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Abstract. The optimal design task of this paper seeks the distribution of two materials of
prescribed amounts for maximal torsion stiffness of an infinite bar of given cross section. This
example of relaxation in topology optimisation leads to a degenerate convex minimisation problem

E (v) :=

ˆ
Ω
ϕ0 (|∇v|) dx−

ˆ
Ω
fv dx for v ∈ V := H1

0 (Ω)

with possibly multiple primal solutions u, but with unique stress

σ := ϕ′
0 (|∇u|) sign∇u.

The mixed finite element method is motivated by the smoothness of the stress variable σ ∈
H1

loc(Ω;R2) while the primal variables are un-controllable and possibly non-unique. The corre-
sponding nonlinear mixed finite element method is introduced, analysed, and implemented.

The striking result of this paper is a sharp a posteriori error estimation in the dual formulation,
while the a posteriori error analysis in the primal problem suffers from the reliability-efficiency gap.
An empirical comparison of that primal with the new mixed discretisation schemes is intended for
uniform and adaptive mesh-refinements.

1. Introduction. This paper appears to be the first attempt to utilise mixed
finite element methods (MFEMs) for degenerate minimisation problems in the calculus
of variations. The usage of MFEM in relaxed formulations for macroscopic simulations
in computational microstructures [3, 7, 9, 22] is motivated by the properties of the
primal and dual variables. The primal variables (e.g., a deformation or displacement)
may be non-unique [17] or less regular, while the dual (e.g., a flux or stress) variable
is unique and locally smooth [6]. Hence a mixed scheme, which relies on smooth dual
variables, might enjoy superior convergence properties.

The model problem is motivated by an optimal design problem, where a given
domain Ω ⊂ R2 has to be filled with two materials of different elastic shear stiffnesses
with energy

E (v) :=

ˆ
Ω

ϕ0 (|∇v|) dx−
ˆ

Ω

fv dx for v ∈ V := H1
0 (Ω) (1.1)

for given right-hand side f ∈ L2(Ω) and energy density function ϕ0 ∈ C0([0,∞);R)
of Section 2.

The model has been analysed in [18, 11, 20, 21] and computed in [19, 6]. Recently,
a convergent adaptive finite element method in its primal form has been introduced
in [4].
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While the solutions of the primal and dual problem coincide in the continuous
case, this does not need to be true for discrete calculations in general. In the dual
formulation, we avoid the difficulties arising from the fact, that the gradient of the en-
ergy density functional ϕ′0 is not strongly monotone. This may lead to multiple primal
variables u, while there is a unique stress-type variable σ := ϕ′0 (|∇u|) sign∇u [6, 8, 4].
In contrast to the continuous differentiability of ϕ′0, its conjugate function ϕ∗0 is solely
Lipschitz-continuous. To overcome the lack of differentiability we approximate ϕ∗0 by
its Yosida regularisation ϕ∗ε.

The proposed mixed formulation is based on the dual formulation: Seek (u, σ) ∈
L2(Ω)×H (div,Ω) with

div σ + f = 0 and ∇u ∈ ∂Φ∗0(σ) in Ω. (D)

The discretisation is based on piecewise polynomial subspaces RT0 (T ) ⊆ H (div,Ω)
and P0 (T ) ⊆ L2(Ω) named after Raviart and Thomas and introduced in Section 3.
For ε > 0 piecewise constant with respect to T , the discrete regularised dual problem
reads: Seek (uεh, σεh) ∈ Pk (T ) × RTk (T ), such that for all (vh, τh) ∈ Pk (T ) ×
RTk (T ), it holds that

(τh,DΦ∗ε (σεh))L2(Ω) + (uεh,div τh)L2(Ω) = 0,

(vh,div σεh)L2(Ω) + (f, vh)L2(Ω) = 0.
(Dεh)

The main theorems in Section 3 verify that poor a priori error estimates are caused
by the lack of smoothness, while efficient and reliable a posteriori error estimates are
derived. Numerical simulations show that the convergence of the adaptive scheme
is improved in the presence of geometric singularities such as nonconvex corners.
Furthermore, compared to the primal formulation as considered in [4], the experiments
of Section 6 of the regularised dual mixed form reveal reduced convergence rates but
no efficiency-reliability gap.

The remaining parts of the paper are organised as follows. Section 2 covers
a preliminary analysis of the model problem and its energy density function. The
regularised and discrete mixed formulation of the problem is introduced in Section 3,
followed by the investigation of the existence and uniqueness of the exact and discrete
solutions in Section 4. Section 5 presents a throughout a priori and a posteriori
error analysis. The adaptive mesh-refining algorithm and some numerical experiments
conclude the paper in Section 6.

In this paper we follow the standard notation for the Lebesgue L2(Ω), L2(Ω;R2)
and Sobolev spaces H1(Ω), H1(Ω;R2); H (div,Ω) denotes the Hilbert space of L2-
functions with square-integrable divergence. The L2(Ω) scalar product is abbreviated
by (., .)L2(Ω), while 〈·, ·〉 denotes the scalar product in Rn.

2. Preliminaries.

2.1. An optimal design problem. The task is to seek the distribution of
two materials of fixed volume fraction in the cross section of an infinite bar given
by the domain Ω ⊆ R2 for maximal torsion stiffness. The focus of this paper lies
on the analysis and numerical studies of the variational problem, while the precise
mathematical modelling may divert from the emphasis of this paper. For details on
the mathematical modelling the reader is referred to [4, Section 2] and the references
given in Section 1.

Let 0 < t1 < t2 and the reciprocal shear stiffness 0 < µ1 < µ2 < ∞ with
t1µ2 = µ1t2, and 0 < ξ < 1 representing the ratio of amounts of the two materials,
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|Ω1| = ξ |Ω|, |Ω2| = Ω− |Ω1| and t1 =
√

2λµ1/µ2. The Lagrange parameter λ ∈ R is
fixed for a specific geometry Ω and the choice of ξ [4, 14, 17, 18, 19].

In the relaxed formulation of the model from [19], the right-hand side f ≡ 1 is
constant and the locally Lipschitz continuous energy density function ϕ0 : [0,∞)→ R
reads

ϕ0 (t) = λξ (µ1 − µ2) +


µ2

2 t
2 for 0 ≤ t ≤ t1,

t1µ2

(
t− t1

2

)
for t1 ≤ t ≤ t2,

µ1

2 t
2 + µ1t2

2 (t2 − t1) for t2 ≤ t.

Thus, the primal formulation is the minimisation of E in (1.1). There exists min-
imisers of E which are not necessarily unique. For f ∈ L2(Ω), the stress field
σ := ϕ′0 (|∇u|) sign∇u is unique and locally smooth, i.e., σ ∈ H1

loc(Ω;R2) while
f ∈ H1

0 (Ω) (excluded in this work) implied σ ∈ H1(Ω,R2), cf. [6].

2.2. Dual functional and Yosida regularisation. Direct calculations lead to
the dual function ϕ∗0 of ϕ0 and its Yosida regularisation ϕ∗ε as stated in the following
Lemma. We use standard notation of convex analysis [23].

Lemma 2.1. The dual (or conjugate) function ϕ∗0 of ϕ0 reads

ϕ∗0 (t) = −λξ (µ1 − µ2) +

{
t2

2µ2
for t ≤ t1µ2,

t2

2µ1
− µ1t

2
2

2 +
t21µ2

2 for t1µ2 ≤ t.

It is piecewise polynomial and globally convex, and Lipschitz continuous on compact
subsets but not differentiable at t = t1µ2 = µ1t2.

For fixed ε > 0 and all t ≥ 0, the Yosida regularisation ϕ∗ε of ϕ∗0 is defined by
ϕ∗ε (t) := infz∈R

(
ϕ∗ (z) + 1

2ε |t− z|
2
)
and equals

ϕ∗ε (t) = −λξ (µ1 − µ2) +


t2

2(ε+µ2) for 0 ≤ t < t1 (ε+ µ2) ,
µ2

2 t
2
1 + 1

2ε |t1µ2 − t|2 for t1µ2 + εt1 ≤ t ≤ t1µ2 + εt2,
t2

2(µ1+ε) −
µ1t

2
2

2 +
t21µ2

2 for t2 (µ1 + ε) < t.

Let Cµ := 1
µ2
1

+ 1
2µ2

2
. Then, the difference of ϕ∗0 and ϕ∗ε is bounded in the sense

that

0 ≤ sup
z∈R

(
ϕ∗0(t)− ϕ∗0(z)− 1

2ε
|t− z|2

)
= ϕ∗0(t)− ϕ∗ε(t) ≤ Cµεt2 ≤ O(ε)t2.

The function ϕ∗ε is differentiable, hence the subgradient ∂ϕ∗ε(a) = {(ϕ∗ε)′(a)} is a
singleton, while ϕ∗0 is not smooth and ∂ϕ∗0(t1µ2) = [t1, t2] is a compact interval. The
differentials ϕ′0, ∂ϕ∗ε, and (ϕ∗ε)

′ are depicted in the following sketch.

t

ϕ′0 t1 t2

µ1t2

0
0
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1

1

t
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t2
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1

t
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2.3. Remarks on ϕε, ϕ∗ε and Φε, Φ∗ε. The energy density function

Φε : Rn → R, Φε(F ) := ϕε(|F |) for all F ∈ Rn,

its dual and regularised dual function enjoy the following properties.
(i) Φε and Φ∗ε. For any ε > 0 the function Φε := ϕε(|·|), satisfies

DΦε(F ) =ϕ′ε(|F |) signF for all F ∈ Rn

with the unit ball B(0, 1) := {x ∈ Rn | |x| ≤ 1} and

signF :=

{
B(0, 1) if |F | = 0,

F/ |F | otherwise.

Notice that ϕ′ε(0) = 0 and ϕε(0) = ϕ0(0) = 0 imply

DΦε(F ) =

{
ϕ′ε(|F |)F/ |F | if |F | 6= 0,

0 otherwise.

For ε > 0 and all F ∈ Rn, the dual of Φε = ϕε(|·|) reads

Φ∗ε(F ) = ϕ∗ε (|F |) for all F ∈ Rn and
DΦ∗ε(F ) = (ϕ∗ε)

′(|F |) signF.

For ε = 0, Φ∗0 := ϕ∗0(|·|) satisfies

∂Φ∗0(F ) =∂ϕ∗0(|F |) signF for all F ∈ Rn.

(ii) Convexity control for Φ0. The function Φ0 allows convexity control in
the sense that for all a, b ∈ Rn, A ∈ ∂Φ0(a), and for all B ∈ ∂Φ0(b), it holds that

1

µ2
|A−B|2 ≤ 〈A−B, a− b〉 .

(iii) Strong monotonicity of ∂Φ∗ε. The subgradient ∂Φ∗ε is strongly monotone
in the sense that, with CM := µ2 + ε and ε ≥ 0, it holds that

µ2 |a− b|2 ≤ CM |a− b|2 ≤ 〈∂Φ∗ε (a)− ∂Φ∗ε (b) , a− b〉 for all a, b ∈ Rn.

(iv) Strong convexity of Φ∗ε. For all ε ≥ 0 the strong monotonicity of ∂Φ∗ε
and the definition of the subdifferential lead to

2µ2 |a− b|2 ≤ 2CM |a− b|2 ≤ 〈∂Φ∗ε (a) , a− b〉 − Φ∗ε (a) + Φ∗ε (b)

for all a, b ∈ Rn, cf. [16, Thm. D2.6.1]. Hence, Φ∗ε is strongly convex.
(v) Lipschitz continuity of (ϕ∗ε)

′. For all ε > 0, ϕ∗ε is continuously differen-
tiable and

(ϕ∗ε)
′(t) =


t

µ2+ε for t < t1(µ2 + ε),
t−t1µ2

ε for t1µ2 + εt1 ≤ t ≤ t1µ2 + εt2,
t

µ1+ε for t2(µ1 + ε) < t

is Lipschitz continuous with Lipschitz constant Lip(Dϕ∗ε) = 1/ε.
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(vi) Discontinuity of ∂Φ∗0. The subgradient ∂Φ∗0 is piecewise Lipschitz contin-
uous and jumps at |z| = µ1t2. However, the following estimate holds

|∂Φ∗0 (a)− ∂Φ∗0 (b)| ≤ δ (a, b) + |a− b| /µ1

for all a, b ∈ Rn with

δ (a, b) :=

{
t2 − t1 if min {|a| , |b|} ≤ t1µ2 ≤ max {|a| , |b|} ,
0 otherwise.

This estimate can be extended to Φ∗ε and ε ≥ 0 in the sense that

|∂Φ∗ε (a)− ∂Φ∗ε (b)| ≤ δε(a, b) + |a− b| /(µ1 + ε)

≤ δε(a, b) + |a− b| /µ1

for all a, b ∈ Rn with

δε (a, b) :=

t2 − t1
if ∃t ∈ t1µ2 + ε[t1, t2] such that

min {|a| , |b|} ≤ t ≤ max {|a| , |b|} ,
0 otherwise.

3. Mixed formulation and its discretisations.

3.1. Motivation for mixed formulation. The direct method of calculus of
variations yields the existence of a minimiser u of E in V := H1

0 (Ω) with

E (v) :=

ˆ
Ω

(ϕ0 (|∇v|)− fv) dx . (3.1)

The exact stress σ = ϕ′0 (|∇u|) sign (∇u) satisfies the equilibrium div σ+f = 0 in Ω as
the strong form of the Euler-Lagrange equations. Given any right-hand side f ∈ L2(Ω)
and the convex C1-functional Φ0 : Rn → R, the pair (u, σ) ∈ V × H (div,Ω) solves
the primal mixed formulation

div σ + f = 0 and σ = DΦ0 (∇u) in Ω. (P)

By duality of convex functions it holds, for all α, a ∈ Rn, that

α ∈ ∂Φ0(a)⇔ a ∈ ∂Φ∗0(α).

This allows the reformulation

σ = DΦ0(∇u)⇔ ∇u ∈ ∂Φ∗0(σ).

Consequently, (P) reads in terms of the conjugated functional as

div σ + f = 0 and ∇u ∈ ∂Φ∗0(σ) in Ω. (D)

3.2. Regularised mixed formulation. For a C1-regularisation ϕ∗ε of ϕ∗0 with
ϕ∗ε −→ ϕ∗0 as ε→ 0, the regularised problem of (D) reads: Given any ε > 0 piecewise
constant on T , seek (uε, σε) ∈ V ×H (div,Ω) with

div σε + f = 0 and ∇uε = DΦ∗ε(σε) in Ω.

The corresponding weak mixed formulation (Dε) reads: Seek (uε, σε) ∈ L2(Ω)×
H(div,Ω) such that for all (v, τ) ∈ L2(Ω)×H(div,Ω) it holds that

(τ,DΦ∗ε (σε))L2(Ω) + (uε,div τ)L2(Ω) = 0,

(v,div σε)L2(Ω) + (f, v)L2(Ω) = 0.
(Dε)
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3.3. Discrete formulation. Given a shape-regular triangulation T into trian-
gles T of Ω which covers Ω̄ = ∪T∈T T exactly, let E denote the set of edges E of T
and E (Ω) the set of interior edges. For any k = 0, 1, 2, . . . , set

Pk (T ) := {polynomials on T of total degree ≤ k} ,
Pk (T ) :=

{
v ∈ L2(Ω) | v|T ∈ Pk (T ) for all T ∈ T

}
,

Sk (T ) :=
{
v ∈ Pk (T ) | v globally continuous in Ω̄

}
,

Sk,0 (T ) := {v ∈ Sk (T ) | v = 0 on ∂Ω} ,

RTk (T ) :=

{
(x, y) 7→

(
p1 (x, y)
p2 (x, y)

)
+ p3 (x, y)

(
x
y

)∣∣∣∣ p1, p2, p3 ∈ Pk (T )

}
.

Let [p]E := p|T+
− p|T− denote the jump of the piecewise polynomial p ∈ RTk (T )

across an interior edge E = ∂T+ ∩ ∂T− shared by the two neighbouring triangles T+

and T−. The Raviart-Thomas finite element space is defined as

RTk (T ) := {p ∈ H (div,Ω) | p|T ∈ RTk (T ) for all T ∈ T }

=

{
p ∈ L2(Ω)

∣∣∣∣∣ p|T ∈ RTk (T ) for all T ∈ T ,
[p]E · νE = 0 on E for all E ∈ E (Ω)

}
.

For piecewise constant ε > 0 on T , the discrete formulation of (Dε) reads: Seek
(uεh, σεh) ∈ Pk (T )× RTk (T ), such that for all (vh, τh) ∈ Pk (T )× RTk (T ) it holds
that

(τh,DΦ∗ε (σεh))L2(Ω) + (uεh,div τh)L2(Ω) = 0,

(vh,div σεh)L2(Ω) + (f, vh)L2(Ω) = 0.
(Dεh)

4. Existence of exact and discrete solutions. For discrete form of the orig-
inal primal problem (P) on page 5, the discrete primal stress

σPh := DΦ0

(
∇uPh

)
∈ P0

(
T ;R2

)
is a piecewise constant solution and existence of uPh ∈ P1 (T )∩ V and the uniqueness
of σPh is clarified in [4]. In contrast to the continuous case, the primal and dual
solution of the discrete problem do not necessarily coincide and the first step is to
prove existence of a discrete solution (uh, σh) of the discrete form of the dual problem
(D).

Let fh := Πhf ∈ Pk (T ) ⊆ L2(Ω) be the piecewise polynomial L2(Ω) projection
of f with respect to T of degree at most k ≥ 0 and define

Q(f, T ) := {τh ∈ RTk (T ) | fh + div τh = 0 in Ω} ,
Q(f) := {τ ∈ H (div,Ω) | f + div τ = 0} .

Since f ≡ 1 ≡ fh in the optimal design problem (1.1), it holds that Q(1, T ) =
RTk (T ) ∩Q(1).

Furthermore, let χQ(f,T ) denote the indicator function (cf. [15]) of the convex
subset Q(f, T ) ⊆ RTk (T ), i.e., for τh ∈ RTk (T ),

χQ(f,T )(τh) :=

{
0 for τh ∈ Q(f, T ),

+∞ otherwise.
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Theorem 4.1 (Existence and uniqueness). Let ε ≥ 0 piecewise constant with
respect to T . There exists a unique maximiser σε of E∗ε (τ) := −

´
Ω
ϕ∗ε(|τ |) dx, i.e.,

E∗ε (τ) ≤ E∗ε (σε) for all τ ∈ Q(f).

There exists a unique discrete maximiser σh of E∗0 in Q(f, T ), i.e.,

E∗0 (τh) ≤ E∗0 (σh) for all τh ∈ Q(f, T ), (4.1)

and for all ε ≥ 0 there exists a unique maximiser σεh of E∗ε in Q(f, T ), i.e.,

−E∗ε (σεh) ≤ −E∗ε (τh) + χQ(f,T )(τh) for all τh ∈ RTk (T ) .

Furthermore, for ε ≥ 0 piecewise constant with respect to T there exists some uεh,
such that (uεh, σεh) solves (Dεh). The Lagrange multiplier uεh is unique for ε > 0.

Proof. The divergence operator div : H (div,Ω) → L2(Ω) is linear and bounded.
Hence, Q(f) is a closed affine subspace. Since, Φ∗ε is a strongly convex function of
quadratic growth on H(div, T ) for all T ∈ T , −E∗ε is strongly convex via

E∗ε (τ) = −
∑
T∈T

ˆ
T

Φ∗ε(τ) dx

in H (div,Ω) and there exists a unique maximiser σε of E∗ε in Q(f). Furthermore,
the intersection Q(f, T ) := RTk (T ) ∩ Q(f) is a closed affine and finite-dimensional
subspace and therefore convex and there exists a unique minimiser σh of −E∗0 in
Q(f, T ).

Similar arguments prove that σεh minimises−E∗ε inQ(f, T ). Hence, [15, Theorem
2.32] verifies

0 ∈ ∂(−E∗ε (σεh)) + ∂χQ(f,T )(σεh).

This proves the existence and uniqueness of a discrete maximiser of E∗ε for all ε ≥ 0.
Furthermore, there exists some ξh ∈ ∂(−E∗ε (σεh)) with −ξh ∈ ∂χQ(f,T )(σεh). The
latter reads

(−ξh, τ − σεh)L2(Ω) ≤ 0 for all τ ∈ Q(f, T ).

Since 2σεh − τ ∈ Q(f, T ), for all τ ∈ Q(f, T ), the reverse inequality

(−ξh, σεh − τ)L2(Ω) ≤ 0

holds as well. Thus,

ξh⊥L2(Ω)Q(0, T ), i.e., Q(0, T ) ⊆ ker ξh.

It is well-known that the bilinear form b : RTk (T )× Pk (T )→ R given by

b(q, v) :=

ˆ
Ω

v div q dx for all q ∈ RTk (T ) , v ∈ Pk (T )

fulfils the inf-sup-condition. Therefore the operator B and its dual B∗,

B :Q(0, T )⊥ → Pk (T )
∗
, q 7→ b(q, ·);

B∗ :Pk (T )→
(
Q(0, T )⊥

)∗
, vh 7→ b(·, vh)|Q(0,T )⊥
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with Q(0, T )⊥ ≡ RTk (T ) /Q(0, T ), are isomorphisms [1]. For any ξh ∈ Q(0, T )⊥

there exists a unique Riesz representation uεh ∈ P0 (T ) with

(ξh, τh)L2(Ω) = B∗(uεh)(τh) for all τh ∈ Q(f, T )⊥.

This implies that (σεh, uεh) solves the problem (Dεh). While ξh and thus uεh are
unique for ε > 0; ξh and thus uh may be non-unique for ε = 0.

5. Error Analysis. This section is devoted to the error analysis of (Dεh) by
means of the lowest-order Raviart-Thomas finite element space RTk (T ) for k = 0.

5.1. A priori regularisation error analysis.
Theorem 5.1. For ε > 0 piecewise constant with respect to T and for Creg :=√

Cµ/(4µ2) and Cµ > 0 from Lemma 2.1, it holds that

‖σ − σε‖L2(Ω) ≤ Creg
∥∥√εσε∥∥L2(Ω)

≤ Creg
∥∥√εσ∥∥

L2(Ω)
+ Creg

∥∥√ε(σ − σε)∥∥L2(Ω)
.

For sufficiently small maximal ε∞ = ‖ε‖∞ > 0, it holds that

‖σ − σε‖L2(Ω) ≤ O (1)
∥∥√εσ∥∥

L2(Ω)
.

Proof. Subsection 2.3.(iv) ensures strong convexity of DΦ∗ε on all T ∈ T , which
implies strong convexity on Ω, i.e.,

2µ2 ‖σ − σε‖2L2(Ω) ≤ (DΦ∗ε(σε), σ − σε)L2(Ω) +

ˆ
Ω

(Φ∗ε (σ)− Φ∗ε (σε)) dx,

2µ2 ‖σ − σε‖2L2(Ω) ≤ − (∂Φ∗0(σ), σ − σε)L2(Ω) +

ˆ
Ω

(Φ∗0 (σε)− Φ∗0 (σ)) dx .

Hence, the preceding inequalities hold for all elements of the sets DΦ∗ε (σε), ∂Φ∗0(σ)
such as ∇uε = DΦ∗ε (σε) and ∇u ∈ ∂Φ∗0 (σ). An integration by parts shows
(∇u, σ − σε)L2(Ω) = (∇uε, σ − σε)L2(Ω) = 0. This implies

4µ2 ‖σ − σε‖2L2(Ω) ≤
ˆ

Ω

(Φ∗ε (σ)− Φ∗0 (σ) + Φ∗0 (σε)− Φ∗ε (σε)) dx

≤
ˆ

Ω

(Φ∗0 (σε)− Φ∗ε (σε)) dx .

Recall that the Yosida regularisation ϕ∗ε(t) of ϕ∗0(t) from Lemma 2.1 with Cµ > 0
allows for the upper bounds

0 ≤ ϕ0(t)∗ − ϕ∗ε(t) ≤ Cµεt2 for all t ≥ 0, with Cµ > 0,

0 ≤
ˆ

Ω

(Φ∗0(τ)− Φ∗ε(τ)) dx ≤ Cµ
∥∥√ετ∥∥2

L2(Ω)
for all τ ∈ L2(Ω;R2).

Therefore,

2µ
1/2
2 ‖σ − σε‖L2(Ω) ≤ C

1/2
µ

∥∥√εσε∥∥L2(Ω)

≤ C1/2
µ

∥∥√εσ∥∥
L2(Ω)

+ C1/2
µ

∥∥√ε(σ − σε)∥∥L2(Ω)
.

Thus, for sufficiently small ε∞, it holds that

‖σ − σε‖L2(Ω) ≤
1

2µ
1/2
2 C

−1/2
µ − ε1/2

∞

∥∥√εσ∥∥
L2(Ω)

.
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5.2. A priori error analysis of spatial discretisation. Let Ωh denote the
subset of all x in Ω where either |σh(x)| ≤ t1µ2 ≤ |σ(x)| or |σ(x)| ≤ t1µ2 ≤ |σh(x)|,

Ωh := {x ∈ Ω | min {|σ (x)| , |σh (x)|} ≤ t1µ2 ≤ max {|σ (x)| , |σh (x)|}} .

Similarly, Ωεh denotes the subset of Ω of microstructure region for the regularised
dual energy density function, i.e.,

Ωεh :=

{
x ∈ Ω

∣∣∣∣∣∃t ∈ t1µ2 + ε[t1, t2] such that
min {|σε (x)| , |σεh (x)|} ≤ t ≤ max {|σε (x)| , |σεh (x)|}

}
.

The subsequent a priori error estimate leads to an estimate

‖σε − σεh‖L2(Ω) . H1/2 (5.1)

for the dual solution σε ∈ H1(Ω;R2) and maximal mesh-size H := maxT∈T hT ,
hT := |T |1/2. For sufficient conditions for the H1-regularity of the exact dual solution
σ see [6].

Theorem 5.2. Let f ∈ L2(Ω) be piecewise constant with respect to T and let
σε ∈ H1(Ω;R2) the exact dual solution of (Dε). Then, the discrete solution σεh of
(Dεh) on T for ε > 0 satisfies

‖σε − σεh‖L2(Ω) . H +H1/2 |Ωεh|1/2 .

Before the proof of Theorem 5.2 concludes this section, some remarks are in order.
The numerical investigations in [18] are motivated by the question: Does mi-

crostructure arise in this example in the sense that {|σ| = t1µ2} has a positive area.
This zone of nontrivial Young measure solutions has been observed in the numerical
simulations [4, 18] even though its area is usually very small. If the numerical ap-
proximation of this area is accurate, then |Ωεh| > 0 and one cannot expect a higher
convergence rate than that given in (5.1). Our numerical experiments shall investigate
this as well as the preasymptotic behaviour for small |Ωεh| / |Ω| � 1.

Proof of Theorem 5.2. Let IF : H1(Ω;R2) 7→ RT0 (T ) be Fortin’s interpolation
operator [2, Section III.3.3] with respect to T and defined by

ˆ
E

(σε − IF σε) · νE ds = 0 for all E ∈ E .

Furthermore, let Πh : L2(Ω) → P0 (T ) denote the L2 projection. Besides the com-
muting diagram property div IF σε = Πh div σε, the following estimates [2, Section
III.3.3] or [1, Section III.5] hold on T ∈ T

‖IF σε − σε‖L2(T ) . hT |σε|H1(T ) . (5.2)

The strong monotonicity of Φ∗ε of Subsection 2.3.(iii) on each T ∈ T yields

µ2 ‖σε − σεh‖2L2(Ω)) ≤ (DΦ∗ε (σε)−DΦ∗ε (σεh) , σε − σεh)L2(Ω) . (5.3)

Since σεh, IFσε ∈ Q(f) = Q(f, T ) and DΦ∗ε(σε) = ∇uε the L2-orthogonalities
DΦ∗ε(σε)⊥L2(Ω)IF (σε − σεh) and uεh⊥L2(Ω) div(σεh − IFσε) hold. Hence, (5.2)-(5.3)
prove

µ2 ‖σε − σεh‖2L2(Ω)) ≤ (DΦ∗ε (σεh) , IF σε − σε)L2(Ω) − (uεh,div (σε − IF σε))L2(Ω) .
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Furthermore, since div(IF σε − σε) = f − fh = 0 for piecewise constant f and 0 =
(uεh,div(σε − IFσε))L2(Ω) the following estimate holds

µ2 ‖σε − σεh‖2L2(Ω)) ≤ (DΦ∗ε (σεh) , IF σε − σε)L2(Ω) + (uh,div (IF σε − σε))L2(Ω)

= (DΦ∗ε (σεh)−DΦ∗ε (σε) , IF σε − σε)L2(Ω) .

Cauchy-Schwarz’ inequality, Subsection 2.3.(vi) and the estimates of Fortin’s interpo-
lation with CF > 0 lead to

µ2 ‖σε − σεh‖2L2(Ω) ≤ ‖DΦ∗ε (σεh)−DΦ∗ε (σε)‖L2(Ω) ‖IF σε − σε‖L2(Ω)

≤
(
‖δε (σε, σεh)‖L2(Ω) + 1/µ1 ‖σε − σεh‖L2(Ω)

)
CFH |σε|H1(Ω) .

With Ωεh from the beginning of this subsection and Subsection 2.3.(vi) in the sense
of

‖δε (σε, σεh)‖L2(Ω) ≤ |Ωεh| (t2 − t1) . 1,

one concludes

µ2 ‖σε − σεh‖2L2(Ω) ≤ HCF (t2 − t1) |Ωεh| |σε|H1(Ω)

+HCF/µ1 ‖σε − σεh‖L2(Ω) |σε|H1(Ω) .

Young’s inequality proves the assertion

‖σε − σεh‖2L2(Ω) . H |Ωεh| |σε|H1(Ω) +H2 |σε|2H1(Ω) . H |Ωεh|+H2.

5.3. A posteriori error analysis.
Theorem 5.3. For the exact and discrete solutions σε ∈ H1(Ω;R2) and σεh ∈

RT0 (T ) of (Dε) and (Dεh), ε > 0 with piecewise constant right-hand side f ∈ L2(Ω)
with respect to T and for C := CC(1 + Creg

√
ε∞) and for positive constants Creg of

Theorem 5.1 and CC of Clément’s interpolation, it holds

‖σ − σεh‖L2(Ω)

≤ Creg
∥∥√εσεh∥∥L2(Ω)

+ 1/µ2 min
v∈V
‖DΦ∗ε (|σεh|)−∇v‖L2(Ω) (5.4)

≤ Creg
∥∥√εσεh∥∥L2(Ω)

+ C/µ2

(∑
E∈E

∥∥∥h1/2
E [DΦ∗ε (σεh)] · τE

∥∥∥
L2(E)

+
∑
T∈T
‖hT curl DΦ∗ε (σεh)‖L2(T )

)
.

(5.5)

Proof. The triangle inequality and the estimates of Theorem 5.1 reveal

‖σ − σεh‖L2(Ω) ≤ ‖σ − σε‖L2(Ω) + ‖σε − σεh‖L2(Ω)

≤ Creg
∥∥√εσε∥∥L2(Ω)

+ ‖σε − σεh‖L2(Ω)

≤ Creg
∥∥√εσεh∥∥L2(Ω)

+
∥∥(1 + Creg

√
ε
)

(σε − σεh)
∥∥
L2(Ω)

.
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Furthermore, the inequality of Subsection 2.3.(iii) leads for ε > 0 to

µ2 ‖σε − σεh‖2L2(Ω) ≤ (DΦ∗ε (σε)−DΦ∗ε (σεh) , σε − σεh)L2(Ω) .

Since ∇uε = DΦ∗ε (σε), the right-hand side equals

(∇uε −DΦ∗ε (σεh) , σε − σεh)L2(Ω) .

An integration by parts with uε ∈ V shows that this equals

(uε,div (σεh − σε))L2(Ω) − (DΦ∗ε (σεh) , σε − σεh)L2(Ω) .

Since div (σε − σεh) = f − fh ≡ 0 for piecewise constant f , the first term vanishes.
The same argument for any v ∈ V results in

µ2 ‖σε − σεh‖2L2(Ω) ≤ (∇v −DΦ∗ε (σεh) , σε − σεh)L2(Ω)

≤ ‖DΦ∗ε (σεh)−∇v‖L2(Ω) ‖σε − σεh‖L2(Ω) .

Hence,

µ2 ‖σε − σεh‖L2(Ω) ≤ min
v∈V
‖DΦ∗ε (σεh)−∇v‖L2(Ω) .

Define ṽ := argminv∈V ‖DΦ∗ε (σεh)−∇v‖L2(Ω) so that ṽ ∈ V satisfies

(∇ṽ,∇w)L2(Ω) = (DΦ∗ε (σεh) ,∇w)L2(Ω) for all w ∈ V. (5.6)

The Helmholtz decomposition [12] of DΦ∗ε (σεh) in α ∈ V and β ∈ H1(Ω)/R reads

DΦ∗ε (σεh) = ∇α+ Curlβ (5.7)

with an orthogonal split (∇α,Curlβ)L2(Ω) = 0. Hence,

µ2 ‖σε − σεh‖L2(Ω) ≤ ‖DΦ∗ε (σεh)−∇ṽ‖L2(Ω) = ‖Curlβ‖L2(Ω) .

For z ∈ N define ωz := {T ∈ T | z ∈ T} as the patch to the node z. Define the
nodal function φz ∈ S1 (T ) by φz(z) := 1 for z ∈ N and φz(y) = 0 for y ∈ N \ {z}.

Let J : H1(Ω)→ S1 (T ) the Clément-interpolation operator and Jβ the interpo-
lator of β given by [2]

J (β) :=
∑
z∈N

βzφz with βz :=

{
|ωz|−1 ´

ωz
β dx for all z ∈ N \ ∂Ω,

0 for all z ∈ N ∩ ∂Ω.

Thus, Curl Jβ ∈ P0 (T ) ∩ H (div,Ω) ⊂ RT0 (T ) and for β ∈ H1(Ω) the following
estimates hold [10]

‖∇J (β)‖L2(Ω) +
∥∥h−1
T (β − J (β))

∥∥
L2(Ω)

+
∥∥∥h−1/2
E (β − J (β))

∥∥∥
L2(∪E)

. ‖∇β‖L2(Ω) .

Let [Jβ] · ν denote the jump of Jβ in normal direction across (and [Jβ] · τ in
tangential direction along) the edges in E . Hence, |[Curl Jβ] · ν|E = |[Jβ] · τ |E = 0.
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Since Curl Jβ⊥∇H1
0 (Ω) and (DΦ∗ε (σεh) , qh) = (−uεh,div qh) hold for all qh ∈

RT0 (T ), the orthogonal split Curlβ⊥Curl Jβ is verified

(Curlβ,Curl Jβ)L2(Ω) = (DΦ∗ε (σεh)−∇α,Curl Jβ)L2(Ω)

= − (uεh,div Curl Jβ)L2(Ω) = 0.

Let CC > 0 be a constant from Clément’s interpolation error estimates. The orthog-
onality Curlβ⊥Curl Jβ yields

‖Curlβ‖2L2(Ω) = (DΦ∗ε (σεh)−∇α,Curl (β − Jβ))L2(Ω)

=
∑
T∈T

(
− (curl DΦ∗ε (σεh) , β − Jβ)L2(T )

+ (DΦ∗ε (σεh) · τ, β − Jβ)L2(∂T )

)
≤
∑
T∈T
‖hT curl DΦ∗ε (σεh)‖L2(T )

∥∥h−1
T (β − Jβ)

∥∥
L2(T )

+
∑
E∈E

∥∥∥h1/2
E [DΦ∗ε (σεh)] · τE

∥∥∥
L2(E)

∥∥∥h−1/2
E (β − Jβ)

∥∥∥
L2(E)

≤ CC

(∑
T∈T
‖hT curl DΦ∗ε (σεh)‖2L2(T )

+
∑
E∈E

∥∥∥h1/2
E [DΦ∗ε (σεh)] · τE

∥∥∥2

L2(E)

)1/2

‖∇β‖L2(Ω) .

Finally, ‖∇β‖L2(Ω) = ‖Curlβ‖L2(Ω) shows the assertion.
Remark 5.4. Given the definition of ϕ∗0 from the variational formulation of

the optimal design example in Section 2.1 and its regularisation ϕ∗ε, one observes that
DΦ∗ε(σεh) is a Raviart-Thomas element shape function in the interior of each material
Ω1 and Ω2, where curl DΦ∗ε(σεh) = 0.

Hence, the elements T in a neighbourhood of the contact zone of the two materials
exclusively contribute to

∑
T∈T ‖hT curl DΦ∗ε (σεh)‖2L2(T ) and the jump term in (5.5)

may dominate the error estimator.
Remark 5.5. The right-hand side in (5.4)-(5.5) is expected to be sharp in the

sense that the arguments are known to lead to efficient error control in many applica-
tions of mixed FEM. Standard techniques for an efficiency proof, however, encounter
the non-smoothness of DΦ∗ε as ε↘ 0.

6. Numerical Experiments. This section is devoted to numerical experiments
for the degenerate variational problem in its dual discrete mixed formulation (Dεh)
based on Raviart-Thomas FEM in comparison to the discrete solutions of (P) in [4]
with P1-FEM on the domains of Figure 6.1 the square, the L-shaped domain and the
octagon. In all of these examples the loads and the boundary conditions are given by
f ≡ 1 and uD ≡ 0. The material distribution is set to ξ = 0.5, thus both materials
fill half of the domain, with the material parameters µ1 = 1 < µ2 = 2.

6.1. Preliminary Remarks. In the variational formulation of the primal prob-
lem the Lagrange-multiplier for the material distribution is λ, cf. [4] for a motivation
and the computation of the optimal values shown in Figure 6.1.

However, an approximation of the exact primal and conjugated energy seems
very discerning. The arduousness lies in the fact, that extrapolation is significant
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(a) Square, f ≡ 1

Ω1 := [−1, 1]
2

EA = −0.01538148 λ = 0.0084

(b) L-shaped domain, f ≡ 1

Ω2 := [−1, 1]
2 \ ((0, 1]× (0,−1])

EA = 0.096310294 λ = 0.0143

(c) Octagon with γ := 1/(2 +
√

2), f ≡ 1
Ω3 := conv {(±1,±γ) , (±γ,±1) , (±1,∓γ) , (±γ,∓1)}
EA = 0.1368258 λ = 0.0284

Fig. 6.1. Domains of the four numerical benchmarks, its extrapolated energies EA (rounded
off), and optimal λ

only on uniform meshes, while for uniformly refined meshes the contact zone of both
materials in the cross section is not adequately resolved. Thus, only a low number
of digits appears trustworthy. This leads to objectionable effects in the convergence
graphs of the approximation of the energy error. The extrapolation of sequences of
the dual energy

E∗ε :=

ˆ
Ω

ϕ∗ε (|σh|) , for ε ≥ 0

on uniform meshes based on the dual mixed formulation (Dεh) appears non-reliable.
The listed extrapolated energies EA and E∗A have been calculated by some Aitken
extrapolation algorithm on uniform refined meshes, generated by S1 conforming FEM
based on the discrete form of the primal problem (P) as in [4].

The analysis of Section 5 motivates the following two estimators ηH and ηR, for
ε > 0,

η2
H := min

v∈S1,0(T )
‖DΦ∗ε(σεh)−∇v‖2L2(T ) , (6.1)

η2
E :=

∑
E∈E

∥∥∥h1/2
E [DΦ∗ε(σεh)] · τE

∥∥∥2

L2(E)
,

η2
R := η2

E +
∑
T∈T
‖hT curl DΦ∗ε(σεh)‖2L2(T ) . (6.2)

Since the exact solution is not available, the convergence behaviour of the estimators
(6.1) and (6.2) are compared for adaptive and uniform mesh refinement.

The algorithm presented in the sequel solves (Dεh) and decreases ε locally for an
accurate computation.

Algorithm 6.1. Input: shape regular triangulation T0, initial value (uε0, σε0),
regularisation parameters α and β, tolerance 0 < Tol. Set η0 :=∞, ` := 1. WHILE
η`−1 ≥ Tol DO (i)-(v):
(i) Create new triangulation T` corresponding to the estimated error η`.
(ii) Prolongate (uε `−1, σε `−1) to T` to get an initial value (u0

ε `, σ
0
ε `).

(iii) Update regularisation parameter ε|T = αhβT , T ∈ T`.
(iv) Compute solution (uε `, σε `) of (Dεh) with Gauss-Newton method provided in

Matlab’s fsolve and initial value (u0
ε `, σ

0
ε `).
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(v) Calculate estimated error η` of the solution σε` and set ` = `+ 1;
Output: Approximation of the solution of (Dεh).

Remark 6.2. The estimates ‖σ − σε‖L2(Ω) . ‖
√
εσε‖L2(Ω) and

‖σε − σεh‖L2(Ω) . H1/2 from Theorems 5.1 and 5.2 suggest ε = O(h). To find
appropriate values of α and β in the ansatz ε|T := αhβT , Algorithm 6.1 has run for
various choices of α and β on the test setting on the unit square Ω with the exact
solution

ũ(x, y) := x y (1− x) (1− y). (6.3)

The error estimators ηH and ηR, the exact stress errors ‖σ−σεh‖L2(Ω), and the square
root of the energy error δ` := |E(σεh)− EA| have been evaluated for various parame-
ters and let to the conjecture that α = β = 1 is a proper choice for the regularisation
parameter ε = hT in Algorithm 6.1.

6.2. Optimal Design on different domains. To analyse the quality of results
produced by Algorithm 6.1, it is applied to the examples introduced in Figure 6.1.
For each domain the exact energy is approximated by an Aitken extrapolation of the
discrete energy, this extrapolated energy EA is given in Figure 6.1.

For each domain, the subsequent Figures show the approximated optimal volume
fraction 

0 for 0 ≤ |∇uεh| ≤ t1,
(|∇uεh| − t1)/(t2 − t1) for t1 ≤ |∇uεh| ≤ t2,
1 for t2 ≤ |∇uεh|

of each material indicated by regions colored red and blue on the left-hand side and the
region of microstructure where both materials are present in black on the right-hand
side. The estimated errors ηH , ηR and square root of the energy error for sequences
of uniform and adaptively generated triangulations are plotted in dependence of the
number of degrees of freedom. Furthermore a subsequence of the ηH -adaptively gen-
erated grids is shown. For the squared domain those results are presented in Figures
6.2-6.4.

The error estimators and square root of extrapolated energy errors
δ

1/2
` := |E(σεh)− EA|1/2 and δ

∗1/2
` := |E∗(σεh)− E∗A|

1/2 are plotted in a double
logarithmic scaling in dependence of the number of degrees of freedom (ndof).

With the L-shaped domain and adaptive refinement the rate of convergence
compared to uniform refinement is improved significantly. Apparently, the area
{x ∈ Ω | t1 < |∇uεh(x)| < t2}, where both materials are present seems to be very
small.

If the parameter ξ, which influences the volume fraction of each material, is chosen
in a way such that the contact zone is just a boundary, i.e., there is no subdomain
where both materials are present, the error estimators show optimal convergence, cf.
Figure 6.15 for the L-shaped domain and ξ = 0.8.
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Fig. 6.5. Volume fraction for uniform refinement for the L-shaped domain generated by Algo-
rithm 6.1 and ηR (LHS) and its microstructure (RHS).
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Fig. 6.7. Subsequence of meshes of the L-shaped domain generated by Algorithm 6.1 and ηR.
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Fig. 6.8. Subsequence of meshes of the L-shaped domain generated by Algorithm 6.1 and ηH .

Fig. 6.9. Volume fraction for uniform refinement for the octagon generated by Algorithm 6.1
and ηR.
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Fig. 6.10. Convergence history; error estimators and extrapolated energy error for the octagon.
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Fig. 6.11. Subsequence of meshes, generated by Algorithm 6.1 and ηR for the octagon.
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Fig. 6.12. Subsequence of meshes, generated by Algorithm 6.1 and ηH for the octagon.
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Fig. 6.13. Convergence history of ηH for adaptive and uniform refinement on all benchmark
domains.
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Fig. 6.14. Convergence history ηR for adaptive and uniform refinement on all benchmark
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Fig. 6.15. L-shaped domain for a material distribution of ξ = 0.8.


