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Abstract

We present discretisation and solver methods for a model for a solid-gas phase of
a crystal growth apparatus. The model-equations are coupled Eulerian- and Heat-
transfer-equations with flux-boundary conditions. For more detailed discussion we
consider simpler equations and present time- and space-decomposition methods as
a solver methods to decouple the multi-physics processes. We present the error-
analysis for the discretisation methods and solver methods. Numerical experiments
are done for the eulerrian- and heat-transfer-equation with decomposition meth-
ods. We present a real-life application of a crystal growth apparatus, based on the
underlying stationary heat conduction. Finally we discuss the further works in the
error-analysis and the application to a more complex model of crystal growth.
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1 Introduction

Modeling and numerical simulation of solid-gas phase in complex apparatus
have become powerful tools in aiding the design and optimization of numer-
ous industrial processes such as crystal growth, e.g. by the physical vapor
transport (PVT) method Klein et al. [19]. Because of the complex processes
a carefully study is important to design correct the numerical simulations,
Parashar et al. [29]. Based on this background the combination of discretisa-
tion and solver methods is an important task. We propose the decompostion
methods of breaking down complicate multiphysics in simpler physics. The
time-decomposition methods are based on Operator-Splitting methods and
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their extended versions with more stabilised behaviour, see Farago & Geiser
[12]. With this methods a useful decoupling of the time-scales are possible and
the solvers could be concentrate on the different time-scales. Further the space-
decomposition methods are based on the Schwarz wave form relaxation meth-
ods and their accurate error-estimates, see Daoud & Geiser [8]. The methods
decouple into domains with the same equation-parameters, therefore effective
spactial discretisation and solver methods are appliable.

The paper is organized as follows: The mathematical model is stated in Sec-
tion 2, the space-discretisation methods are done with finite volume dis-
cretization and described in Section 3, followed by the time-discretisation
methods as Runge-Kutta- and BDF-methods presented in Section 4. The
time-decomposition methods are introduced as Operator-Splitting method
with extended variations in Section 5. In Section 6, we describe the space-
decompostion methods in the sense of Schwarz wave form relaxation methods
and describe the analytical error-estimates. In Section 7 we describe the nu-
merical methods in which we verify our decomposition methods and simulate
a realistic crystal-growth apparatus.

2 Mathematical model

The motivation for this study comes from the technical demand to simulate a
crystal growth apparatus for SiC single crystals. The single crystals are used
as a high-valued and expensive material for optoelectronics and electronics,
see Miiller et al. [27]. The silicon carbide (SiC) bulk single crystal are produced
by a growth process through physical vapor transport (PVT), called modified
Lely-method. The modeling for the thermal processes within the growth appa-
ratus is done in Klein & Philip [20] and Philip [30]. The underlying equations
of the model are given as follows:

a.) In this work, we assume that the temperature evolution inside the gas
region ), can be approximated by considering the gas as pure argon. The
reduced heat equation is

peOUy — V- (k,VT) =0, (1)

Ug = ZAr RAr T, (2)

where 7' is the temperature, ¢ is the time, and U, is the internal energy of the
argon gas. The parameters are given as p, being the density of the argon gas,

kg being the thermal conductivity, za, being the configuration number, and
Ry, being the gas constant for argon.

b.) The temperature evolution inside the region of solid materials Q, e.g. in-



side the silicon carbide crystal, silicon carbide powder, graphite, and graphite
insulation, is described by the heat equation

ps OUs — V- (kVT) = f, (3)
U, = /0 L (s) ds, (4)

where pg is the density of the solid material, Uy is the internal energy, kg is
the thermal conductivity, and c¢g is the specific heat.

The equations hold in the domains of the respective materials and are coupled
by interface conditions, e.g. requiring the continuity for the temperature and
for the normal components of the heat flux on the interfaces between opaque
solid materials. On the boundary of the gas domain, i.e. on the interface
between the solid material and the gas domain, we consider the interface
condition

kg VI -ng + R — J = ks VT - n,, (5)

where ng is the normal vector of the gas domain, R is the radiosity, and J is
the irradiosity. The irradiosity is determined by integrating R along the whole
boundary of the gas domain, see Klein & Philip [20]. Moreover, we have

R=F + Jrefa (6)
E=o0e¢T" (Stefan-Boltzmann equation), (7)
Jref:(l _6) J; (8)

where F is the radiation, .J..f is the reflexed radiation, € is the emissivity, and
o is the Boltzmann radiation constant.

In the next section, we focus on decoupling the complicate process in simpler

processes. We discretise and solve the simpler equations by more accurate
methods with embedded analytical solutions, see Geiser [15], Geiser [16].

3 Space discretization

In the space discretisation methods we discuss the finite volume methods as
conservation preserved methods for the balance-equations.



3.1 Discretization with Finite Volume Methods

The Finite Volume methods are robust discretisation methods for conservative
problems. We apply the discretisation because of the simple modifications for
the different material behaviour, for instance the anisotropic thermal conduc-
tivity is important.

There exists standard techniques including the finite element method Ciarlet
et al. [7] (used in Dupret et al. [9]) and the finite volume method Eymard et al.
[10] to treat such problems. The extension of such standard methods to mate-
rials with anisotropic thermal conductivity can be straightforward for simple
geometries (e.g. if the geometry admits a discretization into a structured grid
of rectangles or parallelepipeds). However, the treatment of anisotropic mate-
rials within complex geometries as they are typical in industrial applications
are necessary are much more involved. To the authors’ knowledge, even for
two-dimensional domains, all the methods previously described in the liter-
ature are restricted to simple classes of domains, need to be adapted to fit
the type of anisotropy, or show instabilities for strongly anisotropic materials
(see, e.g., Aavatsmark et al. [1, 2], Braianov & Volkov [5], Faille [11] and [10,
Sec. 11]).

We use a constrained Delaunay triangulation to discretize polyhedral domains,
followed by a Voronoi construction to define finite volumes, is a well-known
procedure (see [FLO1, Sec. 3.2] and references therein). Here, we briefly review
some definitions and properties that are subsequently used in the formulation
of the finite volume scheme for the anisotropic case.

Following [FLO1, Sec. 3.2], an admissible discretization of material domain
Q,,, m € M, consists of a finite family ¥,, := (0,,,)ier,, of subsets of Q,,
satisfying a number of assumptions, subsequently denoted by (DA-x).

Notation 1 Ford € {1,2}, let \; denote d-dimensional Lebesque measure.

(DA-1) For each m € M, ¥,, = (04)ier,, forms a finite conforming triangu-
lation of €,,,. In particular, for each 7 € I,,,, 0y, is an open triangle.
Moreover, letting I := Upmeny Im, X = (0i)ie; forms a conforming
triangulation of 2.

(DA-2) For each m € M, the triangulation 3,, = (0y,.i)ier,, respects I'p;, and
['rop in the sense that, for each i € I,,, either Ay (I'pi, N 0oy, ;) = 0 or
Al(FROb N 8am,z~) = 0.

For each o, , let V(0y,,) = {vz”; cje{1,2, 3}} denote the set of vertices of
Om,i, and let V' := Upenrier, V(0m,i) be the set of all vertices in the trian-
gulation. One can then define the control volumes as the Voronoi cells with



respect to the vertices. Using || - |2 to denote Euclidean distance, define

forallveV:w, = {T €Q: ||z —vlla < ||z — 2|2 for each z € V' \ {v}},
forallm e M: wy, i=w, NQy,, Vii={2€V: w,,#0}

Letting T := (wy)vev, Tm = (Wmw)vev,,, m € M, T forms a partition of €2,
and 7, forms a partition of €2,

Remark 2 Since T is a Voronoi discretization, each intersection dw, N O0w,,
(v,2) €V v 7é z, is contained in the set {x € Q: ||v — x|y = ||z — z|[2}. In
particular, vH Ny, [8,epw0MBrege. s WheTe Oreg denotes the regular boundary
of a polyheyml set, i.e. the points of the boundary, where a unique outer unit
normal vector exists, arega) :=(; and n,, [ OregtonNiregw. 18 the outer unit normal
to w, restricted to the face Oregwy N Oregw, (see Fig. 1).

Notation 3 If A C R?, then conv A denotes the convex hull of A. For each

pair of points (z,y) € R? x R?, let [x,y| := conv{z, y} denote the line segment
between x and y.

o9 = conv{v, z,up}, o1 = conv{v, z,u1 }, 79 = conv{v, z,us }

------ Interior boundary of Voronoi cells

Uy

()

(a) v b
Fig. 1. The pictures show the Voronoi cells gf the triangulation vertices
ug, U1, U2, v, 2. In (a), the triangulation violates the constrained Delaunay property
(a1 + g > 7, cf. (DA-1) and Rem. 4); in (b) the constrained Delaunay property
is satisfied if, and only if, the edge [v, 2] is not a material interface (7/2 < ay,
a1 + ag < ).

(DA-1) For each m € M, the triangulation ¥,, has the constrained Delaunay
property: If V,,, := U;e;. V(0); then, for each (v,z) € V2 such that
v # z, the following conditions (a) and (b) are satisfied:
(a) If the boundaries of the Voronoi cells corresponding to v and z
have a one-dimensional intersection, i.e. if A (Owy, » N Owp,,.) # 0,
then [v, z] is an edge of at least one 0 € ¥,



(b) If [v, 2] is an edge of at least one o € ¥,,, then the boundaries
of the corresponding Voronoi cells have a nonempty intersection,
L.e. 0wy N Owy, . # 0.

Also see Fig. 1, Rem. 4, and [FLO1, Sec. 3.2].

Remark 4 Due to the two-dimensional setting, (DA-1) can be expressed equiv-
alently in terms of the angles in the triangulation: For each m € M, if v is an
interior edge of the triangulation X,,, and o and [ are the angles opposite to
v, then a+ 8 < m. If v C 08y, is a boundary edge of ¥,,, and « is the angle
opposite 7y, then o < /2.

The following Rem. 5 allows the incorporation of the interface condition (78)
into the finite volume scheme.

Remark 5 Using Rem. 2, it is not hard to show that (DA-1) and (DA-1)
imply the following assertions (a) and (b):

(a) For each m € M, the set Vi, defined in (9a) is identical to the set Vi,
defined in (DA-1).

(b) Let T be a one-dimensional material interface: T' = 09Q,,N0;, A (T) # 0.
For each v € V, if some @, has a one-dimensional intersection with the
interface T, then it lies on both sides of the intersection; in other words,
OregWm,o N T = Oregwiny N, in particular, A\ (0w, NT') # 0 if, and only
if M (0w NT) # 0. However, Fig. 1(a) shows that this can generally not
be expected in cases where the constrained Delaunay property is violated:
If the edge [v,w] =: T constitutes a material interface, then both w,, and

Wy, have one-dimensional intersections with ', but lie on just one side of
r.

Integrating (76) over w,,, and applying the Gauss-Green integration theorem
yields

- (Km(0)VO)em,, = Jm; (10)

&um,v Wm,v

where n,, , denotes the outer unit normal vector to wy, ,.

4 Time-discretisation methods

For the time-discretization of the spatial discretised equation we apply Runge-
Kutta methods and BDF methods.

For the equation treated with operator-splitting, we propose we propose higher
order methods as best fitted methods for each time-scale. A next important
class of time-discretisation methods are the IMEX (implicit-explicit) methods



as combination of mixed discretisation methods for a stiff-operators (implicit
method) and nonstiff-operators (explicit method).

Based on the iterative methods the start-solution for the first iteration-step
is important to obtain higher order results, see section 5. For the next iter-
ation steps the order have to increased till the proposed order of the time-

discretization.

The methods are described in the following sections.

4.1  Runge-Kutta method

We use the implicit trapezoidal rule:

11
122

(11)

N | —
N | —

Further more we use the following Gaufl Runge-Kutta method :

1 V38 1 1 V3

2 6 4 4 6

1 V311 V3 1

R (12)
1 1
2 2

To use this Runge-Kutta methods with our operator-splitting method we have
to take into account that we solve in each iteration step equations of the form
Oyu; = Au; +b. Where b = Bu;_1 is a discrete function as we only have a
discrete solution for w;_;.

For the implicit trapezoidal rule this is no problem, because we do not need
the values at any sub-points. Where on the other hand for the Gaufl method
we need to now the values of b at the sub-points 3 + ¢;h and ty + coh with
c= (2= 1 L T Therefor we must interpolate b. To do so we choose
the cubic spline functions.

Numerical experiments show that this works properly with non-stiff problems,
but worth with stiff-problems.



4.2 BDF method

Because the higher order Gaufl Runge-Kutta method combined with cubic
spline interpolation does not work properly with stiff problems we use the
following BDF method of order 3 which does not need any sub-points and
therefor no interpolation is needed.

BDF3

1/k(11/6u"" — 3u™™ + 3/2u™ — 1/3u™ ! = A(u") (13)

For the prestepping, i.e. to obtain u, us, we use the above implicit trapezoidal
rule.

4.8 Implicit-explicit methods

The implicit-explicit (IMEX) schemes have been widely developed for time
integration of spatial discretised partial differential equations of diffusion-
convection type. These methods are applied to decouple the implicit and ex-
plicit terms. So for example the convection-diffusion equation, one use the
explicit part for the convection term and the implicit part for the diffusion.
In our application we divide between the stiff and nonstiff term, so we apply
the implicit part for the stiff operators and the explicit part for the nonstiff
operators.

4.3.1 FS-RK-method
We propose the A-stable FSRK-scheme, see 7 |, of first and second order for

our applications.
The tableau in the Butcher-form is given as

1 1 0

1 1 0 0 1

s =¥ o0o2o00 20 (14
e e

orderl| 1 0 0 00 1 00

order2| + 0 £ 0/0




To obtain second order convergence in numerical examples it is important to
split the operator in the right way as we will show later.

4.3.2  SBDF-Method

We use the following SBDF method which is a modification of the BDF3
method.
As prestepping method we use again the implicit trapezoidal rule.

1/k(11/6u™ — 3u™ 4+ 3/2u™ ' — 1/3u™ ?) (15)
= 3A(u") — 3A(u" ") + A(u" %) + B(u") (16)

Again it is important to split the operator in the right way.

5 Time-Decomposition methods: Operator-Splitting Methods

The operator-splitting methods are used to solve complex models in the geo-
physical and environmental physics, they are developed and applied in Strang
[36] and Verwer & Sportisse [37]. This ideas based in this article are solving
simpler equations with respect to receive higher order discretization methods
for the remain equations. For this aim we use the operator-splitting method
and decouple the equation as follows described.

5.1  Splitting methods of first order for linear equations

First we describe the simplest operator-splitting, which is called f§ for the
following system of ordinary linear differential equations:

Oe(t) = Ac(t) + Be(t), (17)

whereby the initial-conditions are ¢" = ¢(¢"). The operators A and B are
spatially discretised operators, e.g. they correspond to the discretised in space
convection and diffusion operators (matrices). Hence, they can be considered
as bounded operators.

The sequential operator-splitting method is introduced as a method which
solve the two sub-problems sequentially, where the different sub-problems are
connected via the initial conditions. This means that we replace the original
problem (17) with the sub-problems



5 = AC(), withe' (") =" (18)
8Cat(t) = Bc™(t), with ¢*(t") = c* ("),

whereby the splitting time-step is defined as 7, = t"*! —¢". The approximated
split solution is defined as "' = ¢**(¢"*1).

Clearly, the change of the original problems with the sub-problems usually

results some error, called splitting error. Obviously, the splitting error of the
 method can be derived as follows (cf. e.g.? |)

pn=—(exp(1n(A + B)) — exp(1, B) exp(1,A4)) (")

N = =

mlA, B] c(t") + O(7?) . (19)

whereby [A, B] := AB — BA is the commutator of A and B. Consequently,
the splitting error is O(7,) when the operators A and B do not commute,
otherwise the method is exact. Hence, by definition, the 8§ is called first order
splitting method .

In the next subsection we present the iterative-splitting method.

5.2 Iterative splitting method

The following algorithm is based on the iteration with fixed splitting discretiza-
tion step-size 7, namely, on the time interval [t",#"T!] we solve the following
sub-problems consecutively for i = 0,2,...2m. (cf. Kanney et al. [18] and
Farago & Geiser [12].)

and Co(tn) - Cn ) Cfl == 007
36157;(75) = Ac;i(t) + Beiga (1), o)

with ¢ (t") = ",

where ¢” is the known split approximation at the time level ¢ = t". The split
approximation at the time-level ¢ = ¢"*! is defined as "t = ¢yt (£"1).
(Clearly, the function ¢;;(#) depends on the interval [t", "], too, but, for
the sake of simplicity, in our notation we omit the dependence on n.)

10



In the following we will analyze the convergence and the rate of the conver-
gence of the method (20) (21) for m tends to infinity for the linear operators
A, B : X — X where we assume that these operators and their sum are
generators of the Cy semigroups. We emphasize that these operators aren’t
necessarily bounded, so, the convergence is examined in general Banach space
setting.

Theorem 6 Let us consider the abstract Cauchy problem in a Banach space
X

Oie(t) = Ac(t) + Be(t), 0<t<T
(22)
c(0) = ¢

where A, B,A+ B : X — X are giwen linear operators being generators of
the Cy-semigroup and ¢y € X s a given element. Then the iteration process
(20) (21) is convergent and the and the rate of the convergence is of second
order.

Remark 7 When A and B are matrices (i.e. (20) (21) is a system of the
ordinary differential equations), for the growth estimation we can use the
concept of the logarithmic norm. (See e.g.Hundsdorfer & Verwer [17].) Hence,
for many important class of matrices we can prove the validity.

Remark 8 We note that a huge class of important differential operators gen-
erate contractive semigroup. This means that for such problems -assuming the
exact solvability of the split sub-problems- the iterative splitting method is
convergent in second order to the exact solution.

5.8  Weighted Iterative splitting method

We assume an improved iterative splitting method with respect to more stable
behavior in the continuous case.

As a first method the unsymmetric weighted iterative splitting method is
introduced. The algorithm is based on the iteration with fixed splitting dis-
cretization step-size 7. On the time interval [t",¢"*'] we solve the following
sub-problems consecutively for ¢ = 0, 2,...2m.

11



5 = Aci(t) + w Beiq(t), with ¢(t") = ¢" (23)
and co(t") =, ¢ =0,

o (t
8()57;() =w Ac¢i(t) + Beia(t), (24)

with ¢ (t") = w " + (1 — w) e ("),

where ¢” is the known split approximation at the time level ¢ = t". The split
approximation at the time-level ¢ = t"*! is defined as ¢"*' = ¢y 1 ("), Our
parameter w € [0,1]. For w = 0 we have the A-B-splitting and for w = 1 we
have the iterative splitting method.

In the same manner the initial conditions of the weighted iterative splitting

method are weighted between the sequential splitting and iterative splitting
method.

5.4 Stability Theory

In the following we present the stability analysis for the continuous case with
commutative operators. First we apply the recursion for the general case and
then we concentrate on the commutative case.

5.4.1 Recursion

We study the stability for the linear system (23) and (24). We treat the special
case for the initial-values with ¢;(t") = ¢, and ¢;1(t") = ¢, for an overview.
The general case ¢; (") = we, + (1 — w)e; (") could be treated in the same
manner.

We consider the suitable vector norm || - || on IRY together with its induced

operator norm. The matrix exponential of Z € RM*M is denoted by exp(Z).
We assume that

||exp(r A) < 1|| and ||exp(r B) < 1|| forall 7> 0.

It can be shown that the system (17) implies |[exp(T (A + B))|| < 1 and is
itself stable.

For the linear problem (23) and (24) it follows by integration that

12



ci(t) = exp((t — t")A)c" + . t: exp((t — s)A) w Be; 1 (s) ds (25)

cipr(t) = exp((t — t")B)c" + 9 exp((t — s)B) w Aci(s) ds . (26)

With elimination of ¢; we get

t

cipr(t) = exp((t — t")B)c" + w / exp((t — s)B) A exp((s —t")A) " ds

tn

t s
+w? / / exp((t — s)B) A exp((s — s')A) B ¢; 1(s") ds'" ds .(27)
s=tn Jg'=tn

For the following commuting case we could evaluate the double integral fst:tn Jo_n
as fst,:tn fstzs, and could derive the weighted stability-theory.

5.4.2  Commuting operators

For more transparency of the formula (27) we consider a well-conditioned
system of eigenvectors and the eigenvalues A; of A and Ay of B instead of the
operators A, B themselves. Replacing the operators A and B by A; and A
respectively, we obtain after some calculations

Cipvp(t)=c" » 1 N (wArexp((t —t")A1) + (1 —w) A1 — Ag) exp((t — t")As))
L )\1)\1—)\2)\2 /t_t (exp((t — M) — exp((t— $)Ao)) ds . (28)

Note that this relation is symmetric in A\; and A,.

5.4.3  Al(«a)-stability

We define z, = 7\, k = 1,2. We start with ¢y(¢f) = v and we obtain

Com (tn+1) - Sm(zla 22) Cn 3 (29)

where S, is the stability function of the scheme with m-iterations. We use
(28) and obtain after some calculations

13



_|_ 2
Si(z1,29) =w? " + aTE = exp(z1) " (30)
Rl <2

(1—w-—w?) 2z — 2

+

LR (e

4
Sa(z1,20) =w' " + Cate = exp(21) ¢” (31)
Z1 — Z9

(1—w-—w*) 2z — 2 .

I () ¢

(21— 2)?
+(—(1 — w — w21 + 22) exp(z2)) "
Ay ) exp(a) — ()

+((1 —w —whz — z)(exp(z1) — exp(22))) €

(w21 + w’z) exp(z1)

T

Let us consider the A(a)-stability given by the following eigenvalues in a wedge
W ={¢eC:]arg(() < a}

For the A-stability we have |S,,(21, 22)| < 1 whenever 2y, 2z, € Wr/s.

The stability of the two iterations is given in the following theorem with respect

to A and A(«)-stability.

Theorem 9 We have the following stability :

For S1 we have the A-stability
mMax,, <o,ew, |S1(21,22)] <1, Vae0,7/2] withw= \/ig

For Sy we have the A(«)-stability
. N
Max,, <o,zew, |S2(21,22)] <1, Va e |0,7/2] withw < (W)

8 tan?

Proof 10 We consider a fized z; = z, Re(z) < 0 and zg — —oo . Then we
obtain

Sy (2z,00) = w?(1 — €?) (32)

and

14



Sy(z,00) = wh(1 — (1 — 2)€?) (33)

If z=x+1y, x <0 then :

1.) For S,
1S1(2z,00) 2 = w!(1 — 2exp(x)cosy + exp(2z)) (34)
Hence
4 1
1S1(z,00)| <1 & w" < (35)

~ 1 2exp(z) cosy+ exp(27)

Because of v < 0 and y € R we could estimate —2 < 2exp(x) cos(y) and
exp(2x) > 0.
From (35) we obtain w < %3

S

2.) For S,

1S5(2,00) 2 =w®*{1 — 2exp(x)[(1 — ) cos y + ysiny] (36)
+exp(22)[(1 — 2)* + 47}

after some calculations we could obtain

1 exp(—x) 1 -2 +y

< )< (— —
‘52(2700)‘ — 1(:)exp(T) - (ws 1) (1*T)2+y2 (]-*T)Q—I_y2

(37)

we could estimate forx < 0 andy € IR Hi‘ﬂyy‘z < 3/2 and Qtale(a) < (ffzggiiz

where tan(a) = y/x.

. 1 1/8
Finally, we get the bound w < (m> .

6 Domain Decomposition methods : Schwarz wave form relaxation
methods

In this section we shall present the necessary conditions for the convergence
of the overlapping Schwarz wave form relaxation method for the solution of
the convection-reaction diffusion equation with constant coefficients. We will
utilize the convergence analysis for the solution of the decoupled and coupled
system of convection reaction diffusion equation to elaborate the impact of the
coupling on the convergence of the overlapping Schwarz wave form relaxation.

15



6.1 Quverlapping Schwarz wave form relaxation for the scalar convection re-
action diffusion equation

We consider the convection diffusion reaction equation, given by
uy = DUy, — vug, — A\, (38)

defined on the domain 2 = [0, L] for T' = [T}, Ty], with the following initial
and boundary conditions

uw(0,t) = fi(t), u(L,t) = faot), u(z,Ty) = up .

To solve the model problem using overlapping Schwarz wave form relax-
ation method, we subdivide the domain €2 in two overlapping sub-domains
Qy = [0, L] and Qy = [Lq, L], where Ly < Ly and QN Qy = [Lq, Ly] is the
overlapping region for €2; and 2.

To start the wave form relaxation algorithm we firstly consider the solution
of the model problem (38) over €, and €, as follows

vy = Dugy — vv, — Av over Qy , ¢ € [Tg, TY]
7)(0, t) = f1 (t) s t € [Tg, Tf] (39)
v(Ly,t) = w(Ly,t), te [Ty, Ty
v(x, Ty) =ug = €y,
wy = Dwy, — vw, — Aw over Qy . t € [Ty, Ty]
w(Ly,t) =v(Ly,t), te [Ty, Ty (40)
U)(L,t) = f2(t) , t€e [To,Tf]
w(z, To) =ug x € Dy,
where v(x,t) = u(x,t)|o, and w(z,t) = u(z,t)|qg,.
Then the Schwarz wave form relaxation is given by
vpt! = Dokt — pokt — Xkt over QT € [Tp, TY]
7)k+1(0, t) = f1 (t) s t & [To, Tf] (41)

V" (Ly,t) = wk(Ly, 1), t € [Ty, TY]

v (2, Ty) = ug € S,

16



wy ! = DuwkH — pwhtt — Awk+ over Q, , t € [Ty, Ty]
wht (Ly,t) = k(L 1), t € [To, TY]
U}k+1(L7t) :f2(t) ) te [TOJTf]

w2, Ty) =ug € Q.

(42)

We are interested in estimating the decay of the error of the solution over
the overlapping subdomains by the overlapping Schwarz wave form relaxation
method over long time interval.

Let us assume that ef™1 (2, t) = u(x,t) — v**(z,t) and d**(z,t) = u(z,t) —
w*t(z,t) is the error of (41) and (42) over €, and ), respectively. The cor-

responding differential equations satisfied ef*'(x,t) and d**'(z,t) are given
by

eft! = Deltt — peltl — \eF+l over Q, , t € [Ty, Ty]
eF1(0,1) =0, te [Ty, Ty (43)
e (Lo, t) = d*(Ly,t), t € [Ty, Ty

iz, Ty) =0 x €y,

s = DAY — vkt — AdE over Qy € [T, TY]

d*Y (Lo 1) = eF(Ly, 1), t e [Ty, Ty) (44)

L) =0, teT, T
d* (2, Ty) =0, x € Q.

Defining for bounded functions h(z,t) : Q x [Ty, T] — R the norm

h( Mo = sup  [h(z. )]

IEQ,tE[TO,Tf}
The theory behind our error-estimates are based on the positivity lemma by
Pao (or the maximum principle theorem), see Pao [28], that is introduced as

Lemma 11 Let u € C(Qp) N CY2(Qy), where Qp = Q x (0,T] and 9Qp =
0Q x (0,7, be such that

Uy — D gy +vu, +cu>0, inQr (45)
g Oudv + By u >0, on Oy (46)
u(z,0) >0, inQ (47)
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where ag > 0, By > 0, ag + o > 0 on 00y, and ¢ = c(x,t) is a bounded
function in Qp, Then u(x,t) > 0in Qp

The convergence and error-estimates of e**! and d**1 given by (43) and (44)
respectively, are presented by the following theorem

Theorem 12 Let e*t' and d*' be the error from the solution of the sub-
problems (39) and (40) by Schwarz wave form relaxation over ; and 2y,
respectively, then

(L1, ) [0 < ylle® (L1, )]s

and
1" 2(La, )| < yl1d* (L1, )] |oc
where
sinh(8L,) sinh(B(Ly — L)
7= Sinh(BLy) sinh(B(L, — 1)) ~

with = YDA,

Proof 13 For the error ekfl and d*', consider the following differential equa-
tions defined by e**1 and d**' given by

gt = Deéktt —pehtl — Nkt over Q¢ € [T, Ty]
eF10,t) =0, telly, T
(0,1) [To, ] (48)
(L, t) = |[d* (Lo, )loe » ¢ € [To, Ty]
¢ o, To) = el P S (L, 1) €
and
BN DIl A over 9y, € [Ty, T
ALy, 1) = [ ef(Ly, )]s, 1 € [To, Ty (49)
A YLty =0, te[Ty, Ty
~ z—L1)a sinh(z
A (2, To) = el SRt [eH (L, 1) [0, @ € Oy
. NEETTI)Y
where o = 35 and f = Y52
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The solution to (48) and (49) is the steady state solution given by

sinh(fxz)

tk+1 ) = /(wfﬁz)ai dk Lo 1
1 ) = ele P S (Lo ) o
i inh B(a — L)
dtk«H ) — /(mfﬁl)a s T - KLt -
respectively.

Hence, define E(x,t) = é**t — eF*L therefore

By — DEyy+vE, +AE >0, over )y, t € [Ty, Ty]

E(Ly,t) >0, te Ty, Ty
E(.T,Tg) 20, ’L'EQl
satisfies the Lemma 11 therefore
E(z,t) >0
1.€.
b L] < gkt
for all (z,t) and similarly we conclude that
‘dk+1| < dtk+1
for all (z,t).
Then
k+1 (z—La2)a Slnh(ﬁ]}) k
B ()] < e SUPE) 1k (L, )]s 51
o) < el S L) 651)
i inh §(x — L)
P (g 1)| < ele T AP 7 ) ok p ) 52
‘ (T7 )|—P Slnhﬁ(LlfL)HP ( 15 )|| ) ( )
Evaluate d*(z,t) at Ly
inh 3(Ly — L
4L, ) < S 2 By, (53)

= sinh (L, — L)

and substitute in (51) concluding that
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k+1 (r—Ls)a sinh(Sz) (LrLl)aSinhﬁ(LZ_L) k—1
)] < —— Ly, )]0
e @) < e sinh(6Ly) < sinhﬁ(Ll—L)He (L0l
therefore
inh(S8L inh 5(Ly — L
‘6k+1(L1,t)‘ < e(LlfLQ)aS%H (6 1)@([427[4)&8%1’1 ﬂ( 2 )||€k71(L1,t)||oo,
sinh(fLs) sinh 8(L; — L)
inh(5L,) sinh (L, — L)
kT2(Lh, 1)) < o 1) 50 G k(L t :
e L) < sinh(,BLQ)sinhﬁ(Ll—L)HP (L1l
Similarly for d*1(x,t) we conclude that
inh(5L,) sinh 5(L, — L)
A2 (Lo, 1)) < d* (L1, t)||ao -
7 (L, )] < sinh(BL2)sinh6(L1—L)H (L1, )]

Theorem 12 shows that the convergence of of the overlapping Schwarz method
depend on vy = 212252;3 z:gﬁggfj% Due to the characteristic of the sinh func-
tion we will have sharp decay of the error for any L; < L, and also for large

size of overlapping.

7 Numerical Results

7.1 Test-example : Convection-reaction equation for the simulation of the
gas-mixture

We apply the operator-splitting methods for the conmvection-reaction equa-
tion.

We deal with a first order partial differential-equation given as a transport
equation in the following:

Oy = —010,u1 — Auq (54)
Oyug = —v90,uy + Auy , (55)
ui(z,0)=1,for 0.1 <z <0.3, (56)
u(z,0) =0, otherwise ,
uy(2,0)=0,for z € [0, X], (57)
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where A € IRT and vy, v9 € RT. We have the time-interval ¢ € [0,7] and the
space-interval z € [0, X].

We rewrite the equation-system (54)—(57) in operator notation, and end up
with the following equations :

Oyu= Au + Bu (58)
u(z,0)=(1,0)" for 0.1 <2 <0.3, (59)
u(z,0)=(0,0)" , otherwise ,

(60)
where u = (u1, us)7.
Our splitted operators are
—00, O —-A0
A= , B= : (61)
0 —U28z A0

We use the finite difference method as spatial discretization method and solve
the time-discretization analytically.

The spatial discretization is done as follows, we concentrate on the interval

x € [0, 1.5] and we consider a uniform partition of it with step Az = 0.1. For

the transport-term we use an upwind finite difference discretization given as :
U; — Uj—q

= i 2
O s (62)

We use for the initial-values the given impulses :

1,01<2<03
uy () = - (63)

0 , otherwise

and
us(x) =0, x €0, 1.5] (64)

For the iterative operator-splitting method and the application to our transport-
equation we deal for the discretised equation with two indices. The index i is
for the spatial discretization and the index j is for the iteration-steps.

We first solve all the equations with the index 7, that means all 16 equations
for each point. Then we do our iterative steps and we have the first time-step.
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We are finished for 1 time-partition and we repeat this 4 times more for the
computations of 5 partitions etc.

In the following equations we write the iterative operator splitting algorithm
by taking into account the discretization in space. The time-discretization
is solved analytically. On the time interval [t",#""!] we solve the following
problems consecutively for j = 1, 3,5, .... The split approximation at the time
level t = t"*! is defined as u™' = u; 0, (1").

We have the following algorithm :

Oy i j=—v1 /A (w5 — Uy i-15) — AUyij1, (65)
Opuz,ij = —v2/Ax(ugj — i) + Minij1 (66)
O ijr1 = —v1/Ax(urij — w1i-15) — Mpijer (67)
Oy jy1 = —va/Ax(ug,;j — ugi 1) + M1, (68)
uy,;,;(0)=1 ,fori=1,2,3, (69)
uy;,(0) =0 , otherwise, (70)
Uy;;(0)=0 fori=0,...,15 1)

where A = 0.5 and v; = 0.5 and vy = 1.0. For the time-interval we use ¢ € [0, 1].
The analytical solution of the equation-system (54) (57) is

exp(—At) ,for 0.1 + vt < x < 0.3+ vt

uy(z,t) =
0 , otherwise
and
uy(x,t) = M Lyo+ Loo + Mygo)
1
L, — —Xexp(—)\t) Jor 0.1+t < <034t
0 , otherwise
% Jor 0.1 + vot < 2 < 0.3+ vot
Lyo =
0 ,otherwise
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%exp(—)\t) Jfor 0.1 + o1t < 2 < 0.1+ vqt
Miss =4 —+exp(=At) exp(—(:2-)(z — v1t — 0.3)) ,for 0.3 4+ vt < < 0.3+ ot ,

U1 —U2

0 , otherwise

So, for the end-time %, = 1, we check the results for the end-point z; =
v1t + 0.3. We get the exact solution of our equation:

U1 (CEl, tend) = 0.60653 s UQ(J'Il, tend) =0

For the steps 7 and j + 1, which are now actually ODE’s, we can derive
analytical solutions and apply them to our numerical scheme. The analytical
solutions are given as

PYAV/
Uy =Uti 1, — U—uu,j,l + ¢y iexp(—uvit/Ax)
1

VAV

Ui =Uzi1,;+ 7)—11,1,Z~,j,1 + ¢y jexp(—vot /Ax),
1

and

v
UG +1= m(ul,ifl,j — uy, ;) + daexp(—At)

v v
U2 j+1 = A—Z(UQ,ifl,j — U, i)t + A—;(ul,ifl,j — Uy, )t — doexp(—=At) + dy,

where ¢;;, ¢, dy;, da; are constants depending on 7 and they can be com-
puted from the initial values for t = 0 (as it was done in the ODE example).
For t = 0, we get from the above four equations:

PYAV
Coi = U1,i,j(0) - U1,171,j(0) + U—Ul,i,jfl(o)
1
PYAV
Ci,i :uQ,i,j(O) - 1112,z>1,j(0) - Tul,i,jfl(o)
2

v
dy;i=u1,,+1(0) — ﬁ(ul,i,jfl(o) —u1,i,5(0))

dy i =u2,+1(0) + da,
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We implemented this algorithm on the computer but it didn’t lead to satisfying
results, as the appearing error could not reach values less than of order 10,
no matter how many time partitions or iterations we had. So we were led to
use another algorithm for the expression of the analytical solutions in steps j
and 7+ 1.

For the time-integration we apply implicit Euler methods for the semi-discretized
equations (65)-(71).

We have the following full-discretization :

TU1

w g (8") = (1 ) g (1) + 1 w1 () = 7 A (071)
n T Uy n TV n .
_ n TU " .
g (") = (14 72) " (uga g (1) — A—;(Ul,z’,j(t ) = ("))
TV

u2’i’j+1(tn+1) = u2’i’j+1(tn) - A—;(UQ,i,j(tTH—l) — U2,i—-1,5 (tn+1)) + T)\ul’i’j+1(tn+l) ,
7:173757 7T:t”+1_tn
uy (") =1 ,fori=1,2,3,
uy i o(t"H) =0, else,
Ug,io(t"H) =0 ,fori=0,...,15,

(

In order to implement the algorithm on the computer, we tried to work sim-
ilarly to the ODE example. In the implementation of the ODE example we
used in our computer program a vector a, in which we stored for every time
partition the values of all the appearing u! during the iterations. Similarly,
vector b was used for ub. Precisely, vector a was [uyg uy ' (0) ud ul w?. .. uier],
where the first two coordinates are the initial values, which for our example
were 1 and 0 respectively, and the rest of the coordinates are the solutions

calculated during all the iterations. (total number of iterations=iter)

Now, in the case of a PDE we have two dimensions, so it makes sense to use a
matrix A instead of a vector. Supposing we have a total number of iterations
= iter and since we have 16 points in our spatial partition, the matrix A will
be of the following form:
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* uy,0,0(t"t) uy1,0(t" ) uy15,0(t" ")
* wy0,1 (") w1, (") 15,1 (t")
wy, 1 (") | e (87) wy11 (1) s (BT
A= * uy p2(t") uy 1 2(t") Uy 152(t") ;
uy—12(t") | w2 (t™) g2t Uy 152(t" )
* uyo,iter (1) U1 iter () oo U5 er (1)
L —viter (BT | 0,i0er (B7TY) w1t (B7TT) o w1 e (E7TT) J

where the elements x do not play any role. Similarly, we construct the matrix
B for uy. The first row represents the given initial values for the 16 points
of the partition (they are 0 or 1, according to x) and they correspond to the
initial values u;9 and uyg in the ODE example. The first column also contains
initial values, which correspond to the value ufl(O) in the case of the ODE,
and they are equal to 0.

In table 1 we give the errors for the exact solutions at the end-time ¢t = 1 and
end-point © = vt + 0.3 = 0.8.

7.2 First example: Diffusion-equation

We consider the two-dimensional diffusion equation given by

~VDVu = finQ = [0,1]% (72)
u=0onad (73)
We have the following domain :

We deal with the following domain, where we have the in the domain €2; the
diffusion-coefficient Dy, in the domain €2, the diffusion-coefficient D,, in the
domain €2y the diffusion-coefficient Dy, the thickness of the small strip is e.

The right hand side f = 1, the boundary-conditions are complete dirichlet-
boundary-conditions with zero boundary. The coefficients are D, = 1.0, Dy =
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Number of Iterative erry erry
time-partitions Steps
1 2 2.679116 x 10! | 2.465165 x 10!
1 4 1.699365 x 10~ | 3.584424 x 10!
1 10 2.702681 x 10~ | 5.327567 x 102
1 50 6.065295 x 10~ | 6.170954 x 10~ 7
1 100 6.065307 x 10~! | 7.152770 x 10~'7
5 2 2.472959 x 10° 6.812055 x 10~ !
5 4 1.181408 x 10! 4.757047 x 10°
5 10 4.680711 x 10° 1.496981 x 10°
5 50 8.208500 x 1072 | 7.325327 x 10~ 2°
5 100 8.208500 x 1072 | 1.299116 x 10~ 70
10 2 2.289850 x 10 7.246663 x 10
10 4 1.121958 x 10* 4.498364 x 103
10 10 8.999232 x 10* 2.819985 x 10*
10 50 6.737947 x 1072 | 2.593585 x 1034
10 100 6.737947 x 1073 | 3.160841 x 1070
50 2 3.166645 x 1019 | 1.001479 x 107
50 4 2.528693 x 1032 | 1.013854 x 1032
50 10 4.750741 x 10%Y | 1.488686 x 10°Y
50 50 1.388794 x 10~ | 3.453184 x 10~96
50 100 1.388794 x 107" | 2.100221 x 1044

Table 1

Numerical results for the second example with the iterative splitting method.

1.0 and we deal with D.ps = 0.1,0.01,0.001

The methods are based on date-parallel Multi-grid methods with local ILU-
smootheers with 2 pre- and post-smoothing steps. The grid refinement is given

levels | = 3,4,5,6,7

We start with €; = [0,0.45]x[0, 1] and with 3 times refinement we have h,
0.05625, h, = 0.125, and €, = [0.45,0.55]|z[0, 1] and with 3 times refinement

we have h, = 0.0125 and h, = 0.125.

First test-series :

e =0.01
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€

Fig. 2. The results for the Schwarz-method with 3 domains.

Coefficient D, | MG-Level | Convergence-rate

0.1 3 0.078
0.073
0.068
0.063
0.060

0.01 0.021
0.022
0.021
0.019

0.017

0.001 0.011
0.015
0.014

0.013

N B e & T N B = R o) S N G R e B > ) |

0.012

Table 2
The L-error in time and space for the convection-diffusion-reaction-equation using
FOP-method.

The graphical output for 5.
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Fig. 3. The results with vertical cut and the solution in the domain for level 6 and
e =0.1.

7.8 Second example: Steady state Diffusion-equation with e-Domains

We consider the two-dimensional diffusion equation given by

~VDVu = finQ2 = [0, 1]?, (74)
u=0o0n0 (75)
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We have the following domain :

We deal with the following domain, where we have the in the domain €2; the
diffusion-coefficient D;, in the domain €), the diffusion-coefficient D,, in the
domain €2y the diffusion-coefficient Dy, the thickness of the small strip is e.

Qs

Ql Qg Qz &

Qa4

I |
-
b d

&
Fig. 4. The results for the Schwarz-method with 3 domains.

The right hand side f = 1, the boundary-conditions are complete dirichlet-
boundary-conditions with zero boundary. The coefficients are D, = 1.0, Dy =
1.0 and we deal with D.ps = 0.1,0.01,0.001

The methods are based on date-parallel Multi-grid methods with local ILU-
smootheers with 2 pre- and post-smoothing steps. The grid refinement is given
levels | = 3,4,5,6,7

We start with ; = [0,0.45]x[0, 1] and with 3 times refinement we have h, =
0.05625, h, = 0.125, and €, = [0.45,0.55]|[0, 1] and with 3 times refinement
we have h, = 0.0125 and h, = 0.125.

First test-series : ¢ = 0.01

The graphical output for

7.4 Real-life problem : Crystal Growth Apparatus

We concentrate on the stationary heat conduction in potentially anisotropic
materials as described in (see, e.g., (author?) [For01]).

We deal with the following underlying equations:
—div(K,,(0) V) = f,, inQ, (me M), (76)

where 6 > 0 represents absolute temperature, the symmetric and positive
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Coefficient D, | MG-Level | Convergence-rate homin maximal Anisotropy

0.1 3 0.016 0.125-2 40.0

4 0.021 0.625-3 40.0

5 0.036 0.313-3 40.0

6 0.062 0.156-3 40.0

7 0.107 0.781-4 40.0

0.01 3 0.013 0.125-2 40.0

4 0.019 0.625-3 40.0

5 0.035 0.313-3 40.0

6 0.061 0.156-3 40.0

7 0.105 0.781-4 40.0

0.001 3 0.0113 0.125-2 40.0

4 0.020 0.625-3 40.0

5 0.038 0.313-3 40.0

6 0.069 0.156-3 40.0

7 0.112 0.781-4 40.0

Table 3

Example 2, rectangular strip.

definite matrix K, represents the thermal conductivity tensor in material m,
fm = 0 represents heat sources in material m due to some heating mechanism,
e.g. induction or resistance heating, €2,, is the domain of material m, and M is
a finite index set. We consider the case where the thermal conductivity tensor
is a diagonal matrix with temperature-independent anisotropy, i.e.

" ki (0)  for i = j,

o (77)
0 for i # 7,

Kn(0) = (k75(0)),  where m;j;(e):{

m

kI (0) > 0 being the potentially temperature-dependent thermal conductivity
of the isotropic case, and «* > 0 being anisotropy coefficients. For example,
the growth apparatus used in silicon carbide single crystal growth by PVT are
usually insulated by graphite felt, where the fibers are aligned in one particular
direction, resulting in a thermal conductivity tensor of the form (77). We apply
the finite volume scheme described in section 77 and consider the anisotropy
in the thermal insulation of physical vapor transport (PVT) growth apparatus
in Geiser et al. [14].

The temperature 6 is assumed to be continuous throughout the entire domain
Q). Continuity of the normal component of the heat flux on the interface be-
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Fig. 5. The results with vertical cut and the solution in the domain for level 6 and
e =0.1.

tween different materials m; and msy, m; # my, yields the following interface
conditions, coupling the heat equations (76):

(Km (0)V0) 15, @0, = (K, (0) VO[5, enm on Oy Ny, (78)

where | denotes restriction, and n,,, denotes the unit normal vector pointing
from material m,; to material ms.

We consider two types of outer boundary conditions, namely Dirichlet and
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Robin conditions. To that end, we decompose 02 according to (A-1):

(A-1) Let I'p;, and T'g,p be relatively open polyhedral subsets of 02 such that
o) = rDir ) rRob; 1—‘Dir U 1—‘Rob = @

The boundary conditions then read

0= 9Dir on FDir, (79&)
—(Km(G) \Y 9) en, =&, (0 — fexim) a.e. on I'rep N 0OQ,, m € (WAD)

where n,, is the outer unit normal to €,,, fp;. > 0 is the given temperature
on I'pir, Oext,m > 0 is the given external temperature ambient to I'gep N 02,

and &,, > 0 is a transition coefficient.
Our apparaturs is given as follows:

The radius is 12 cm and the height is 45.3 cm. This domain represents a growth
apparatus used in silicon carbide single crystal growth by the PVT method. €2
consists of six subdomains Q,,, m € {1,...,6}, representing the materials in-
sulation, graphite crucible, SiC crystal seed, gas enclosure, SiC powder source,
and quartz. Aiming to use realistic functions for the isotropic parts I (0) of
the thermal conductivity tensors (cf. (77)), for gas enclosure, graphite crucible,
insulation, and SiC crystal seed, we use the functions given by (A.1), (A.3b),
(A.4b), and (A.7b) in Klein et al. [24]; for &I, (0) (SiC powder source), we use

150

[22, (A.1)], and for k% _(0) (quartz), we use

180

0 02\ W
6 =1182-121-10%=+1.75-107°% — | —.
kS (6) (s 077 = + 17510 K2> — (80)

Hence, all functions &I () depend nonlinearly on 6. As mentioned in the
Introduction, the thermal conductivity in the insulation is typically anisotropic
in PVT growth apparatus. In the numerical experiments reported on below,
we therefore vary the anisotropy coefficients (!, al) of the insulation while

keeping (o™, ') = (1,1) for all other materials m € {2,...,5}.

Heat sources f,, # 0 are supposed to be present only in the part of {2y (graphite
crucible) labeled by “uniform heat sources” in the left-hand picture in Fig. 6
satisfying 5.4 ¢cm < r < 6.6 cm and 9.3 cm < 2z < 42.0 cm. In that region,
fo is set to the constant value f, = 1.23 MW /m?, which corresponds to a
total heating power of 1.8 kW. This serves as an approximation to the situ-
ation typically found in a radio frequency induction-heated apparatus, where
a moderate skin effect concentrates the heat sources within a few millimeters
of the conductor’s outer surface.

Here, our main goal is to illustrate the effectiveness of our finite volume scheme
to compute the temperature field in a realistic complex geometry involving ma-
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terials with anisotropic thermal conductivity. If the anisotropy in the thermal
conductivity of the insulation is sufficiently large, we expect the isotherms to
be almost parallel to the direction with the larger anisotropy coefficient. Since
using the Dirichlet boundary condition (79a) can suppress such an alignment
of the isotherms, we opt to use the Robin condition (79b) on all of O instead.
For m € {1,2,6}, we set feym = 500 K and &,, = 80 W/(m?K) (recall from
Fig. ??7 that €y, 2, and () represent the insulation, the graphite crucible,
and quartz, respectively, and, thus, the outer materials of the apparatus).

We now present results of numerical experiments, varying the anisotropy co-
efficients (!, a!) in the insulation. In each case, we use a fine grid consist-
ing of 61222 triangles. We start with the isotropic case (o), a!) = (1,1) de-
picted on the right-hand side of Fig. 6. Figure 7 shows the computed tem-
perature fields for the moderately anisotropic cases (o), al) = (10,1) (left),
(al,al) = (1,10) (middle), (o}, a!) = (10,1) in top and bottom insulation
parts, (a!,al) = (1,10) in insulation side wall (right).

The maximal temperatures established in the 7 experiments are collected in
Table 4.

Location of heat sources Stationary temperature
field

uniform heat sources

Fig. 6. Left: Location of the heat sources. Right: Computed temperature field for

the isotropic case o) = @l = 1, where the isotherms are spaced at 80 K.

I =
Comparing the temperature fields in Figures 6 - 7 as well as the maximal
temperatures listed in Table 4, we find that any anisotropy reduces the effec-
tiveness of the thermal insulation, where a stronger anisotropy results in less
insulation. A stronger anisotropy results in a less effective insulation and the
value above 1 improves the insulation’s thermal conductivity in that direction.
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Stationary temperature Stationary temperature Stationary temperature
field field field

580 K 580 K

800 K 1 J 800 K

Fig. 7. Computed temperature fields for the moderately anisotropic cases
(al,al) = (10,1) (left, isotherms spaced at 50 K); (o), al) = (1,10) (middle,
isotherms spaced at 80 K); (al,al) = (10,1) in top and bottom insulation parts,

(!, al) = (1,10) in insulation side wall (right, isotherms spaced at 80 K).

al al maximal temperature
(K]
1 1 1273.18
1 10 1232.15
1-10, mixed | 1-10, mixed 1238.38

10 1 918.35
Table 4
Maximal temperatures for numerical experiments, depending on the anisotropy

coefficients (al, o) of the insulation (cf. Figures 6 - 7).

Similarly, when reducing one of the anisotropy coefficients to a value below 1,
a stronger anisotropy would result in improved insulation.
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8 Conclusion
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