t) ; for 0:1 + v1t � x � 0:3 + v1t ;0 ; otherwiseL2;2 = 8><>: 1� ; for 0:1 + v2t � x � 0:3 + v2t ;0 ; otherwise22



M12;2 = 8>>>>><>>>>>: 1� exp(��t) ; for 0:1 + v1t � x � 0:1 + v2t ;� 1� exp(��t) exp(�( �v1�v2 )(x� v1t� 0:3)) ; for 0:3 + v1t � x � 0:3 + v2t ;0 ; otherwiseSo, for the end-time tend = 1, we 
he
k the results for the end-point x1 =v1t+ 0:3. We get the exa
t solution of our equation:u1(x1; tend) = 0:60653 ; u2(x1; tend) = 0For the steps j and j + 1, whi
h are now a
tually ODE's, we 
an deriveanalyti
al solutions and apply them to our numeri
al s
heme. The analyti
alsolutions are given asu1;i;j = u1;i�1;j � ��xv1 u1;i;j�1 + 
2;iexp(�v1t=�x)u2;i;j = u2;i�1;j + ��xv1 u1;i;j�1 + 
1;iexp(�v2t=�x);and u1;i;j+1= v1��x(u1;i�1;j � u1;i;j) + d2;iexp(��t)u2;i;j+1= v2�x(u2;i�1;j � u2;i;j)t+ v1�x(u1;i�1;j � u1;i;j)t� d2;iexp(��t) + d1;i;where 
1;i; 
2;i; d1;i; d2;i are 
onstants depending on i and they 
an be 
om-puted from the initial values for t = 0 (as it was done in the ODE example).For t = 0, we get from the above four equations:
2;i=u1;i;j(0)� u1;i�1;j(0) + ��xv1 u1;i;j�1(0)
1;i=u2;i;j(0)� u2;i�1;j(0)� ��xv2 u1;i;j�1(0)d2;i=u1;i;j+1(0)� v1��x(u1;i;j�1(0)� u1;i;j(0))d1;i=u2;i;j+1(0) + d2;i 23



We implemented this algorithm on the 
omputer but it didn't lead to satisfyingresults, as the appearing error 
ould not rea
h values less than of order 10�1,no matter how many time partitions or iterations we had. So we were led touse another algorithm for the expression of the analyti
al solutions in steps jand j + 1.For the time-integration we apply impli
it Euler methods for the semi-dis
retizedequations (65)-(71).We have the following full-dis
retization :u1;i;j(tn+1)= (1 + � v1�x )�1(u1;i;j(tn) + �v1�x u1;i�1;j(tn+1)� � �u1;i;j�1(tn+1)) ;u2;i;j(tn+1)= (1 + � v2�x )�1(u2;i;j(tn) + �v2�x u2;i�1;j(tn+1) + � �u1;i;j�1(tn+1)) ;u1;i;j+1(tn+1)= (1 + ��)�1(u1;i;j+1(tn)� �v1�x (u1;i;j(tn+1)� u1;i�1;j(tn+1))) ;u2;i;j+1(tn+1)=u2;i;j+1(tn)� �v2�x (u2;i;j(tn+1)� u2;i�1;j(tn+1)) + ��u1;i;j+1(tn+1) ;j = 1; 3; 5; : : : ; � = tn+1 � tn.u1;i;0(tn+1) = 1 ; for i = 1; 2; 3 ,u1;i;0(tn+1) = 0 ; else;u2;i;0(tn+1) = 0 ; for i = 0; : : : ; 15;u1;i;j(0) = 0 ;u2;i;j(0) = 0 ;u1;�1;j(0) = 0 ;u2;�1;j(0) = 0 ;In order to implement the algorithm on the 
omputer, we tried to work sim-ilarly to the ODE example. In the implementation of the ODE example weused in our 
omputer program a ve
tor a, in whi
h we stored for every timepartition the values of all the appearing ui1 during the iterations. Similarly,ve
tor b was used for ui2. Pre
isely, ve
tor a was [u10 u�11 (0) u01 u11 u21 : : : uiter1 ℄,where the �rst two 
oordinates are the initial values, whi
h for our examplewere 1 and 0 respe
tively, and the rest of the 
oordinates are the solutions
al
ulated during all the iterations. (total number of iterations=iter)Now, in the 
ase of a PDE we have two dimensions, so it makes sense to use amatrix A instead of a ve
tor. Supposing we have a total number of iterations= iter and sin
e we have 16 points in our spatial partition, the matrix A willbe of the following form: 24



A =
2666666666666666666666666664

� u1;0;0(tn+1) u1;1;0(tn+1) : : : u1;15;0(tn+1)� u1;0;1(tn) u1;1;1(tn) : : : u1;15;1(tn)u1;�1;1(tn+1) u1;0;1(tn+1) u1;1;1(tn+1) : : : u1;15;1(tn+1)� u1;0;2(tn) u1;1;2(tn) : : : u1;15;2(tn)u1;�1;2(tn+1) u1;0;2(tn+1) u1;1;2(tn+1) : : : u1;15;2(tn+1)... ...� u1;0;iter(tn) u1;1;iter(tn) : : : u1;15;iter(tn)u1;�1;iter(tn+1) u1;0;iter(tn+1) u1;1;iter(tn+1) : : : u1;15;iter(tn+1)

3777777777777777777777777775
;

where the elements � do not play any role. Similarly, we 
onstru
t the matrixB for u2. The �rst row represents the given initial values for the 16 pointsof the partition (they are 0 or 1, a

ording to x) and they 
orrespond to theinitial values u10 and u20 in the ODE example. The �rst 
olumn also 
ontainsinitial values, whi
h 
orrespond to the value u�11 (0) in the 
ase of the ODE,and they are equal to 0.In table 1 we give the errors for the exa
t solutions at the end-time t = 1 andend-point x = v1t + 0:3 = 0:8.7.2 First example: Di�usion-equationWe 
onsider the two-dimensional di�usion equation given by�rDru = f in
 = [0; 1℄2; (72)u = 0 on � 
 (73)We have the following domain :We deal with the following domain, where we have the in the domain 
1 thedi�usion-
oeÆ
ient D1, in the domain 
� the di�usion-
oeÆ
ient D�, in thedomain 
2 the di�usion-
oeÆ
ient D2, the thi
kness of the small strip is �.The right hand side f = 1, the boundary-
onditions are 
omplete diri
hlet-boundary-
onditions with zero boundary. The 
oeÆ
ients are D1 = 1:0, D2 =25



Number of Iterative err1 err2time-partitions Steps1 2 2:679116 � 10�1 2:465165 � 10�11 4 1:699365 � 10�1 3:584424 � 10�11 10 2:702681 � 10�1 5:327567 � 10�21 50 6:065295 � 10�1 6:170954 � 10�71 100 6:065307 � 10�1 7:152770 � 10�175 2 2:472959 � 100 6:812055 � 10�15 4 1:181408 � 101 4:757047 � 1005 10 4:680711 � 100 1:496981 � 1005 50 8:208500 � 10�2 7:325327 � 10�255 100 8:208500 � 10�2 1:299116 � 10�7010 2 2:289850 � 102 7:246663 � 10110 4 1:121958 � 104 4:498364 � 10310 10 8:999232 � 104 2:819985 � 10410 50 6:737947 � 10�3 2:593585 � 10�3410 100 6:737947 � 10�3 3:160841 � 10�7050 2 3:166645 � 1019 1:001479 � 101950 4 2:528693 � 1032 1:013854 � 103250 10 4:750741 � 1050 1:488686 � 105050 50 1:388794 � 10�11 3:453184 � 10�6650 100 1:388794 � 10�11 2:100221 � 10�144Table 1Numeri
al results for the se
ond example with the iterative splitting method.1:0 and we deal with Deps = 0:1; 0:01; 0:001The methods are based on date-parallel Multi-grid methods with lo
al ILU-smootheers with 2 pre- and post-smoothing steps. The grid re�nement is givenlevels l = 3; 4; 5; 6; 7We start with 
1 = [0; 0:45℄x[0; 1℄ and with 3 times re�nement we have hx =0:05625, hy = 0:125, and 
� = [0:45; 0:55℄x[0; 1℄ and with 3 times re�nementwe have hx = 0:0125 and hy = 0:125.First test-series : � = 0:01 26



Ω εΩ1 Ω2

εFig. 2. The results for the S
hwarz-method with 3 domains.CoeÆ
ient D� MG-Level Convergen
e-rate0.1 3 0.0784 0.0735 0.0686 0.0637 0.0600.01 3 0.0214 0.0225 0.0216 0.0197 0.0170.001 3 0.0114 0.0155 0.0146 0.0137 0.012Table 2The L1-error in time and spa
e for the 
onve
tion-di�usion-rea
tion-equation usingFOP-method.The graphi
al output for 5. 27



Fig. 3. The results with verti
al 
ut and the solution in the domain for level 6 and� = 0:1.7.3 Se
ond example: Steady state Di�usion-equation with �-DomainsWe 
onsider the two-dimensional di�usion equation given by�rDru = f in
 = [0; 1℄2; (74)u = 0 on � 
 (75)28



We have the following domain :We deal with the following domain, where we have the in the domain 
1 thedi�usion-
oeÆ
ient D1, in the domain 
� the di�usion-
oeÆ
ient D�, in thedomain 
2 the di�usion-
oeÆ
ient D2, the thi
kness of the small strip is �.
Ω εΩ1 Ω2

ε

Ω

Ω

4

3

ε

1

2

Fig. 4. The results for the S
hwarz-method with 3 domains.The right hand side f = 1, the boundary-
onditions are 
omplete diri
hlet-boundary-
onditions with zero boundary. The 
oeÆ
ients are D1 = 1:0, D2 =1:0 and we deal with Deps = 0:1; 0:01; 0:001The methods are based on date-parallel Multi-grid methods with lo
al ILU-smootheers with 2 pre- and post-smoothing steps. The grid re�nement is givenlevels l = 3; 4; 5; 6; 7We start with 
1 = [0; 0:45℄x[0; 1℄ and with 3 times re�nement we have hx =0:05625, hy = 0:125, and 
� = [0:45; 0:55℄x[0; 1℄ and with 3 times re�nementwe have hx = 0:0125 and hy = 0:125.First test-series : � = 0:01The graphi
al output for7.4 Real-life problem : Crystal Growth ApparatusWe 
on
entrate on the stationary heat 
ondu
tion in potentially anisotropi
materials as des
ribed in (see, e.g., (author?) [For01℄).We deal with the following underlying equations:� div(Km(�)r �) = fm in 
m (m 2M); (76)where � � 0 represents absolute temperature, the symmetri
 and positive29



CoeÆ
ient D� MG-Level Convergen
e-rate hmin maximal Anisotropy0.1 3 0.016 0.125-2 40.04 0.021 0.625-3 40.05 0.036 0.313-3 40.06 0.062 0.156-3 40.07 0.107 0.781-4 40.00.01 3 0.013 0.125-2 40.04 0.019 0.625-3 40.05 0.035 0.313-3 40.06 0.061 0.156-3 40.07 0.105 0.781-4 40.00.001 3 0.0113 0.125-2 40.04 0.020 0.625-3 40.05 0.038 0.313-3 40.06 0.069 0.156-3 40.07 0.112 0.781-4 40.0Table 3Example 2, re
tangular strip.de�nite matrix Km represents the thermal 
ondu
tivity tensor in material m,fm � 0 represents heat sour
es in materialm due to some heating me
hanism,e.g. indu
tion or resistan
e heating, 
m is the domain of materialm, and M isa �nite index set. We 
onsider the 
ase where the thermal 
ondu
tivity tensoris a diagonal matrix with temperature-independent anisotropy, i.e.Km(�) = ��mi;j(�)�; where �mi;j(�) = 8<:�mi �miso(�) for i = j;0 for i 6= j; (77)�miso(�) > 0 being the potentially temperature-dependent thermal 
ondu
tivityof the isotropi
 
ase, and �mi > 0 being anisotropy 
oeÆ
ients. For example,the growth apparatus used in sili
on 
arbide single 
rystal growth by PVT areusually insulated by graphite felt, where the �bers are aligned in one parti
ulardire
tion, resulting in a thermal 
ondu
tivity tensor of the form (77). We applythe �nite volume s
heme des
ribed in se
tion ?? and 
onsider the anisotropyin the thermal insulation of physi
al vapor transport (PVT) growth apparatusin Geiser et al. [14℄.The temperature � is assumed to be 
ontinuous throughout the entire domain
. Continuity of the normal 
omponent of the heat 
ux on the interfa
e be-30



Fig. 5. The results with verti
al 
ut and the solution in the domain for level 6 and� = 0:1.tween di�erent materials m1 and m2, m1 6= m2, yields the following interfa
e
onditions, 
oupling the heat equations (76):�Km1(�)r ���
m1 �nm1 = �Km2(�)r ���
m2 �nm1 on 
m1 \ 
m2 ; (78)where � denotes restri
tion, and nm1 denotes the unit normal ve
tor pointingfrom material m1 to material m2.We 
onsider two types of outer boundary 
onditions, namely Diri
hlet and31



Robin 
onditions. To that end, we de
ompose �
 a

ording to (A-1):(A-1) Let �Dir and �Rob be relatively open polyhedral subsets of �
 su
h that�
 = �Dir [ �Rob, �Dir [ �Rob = ;.The boundary 
onditions then read�= �Dir on �Dir; (79a)��Km(�)r �� � nm = �m (� � �ext;m) a.e. on �Rob \ �
m, m 2M;(79b)where nm is the outer unit normal to 
m, �Dir � 0 is the given temperatureon �Dir, �ext;m � 0 is the given external temperature ambient to �Rob \ �
m,and �m > 0 is a transition 
oeÆ
ient.Our apparaturs is given as follows:The radius is 12 
m and the height is 45.3 
m. This domain represents a growthapparatus used in sili
on 
arbide single 
rystal growth by the PVT method. 

onsists of six subdomains 
m, m 2 f1; : : : ; 6g, representing the materials in-sulation, graphite 
ru
ible, SiC 
rystal seed, gas en
losure, SiC powder sour
e,and quartz. Aiming to use realisti
 fun
tions for the isotropi
 parts �miso(�) ofthe thermal 
ondu
tivity tensors (
f. (77)), for gas en
losure, graphite 
ru
ible,insulation, and SiC 
rystal seed, we use the fun
tions given by (A.1), (A.3b),(A.4b), and (A.7b) in Klein et al. [24℄; for �5iso(�) (SiC powder sour
e), we use[22, (A.1)℄, and for �6iso(�) (quartz), we use�6iso(�) =  1:82� 1:21 � 10�3 �K + 1:75 � 10�6 �2K2! WmK : (80)Hen
e, all fun
tions �miso(�) depend nonlinearly on �. As mentioned in theIntrodu
tion, the thermal 
ondu
tivity in the insulation is typi
ally anisotropi
in PVT growth apparatus. In the numeri
al experiments reported on below,we therefore vary the anisotropy 
oeÆ
ients (�1r; �1z) of the insulation whilekeeping (�mr ; �mz ) = (1; 1) for all other materials m 2 f2; : : : ; 5g.Heat sour
es fm 6= 0 are supposed to be present only in the part of 
2 (graphite
ru
ible) labeled by \uniform heat sour
es" in the left-hand pi
ture in Fig. 6satisfying 5:4 
m � r � 6:6 
m and 9:3 
m � z � 42:0 
m. In that region,f2 is set to the 
onstant value f2 = 1:23 MW=m3, whi
h 
orresponds to atotal heating power of 1.8 kW. This serves as an approximation to the situ-ation typi
ally found in a radio frequen
y indu
tion-heated apparatus, wherea moderate skin e�e
t 
on
entrates the heat sour
es within a few millimetersof the 
ondu
tor's outer surfa
e.Here, our main goal is to illustrate the e�e
tiveness of our �nite volume s
hemeto 
ompute the temperature �eld in a realisti
 
omplex geometry involving ma-32



terials with anisotropi
 thermal 
ondu
tivity. If the anisotropy in the thermal
ondu
tivity of the insulation is suÆ
iently large, we expe
t the isotherms tobe almost parallel to the dire
tion with the larger anisotropy 
oeÆ
ient. Sin
eusing the Diri
hlet boundary 
ondition (79a) 
an suppress su
h an alignmentof the isotherms, we opt to use the Robin 
ondition (79b) on all of �
 instead.For m 2 f1; 2; 6g, we set �ext;m = 500 K and �m = 80 W=(m2K) (re
all fromFig. ?? that 
1, 
2, and 
6 represent the insulation, the graphite 
ru
ible,and quartz, respe
tively, and, thus, the outer materials of the apparatus).We now present results of numeri
al experiments, varying the anisotropy 
o-eÆ
ients (�1r; �1z) in the insulation. In ea
h 
ase, we use a �ne grid 
onsist-ing of 61 222 triangles. We start with the isotropi
 
ase (�1r; �1z) = (1; 1) de-pi
ted on the right-hand side of Fig. 6. Figure 7 shows the 
omputed tem-perature �elds for the moderately anisotropi
 
ases (�1r; �1z) = (10; 1) (left),(�1r; �1z) = (1; 10) (middle), (�1r; �1z) = (10; 1) in top and bottom insulationparts, (�1r; �1z) = (1; 10) in insulation side wall (right).The maximal temperatures established in the 7 experiments are 
olle
ted inTable 4.
Location of heat sources

uniform heat sources

field
Stationary temperature

1220 K

580 K

820 K

Fig. 6. Left: Lo
ation of the heat sour
es. Right: Computed temperature �eld forthe isotropi
 
ase �1r = �1z = 1, where the isotherms are spa
ed at 80 K.Comparing the temperature �elds in Figures 6 - 7 as well as the maximaltemperatures listed in Table 4, we �nd that any anisotropy redu
es the e�e
-tiveness of the thermal insulation, where a stronger anisotropy results in lessinsulation. A stronger anisotropy results in a less e�e
tive insulation and thevalue above 1 improves the insulation's thermal 
ondu
tivity in that dire
tion.33



field
Stationary temperature

850 K

750 K

550 K

field
Stationary temperature

1220 K

580 K

800 K

field
Stationary temperature

1220 K

580 K

800 K

Fig. 7. Computed temperature �elds for the moderately anisotropi
 
ases(�1r ; �1z) = (10; 1) (left, isotherms spa
ed at 50 K); (�1r ; �1z) = (1; 10) (middle,isotherms spa
ed at 80 K); (�1r ; �1z) = (10; 1) in top and bottom insulation parts,(�1r ; �1z) = (1; 10) in insulation side wall (right, isotherms spa
ed at 80 K).
�1r �1z maximal temperature[K℄1 1 1273:181 10 1232:151-10, mixed 1-10, mixed 1238:3810 1 918:35Table 4Maximal temperatures for numeri
al experiments, depending on the anisotropy
oeÆ
ients (�1r ; �1z) of the insulation (
f. Figures 6 - 7).

Similarly, when redu
ing one of the anisotropy 
oeÆ
ients to a value below 1,a stronger anisotropy would result in improved insulation.34
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