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Abstract

We attempt to systematically derive tree-level scattering amplitudes in four-dimensional,
planar, maximally supersymmetric Yang-Mills theory from integrability. We first review
the connections between integrable spin chains, Yangian invariance, and the construction
of such invariants in terms of Graßmannian contour integrals. Building upon these results,
we equip a class of Graßmannian integrals for general symmetry algebras with unitary in-
tegration contours. These contours emerge naturally by paying special attention to the
proper reality conditions of the algebras. Specializing to psu(2, 2|4) and thus to maximal
superconformal symmetry in Minkowski space, we find in a number of examples expres-
sions similar to, but subtly di�erent from the perturbative physical scattering amplitudes.
Our results suggest a subtle breaking of Yangian invariance for the latter, with curious
implications for their construction from integrability.

ú
Address until January 2018.



Contents

1 Introduction 1

2 Review: Amplitudes and Symmetries 2

3 Unitary Graßmannian Integral 8

4 Sample Invariants and Amplitudes 13

5 Graßmannian Integral in Oscillator Basis 21

6 R-Matrix and Divergencies 28

7 Link to Cusp Equation 33

8 Conclusions and Outlook 34

A Parity Symmetry 35

B Unitary Contour from Gluing 35

1 Introduction

Four-dimensional, planar, maximally supersymmetric Yang-Mills theory is surely inte-
grable at generic ’t Hooft coupling, even though there still is no precise formulation, let
alone a completed proof, of this statement. A presumably related problem is the absence of
a systematic derivation procedure for generic quantities from “integrability” in this N = 4
SYM model. Once established, one would ideally like to start from the underlying (al-
gebraic?) integrable structure, and subsequently systematically derive non-perturbatively
all quantities one fancies from a single principle: spectrum, states, correlation functions,
Wilson loops, scattering amplitudes, form factors, etc. In practice, it is of course unlikely
that one will always succeed in completely “solving” for a given quantitiy of interest. But
at least one would like to know where to start from.

This lack of a solid starting point is particularly vexing in the case of the scattering
amplitudes of the model. Used by skillful hands, the magic integrability machine yields, in
certain kinematical limits and employing various assumptions, highly non-trivial analytical
results for strong coupling, for an impressive number of loops at weak coupling, and even, in
some special cases, for generic coupling. What then, precisely, is the underlying symmetry
or principle for these successes? It has been known now for nearly a decade that the
infinitesimal superconformal symmetry of tree-level amplitudes combines with a distinct
second, dual superconformal copy into a Yangian symmetry, i.e. into the mathematical
structure underlying (rational) integrable spin chains. But, in contradictinction to the
case of spin chains, it has not yet been possible to turn this around, and to derive the
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tree level amplitudes from this symmetry. The present study initially set out to fill this
gap. However, as we will see below, this is far less straightforward than one might have
suspected. In fact, we shall find subtle di�erences between the results obtained from
Yangian invariance and the physical amplitudes. We will discuss possible consequences of
these surprising results in our conclusion section 8 below.

2 Review: Amplitudes and Symmetries

We begin with a short review of tree-level scattering amplitudes in planar N = 4 SYM
theory. Naturally, we concentrate on those aspects that form the foundation for our own
work presented in this paper, which is in part based on the PhD thesis [1] of one of the
authors. In particular, we introduce spinor helicity variables and highlight the reality
conditions of the particle momenta. Moreover, we discuss the integrable structure of the
amplitudes, which is closely tied to an infinite-dimensional Yangian symmetry extending
their superconformal symmetry. We recapitulate a formulation of the amplitudes as Graß-
mannian integrals, which conveniently exposes these symmetries. This formulation led to
a proposal for deformations of the amplitudes preserving Yangian symmetry, which we
also review. More extensive surveys of gauge theory scattering amplitudes can be found
in [2, 3] and special properties in case of the N = 4 theory are discussed e.g. in [4].

2.1 Amplitudes in Spinor Helicity Variables

A scattering process in planar N = 4 SYM theory involving the particles i = 1, . . . , N
is characterized by their null momenta pi

œ R1,3 and helicities hi = ≠1, ≠
1
2 , 0, +1

2 , +1,
whose range is determined by the internal su(4) R-symmetry. In addition, it depends
on color information originating from the gauge group SU(NC). However, this color
structure can easily be stripped o� from the scattering amplitude. The total momentum
is conserved in the scattering process, P =

q
i pi = 0. In general, this is not true for the

total helicity
q

i hi. The introduction of fermionic variables ÷̃i
ȧ with ȧ = 1, 2, 3, 4 allows

to package all amplitudes with a common degree of helicity violation 2K = N ≠
q

i hi

into a single superamplitude. In the following, we are dealing with color-stripped tree-level
superamplitudes AN,K , which are functions of the momenta pi and the fermions ÷̃i. Mostly,
we refer to them simply as amplitudes.

The AN,K can in principle be constructed employing the textbook Feynman diagram
approach. In practice, however, this is almost infeasible because the number of diagrams
grows exceedingly fast with the number of particles N , see e.g. the discussion in [5].
In addition, the computation of individual diagrams completely obscures an unexpected
simplicity in the expressions for the complete amplitudes. To uncover this simplicity, we
have to choose suitable variables for the kinematics. This is achieved by spinor helicity
variables for the particle momenta pi, which date back to the 1920s [6]. To introduce these
variables, we use a bijection between Minkowski space R1,3 and the space of Hermitian
2 ◊ 2 matrices. A Minkowski vector p = (pµ) is represented by the matrix

(p–—̇) =
A

p0 + p3 p1 ≠ ip2
p1 + ip2 p0 ≠ p3

B

, (2.1)

where the indices take the values –, —̇ = 1, 2. Using the Minkowski inner product p · q =
p0 q0 ≠ p̨ · q̨, one verifies that det(p–—̇) = p2. Hence, for the null momenta of the scattering
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process, the corresponding matrix is at most of rank 1 and can thus be factorized as

p–—̇ = ⁄–⁄̃—̇ (2.2)

with two spinors ⁄ = (⁄–), ⁄̃ = (⁄̃—̇) œ C2. To turn this into a Hermitian matrix, we can
without loss of generality restrict to spinors satisfying the reality condition

⁄̃ = ±⁄ . (2.3)

The sign here determines the sign of the energy as ±2p0 = |⁄1|
2 +|⁄2|

2. In the field of scat-
tering amplitudes, one often works with complexified momenta, i.e. independent spinors
⁄ and ⁄̃ that do not obey the reality condition (2.3). This condition will be of utmost
importance for our work. Let us briefly motivate why we prefer spinor helicity variables to
twistors or momentum twistors is this article. First, it is easy to work with real momenta
by imposing (2.3). What is more, the variables ⁄, ⁄̃ together with the fermions ÷̃ are
associated with the superconformal algebra psu(2, 2|4). They straightforwardly general-
ize to certain oscillator representations of the superalgebra u(p, q|m), which will play an
important role in section 5.

After setting up the formalism, we can discuss actual amplitudes AN,K . In fact,
expressions for all AN,K are known [7]. They involve the spinors in terms of the Lorentz
invariant angle and square brackets,

ÈijÍ = ⁄i
1⁄j

2 ≠ ⁄i
2⁄j

1 , [ij] = ≠⁄̃i
1⁄̃j

2 + ⁄̃i
2⁄̃j

1 . (2.4)

Making use of (2.3), these two brackets are related by

[ij] = ≠ sgn(pi
0) sgn(pj

0)ÈijÍ . (2.5)

Moreover, the amplitudes contain generalized Mandelstam variables that can be expanded
in terms of the brackets,

sij···k = (pi + pj + . . . + pk)2 =
ÿ

u<v
œ{i,j,...,k}

ÈuvÍ[vu] . (2.6)

Here we represent only the maximally helicity violating (MHV) amplitudes explicitly, i.e.
K = 2. They are given by the unexpectedly simple Parke-Taylor formula [8], or rather its
supersymmetric extension [9],

AN,2 = ”4(P )”0|8(Q)
È12ÍÈ23Í · · · ÈN ≠ 1 NÍÈN1Í

, (2.7)

which holds for N Ø 4. Momentum and supermomentum conservation are implemented
by

”4(P ) = ”(P11)”(P22)”(Re P21)”(Im P21) with P–—̇ =
Nÿ

i=1
⁄i

–⁄̃i
—̇

,

”0|8(Q) =
2Ÿ

–=1

4Ÿ

ȧ=1
Q–ȧ with Q–ȧ =

Nÿ

i=1
⁄i

–÷̃i
ȧ .

(2.8)

We stress that for momentum conservation to hold, both signs in (2.3) are needed, i.e.
there have to be particles with positive and negative energy. In a setting with complexified
momenta, (2.7) also yields a three-particle amplitude A3,2. However, for spinors obeying
(2.3), this ceases to exist for purely kinematic reasons, as explained e.g. in [2].
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2.2 Yangian Symmetry

The tree-level amplitudes AN,K are invariant under an infinite-dimensional symmetry al-
gebra, the Yangian of the superconformal algebra psu(2, 2|4). Let us start our discussion a
bit more general and consider the Yangian of the Lie superalgebra gl(n|m) [10]. An intro-
duction to Yangians is provided e.g. in the recent lectures [11]. Arguably, the most elegant
way to define these algebras is in the context of the quantum inverse scattering method
(QISM), which explores the consequences of the Yang-Baxter equation to provide a toolbox
for the study of integrable models, see the authoritative review [12]. In this language the
generators of the Yangian are packaged into the entries of a spin chain monodromy matrix.
A Yang-Baxter equation obeyed by this monodromy yields the commutation relations of
the generators.

In what follows, we specify this monodromy matrix M(u) in detail to derive explicit
formulas for the Yangian generators. It is built out of Lax operators

Li(u ≠ vi) = 1 + (u ≠ vi)≠1 ÿ

A,B
EABJ i

BA(≠1)|B| = ⇤

i

, (2.9)

where u and vi are complex parameters referred to as spectral parameter and inhomo-
geneity, respectively. The Lax operator acts on the tensor product ⇤ ¢ Vi of gl(n|m)
representations. The generators EAB of the defining representation ⇤ = Cn|m are super-
matrices satisfying in particular EABECD = ”BCEAD. The generators of the representation
Vi are denoted J i

AB. Both sets of generators obey the gl(n|m) algebra

[JAB, JCD} = ”CBJAD ≠ (≠1)(|A|+|B|)(|C|+|D|)”ADJCB (2.10)

with superindices such as A = 1, . . . , n+m whose degree |A| = 0, 1 depends on the grading.
Out of these Lax operators, we construct the monodromy matrix of an inhomogeneous
spin chain with N sites,

M(u) = L1(u ≠ v1)L2(u ≠ v2) · · · LN (u ≠ vN ) = ⇤

1 2

. . .

N

. (2.11)

The product of Lax operators here is considered to be a matrix product in the space
⇤ and a tensor product in the spaces Vi. The generators M (l)

AB with l = 1, 2, 3, . . . of
the Yangian are obtained by expanding1 the elements of the monodromy matrix in the
spectral parameter u,

M(u) =
ÿ

A,B
EABMAB(u)(≠1)|B| ,

MAB(u) = ”AB(≠1)|B| + u≠1M (1)
AB + u≠2M (2)

AB + . . . .

(2.12)

With the Lax operators in (2.9), these generators acting in V1 ¢ · · · ¢ VN read

M (1)
AB =

Nÿ

i=1
J i

BA , M (2)
AB =

Nÿ

i=1
viJ

i
BA +

Nÿ

i,j=1
i<j

ÿ

C
(≠1)|C|J j

BCJ i
CA , . . . . (2.13)

1
The powers of u in this expansion motivate our labeling of the generators by l = 1, 2, 3, . . . despite the

frequent use of the “levels” l ≠ 1 = 0, 1, 2, . . . for this purpose.
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We will encounter this form of the Yangian generators in sections 3 and 5. In the context
of N = 4 SYM scattering amplitudes, one usually works with slightly di�erent looking
generators M [l]

AB. These are obtained from another expansion of the monodromy matrix,

M(u) = 1 + u≠1M (1) + u≠2M (2) + . . . = exp
1
u≠1M [1] + u≠2M [2] + . . .

2
. (2.14)

We will provide explicit formulas for the generators M [l]
AB momentarily, see (2.20) below.

Of central importance are Yangian invariants. These are states |�Í œ V1 ¢ · · · ¢ VN

that are annihilated by all Yangian generators,

M (l)
AB|�Í = 0 (2.15)

for all l = 1, 2, 3, . . . . Due to the commutation relations of the generators, see e.g. [1], it
is actually su�cient to verify this condition only for the first two sets of generators with
l = 1, 2. The Yangian invariance condition (2.15) can be expressed equivalently in terms
of the generators M [l]

AB. In addition, it takes a natural form when written employing the
spin chain monodromy (2.11) [13,14],

M(u)|�Í = 1 |�Í , (2.16)

where the identity operator on the right-hand side acts on ⇤ = Cn|m. We may represent
this equation graphically as

⇤

1 2

. . .

N

|�Í

=

⇤

1 2

. . .

N

|�Í

. (2.17)

This brings Yangian invariants inside the realm of the QISM. Hence, it potentially allows
to construct them using the associated tools, such as the algebraic Bethe ansatz [13].

After this detour, we return to the tree-level amplitudes AN,K of planar N = 4 SYM.
Their Yangian invariance was discovered in [15] by combining the well-known invariance
under the superconformal algebra psu(2, 2|4) with a rather unexpected occurrence of a
second copy of psu(2, 2|4) termed dual superconformal symmetry. Reviews on the Yangian
symmetry of amplitudes and on its relevance for other observables of planar N = 4 SYM
are provided in [11,16,17]. Instead of following the historic route, we apply the formalism
introduced in the preceding paragraphs to arrive at Yangian generators that annihilate
the amplitudes AN,K .

A function annihilated by the generators of psu(2, 2|4) is also annihilated by any com-
plex linear combination thereof and hence by the complexified algebra psl(C4|4) © psl(4|4).
Generators JAB of gl(4|4) ∏ psl(4|4) are easily realized in terms of spinor helicity variables.
Arranged into a supermatrix they read

(JAB) =

Q

ccca

⁄–ˆ⁄—
⁄–⁄̃—̇ ⁄–÷̃ḃ

≠ˆ⁄̃–̇
ˆ⁄—

≠ˆ⁄̃–̇
⁄̃—̇ ≠ˆ⁄̃–̇

÷̃ḃ

ˆ÷̃ȧˆ⁄—
ˆ÷̃ȧ ⁄̃—̇ ˆ÷̃ȧ ÷̃ḃ

R

dddb . (2.18)
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Here we split the superindices such as A = 1, . . . , 8 into bosonic indices –, –̇ = 1, 2 and
a fermionic index ȧ = 1, 2, 3, 4. In order to restrict to the algebra psl(4|4), we have to
impose C = tr(JAB) =

q
A JAA = 0 and B = str(JAB) =

q
A(≠1)|A|JAA = 0. Generators

of sl(4|4) are obtained from (2.18) by defining

JÕ
AB = JAB ≠

1
8(≠1)|A|”ABB . (2.19)

They satisfy CÕ = C and BÕ = 0. Let us consider a spin chain monodromy matrix M(u) as
in (2.11) with generators J i

AB = Ji
AB of the form (2.18) in the Lax operators. Expanding

this monodromy as in (2.14) yields the Yangian generators

M [1]
AB =

Nÿ

i=1
Ji

BA , M [2]
AB = 1

2

Nÿ

i,j=1
i<j

ÿ

C
(≠1)|C|

1
Jj

BCJ
i
CA ≠ Ji

BCJ
j
CA

2
+

Nÿ

i=1
v̂iJ

i
BA . (2.20)

To obtain these expressions, we used the form of the generators in (2.18), assumedqN
i=1 C

i = 0, and introduced v̂i = vi ≠
ci
2 + 1

2 with ci being the eigenvalue of Ci. For
the amplitudes, these eigenvalues are closely related to the superhelicities of the particles,
and they have to vanish, ci = 0. In order to act with (2.20) on the amplitudes, we also
have to set v̂i = 0. Then the amplitudes are annihilated by the Yangian generators after
replacing the gl(4|4) generators Ji

AB in (2.20) by the sl(4|4) generators from (2.19), which
we indicate by apostrophes,

M Õ[1]
ABAN,K = 0 , M Õ[2]

ABAN,K = 0 . (2.21)

This is the form of the Yangian invariance condition typically found in the amplitudes liter-
ature, see e.g. [15]. The first equation in (2.21) is the ordinary action of a Lie superalgebra
on a tensor product and corresponds to superconformal invariance.

We remark that a careful analysis, taking into account the reality conditions (2.3) of
the spinor variables, reveals of a breaking of the Yangian invariance (2.21), and even the
superconformal invariance alone, at certain singularities of the amplitudes [18]. Because
this issue does not occur for generic particle momenta, it is often neglected in the discussion
of tree-level amplitudes.

2.3 Graßmannian Integral and Deformations

In this section, we discuss a very compact formulation of the amplitudes AN,K in terms
of certain multi-dimensional contour integrals called Graßmannian integrals [19, 20], see
also the extensive treatise2 [22]. This approach particularly suites our interests because
it allows for an easy investigation of symmetries. While the superconformal symmetry is
manifest in this formulation, also the Yangian symmetry can be verified [23].

Before defining the Graßmannian integral, we have to discuss some bare essentials of
Graßmannian manifolds. The complex Graßmannian Gr(K, N) is defined as the space of
all K-dimensional linear subspaces of CN . “Homogeneous” coordinates on this space are
provided by the complex entries of a K ◊ N matrix C. Selecting a basis within a given
subspace does not alter the point in the Graßmannian. Consequently, a generic point in

2
This book project grew out of the influential preprint [21].
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Gr(K, N) can be described by the “gauge fixed” matrix

C =
1

1K C

2
with C =

Q

cca

C1K+1 · · · C1N
...

...
CKK+1 · · · CKN

R

ddb , (2.22)

where 1K denotes the K ◊ K unit matrix. In what follows, we will also encounter the
(N ≠ K) ◊ N matrix C‹ =

!
≠C

t 1N≠K
"

obeying C(C‹)t = 0. It is an element
of Gr(N ≠ K, N). These ingredients are su�cient to present the Graßmannian integral
formulation of amplitudes [19],

AN,K =
⁄

dK(N≠K)
C

”2(N≠K)|0
ú (C‹⁄)”2K|0

ú (C⁄̃)”0|4K(C÷̃)
(1, . . . , K) · · · (N, . . . , K ≠ 1) (2.23)

with the holomorphic form dK(N≠K)
C =

w
k,l dCkl. Here (i, . . . , i + K ≠ 1) signifies the

minor of the matrix C constructed from the consecutive columns i, . . . , i + K ≠ 1. These
are counted modulo N such that they stay within the range 1, . . . , N . The external data
is encoded in the N ◊ 2 matrices ⁄ = (⁄i

–) and ⁄̃ = (⁄̃i
–̇) as well as the N ◊ 4 matrix

÷̃ = (÷̃i
ȧ). The symbol ”ú denotes a formal bosonic delta function whose argument may be

complex. It can be understood as a calculation rule to set the argument to zero and omit
an integration. To evaluate the Graßmannian integral (2.23), one first uses the formal
bosonic delta functions to reduce the number of integration variables. Then one specifies
a contour for the remaining variables, which has to be closed to ensure Yangian invariance.
The resulting integral can be evaluated by means of a multi-dimensional generalization
of Cauchy’s residue theorem, the so-called “global residue theorem”, see the discussion
in [19]. Suitable contours are known for all amplitudes AN,K . They can be specified in a
geometric fashion [24], generalizing partial results in [25].

Let us mention a significant open problem of the Graßmannian integral approach in
the form presented in (2.23). In case of the physical Minkowski signature (1, 3), the spinors
obey the reality conditions (2.3). Hence, the spinors contained in ⁄̃ depend on those in ⁄.
This is neglected in the standard way of evaluating the integral, which we just sketched.
The issue is commonly evaded by working in split signature (2, 2) or in a complexified
momentum space, where ⁄ and ⁄̃ are treated as independent real or complex variables,
respectively.

In discussing the Yangian invariance of the amplitudes AN,K around (2.21), we noted
that we had to set ci = 0 and v̂i = 0 in the Yangian generators (2.20). This naturally leads
to the question whether there exist deformed amplitudes A

(def)
N,K for which these parameters

do not vanish. It was first raised in [26,27], one motivation being that complex deformation
parameters might serve as integrability-based regulators of loop amplitudes. In addition,
the deformations should be crucial to properly understand the integrable structure of
amplitudes and to eventually put this structure to use for their e�cient construction, even
at all-loop level. The study of deformed amplitudes continued in [28–30]. It resulted in a
deformed Graßmannian integral [31, 32]

A
(def)
N,K =

⁄

?

dK(N≠K)
C

”2(N≠K)|0
ú (C‹⁄)”2K|0

ú (C⁄̃)”0|4K(C÷̃)
(1, . . . , K)1+v̂≠

K≠v̂+
1 · · · (N, . . . , K ≠ 1)1+v̂≠

K≠1≠v̂+
N

. (2.24)

Here the exponents are defined by [28]

v̂±
i = v̂i ±

ci

2 . (2.25)
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They have to satisfy

v̂≠
i+K = v̂+

i (2.26)

for i = 1, . . . , N , where we count modulo N . This condition ensures the Yangian invariance
(2.21) of the integral (2.24), provided a closed integration contour. Furthermore, starting
from the Yangian invariance condition (2.16) involving a spin chain monodromy, (2.24)
can even be derived using tools rooted in the QISM [31]. These tools were introduced
in [14,33] and studied more systematically in [29,34]. However, this method uses somewhat
formal integral operators and does not yield a suitable contour for the resulting deformed
Graßmannian integral (2.24). Deformations of the MHV amplitudes (2.7) can be obtained
from (2.24) without specifying a contour because all integration variables are fixed by the
bosonic delta functions,

A
(def)
N,2 = ”4(P )”0|8(Q)

È12Í
1+v̂≠

2 ≠v̂+
1 · · · ÈN1Í

1+v̂≠
1 ≠v̂+

N

. (2.27)

This brings us to the main challenge of understanding the deformed amplitudes A
(def)
N,K .

It is not known how to evaluate the integral (2.24) beyond the MHV case. Because of the
complex exponents of the minors in the denominator, Cauchy’s residue theorem and its
multi-dimensional generalization do not apply any longer. The exponents lead to branch
cuts and the resulting multi-valuedness of the integrand makes it very di�cult to find a
closed integration contour, which is necessary for Yangian invariance. We will address
this problem in section 3. It turns out that the choice of the integration contour is tightly
interrelated with using the proper Minkowski reality conditions (2.3) for the spinors in ⁄
and ⁄̃.

Finally, let us mention that the Yangian invariance condition for A
(def)
4,2 can be shown

to be equivalent to a Yang-Baxter equation. This suggests interpreting A
(def)
4,2 as an R-

matrix, where one of its deformation parameters is the spectral parameter of this R-
matrix [26, 27]. In this interpretation, the undeformed amplitude A4,2 corresponds to
the R-matrix evaluated at a special point of the spectral parameter. Interestingly, this
interpretation appears to be at odds with [35], where A4,2 was related to the one-loop
dilatation operator of the planar N = 4 SYM spectral problem. This operator is not an
R-matrix itself but can be constructed from one. We believe that this conceptual di�erence
deserves further attention and will revisit it in section 6.

3 Unitary Graßmannian Integral

Our aim in this section is to construct a refined version of the deformed Graßmannian
integral (2.24) that respects the reality conditions (2.3) of the spinor helicity variables in
Minkowski signature. We will start with what seems to be the most involved step, finding a
suitable integration contour. Then we can formulate the sought after refined Graßmannian
formula. In particular, we discuss the crucial single-valuedness of its integrand. Finally, we
define Yangian generators that annihilate our integral formula and specify the occurring
representations.

3.1 Reality Conditions and Unitary Contour

First, we have to introduce our setting. From now on, we restrict ourselves to the case N =
2K, which corresponds to helicity conserving amplitudes. It has the technical advantage
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that the integration variable C defined in (2.22) is a complex K ◊ K square matrix.
Instead of focusing on psu(2, 2|4) Yangian invariants relevant for the amplitudes A2K,K ,
we immediately generalize to u(p, p|m). This generalization can be done almost e�ortlessly,
and it will help us to gain important insights3 into the structure of our integrals later.
It implies replacing the bosonic variables ⁄, ⁄̃ œ C2 defined in (2.2) by ⁄, ⁄̃ œ Cp. Even
though in general these variables are not associated with four-dimensional Minkowski
momenta anymore, it is often helpful to continue using this terminology. To be able
to perform concrete calculations, we have to impose the reality conditions (2.3) on the
variables ⁄i, ⁄̃i

œ Cp. We choose negative energies for the first K momenta and positive
energies for the latter K. This completely determines the 2K ◊ p matrix ⁄̃ containing all
⁄̃i in terms of the matrix ⁄ containing the ⁄i,

⁄̃ =

Q

a
⁄̃

≠

⁄̃
+

R

b =

Q

a
≠⁄

≠

⁄
+

R

b , ⁄ =

Q

a
⁄≠

⁄+

R

b . (3.1)

The K ◊ p blocks of ⁄ are ⁄≠ = (⁄k
–) and ⁄+ = (⁄l

–), whose row indices run over
k = 1, . . . , K and l = K + 1, . . . , 2K, respectively. We will stick to this setup throughout
this article.

Now we are in a position to discuss the integration contour. A characteristic feature
of the Graßmannian integral (2.24), that we want to keep for our refined version, is the
linear relations among the spinors in ⁄ imposed by bosonic delta functions,

0 = C‹⁄ = ≠C
t⁄≠ + ⁄+ . (3.2)

Furthermore, we want to impose momentum conservation, recall (2.8),

P–—̇ =
Nÿ

i=1
⁄i

–⁄̃i
—̇

= 0 … ⁄t⁄̃ = 0 . (3.3)

Here the total momentum is encoded in the Hermitian p ◊ p matrix P = (P–—̇). For our
purpose, it is more suitable to work with its expression in terms of the matrices ⁄ and ⁄̃.
With the help of (3.1) and (3.2), we obtain

0 = ⁄t⁄̃ = (⁄̃≠)†!
CC

†
≠ 1K

"
⁄̃

≠
. (3.4)

This is most naturally satisfied by demanding C œ U(K). It strikingly suggests that the
contour of our refined version of the Graßmannian integral (2.24) should be a unitary group
manifold. See also appendix B for an independent argument in favor of this contour.

Clearly, in order to cover all amplitudes AN,K , it would be necessary to extend the
reasoning presented in this section to the case N ”= 2K and, in addition, to allow for
arbitrary choices of the energy signs. We comment on both of these aspects separately. The
unitary group manifold seems to generalize to a so-called Stiefel manifold4 for N ”= 2K.
Starting with the linear constraint C‹⁄ = 0 as in (3.2), we arrive again at (3.4), where now

3
In particular, it will be instructive to study the simpler algebra u(1, 1) in section 4.3 below. This may

remind the reader of the Amplituhedron [36]. Its definition involves a parameter m, and it yields physical

amplitudes for m = 4. At times, it is investigated for the mathematically more accessible case m = 2,

which corresponds to u(1, 1|2) in our language.
4
We will encounter this manifold, together with the appropriate Haar measure, for a di�erent purpose

in appendix B.
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C from (2.22) is a non-square K ◊ (N ≠ K) matrix. Assuming N > 2K, we can demand
CC

† = 1K , which defines said manifold. However, this condition has no solution in case of
N < 2K. Here we resort to the other constraint C⁄̃ = 0 from the Graßmannian integral
(2.24), which leads to the Stiefel manifold C

†
C = 1N≠K . Note that the two constraints

become equivalent for N = 2K due to the unitarity of C. Eventually, one should also
generalize the distribution of the energy signs. As long as there are K particles with
negative and N ≠ K with positive energy, we can align the gauge fixing of the matrix C
in (2.22) with the distribution of signs in (3.1). In this way, we obtain a Stiefel manifold
for the matrix block C once again. Additional complications surface for di�erent numbers
of positive and negative energy particles. This is a bit puzzling because the energy signs
enter the final formula [7] for the amplitude AN,K only mildly via the reality conditions
(2.5) of the spinor brackets [ij]. We leave the extensions discussed in this paragraph for
future work as already our specific setting will give rise to rich structures.

3.2 Graßmannian Integral

Here we implement the insight on the choice of the contour. In doing so, we generalize
the superalgebra slightly further by allowing for di�erent gradings5 of the fermions, which
we indicate by the notation u(p, p|m = r + s). We define a unitary Graßmannian integral
computing Yangian invariants for this algebra by

�N=2K,K =
⁄

U(K)

[dC] F (C) ”pK|0
C (C‹⁄)”0|rK(C‹÷)”0|sK(C÷̃) , (3.5)

where the Graßmannian matrices C and C‹ are defined around (2.22). They contain
the matrix block C that we impose be to unitary here. We denote the Haar measure on
the unitary group U(K) by [dC]. The constraint (3.2) is imposed in the integrand using
complex delta functions, which are defined by ”C(z) = ”(Re z)”(Im z) for z œ C. The 2K◊p
matrix ⁄ contains the bosonic variables ⁄i

œ Cp associated with the sites i = 1, . . . , 2K,
as explained around (3.1). For the representations we are working with, each site is also
associated with r- and s-dimensional fermionic variables ÷i and ÷̃i, respectively. They are
packaged into the 2K◊r matrix ÷ = (÷i

a) and the 2K◊s matrix ÷̃ = (÷̃i
ȧ). A characteristic

part of the integrand is the function

F (C)≠1 = (det C)m≠q≠K
2KŸ

i=1
(i, . . . , i + K ≠ 1)1+v≠

i+K≠1≠v+
i , (3.6)

which contains the minors (i, . . . , i + K ≠ 1) of the matrix C. For its use in (3.5), we have
to identify q = p. In section 5 below, we will need F (C) without this identification. The
exponents of the minors are given by

v±
i = vÕ

i ±
ci

2 , vÕ
i = vi ≠

ci

2 +
I

n ≠ m ≠ 1 for i = 1, . . . , K ,

0 for i = K + 1, . . . , 2K ,
(3.7)

5
This might seem unnecessarily tedious. In fact, we will exclusively use the grading u(2, 2|0 + 4) to

relate our results to amplitudes in this article. However, for the spectral problem of planar N = 4 SYM,

the grading u(2, 2|2 + 2) appears to be more natural at one loop [37, 38] and is the key to all-loop results

such as [39]. We will discuss the prospect of extending our formalism to the results of the latter reference

in section 6.1.
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where n = 2p and m = r + s. The case distinction originates from the choice of energy
signs for the sites in (3.1). The parameters vi œ C are inhomogeneities of a spin chain
monodromy matrix (2.11) whose sites carry u(p, p|r +s) representations labeled by ci œ Z,
see the discussion in section 3.4 below. To enable the Yangian invariance of �2K,K in
(3.5), we have to demand

v≠
i+K = v+

i , (3.8)

for i = 1, . . . , 2K. We denote the Yangian invariants by �2K,K instead of A
(def)
2K,K because

we still have to establish their relation to the amplitudes A2K,K . This will be achieved for
sample invariants in section 4, and a further perspective on their relation will be added in
section 6.2.

Let us compare the unitary integral (3.5) with the original deformed Graßmannian
integral (2.24). First, there are no delta functions explicitly constraining ⁄̃ in (3.5). This
would be superfluous because the delta functions containing ⁄ together with the reality
conditions in (3.1) yield the constraint C⁄̃ = 0. Next, the Haar measure [dC] in (3.5) can
easily be obtained from the holomorphic form in (2.24),

[dC] Ã
dK2

C

(det C)K
, (3.9)

for C œ U(K). The proportionality constant is fixed by demanding
s

U(K)[dC] = 1. This
form of the Haar measure is suitable for showing its left- und right-invariance, i.e. invari-
ance under the transformation C ‘æ VCW with constant matrices V, W œ U(K). What
is more, the function F (C)≠1 from (3.6) essentially reduces to the product of minors in
(2.24). The additional factors of det C can be attributed to the algebra u(p, p|m) gener-
alizing psu(2, 2|4), the arguments of the bosonic delta functions, and the Haar measure.
An important change is the restriction from complex representation labels ci in (2.24) to
integer ones in (3.5). It is required for the single-valuedness of F (C) addressed in the next
section.

3.3 Single-Valued Integrand

The main obstruction to finding a closed contour for the original deformed Graßmannian
integral (2.24), needed to show its Yangian invariance, is the intricate branch cut structure
of its integrand caused by the complex exponents of the minors. Even though the unitary
group U(K) is compact, it could still fail to yield a closed contour for our integral (3.5), if
the integrand F (C) from (3.6) was multi-valued. Until now, this integrand is still formal
because we have not specified its analytic structure yet. In what follows, we will do this
implicitly by manipulating it into a form that is explicitly single-valued.

We start by expressing the minors of the K ◊ 2K matrix C defined in (2.22) in terms
of those of the K ◊ K matrix C,

(i, . . . , i + K ≠ 1) = (≠1)(K≠i+1)(i≠1)
I

[1, . . . , i ≠ 1] for i = 1, . . . , K ,

[i ≠ K, . . . , K] for i = K + 1, . . . , 2K .
(3.10)

In this formula, the principal minor of C built from the rows and columns i to j is denoted
[i, . . . , j], e.g. [ ] = 1, [1] = C1 K+1, and [1, . . . , K] = det C. Furthermore, using the
unitarity of C we obtain

[i + 1, . . . , K] = [1, . . . , i] det C , (3.11)
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see e.g. [40]. This useful identity can be proven using a block decomposition of C. It is
helpful to translate the constraints on v±

i in (3.8) into constraints on the parameters vi, ci,

vK+i = vi + n ≠ m ≠ 1 ≠ ci , cK+i = ≠ci , (3.12)

for i = 1, . . . K. Using the relations obtained here and disregarding the analytic structure
temporarily by combining products of minors with common complex exponents, we rewrite
(3.6), up to a constant sign factor, as

F (C)≠1 =(det C)m≠q+cK

K≠1Ÿ

i=1
|[1, . . . , i]|2(1+vi≠vi+1)[1, . . . , i] ci+1≠ci

. (3.13)

This function is manifestly single-valued because only non-negative numbers are exponen-
tiated to non-integer powers. Here we see the paramount importance of integer represen-
tation labels ci. Henceforth, we will use the single-valued integrand F (C) defined in (3.13)
instead of formal expression (3.6). Consequently, the unitary integration contour in (3.5)
is closed, as is required to demonstrate Yangian invariance.

3.4 Symmetry Generators and Yangian Invariance

We still have to specify the Yangian generators annihilating the invariants �2K,K defined
by the unitary Graßmannian integral (3.5). For this purpose, we need to introduce some
basics of two classes of u(p, p|r+s) representations. In the special case of su(2, 2), these are
well-known representations of the conformal algebra [41,42] and the two classes correspond
to positive and negative energies. In general, they are equivalent to certain oscillator
representations [43,44], which we will encounter in section 5.

For the first class of representations, we consider generators JAB of the gl(n|m) su-
peralgebra (2.10) built from the bosonic variables ⁄– œ C and the fermions ÷a and ÷̃ȧ

with the index ranges – = 1, . . . , p, a = 1, . . . , r, and ȧ = 1, . . . , s. They are given by the
supermatrix

(JAB) =

Q

cccccca

⁄–ˆ⁄—
⁄–ˆ÷b ⁄–⁄— ⁄–÷̃ḃ

÷aˆ⁄—
÷aˆ÷b ÷a⁄— ÷a÷̃ḃ

≠ˆ⁄–
ˆ⁄—

≠ˆ⁄–
ˆ÷b ≠ˆ⁄–

⁄— ≠ˆ⁄–
÷̃ḃ

ˆ÷̃ȧˆ⁄—
ˆ÷̃ȧˆ÷b ˆ÷̃ȧ⁄— ˆ÷̃ȧ ÷̃ḃ

R

ddddddb
(3.14)

with superindices A, B = 1, . . . , 2p + r + s = n + m. Let Dc denote the space of those
functions of the bosonic and fermionic variables on which the central element

C = tr(JAB) =
pÿ

–=1
(⁄–ˆ⁄– ≠ ⁄–ˆ⁄–

) +
rÿ

a=1
÷aˆ÷a ≠

sÿ

ȧ=1
÷̃ȧˆ÷̃ȧ ≠ p + s (3.15)

acts by multiplication with the eigenvalue c. We define conjugates of the variables by

⁄–
† = ⁄– , ˆ⁄–

† = ≠ˆ⁄–
, ÷a

† = ˆ÷a , ÷̃ȧ
† = ˆ÷̃ȧ . (3.16)

At this point, we refrain from stating the inner product leading to this choice, which would
also be required for a less formal definition of the space Dc. Some details will be filled in
below in sections 5.3 and 5.4. With (3.16), Dc for c œ Z carries a unitary representation of
u(p, p|r + s). For the algebra u(2, 2|0 + 4), the supermatrix of generators (3.14) reduces to
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(2.18) with the reality condition ⁄̃ = +⁄ from (2.3). Hence, in slight abuse of terminology,
we refer to the Dc also for the algebra u(p, p|r + s) as positive energy representation. The
second class of representations is obtained from the gl(n|m) generators

J̄AB = JAB|(⁄,⁄) ‘æ(⁄,≠⁄) + ”AB(≠1)|A| , (3.17)

where JAB are the generators in (3.14). We have

C̄ = tr(J̄AB) =
pÿ

–=1
(⁄–ˆ⁄– ≠ ⁄–ˆ⁄–

) +
rÿ

a=1
÷aˆ÷a ≠

sÿ

ȧ=1
÷̃ȧˆ÷̃ȧ + p ≠ r . (3.18)

The space of functions on which this central element acts by multiplication with c œ Z is
denoted D̄c and forms a unitary representation of u(p, p|r + s). We refer to D̄c as negative
energy representation.

Let us remark that for u(2, 2|0 + 4) the J̄AB di�er from the generators in (2.18) with
⁄̃ = ≠⁄ by the second term in (3.17). This term arises naturally in section 5.4, where we
will revisit the representations introduced here. Practically, its inclusion has the advantage
that we do not have to change from gl(n|m) to sl(n|m) generators, as it is usually the
case for the N = 4 SYM amplitudes AN,K , cf. (2.19) and (2.21). On a di�erent note, the
expressions for the central elements C and C̄ in (3.15) and (3.18), respectively, agree for
2p = r+s. In particular, this is the case for u(2, 2|0+4), where these generators essentially
measure the superhelicities of particles described by the amplitudes AN,K .

Finally, given the two classes of representations, we are able to construct a monodromy
matrix M(u) with N = 2K sites, as introduced in (2.11), that is associated with �2K,K

defined by the unitary Graßmannian integral (3.5). With our choice of energy signs in
(3.1), the first K sites carry negative energy representations D̄ci and the latter K sites
carry positive energy representations Dci . Hence the generators entering the Lax operators
(2.9) of the monodromy are

J i
AB =

I
J̄i

AB for i = 1, . . . , K ,

Ji
AB for i = K + 1, . . . , 2K ,

(3.19)

which can be found in (3.17) and (3.14), respectively. The inhomogeneities vi and rep-
resentations labels ci of the monodromy have to obey (3.8), recall also the equivalent
equation (3.12). Then �2K,K defined in (3.5) satisfies the Yangian invariance condition
(2.15) and thus also (2.16) in the QISM language. We do not provide a direct proof of this
key statement here. Instead, we refer the reader to section 5, where we translate �2K,K

into a di�erent basis in which the Yangian invariance has been proven.

4 Sample Invariants and Amplitudes

Having defined Yangian invariants by the unitary Graßmannian integral (3.5), we evaluate
this integral here for several examples. Our primary focus are sample invariants �2K,K

for the algebra u(2, 2|4) whose relation to the N = 4 SYM amplitudes A2K,K we explore.
The first step in the evaluation of (3.5) can be performed on general grounds, even for
u(p, p|r + s). It is possible to reduce6 the U(K) integral to a U(K ≠ p) integral provided

6
This is somewhat similar to the transition [45] from the original Gr(K, N) Graßmannian integral (2.23)

for AN,K in spinor helicity variables to that in terms of momentum twistors involving the Graßmannian

Gr(K ≠ 2, N).
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K Ø p. Technically, this reduction is based on QR decompositions of the K ◊ p blocks ⁄±

making up the kinematic data in ⁄, cf. (3.1). The unitary factors of these decompositions
can be absorbed into the integration variable C œ U(K) using the left- and right-invariance
of the Haar measure. The bosonic delta functions in (3.5) then reduce the new integration
variable to a U(K ≠ p) matrix. On a di�erent note, our evaluation of the integral (3.5) in
the present section addresses only terms with maximal kinematic support, i.e. the those
proportional to the momentum conserving delta function (2.8). We neglect additional
terms that can appear for special kinematic configurations, see section 6.2 below.

4.1 Four Particles for u(2, 2|4)
As a first example, we evaluate the integral (3.5) to obtain the invariant �4,2 for the
algebra u(2, 2|0 + 4). Our naming of the fermionic variables suggests that this grading of
the algebra is required to make contact with the amplitude A4,2 from (2.7). The bosonic
delta functions in (3.5) fix the integration variable completely,

C = 1
È12Í

A
È32Í È42Í

È13Í È14Í

B

. (4.1)

This is a unitary matrix because of the reality conditions of the spinors in (3.1) and
momentum conservation (3.3). We obtain from it the Yangian invariant

�4,2 = ”4|0(P )”0|8(Q)
È12ÍÈ23ÍÈ34ÍÈ41Í

3
È14Í

È34Í

4c1 3
È12Í

È14Í

4c2
A

È34ÍÈ34Í

È14ÍÈ14Í

Bv1≠v2

, (4.2)

where we dropped a numerical prefactor, as we will also do in the following examples. The
delta functions implementing momentum and supermomentum conservation are defined in
(2.8). We chose to display the result using complex conjugates of angle brackets ÈijÍ instead
of square brackets [ij] to highlight the analytic structure, recall the relation between these
brackets from (2.5). �4,2 is a single-valued function of the spinors ⁄i

– because the factor
raised to the complex power v1 ≠ v2 is non-negative and c1, c2 œ Z. Moreover, �4,2
basically agrees with the deformed amplitude A

(def)
4,2 from (2.27), which was first obtained

in [26]. This is leaving aside the crucial restriction to integer representation labels c1, c2
and a slight, inessential di�erence in the parameterization of the complex deformation
parameters. �4,2 reduces to the amplitude A4,2 from (2.7) for c1 = c2 = 0 and v1 = v2.
Let us remark that evaluating the Graßmannian integral (3.5) for �4,2 in case of the bosonic
algebra u(2, 2) with these deformation parameters yields the four-particle tree-level MHV
gluon amplitude with the split helicity configuration (+1, +1, ≠1, ≠1).

4.2 Six Particles for u(2, 2|4)
Let us move on to six particles. It was argued in [28] that a deformation of the amplitude
A6,3 cannot be constructed by deforming the individual residues contributing to it. Does
this imply that there is no such deformation? The authors of [31] put forward the idea of
deforming the entire integral from which the residues are extracted. This resulted in the
Graßmannian integral (2.24) for the deformed amplitude A

(def)
6,3 . However, as discussed in

section 2.3, a suitable contour for this integral has been missing so far. Here we evaluate
our Graßmannian integral formula (3.5) with the unitary contour for the u(2, 2|0 + 4)
Yangian invariant �6,3. In particular, we show how it reduces to A6,3 in the undeformed
limit.
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First, the bosonic delta functions in (3.5) determine the integration variable C œ U(3)
up to a phase U œ U(1),

C = 1
s123

S

WU

Q

ca
È56ÍÈ23Í È64ÍÈ23Í È45ÍÈ23Í

È56ÍÈ31Í È64ÍÈ31Í È45ÍÈ31Í

È56ÍÈ12Í È64ÍÈ12Í È45ÍÈ12Í

R

db U

≠

Q

ca
È1|2+3|4Í È1|2+3|5Í È1|2+3|6Í

È2|1+3|4Í È2|1+3|5Í È2|1+3|6Í

È3|1+2|4Í È3|1+2|5Í È3|1+2|6Í

R

db

T

XV .

(4.3)

The unitarity of this matrix can be verified using the reality conditions in (3.1) and
momentum conservation (3.3). This reduces the U(3) integral (3.5) to the U(1) integral

�6,3 = ”4|0(P )”0|8(Q)
s5

123

⁄

U(1)

[dU ] ”0|4(a U + b)
U2≠c3 |A ≠ UB|2(1+v1≠v2)(A ≠ UB)c2≠c1

·
1

|UC ≠ D|2(1+v2≠v3)(UC ≠ D)c3≠c2

(4.4)

with the kinematic data encoded in the variables

A = È1|2+3|4Í

s123
, B = È56ÍÈ23Í

s123
, C = È3|1+2|6Í

s123
, D = È45ÍÈ12Í

s123
,

a = È23Í÷̃1 + È31Í÷̃2 + È12Í÷̃3 , b = È56Í÷̃4 + È64Í÷̃5 + È45Í÷̃6 .

(4.5)

Here ÷̃i = (÷̃i
ȧ) are four-dimensional fermionic variables and the momentum and super-

momentum conserving delta functions are defined in (2.8). The one-dimensional integral
(4.4) is our final expression for the fully deformed Yangian invariant �6,3. It would be
desirable to express in terms of known special functions.

Next, to make contact with the amplitude A6,3, we study the undeformed limit of
(4.4), i.e. we set c1 = c2 = c3 = 0 and v1 = v2 = v3. This yields the complex contour
integral

�6,3 = ”4|0(P )”0|8(Q)
s5

123

1
2fii ABCD

j
dU

”0|4(a U + b)
U

1
U ≠

A
B

21
U ≠

B
A

21
U ≠

D
C

21
U ≠

C
D

2 , (4.6)

where we wrote the Haar measure as [dU ] = 1
2fii

dU
U , cf. (3.9), and thereby parameterized

U(1) as the counterclockwise unit circle in the complex U-plane. This integral can be
computed by means of Cauchy’s residue theorem. The pole at U = 0 obviously lies inside
of the contour. In addition, there are two pairs of poles, whose positions depend on the
kinematic data. If the pole at U = A

B is inside of the contour, the one at U = B
A is

outside, and vice versa. The same holds true for the pair at U = D
C , C

D . An illustration
of this behavior is presented in figure 4.1. As a result, there are always three residues
contributing to the integral (4.6). Notice that here we neglect the possibility of poles
moving onto the contour because this is only possible for special kinematics. The selection
of contributing residues is controlled by the signs of the variables

1 ≠

----
A

B

----
2

= s234s123
s23s56

Ã s234 , 1 ≠

----
C

D

----
2

= s345s123
s12s45

Ã s345 . (4.7)
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Re U

Im U

0

Œ

A
B

B
A

C
D

D
C

1

s234

s345

Figure 4.1: Sample configuration of the poles of the integrand in (4.6) for the
undeformed u(2, 2|4) Yangian invariant �6,3. Dashed lines connect pairs of poles.
For each pair, exactly one pole is inside of the contour. The signs of the Mandelstam
variables s234 and s345 determine which one.

We expressed them in terms of the Mandelstam variables from (2.6). Our selection of
energy signs in (3.1) implies that s123 and the sij appearing in (4.7) are non-negative.
Thus we dropped these factors in the last step.

In order to be able to compare the undeformed invariant (4.6) with the amplitude A6,3,
we translate the residues into the R-invariants [46]

R
r;st =

Ès s ≠ 1ÍÈt t ≠ 1Í”0|4!
Èr|xrsxst

|◊tr
Í + Èr|xrtxts

|◊sr
Í
"

(xst)2Èr|xrsxst|tÍÈr|xrsxst|t ≠ 1ÍÈr|xrtxts|sÍÈr|xrtxts|s ≠ 1Í
. (4.8)

These are expressed in terms of the dual variables xi and ◊i. They are defined by the
relations ⁄i

–⁄̃i
—̇

= xi
–—̇

≠ xi+1
–—̇

and ⁄i
–÷̃i

ȧ = ◊i
–ȧ ≠ ◊i+1

–ȧ with the identification N + 1 © 1
for the particle indices, where here N = 6. Furthermore, we used the abbreviations
xij = xi

≠xj and ◊ij = ◊i
≠◊j . The dual superconformal symmetry mentioned in section 2.2

acts naturally on the variables xi and ◊i. Employing the R-invariants from (4.8), the
undeformed integral (4.6) evaluates to

�6,3 = ”4|0(P )”0|8(Q)
È12ÍÈ23ÍÈ34ÍÈ45ÍÈ56ÍÈ61Í

Y
_____]

_____[

R
1;46 + R

1;35
≠ R

6;35 for s234 > 0 , s345 < 0 ,

R
1;46

≠ R
6;25

≠ R
6;35 for s234 < 0 , s345 < 0 ,

R
1;46 + R

1;35 + R
1;36 for s234 > 0 , s345 > 0 ,

R
1;46

≠ R
6;25 + R

1;36 for s234 < 0 , s345 > 0 .

(4.9)

Here the four di�erent kinematic regions arise from the residue positions in (4.7). Each
R

r;st in (4.9) corresponds to one residue. For example the term with R
1;46 is associated

with the residue of the integrand in (4.6) at U = 0 because it appears in all regions. The
other associations can be deduced similarly. In the kinematic region s234, s345 > 0, the
undeformed invariant �6,3 in (4.9) agrees with the amplitude A6,3 [46,47]. Hence the U(3)
contour we started out with in the Graßmannian integral (3.5) automatically selects the
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Re U

Im U

0

Œ

A
B

B
A

1

|⁄2
| ≠ |⁄3

|

Figure 4.2: Sample pole configuration of the integrand in (4.12) for the unde-
formed u(1, 1) Yangian invariant �4,2. A pair of poles is connected by a dashed
line. The sign of the variable |⁄2

| ≠ |⁄3
| controls which of the poles lies inside of

the contour.

desired residues in this region. Curiously, it also implies the emergence of three other
kinematic regions, in which (4.9) does not match the amplitude. This makes us speculate
that the Yangian symmetry of the known expression for the amplitude A6,3 could be
broken in a subtle way because it misses the region structure. We will strengthen this
point in the following section. There we compute the unitary Graßmannian integral (3.5)
for a simpler Yangian invariant, that serves as a toy model for �6,3 of u(2, 2|4) considered
here. In that case, we are able to show the necessity of the emerging kinematic regions
from an integrability perspective.

We remark that the four kinematic regions in (4.9) appeared also in the study of
hexagonal light-like Wilson loops in [48]. The two fractions of Mandelstam variables in
(4.7), which define the regions, are two of the three independent dual conformal cross ratios
defined in equation (1) of that reference. The authors investigate the possible values of
these cross ratios. Our choice of energy signs in (3.1) corresponds to the case considered
in their equation (40). In this case, the allowed values form four distinct regions in the
cross ratio space R3, which match our regions in (4.9) and are nicely visualized in their
figure 1.

4.3 Toy Model and Implications: Four Particles for u(1, 1)
Here we evaluate the unitary Graßmannian integral (3.5) for the u(1, 1) Yangian invariant
�4,2. This is the simplest invariant for which di�erent kinematic regions emerge in the
undeformed limit. In this sense, it is a toy model for the example studied in the previous
section. We begin the evaluation by reducing the U(2) integral in (3.5) to a U(1) integral
with the help of the bosonic delta functions,

�4,2 = ”(P )
|⁄1|2 + |⁄2|2

⁄

U(1)

[dU ] 1
U1≠c2 |A ≠ UB|2(1+v1≠v2)(A ≠ UB)c2≠c1

. (4.10)
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Here P = ≠|⁄1
|
2

≠ |⁄2
|
2 + |⁄3

|
2 + |⁄4

|
2, and we introduced

A = ⁄1⁄
3

|⁄1|2 + |⁄2|2
, B = ≠⁄4⁄

2

|⁄1|2 + |⁄2|2
. (4.11)

Notice that we write ⁄i
1 © ⁄i because these variables have only one component in case of

the algebra u(1, 1). The integral (4.10) can be expressed in terms of a Gauß hypergeometric
function and even more specifically an associated Legendre function, see [1]. We move on
to study the undeformed limit of (4.10) by setting c1 = c2 = 0 and v1 = v2. This yields

�4,2 = ≠
”(P )

|⁄1|2 + |⁄2|2
1

2fii AB

j
dU

1
U

1
U ≠

A
B

21
U ≠

B
A

2 , (4.12)

where, as after (4.6), we reformulated the Haar measure on U(1) in terms of a contour
integral in the complex variable U . Thus we integrate counterclockwise along the unit
circle. Just like for the example in the previous section, we compute this integral using
the residue theorem. The pole at U = 0 contributes to the integral irrespective of the
kinematics. In contrast to the previous section, there is now only one pair poles at U = A

B , B
A

that depends on the kinematics. For generic kinematics, precisely one of these poles lies
inside of the contour. Which one is determined by the sign of the variable

1 ≠

----
A

B

----
2

Ã |⁄2
|
2

≠ |⁄3
|
2 , (4.13)

where we used P = 0 and dropped a non-negative factor. Summing the two residues
contributing to (4.12) gives the undeformed invariant

�4,2 = ”(P )
|⁄2|2 ≠ |⁄3|2

Y
_]

_[

⁄4⁄2

⁄1⁄3 for |⁄2
| < |⁄3

| ,

≠
⁄1⁄3

⁄4⁄2 for |⁄2
| > |⁄3

|

(4.14)

with two kinematic regions.
Let us now show that these two regions are required by integrability. Our argument

is based on a parity transformation P of the Graßmannian integral (3.5) discussed in
appendix A. In case of the toy model under investigation here, this transformation boils
down to exchanging the spinors ⁄1 P

¡ ⁄2, ⁄3 P
¡ ⁄4. It is a symmetry of the u(1, 1) Yangian

invariant �4,2 in (4.10) for general deformation parameters v1, v2 and equal representation
labels c1 = c2. In section 6 below, we will see that this invariant can be interpreted
as an R-matrix. Its symmetry under P translates into the well-known parity invariance
of this R-matrix. With this background knowledge, we study the action of P on the
undeformed �4,2 in (4.14). We find that it exchanges the two kinematic regions. Let us
discuss what would happen if we used the expression of either region in (4.14) and declared
it to be valid for all kinematics. The resulting function would still satisfy the Yangian
invariance condition (2.15), which takes the form of a set of di�erential equations in ⁄i,
for generic values of ⁄i. However, it would clearly violate parity symmetry. Therefore the
two kinematic regions in (4.14) are required for the proper Yangian invariant, which is
related to the R-matrix.

Can we exploit the parity transformation P from appendix A also to show the necessity
of the four kinematic regions of the undeformed u(2, 2|0 + 4) Yangian invariant �6,3 in
(4.9) for integrability? This is not possible because the region s234, s345 > 0, in which the
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invariant agrees with the amplitude A6,3, is by itself invariant under P. The transformation
P is part of a known dihedral symmetry of the amplitude A6,3, cf. [49]. In fact, it is the
only non-trivial element of that group which is compatible with our choice of energy signs
in (3.1). It would be interesting to look for a bigger discrete symmetry group of (4.9)
that connects all four regions and is needed for an integrability-based reason. Because
�6,3 can be interpreted as a product of three R-matrices, see once again section 6 below,
we suspect that such a bigger symmetry group could involve parity transformations of
the individual R-matrices and the Yang-Baxter equation satisfied by the product. So
far this equation has been verified for the amplitude A6,3 merely on the level of the
original Graßmannian integral or equivalently for on-shell diagrams [21, 27], disregarding
in both cases the integration contour. The existence of such a discrete symmetry group
of (4.9) would signal a subtle breakdown of integrability in the formula [46, 47] for the
amplitude A6,3.

It is also conceivable that the region structure of the undeformed Yangian invariant
�6,3 in (4.9) is a sign of a broken conformal symmetry of the amplitude A6,3. This is
currently under investigation [50]. Both quantities are certainly invariant under infinites-
imal transformations of the conformal algebra su(2, 2) µ u(2, 2|0 + 4) for generic values of
the spinors ⁄i. However, to the best of our knowledge, the invariance of A6,3 under finite
transformations has not been proven. The representations of su(2, 2) in terms of spinors
⁄i from section 3.4 can be exponentiated to ones of the group SU(2, 2) [51]. In particu-
lar, some group elements act quite non-trivially as integral transformations. We remark
that kinematic regions somewhat reminiscent of those in (4.9) were introduced for NMHV
amplitudes in split signature (2, 2) to obtain amplitudes with satisfactory superconformal
properties in twistor space [52].

4.4 Eight Particles for u(2, 2|4)
In our investigation of the four- and six-particle u(2, 2|0 + 4) Yangian invariants in the
previous sections, we could extract the respective amplitudes, at least in one kinematic
region, by setting all deformation parameters to zero. Obviously, this raises the question if,
in general, the amplitude A2K,K can be obtained from the Yangian invariant �2K,K in this
simple way. Therefore we continue our studies in this section by computing �8,4. Vexingly,
we will find that the simple procedure does not hold up for extracting the amplitude A8,4
from it.

To begin with, we reduce the U(4) Graßmannian integral formula (3.5) for the Yangian
invariant �8,4 of the algebra u(2, 2|0 + 4) to a U(2) integral by making use of the bosonic
delta functions. We display the resulting integral here only for equal integer deformation
parameters c1 = c2 = c3 = c4 in order to spare the reader a slightly more cumbersome
expression. In addition, we abbreviate frequently occurring di�erences of complex defor-
mation parameters as z1 © v1 ≠ v2, z2 © v2 ≠ v3, z3 © v3 ≠ v4. This yields

�8,4 = ”4|0(P )”0|8(Q)
s8

1234

⁄

U(2)

[dU ] ”0|8(a U + b)
det U2≠c4 |E1 det(U ≠ F1)|2(1+z1)

·
1

|E2 det(U ≠ F2)|2(1+z2)|E3 det(U ≠ F3)|2(1+z3) .

(4.15)

Here the momentum and supermomentum conserving delta functions are defined in (2.8).
In the denominator, we rearranged the minors of the Graßmannian integrand (3.13) into
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2 ◊ 2 determinants depending on the kinematic data

F1 =
Ô

s234
Ô

s567
≠1

È1|2+3+4|5Í

A
0 0

Ô
s1234 È67Í È8|6+7|5Í

B

, E1 = È1|2+3+4|5Í

s1234
,

F2 =
Ô

s234s567
≠1

È12ÍÈ56Í

A
È43ÍÈ1|2+3+4|5+6|7Í

Ô
s1234È34ÍÈ56ÍÈ18Í

Ô
s1234 È2|3+4|5+6|7Í È56ÍÈ2|3+4|5+6+7|8Í

B

, E2 = È12ÍÈ56Í

s1234
,

F3 =
Ô

s567
Ô

s234
≠1

È4|5+6+7|8Í

A
0 Ô

s1234È23Í

0 È4|2+3|1Í

B

, E3 = È4|1+2+3|8Í

s1234
.

(4.16)

The numerator involves further kinematics contained in

a = 1
Ô

s234

A Ô
s1234

!
È34Í÷̃2 + È42Í÷̃3 + È23Í÷̃4"

s234÷̃1 + È2|3+4|1Í÷̃2 + È3|2+4|1Í÷̃3 + È4|2+3|1Í÷̃4

Bt

,

b = 1
Ô

s567

A Ô
s5678

!
È67Í÷̃5 + È75Í÷̃6 + È56Í÷̃7"

È5|6+7|8Í÷̃5 + È6|5+7|8Í÷̃6 + È7|5+6|8Í÷̃7 + s567÷̃8

Bt (4.17)

with the four-dimensional fermionic variables ÷̃i = (÷̃i
ȧ). The U(2) integral for the deformed

Yangian invariant �8,4 in (4.15) is structurally a straightforward generalization of the U(1)
integral for �6,3 with c1 = c2 = c3 from (4.4). Most characteristically, the absolute values
in the denominator contain 2◊2 determinants in the U(2) case, and there is one additional
such factor compared to the U(1) integral.

Despite the structural similarities, the two integrals behave fundamentally di�erent in
the undeformed limit, where ci = 0 and all vi are equal, i.e. zi = 0. The U(1) integral (4.4)
computing �6,3 reduces to the contour integral (4.6), which is finite for generic kinematics
and can be evaluated by means of the residue theorem. Divergencies may arise for special
kinematic configurations, such as s234 = 0 or s345 = 0 where poles of the integrand move
onto the integration contour, cf. (4.7). In the U(2) integral (4.15) for �8,4, we can safely
set ci = 0. However, upon imposing zi = 0, we observe that the integral diverges even for
generic kinematics.

Let us sketch this in more detail. To gain a handle on the divergencies, we first need
a criterion for which kinematic data the integrand of �8,4 in (4.15) can become singular:

det(U ≠ Fi) = 0 for some U œ U(2) … det(FiF
†
i ≠ 12) Æ 0 , (4.18)

see e.g. theorem 5.5.1 in [53]. For the matrices from (4.16), this criterion reads7

det (F1F
†
1 ≠ 12) Ã ≠s2345 , det (F2F

†
2 ≠ 12) Ã s3456 , det (F3F

†
3 ≠ 12) Ã ≠s4567 , (4.19)

where we dropped non-negative factors. The signs of these four-particle Mandelstam
variables determine which factors of the integrand in (4.15) become singular while the
integration variable U traverses the U(2) group manifold. They give rise to 23 = 8 kine-
matic regions. Clearly, the integrand contains singularities in seven of these. Based on a
numerical study using random momenta, the only non-singular region s2345 < 0, s3456 > 0,
s4567 < 0 appears to be kinematically forbidden for our choice of energy signs in (3.1). In
the undeformed limit ci = 0 and zi æ 0, the singularities of the integrand yield a divergent

7
These variables are combinations of dual conformal cross ratios before dropping the factors. Recall in

this context that also the analogous quantities for �6,3 in (4.7) are such cross ratios.
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integral (4.15) for �8,4. Presently, we are able to extract the leading divergent terms8 from
this integral by focusing on the vicinity of the singularities [55]. We find that the precise
expressions of these terms depend on a rich substructure of the kinematic regions (4.19).
These subregions are defined primarily using the signs of s345, s456, s781, s812, and those
of certain determinants of Mandelstam variables. The consecutive three-particle Mandel-
stam variables appearing here and the four-particle ones in (4.19) are precisely all those
whose signs are allowed to change in our setup. In most subregions the leading divergent
terms are of the form 1

zi
, while in some there exist even more singular terms with 1

zizj
.

The occurrence of these divergent terms signals that we cannot simply take the unde-
formed limit of the Yangian invariant �8,4 in (4.15) and end up with a finite expression
that agrees with the amplitude A8,4 in one kinematic region. Finding a way to extract this
amplitude from �8,4 is arguably one of the most pressing open problems of our unitary
Graßmannian integral approach. On the one hand, it certainly requires more sophisti-
cated techniques for the evaluation of the U(2) integral (4.15). It could be helpful use a
matrix version of the Cayley transformation to map the U(2) integration variable U to a
Hermitian 2 ◊ 2 matrix, see e.g. [56]. This matrix can in turn be mapped as in (2.1) to
a vector in real Minkowski space R1,3. Our integral (4.15) then essentially takes the form
of a one-loop Feynman integral with complex exponents of the propagators and complex
external momenta given in terms of the matrices Fi. This might make the machinery
developed for such Feynman integrals applicable to our problem. On the other hand, also
conceptually the relation between �8,4 and A8,4 needs further attention. In this regard,
we refer the reader to section 6.2 below. There we will demonstrate the existence of a
divergent term, albeit only for special kinematics, in case of the simple invariant �4,2 from
section 4.1. This will suggest a new perspective even for the relation between �4,2 and
A4,2.

Although the exact connection between the Yangian invariants �2K,K computed by
the unitary Graßmannian integral (3.5) and the amplitudes A2K,K is still unclear for
general K, we can establish a fairly complete understanding of �2K,K from the point
of view of integrability. We will develop it systematically in the following sections. For
this we will employ a di�erent basis, in which the Yangian invariants are expressed in
terms of harmonic oscillators instead of spinor helicity variables. These new variables are
instrumental in revealing fascinating relations between the unitary Graßmannian integral
and other subjects such as integrable spin chains and matrix models. The inquisitive reader
may already jump ahead and take a first look at table 1, where di�erent interpretations
of our unitary integral are summarized.

5 Graßmannian Integral in Oscillator Basis

In this section, we define an analogue of the unitary Graßmannian integral (3.5) for a
class of representations that are constructed using oscillator algebras instead of spinor
helicity variables. This integral formula reveals interesting connections between Yangian
invariants and matrix models. Moreover, we show that it is related to the original formula
(3.5) via a Bargmann transformation. This integral transformation generalizes the change
of basis from Fock to position space for the harmonic oscillator in elementary quantum
mechanics.

8
We are grateful to Jacob Bourjaily for supplying us with data adapted from [54] to cross-check this

result.
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5.1 Oscillator Representations

We introduce oscillator representations of the non-compact superalgebra u(p, q|r + s) fol-
lowing [44]. Such representations have a long history in the physics literature and are
sometimes referred to as “ladder representations”, see e.g. [43]. In case of the algebra
u(2, 2|4), they are discussed also in [57] and play a prominent role in the planar N = 4
SYM spectral problem. For u(p, q = p|r +s), they are unitarily equivalent to the represen-
tations that we encountered already in section 3.4, as will be shown in section 5.4 below.
This justifies our use of the symbols Dc and D̄c for the two classes of representations
defined in the following.

The basic ingredient of both classes is a family of superoscillators obeying

[AA, ĀB} = ”AB , [AA, AB} = 0 , [ĀA, ĀB} = 0 , A
†
A = ĀA , AA|0Í = 0 , (5.1)

where the indices of the annihilation operators AA and creation operators ĀA take the
values A = 1, . . . , n+m with n = p+ q and m = r +s. It is equipped with a conjugation †

and acts on a Fock space F that is spanned by monomials in ĀA acting on a vacuum state
|0Í. We illustrate the grading of the superindex A by means of the creation operators,

1
ĀA

2
=

Q

cccccca

ĀA

ĀȦ

R

ddddddb
=

Q

cccccca

ā–

c̄a

b̄–̇

d̄ȧ

R

ddddddb
. (5.2)

Here we first split the family of superoscillators with gl(n|m) index A into two parts.
One carries a gl(p|r) index A = 1, . . . , p + r and the other one a gl(q|s) index Ȧ = p +
r + 1, . . . , n + m. Then we spelled out the superoscillators ĀA, ĀȦ in terms of bosonic
oscillators ā–, b̄–̇ and fermionic oscillators c̄a, d̄ȧ with the index ranges – = 1, . . . , p,
–̇ = 1, . . . , q, a = 1, . . . , r, and ȧ = 1, . . . , s. This notation fixes the grading and is inspired
by [27] and [38].

A set of generators JAB of the gl(n|m) superalgebra is provided by

(JAB) =

Q

a
ĀAAB ĀAĀḂ

≠(≠1)|Ȧ|
AȦAB ≠(≠1)|Ȧ|

AȦĀḂ

R

b . (5.3)

The two diagonal blocks of this supermatrix realize the subalgebras gl(p|r) and gl(q|s),
respectively. Let Dc µ F be the eigenspace of the central element

C = tr(JAB) (5.4)

with eigenvalue c. This infinite-dimensional space forms a unitary representation of the
superalgebra u(p, q|r + s) for each c œ Z, see [44]. It contains a lowest weight state
annihilated, by definition, by all generators JAB with A > B. Note that the space Dc

is finite-dimensional in the special cases q = 0 or p = 0. We define a class of dual
representations by applying the automorphism J̄AB = ≠(≠1)|A|+|A||B|

J
†
AB of the gl(n|m)

algebra to the generators in (5.3),

(J̄AB) =

Q

a
≠(≠1)|A|+|A||B|

ĀBAA ≠(≠1)|A|+|Ḃ|+|A||Ḃ|
AḂAA

(≠1)|Ȧ|+|Ȧ||B|
ĀBĀȦ (≠1)|Ȧ|+|Ḃ|+|Ȧ||Ḃ|

AḂĀȦ

R

b . (5.5)
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We denote by D̄c µ F the eigenspace of the central element

C̄ = tr (J̄AB) (5.6)

with eigenvalue c. This space carries a unitary representation of u(p, q|r + s) for each
c œ Z. It contains a highest weight state annihilated by all J̄AB with A < B.

5.2 Graßmannian Integral

The oscillator representations of u(p, q|r + s) from the previous section at hand, we con-
struct an analogue of the unitary Graßmannian integral (3.5). Yangian invariants for these
representations are given by

|�2K,KÍ =
⁄

U(K)

[dC] F (C)(det C)retr(I•C†+CIt
¶)

|0Í . (5.7)

Here the delta functions of (3.5) have been replaced by an exponential function acting on
a Fock vacuum. Its argument contains the K ◊ K matrices

I•¶ =

Q

cca

(1 •
¶ K + 1) · · · (1 •

¶ 2K)
...

...
(K •

¶ K + 1) · · · (K •
¶ 2K)

R

ddb . (5.8)

Their entries are contractions of creation operators,

(k • l) =
ÿ

A
Ā

l
AĀ

k
A , (k ¶ l) =

ÿ

Ȧ
Ā

l
ȦĀ

k
Ȧ . (5.9)

They are gl(p|r) and gl(q|s) invariant, respectively. Moreover, they are bosonic because
fermionic oscillators appear only in quadratic terms. The rest of (3.5) can be found essen-
tially unchanged in (5.7). The function F (C) is the manifestly single-valued expression
from (3.13), which we obtained from the formal integrand in (3.6), now in general with
q ”= p. It contains the inhomogeneities vi and the representation labels ci. These are re-
lated via (3.7) to the deformation parameters v±

i , which have to obey (3.8). The vi and ci

also enter the monodromy matrix M(u) defined in (2.11) that is associated with |�2K,KÍ

from (5.7). The first K of its N = 2K sites carry the oscillator representations D̄ci , and
the remaining K sites have the representations Dci . Therefore the gl(n|m) generators in
the Lax operators (2.9) of the monodromy are

J i
AB =

I
J̄

i
AB for i = 1, . . . , K ,

J
i
AB for i = K + 1, . . . , 2K ,

(5.10)

which are given in (5.5) and (5.3), respectively. With this monodromy M(u), the state
|�2K,KÍ satisfies the Yangian invariance condition (2.15) and therefore also (2.16). A proof
of this central statement is presented in [1]. It is a straightforward extension of the proof
for the bosonic algebra u(p, q) in [58]. In the latter reference, the existence of a closed
contour is assumed to perform partial integrations, and a measure of the form (3.9) is
used. However, at the time, no explicit example of such a contour was known. This gap
is filled here by the unitary contour and the single-valued integrand, recall section 3.3.

We will show in section 5.4 that the Yangian invariants |�2K,KÍ in (5.7) are related to
the �2K,K in (3.5) by a change of basis for representations of the algebra u(p, q = p|r + s).
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Parameters Interpretation

v±
i æ 0 and u(2, 2|4) �2K,K related to amplitude A2K,K?

(section 4)

v±
i s.t. F (C)(det C)r =

I
(det C)q≠s≠cK

1
|�2K,KÍ is

I
Leutwyler-Smilga model [59]
Brezin-Gross-Witten model [60]

Link to cusp equation for |�4,2Í (section 7)

v±
i general |�2K,KÍ equals product of R-matrices

(section 6 and appendix B)

Table 1: Interpretations of the unitary Graßmannian integrals (3.5) and (5.7) for
di�erent deformation parameters v±

i in the integrand F (C).

In case of u(2, 2|4) and vanishing deformation parameters v±
i æ 0, these invariants are of

relevance for the N = 4 SYM amplitudes A2K,K , as we argued in section 4. Is there also
a significance of the |�2K,KÍ directly in the oscillator basis? As is turns out, their integral
representation (5.7) reduces to known matrix models for specific values of v±

i . Equation
(3.8) constraining the v±

i has a solution where all minors appearing in F (C) from (3.13),
except for det C, have a vanishing exponent,

F (C) = (det C)≠r+q≠s≠cK . (5.11)

With this integrand, (5.7) is equivalent to the Leutwyler-Smilga model [59], which describes
aspects of quantum chromodynamics in a certain low energy regime. For q = s + cK , all
factors of det C disappear from (5.7), and it becomes the Brezin-Gross-Witten model [60],
which appears in the context of two-dimensional lattice gauge theory. Remarkably, these
integrals can be computed exactly as determinants of matrices whose entries are Bessel
functions. For two independent matrices I

t
• and I¶, this was achieved in [61] using the

character expansion methods of [62]. This determinant formula will allow us in section 7
below to establish a heuristic yet intriguing link between |�4,2Í and the cusp equation
[63,64], which governs certain all-loop results in planar N = 4 SYM. In addition, the two
aforementioned matrix integrals provide solutions, so-called · -functions, of the Kadomtsev-
Petviashvili (KP) hierarchy, cf. [65]. It would be interesting to expose a connection between
the well-studied integrable structure of this hierarchy, see the substantial review in [66],
and the Yangian invariance of the integrals. Moreover, we are tempted to speculate that
(5.7) could be a KP · -function for a wider range of the deformation parameters v±

i . Let us
move on to another interpretation of the |�2K,KÍ that clarifies their role within the QISM
and is valid even for general v±

i obeying (3.8). We will discuss in section 6 below that the
Yangian invariant |�4,2Í can be understood as an R-matrix. Furthermore, in appendix B
we show that |�2K,KÍ from (5.7) with its U(K) contour can be constructed by “gluing”
together multiple copies of |�4,2Í with U(2) contours. Thus |�2K,KÍ corresponds to a
product of R-matrices. The interpretations outlined in this paragraph are summarized in
table 1.
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5.3 Bargmann Realization and Transformation

The equivalence of the two Graßmannian integral formulas (3.5) and (5.7) will be estab-
lished in the next section using a Bargmann transformation. For the one-dimensional
harmonic oscillator in quantum mechanics, this integral transformation implements the
change of basis between Fock and position space. We introduce the Bargmann transfor-
mation along the lines of the original publication [67]. From the outset, we work in a
multi-dimensional setting because it is needed for our application.

We start out with a family of bosonic oscillators on a Fock space obeying

[a–, ā—] = ”–— , a–
† = ā– , a–|0Í = 0 (5.12)

with –, — = 1, . . . , p. Let a = (a–) etc. denote r-component column vectors. The relations
in (5.12) are implemented by the Bargmann realization

ā ‘æ z , a ‘æ ˆz , |0Í ‘æ �0(z) = 1 (5.13)

on the Bargmann space HB. This is the Hilbert space of holomorphic functions of z œ Cp

with the inner product

È�(z), �(z)ÍB =
⁄

Cp

dpz dpz

(2fii)p
e≠ztz�(z)�(z) , (5.14)

where (2i)≠p dpz dpz = dpRe z dpIm z is understood as the measure on R2p. In particu-
lar, this inner product implements the reality condition in (5.12), i.e. ˆz–

† = z–. The
Bargmann realization can be thought of as a concrete implementation of the formal Fock
space operators. For recent expositions of this realization see e.g. [68], where it is called
“holomorphic representation”.

In addition, we introduce another family of canonical variables obeying di�erent reality
conditions,

[ˆx– , x—] = ”–— , ˆx–
† = ≠ˆx– , x–

† = x– . (5.15)

These are considered as operators on the Hilbert space HSch of square integrable functions
of the variable x œ Rp with the inner product

È�(x), �(x)ÍSch =
⁄

Rp

dpx �(x)�(x) . (5.16)

This implementation of (5.15) is referred to as Schrödinger realization. For the example
of the one-dimensional harmonic oscillator, it may be interpreted as the realization in
position space.

We observe that by a naive counting the degrees of freedom in HB and HSch do match.
A function �(z) in HB depends on p complex coordinates z– but not on their complex
conjugates z–. Similarly, �(x) in HSch is a function of p real coordinates x–. Thus we
want to identify the canonical variables in HB and HSch. For this purpose we make the
ansatz

ˆz ¡ A(x + “ˆx) , z ¡ A(x ≠ “ˆx) , (5.17)

where we allow for a constant “ > 0 and a p ◊ p matrix A, whose complex conjugate we
denote A. The second relation is obtained from the first one by taking the Hilbert space
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adjoint. For (5.17) to be compatible with the commutation relations and reality conditions
in (5.12) and (5.15), we have to impose

2“ AA† = 1p , (5.18)

where † stands for Hermitian conjugation of matrices. Note that this condition can be
solved trivially by taking A Ã 1p, in which case the components of the relations in (5.17)
decouple. The identification (5.17) of the Hilbert spaces HB and HSch is implemented by
the Bargmann transformation

�(z) = ÈK(z, x), �(x)ÍSch , �(x) = ÈK(z, x), �(z)ÍB (5.19)

with the kernel

K(z, x) = (fi“)≠ p
4 e≠“ztAAtz≠ 1

2“ xtx+2ztAx . (5.20)

This kernel solves the di�erential equations obtained by imposing (5.17) on (5.19),

ˆzK(z, x) = A(x ≠ “ˆx)K(z, x) , zK(z, x) = A(x + “ˆx)K(z, x) . (5.21)

The prefactor in (5.20) is fixed by demanding that the transformation (5.19) preserves the
unit norm of the vacuum state �0(x) = (fi“)≠ p

4 e≠ 1
2“ xtx. Equation (5.19) together with

the definitions of the inner products in (5.14) and (5.16) yields the concrete form of the
Bargmann transformation as an integral transformation that we will use in the following
section.

We also briefly discuss a realization of the fermionic oscillator algebra

{ca, c̄b} = ”ab , ca
† = c̄a , ca|0Í = 0 , (5.22)

where a, b = 1, . . . , r. It is realized on a Graßmann algebra with r variables ÷a,

c̄ ‘æ ÷ , c ‘æ ˆ÷ , |0Í ‘æ 1 . (5.23)

On order to implement the adjoint in (5.22) as ÷a
† = ˆ÷a , one has to define an inner

product on functions �(÷). This can be done in formal analogy to (5.14) of the Bargmann
realization. The integral is replaced by a Berezin integral, and instead of complex conju-
gation one uses an antiinvolution of the Graßmann algebra. Consequently, (5.23) can be
understood as a fermionic Bargmann realization, see e.g. [68] for more details.

5.4 Transformation of Generators and Integral

Utilizing the tools from the previous section, in particular the Bargmann transformation,
we now identify the u(p, q = p|r + s) representations in terms of spinor helicity variables
from section 3.4 with those defined using oscillators in section 5.1. This then allows
us to establish the equivalence of the two unitary Graßmannian integral formulas (3.5)
and (5.7) for these algebras. The identification of the representations goes back to a
calculation for the special case of the conformal algebra su(2, 2) [41]. In this case, it can
be associated with a transformation from a Lorentz to a maximally compact basis of the
algebra. The reason being that the diagonal blocks of the matrices of spinor helicity (3.14)
and oscillator (5.3) generators are associated with the corresponding subalgebras sl(C2)
and su(2) ◊ su(2) ◊ u(1), respectively. In addition, the identification of representations is
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of particular importance in the u(2, 2|4) case because it provides a connection between the
variables frequently used for the N = 4 SYM amplitudes AN,K and those featuring in the
spectral problem of this theory.

To begin with, we concentrate on the positive energy representations Dc of u(p, p|r+s).
Our aim is to relate the generators JAB from (5.3) to the JAB from (3.14). In a first
step, we employ the bosonic (5.13) and the fermionic (5.23) Bargmann realizations for
the oscillators appearing in the former set of generators. In a second step, we apply the
replacement (5.17) to the bosonic variables, while the fermionic ones remain unchanged.
For the creation operators (5.2), this reads

1
ĀA

2
=

Q

cccccca

ā–

c̄a

b̄–̇

d̄ȧ

R

ddddddb
‘æ

Q

cccccca

z–

÷a

w–̇

÷̃ȧ

R

ddddddb
¡

Q

cccccca

1Ô
2(⁄– ≠ ˆ⁄–

)

÷a

1Ô
2(⁄– ≠ ˆ⁄–)

÷̃ȧ

R

ddddddb
. (5.24)

Recall the di�ering reality conditions of the superoscillators in (5.1) compared to those of
the spinor helicity variables and fermions in (3.16). They allow to derive the transforma-
tion of the annihilation operators from (5.24). The replacement (5.17) is implemented by
the Bargmann transformation (5.19). The latter is specified by

Q

a
z–

w–̇

R

b œ C2p ,

Q

a
x–

y–̇

R

b œ R2p , A = 1
Ô

2

Q

a
1p ≠i1p

1p i1p

R

b , “ = 1
2 , (5.25)

which are the arguments of holomorphic functions �(z, w) in the Bargmann space HB,
those of square integrable functions �(x, y) in HSch, and the parameters of the trans-
formation from (5.18), respectively. Importantly, to obtain spinor helicity variables, the
x, y œ Rp are packaged into ⁄ = x + iy œ Cp. With these definitions, the Bargmann
transformation (5.19) from HB to HSch takes the form

�(⁄, ⁄) =
Ú

2
fi

p

e≠⁄
t
⁄

⁄

C2p

dpz dpz dpw dpw

(2fii)2p
e≠ztz≠wtw≠wtz+

Ô
2(zt⁄+wt⁄)�(z, w) . (5.26)

Notice that in this construction, the spinor helicity variables are a generalization of the
position operator in the Schrödinger realization of the harmonic oscillator, cf. section 5.3.
Next, we move on to the negative energy representations D̄c of u(p, p|r + s), where we
have to relate the generators J̄AB from (5.5) to the J̄AB from (3.17). We proceed mostly
analogous to above. The required changes can be summarized by replacements in the final
transformation formulas (5.24), (5.26), and of the fermionic vacuum state,

⁄ ‘æ ⁄ , ÷ ‘æ ≠ˆ÷ , ˆ÷ ‘æ ≠÷ , ÷̃ ‘æ ˆ÷̃ , ˆ÷̃ ‘æ ÷̃ , 1 ‘æ ÷1 · · · ÷r÷̃1 · · · ÷̃s . (5.27)

The replacements of the fermions here can be realized by fermionic Fourier transforma-
tions.

Applying the transformation (5.24) in case of the representations Dc and together with
(5.27) for D̄c yields the desired relations of the generators,

(JAB) ¡ D(JAB)D≠1 , (J̄AB) ¡ D(J̄AB)D≠1 (5.28)
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with the supermatrix

D =

Q

cccccca

1p 0 1p 0

0
Ô

2 1r 0 0

≠1p 0 1p 0

0 0 0
Ô

2 1s

R

ddddddb
, (5.29)

whose grading can be inferred from (5.2). Consequently, the relations between the central
elements (5.4) and (3.15) for the representations Dc together with those between (5.6) and
(3.18) for D̄c read, respectively,

C ¡ C , C̄ ¡ C̄ . (5.30)

We remark that if the gl(n|m) generators from (5.28) appear in Lax operators (2.9), the
similarity transformation can be absorbed by a redefinition of the generators EAB. Thus
we did not have to include such a similarity transformation in the specification of the
monodromy matrices in (5.10) or (3.19).

Finally, we show the equivalence of the unitary Graßmannian integral formula (5.7)
for |�2K,KÍ and that in (3.5) for �2K,K in case of the algebras under consideration. This
is achieved by applying the Bargmann realization to the superoscillators Ā

i
A and the

vacuum |0Í in |�2K,KÍ, as specified by the first replacement in (5.24). Next, we perform
the Bargmann transformation (5.26) at all sites i = 1, . . . , 2K. In both of these steps, we
apply the replacement (5.27) at the sites i = 1, . . . , K with negative energy representations.
The U(K) integral and the function F (C) in the Graßmannian formula (5.7) are una�ected
by these operations. The exponential function in the integrand is transformed as

(det C)retr(I•C†+CIt
¶)

|0Í ¡ ”pK|0
C (C‹⁄)”0|rK(C‹÷)”0|sK(C÷̃) , (5.31)

where we dropped an overall sign factor from rearranging the fermionic variables. This
shows the equivalence of the two unitary Graßmannian integral formulas (5.7) and (3.5)
for u(p, p|r + s) Yangian invariants. Details on this calculation are provided in [1]. Let
us sketch some key aspects. We split each of the matrices I•¶, recall the definition of their
entries in (5.9), into a sum of a matrix containing the bosonic oscillators and one with
the fermionic ones. This leads to a factorization of the exponential function in (5.31).
The Bargmann transformation of the factor with the bosonic variables becomes a high-
dimensional Gaußian integral. Its zero modes yield Fourier representations of the complex
delta functions in (5.31). The series expansion of the exponential involving the fermionic
variables truncates, which allows us to rewrite this exponential as fermionic delta functions.

6 R-Matrix and Divergencies

Until now, we have not directly evaluated the unitary Graßmannian integral (5.7) in the
oscillator basis. We perform such a computation here for the sample invariant |�4,2Í and
establish its relation to the R-matrix. In particular, we demonstrate that the R-matrix of
the Heisenberg spin chain and that of the planar N = 4 SYM one-loop spectral problem
are contained in our formalism. What is more, our investigation of |�4,2Í in the oscillator
basis reveals singular contributions to �4,2 in spinor helicity variables that have been
neglected so far.
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6.1 R-Matrices of Heisenberg Chain and Spectral Problem

The evaluation of the unitary Graßmannian integral (5.7) for the u(p, q|r + s) Yangian
invariant |�4,2Í parallels that in case of the bosonic algebra u(p, q) published in [58]. To
begin with, we parameterize the U(2) integration variable in (5.7) as

C =
A

ei(“+–) cos ◊ ≠ei— sin ◊
ei(“≠—) sin ◊ e≠i– cos ◊

B

(6.1)

with –, —, “ œ [0, 2fi] and ◊ œ [0, fi
2 ]. The Haar measure [dC] = (2fi)≠3 sin (2◊) d◊ d– d— d“

can then be obtained from (3.9). We rewrite the integrals in the variables –, —, and
“ as complex contour integrals around unit circles and evaluate them using the residue
theorem. The remaining integral in ◊ then reduces to an integral representation of the
Euler beta function B(x, y). This leads to the invariant

|�4,2Í =
Œÿ

g13,...,g24=0
h13,...,h24=0

with (6.3)

(1 • 3)g13

g13!
(1 • 4)g14

g14!
(2 • 3)g23

g23!
(2 • 4)g24

g24!

·
(1 ¶ 3)h13

h13!
(1 ¶ 4)h14

h14!
(2 ¶ 3)h23

h23!
(2 ¶ 4)h24

h24! |0Í

· (≠1)g14+h14B(g14 + h23 + 1, h13 + g24 ≠ v1 + v2) .

(6.2)

In this formula the summation range is constrained by

g13 ≠ h13 + g14 ≠ h14 = g13 ≠ h13 + g23 ≠ h23 = ≠c1 + q ≠ s ,

g23 ≠ h23 + g24 ≠ h24 = g14 ≠ h14 + g24 ≠ h24 = ≠c2 + q ≠ s .
(6.3)

These constraints assure that the eigenvalues of C̄
1, C̄

2, C
3, C

4 acting on the invariant are,
respectively, c1, c2, ≠c1, ≠c2. Furthermore, we have to assume Re(v1 ≠ v2) < 0 in order for
the beta function integral to converge. In our final formula (6.2), we dropped a numerical
prefactor.

The Yangian invariant |�4,2Í is of key importance because its Yangian invariance con-
dition (2.15) is equivalent to a Yang-Baxter equation. This was originally pointed out
in [27] in the context of the deformed amplitude A

(def)
4,2 , which we encountered in the

review section 2.3. Because the Yang-Baxter equation is at the core of the QISM, the
equivalence is most naturally established using the Yangian invariance condition (2.16) in
this language, see e.g. the discussion in [1]. As a consequence, |�4,2Í can be identified with
an R-matrix, and thus we represent it graphically as

1 32 4

|�4,2Í

=

1 32 4

. (6.4)

Let us fill in the details of this identification. The invariant |�4,2Í from (6.2) is a state in
D̄c1 ¢ D̄c2 ¢ D≠c1 ¢ D≠c2 . The representations D̄ci and D≠ci are dual to each other and
therefore of the same dimension. Thus computing |�4,2Í

†1†2 , where the conjugations act
only on the respective oscillators, and then identifying the site indices i, j of oscillators
in the contractions (i •

¶ j) as 1 © 3 and 2 © 4 results in an operator on D≠c1 ¢ D≠c2 .
This is the R-matrix RD≠c1D≠c2

(z) with the spectral parameter z © v1 ≠ v2 and subscripts
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referring to u(p, q|r + s) representations. Our Graßmannian integral (5.7) yields a novel
U(2) integral formula for this R-matrix with oscillator representations.

It is instructive to execute this construction of the R-matrix in the simplest case
conceivable, i.e. for the compact bosonic algebra u(2, 0) ≥= u(2) with c1 = c2 = ≠1. Here
the intricate sums in (6.2) reduce to just two terms,

|�4,2Í =
#
z(1 • 3)(2 • 4) + (1 • 4)(2 • 3)

$
|0Í

z(1 ≠ z) . (6.5)

The corresponding R-matrix acts on two copies of the space D1 = C2. Each copy is
spanned by two states ā

i
1|0Í and ā

i
2|0Í, which are built from the creation operators (5.2)

contained in the oscillator contractions. These states are realized in the following as
! 1

0
"

and
! 0

1
"
, respectively. This gives rise to

RD1D1(z) = 1
z(1 ≠ z)

Q

ccca

1 + z 0 0 0
0 z 1 0
0 1 z 0
0 0 0 1 + z

R

dddb , (6.6)

which is the R-matrix of the celebrated Heisenberg spin chain, as reviewed e.g. in [12].
This connection illustrates the relevance of the unitary Graßmannian integral approach
for integrable spin chain models with their vast associated literature. Next, we return
to the general setting with the non-compact superalgebra u(p, q|r + s). A formula for
the R-matrix corresponding to the Yangian invariant |�4,2Í in (6.2) was already worked
out in [27]. For the algebra u(2, 2|4) it is essentially9 the R-matrix of the spin chain
governing the planar N = 4 SYM one-loop spectral problem [37,38]. In view of this result,
the Bargmann transformation from section 5.4 is an explicit change of basis from the
oscillator R-matrix of the spectral problem to the Yangian invariant �4,2 in spinor helicity
variables, which appears to be a deformation of the amplitude A4,2, recall section 4.1.

The U(2) integral formula for the u(p, q|r+s) R-matrix obtained from the Graßmannian
integral (5.7), as explained in this section, suggests several generalizations that we deem
worthy to be explored. One might wonder whether the formula can be extended beyond
the class of oscillator representations of section 5.1. Even further, it might exist on the
algebraic level of the universal R-matrix, see e.g. [69] and the original references therein.
This would be a path to elucidate a possible quantum group origin of the Graßmannian
integral. A di�erent direction would be to extend our U(2) integral formula to Beisert’s
R-matrix [39] with centrally extended su(2|2) symmetry. Two copies of this solution to
the Yang-Baxter equation describe the asymptotic scattering of excitations in the all-loop
spectral problem of planar N = 4 SYM. Moreover, it generalizes Shastry’s R-matrix [70]
for the one-dimensional Hubbard model. This line of research could be a stepping stone to
a unitary Graßmannian integral for Yangian invariants associated with all-loop amplitudes.

6.2 Normalization and Divergent Terms

Here we inspect the normalization of the u(p, q|r + s) Yangian invariant |�4,2Í in (6.2),
that arises naturally from the unitary Graßmannian integral (5.7) in oscillator variables.
In the limit z © v1 ≠ v2 æ 0, we will observe a divergent 1

z contribution. In fact, we
9
The oscillators in [38] satisfy non-standard reality conditions. This di�erence compared to our con-

ventions in section 5.1, which follow [44,57], does not seem to a�ect the gl(4|4) invariant R-matrix.

– 30 –



recognize such a term immediately in the simple u(2) case of |�4,2Í displayed in (6.5), see
also the formula (6.6) of the corresponding R-matrix. This observation seems to clash with
the undeformed limit, z æ 0 and ci = 0, of �4,2 for u(2, 2|4) in spinor helicity variables
discussed in section 4.1. There we did not encounter a divergent term but straightforwardly
obtained the finite amplitude A4,2 in the limit. To resolve this apparent contradiction, we
will diligently reexamine the evaluation of the Graßmannian integral (3.5) for �4,2. This
will reveal a 1

z term that is only present for special kinematic configurations and is thereby
easily overlooked. The existence of this term substantially a�ects the conceptual relation
between the Yangian invariant �4,2 and the amplitude A4,2.

Let us consider |�4,2Í for u(p, q|r+s) with equal representation labels c1 = c2, which is
given in form of convoluted sums in (6.2). To extract the leading term as z æ 0, we expand
the Euler beta functions in the summands. We find it to be a divergent 1

z contribution,

|�4,2Í = 1
z

|�Í14|�Í23 + O(z0) with |�Íij =
Œÿ

g,h=0
g≠h=q≠s≠ci

(i • j)g

g!
(i ¶ j)h

h! |0Í , (6.7)

where we dropped an overall sign factor compared to (6.2). This result is conveniently ex-
pressed in terms of the state |�Íij œ D̄ci ¢ Dcj=≠ci . Computing |�Í

†i
ij and then identifying

the site indices of oscillators from the contractions (i •
¶ j) as i © j gives the identity opera-

tor on D≠ci , see [1]. Moreover, |�Íij is identical to the Yangian invariant |�2,1Í defined by
the Graßmannian integral (5.7) with some relabeling of the oscillators. Its expression as
infinite sums in (6.7) matches the series expansion of a modified Bessel function of the first
kind. This Bessel function is the simplest 1◊1 case of the determinant formula for |�2K,KÍ

with the special Graßmannian integrand (5.11) mentioned towards the end of section 5.2.
Eventually, we can infer from (6.7) the normalization of the R-matrix RD≠c1D≠c1

(z), which
is constructed from |�4,2Í as described in section 6.1. Often an R-matrix is normalized
such that, for vanishing spectral parameter z = 0, it is finite and reduces to a permutation
operator, see e.g. the textbook [71]. In contrast, RD≠c1D≠c1

(z) diverges for z æ 0 as 1
z ,

and the coe�cient of this divergence is the permutation operator10 on D≠c1 ¢ D≠c1 . This
can be observed very explicitly for the simple u(2) R-matrix RD1D1(z) in (6.6), where
the permutation operator on C2

¢ C2 ≥= C4 is just a 4 ◊ 4 matrix. In conclusion, the
unitary Graßmannian integral (5.7) for |�4,2Í leads to an uncommon normalization of the
corresponding R-matrix.

The unitary Graßmannian integrals (5.7) for |�4,2Í in oscillator variables and (3.5) for
�4,2 in spinor helicity variables are related by a change of basis, which is implemented
by the Bargmann transformation of section 5.4. Therefore the 1

z term has also to be
present for �4,2. Before extracting it from the Graßmannian integral (3.5), it is helpful to
recapitulate a similar but simpler calculation. Also the gamma function �(z) diverges for
z æ 0 as 1

z . This can be shown using its Euler integral representation valid for Re z > 0,
see e.g. [72],

�(z) =
Œ⁄

0

d· e≠· · z≠1 = 1
z

Œ⁄

0

d· e≠· d
d·

· z = 1
z

+ O(z0) . (6.8)

The first integrand can be expanded into non-negative powers of z for z æ 0. However,
because of the singularity at · = 0, this expansion does not commute with the integration.

10
The identification of oscillator indices below (6.4), which is needed for the R-matrix, di�ers from that

mentioned after (6.7). Thus we obtain the permutation operator and not the identity.
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Thus we rewrite the gamma function as the second integral in (6.8). After performing a
partial integration, we are left with an integrand that is regular in · . Its expansion in z
can be integrated term by term and yields the rightmost side of (6.8).

We apply a similar strategy to the u(2, 2|0 + 4) Yangian invariant �4,2 with c1 = c2
defined by the unitary Graßmannian integral (3.5). We parameterize the U(2) integration
variable C as in (6.1). To extract the divergent term, we concentrate on the integral in
◊ because the integrand (3.13) of the Graßmannian formula has only singularities in this
variable. Proceeding essentially along the lines of (6.8) for this integral and assuming11

Re z < 0 to eliminate certain boundary terms, we isolate the leading 1
z contribution. After

performing the remaining trivial integrals in –, —, and “, we are left with

�4,2 = 1
z

�14�23 + O(z0) with �ij =
A

⁄i
1

⁄j
1

Bci
⁄i

1
(⁄j

1)2⁄i
1
”3(pi + pj)”0|4(⁄i

1÷̃i + ⁄j
1÷̃j) ,

(6.9)

where we neglected a numerical prefactor. The three-dimensional delta function ”3(P ) =
”(P11)”C(P21) su�ces because it implies P22 = 0 for P being the sum of two massless
momenta. Clearly, the decisive property of the divergent 1

z term in (6.9) is its absence for
generic momentum configurations with p1 + p2 + p3 + p4 = 0 as it only contributes for
special kinematics with p1 + p4 = 0 and p2 + p3 = 0. Thereby it is easily overlooked in the
spinor helicity basis.

What are the implications of the divergent term derived in the present section? The
evaluation of the unitary Graßmannian integral (3.5) for the u(2, 2|0+4) Yangian invariant
�4,2 in section 4.1 resulted in the expression (4.2). This reduces to the amplitude A4,2 in
the undeformed limit z æ 0 and ci = 0. Our careful reexamination of the integral here
revealed that (4.2) has to be supplemented by the 1

z term in (6.9). Thus, strictly speaking,
the undeformed limit of �4,2 is divergent and A4,2 occurs as the coe�cient of z0 in an
expansion for small z. This role of the amplitude is very similar to that in [35], to which
we referred to already at the very end of the review section 2.3. In that reference, A4,2
is constructed from the one-loop dilatation generator of the planar N = 4 SYM spectral
problem, rather than directly from the Yangian invariant R-matrix of the one-loop spin
chain. This interpretation of the amplitude A4,2 does not mean that it is not “integrable”
but only changes its conceptual place within the integrable structure.

What can we learn from the 1
z divergence of �4,2 about the general u(2, 2|0 + 4) Yan-

gian invariant �2K,K defined by the unitary Graßmannian integral (3.5)? Iterating the
recursion (B.1) and switching from the oscillator basis there to spinor helicity variables, we
find that �2K,K can be constructed by gluing together 1

2K(K ≠1) copies of �4,2. Focusing
on �2K,K with equal parameters ci and also equal zi © vi ≠ vi+1 denoted z, the complex
deformation parameter of each �4,2 turns out to be a multiple of z. Thus the leading
term of �2K,K as z æ 0 is of order z≠ 1

2 K(K≠1). In our crude evaluation of the Graßman-
nian formula for �6,3 in section 4.2, we did not observe any divergent terms. Hence the
terms of orders 1

z3 , 1
z2 , and 1

z have to be restricted to special kinematic configurations.
Consequently, we could naively obtain the amplitude A6,3 in one kinematic region simply
by taking the undeformed limit of �6,3. Our discussion of the Yangian invariant �8,4 in
section 4.4 implies from the current vantage perspective that there exist terms of orders
1
z6 through 1

z3 for special kinematics. At 1
z2 and 1

z there are contributions for generic
11

This is consistent as the same assumption was required to evaluate the oscillator invariant |�4,2Í in

(6.2).
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kinematics, which cause even a naive undeformed limit of �8,4 to diverge. Knowing about
the divergent terms of �4,2 and �6,3 for special kinematic configurations makes the sudden
appearance of divergencies for generic kinematics in case of �8,4 less surprising. Notwith-
standing these new insights, it remains both a challenging and imperative task to identify
the amplitude A8,4 in the small-z expansion of the Yangian invariant �8,4.

7 Link to Cusp Equation

Until this point, we meticulously explored the mathematical consequences of the unitary
Graßmannian integral formulas (3.5) and (5.7). To catch a glimpse of where this research
might be headed, we proceed less stringently in this section. This will reveal an intriguing
connection to the equation [63, 64] that is believed to govern the so-called cusp anoma-
lous dimension in planar N = 4 SYM. This function of the ’t Hooft coupling can be
extracted from the anomalous dimensions of leading-twist operators. It is an integral part
of the conjectured all-loop expression for MHV amplitudes [73], which is known to receive
corrections starting at six particles [74]. Therefore our systematic approach to Yangian
invariants appears to contain already hints of all-loop results.

To expose them, we consider the Yangian invariant |�4,2Í in the oscillator basis given
by the Graßmannian integral (5.7) with a U(2) contour. Specializing the deformation
parameters v±

i such that its integrand F (C) is of the form (5.11) reduces the integral to
the Leutwyler-Smilga model [59]. Ordinarily, this integral for |�4,2Í contains the 2 ◊ 2
matrices I•¶, whose entries are built out of oscillator variables associated with u(p, q|m)
representations, and a Fock vacuum |0Í. In what follows, we neglect this oscillator struc-
ture ad hoc, and we even impose constraints on the now numerical entries of the matrices
I•¶. This results in a family of integrals indexed by an integer parameter,

K̂‹(t, tÕ) = 1
2

⁄

U(2)

[dC] (det C)‹etr(I•C†+CIt
¶) with I• = ≠I¶ = 1

2

A
t 0
0 tÕ

B

. (7.1)

These integrals can be computed with the determinant formula [61] mentioned previously
in section 5.2. In particular,

K̂0(t, tÕ) = tJ1(t)J0(tÕ) ≠ tÕJ0(t)J1(tÕ)
t2 ≠ tÕ2 , K̂1(t, tÕ) = tÕJ1(t)J0(tÕ) ≠ tJ0(t)J1(tÕ)

t2 ≠ tÕ2 , (7.2)

where J‹(t) denotes the standard Bessel function.
Excitingly, precisely these two functions make up the kernel of the cusp equation in

the planar N = 4 theory. The cusp anomalous dimension f(g) depends on the ’t Hooft
coupling constant ⁄ via g2 = ⁄

16fi2 . It is given as f(g) = 16g2‡̂(0) with the fluctuation
density ‡̂(t) obeying the integral equation [63,64]

‡̂(t) = t

et ≠ 1

C

K̂(2gt, 0) ≠ 4g2
Œ⁄

0

dtÕ K̂(2gt, 2gtÕ)‡̂(tÕ)
D

. (7.3)

The complete kernel for this equation, which incorporates e�ects from the asymptotic
Bethe ansatz and the dressing phase, was found in [64],

K̂(t, tÕ) = K̂0(t, tÕ) + K̂1(t, tÕ) + 8g2
Œ⁄

0

dtÕÕ K̂1(t, 2gtÕÕ) tÕÕ

etÕÕ
≠ 1K̂0(2gtÕÕ, tÕ) . (7.4)

– 33 –



Thus we established a link from the U(2) integral expression (5.7) for the Yangian invariant
|�4,2Í to the building blocks (7.2) of the cusp kernel. It is on a heuristic level at present.
Presumably, details of the u(2, 2|4) representations have to be injected to overcome, for
instance, the ad hoc choice of the matrices in (7.1). Still, we are intrigued by these seeds
of all-loop results in our unitary Graßmannian integral approach to the construction of
tree-level amplitudes.

8 Conclusions and Outlook

We began this article by recalling aspects of our and others’ earlier work on the system-
atic construction of Yangian invariants from integrability in section 2. This allows, in
contradistinction to just “observing” it, to take Yangian symmetry as a starting point, to
then employ the quantum inverse scattering method, and to finally systematically con-
struct such invariants. Applying this methodology in section 3 for the general symmetry
algebra u(p, p|m), while paying close attention to its correct reality conditions, we end
up, in the special case of N = 2K points and superhelicity K, with a family of unitary
Graßmannian “contour” integrals. The construction requires a certain deformation of the
naive integrands by extra parameters.

Evaluating the deformed integrals in case of the superconformal algebra psu(2, 2|4) for
N = 4, 6, 8 points, attempting to remove the deformation parameters, and comparing to
the corresponding, known, physical tree-level amplitudes, one, surprisingly, finds di�er-
ences that become more and more pronounced as N increases, cf. section 4. For N = 4 at
generic momenta one reproduces the four-particle MHV amplitude. However, even here
a closer look unveils the existence of certain contact terms at collinear momenta that di-
verge upon taking the deformation parameters to zero, see section 6.2 and in particular
(6.9). For N = 6 at generic momenta the physical six-particle NMHV amplitude is only
reproduced in one out of four kinematical sectors, while terms divergent in the deformation
parameters again appear at various collinear momentum configurations. An analogous toy
integral for the case N = 4 and the algebra u(1, 1) reproduces the proper R-matrix of this
simpler algebra. This forces us to conclude that the physical six-particle NMHV amplitude
in N = 4 SYM is not “as integrable as hoped for”. These tensions between the Yangian
invariant and the physical amplitude worsen for N = 8. Divergences in the deformation
parameters are now present even at generic momenta. Furthermore, the residues of these
terms apparently no longer combine to the physical eight-point N2MHV amplitude in any
kinematical sector [55].

What does this mean, especially in the light of the fact that there have been local
proofs of Yangian invariance of the physical amplitudes in the planar N = 4 model, using
di�erential operators representing the algebra? We suspect that Yangian invariance of the
perturbative physical amplitudes is nevertheless subtly broken. This includes, but signif-
icantly goes beyond the e�ects already observed in [18]. One explanation would be that
the physical amplitudes are only infinitesimally invariant, and that Yangian invariance
(meaning either conformal or dual-conformal symmetry, or both) is broken by large trans-
formations. We are currently investigating this possibility [50]. On the positive side, we
found some evidence for Yangian invariance at all-loop level, cf. section 7. Could it be that
the detected problems with the Yangian invariance of the tree-level scattering amplitudes
of N = 4 SYM may be elegantly resolved at the non-perturbative, all-loop level?
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A Parity Symmetry

In this appendix, we investigate a discrete symmetry transformation of the unitary Graß-
mannian integrals (3.5) for �2K,K in spinor helicity variables and (5.7) for |�2K,KÍ in
oscillator variables. We define this so-called parity transformation P by reversing the or-
der of the particles i = 1, . . . , K with negative energies and also that of i = K + 1, . . . , 2K
with positive energies. On the level of the two Graßmannian integral formulas, this trans-
formation acts as, respectively,

⁄± P
‘æ E⁄± , ÷± P

‘æ E÷± , ÷̃± P
‘æ E÷̃± ,

and I•¶
P
‘æ E I•¶ E

with E =

Q

ccccca

0 · · · 0 1
... . .

.
1 0

0 . .
.

. .
. ...

1 0 · · · 0

R

dddddb
œ U(K) .

(A.1)

Here ÷± are K ◊r blocks and ÷̃± are K ◊s blocks of fermionic variables, which are defined
analogously to the blocks ⁄± of ⁄ in (3.1). The transformation P is a symmetry of both
Graßmannian integral formulas if the deformation parameters satisfy

v1 ≠ v2 = v2 ≠ v3 = · · · = vK≠1 ≠ vK , c1 = c2 = · · · = cK . (A.2)

This can be proven using the left- and right-invariance of Haar measure and the identity
[1, 2, . . . , j]ECE = [1, 2, . . . , K ≠ j]C det C for the minors appearing in the manifestly single-
valued Graßmannian integrand in (3.13).

We focus on the action of P on the Yangian invariant |�4,2Í given by (5.7). In this case
(A.2) yields no constraints for the parameters v1, v2 œ C and imposes equal representation
labels c1 = c2. In section 6, we argued that |�4,2Í can be understood as an R-matrix
acting on the tensor product D≠c1 ¢ D≠c1 of two u(p, q|r + s) representations. On this
level, P permutes the two tensor factors, which is a symmetry of this R-matrix. In the
literature on integrable models, see e.g. [71], this property is known as “parity invariance”,
hence our name for P.

B Unitary Contour from Gluing

We argued in section 3.1 that momentum conservation (3.4) naturally suggests to equip the
Graßmannian integral (3.5), which computes the Yangian invariant �2K,K , with a U(K)
contour for the integration variable C. Strictly speaking, however, it does not completely
fix the contour. To illustrate this point, we consider the matrix C(U) in (4.3) from the
six-particle sample invariant �6,3 of u(2, 2|0 + 4). It obeys the momentum condition (3.4)
for any U œ C but is unitary only for U œ U(1). Here, working in the oscillator basis, we
derive the U(K) contour of the Graßmannian integral (5.7) for the u(p, q|r + s) Yangian
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invariant |�2K,KÍ by “gluing” together multiple copies of |�4,2Í with U(2) contours. There
is no reason to question the contour of |�4,2Í because it leads to the correct R-matrix,
as explained in section 6.1. Let us remark that our gluing procedure gives rise to a
parameterization of U(K) in terms of U(2) matrices that can be traced back to the classic
work [75].

We proceed by induction with the assumption that |�2K,KÍ is obtained from a Graß-
mannian integral with U(K) contour. We glue onto it invariants |�(t)

4,2Í with t = 1, . . . , K
and show that the result yields a Graßmannian integral formula for |�2(K+1),K+1Í with a
U(K + 1) contour. This is best described graphically,

1 K+22 3 K+1 K+3 2(K+1)

y2 y3 yK

x1 x2 xK
· · ·· · ·

|�2K,KÍ

Ã

1 K+1 K+2 2(K+1)

· · · · · ·

|�2(K+1),K+1Í

. (B.1)

Here we visualized the |�(t)
4,2Í as in (6.4) by intersections of lines. Moreover, the labels xi

and yi are oscillator site indices associated with internal lines. Translated into a formula,
(B.1) becomes

|�(1)
4,2Í

†x1 †y2 |�(2)
4,2Í

†x2 †y3 · · · |�(K)
4,2 Í

†xK |�2K,KÍ Ã |�2(K+1),K+1Í . (B.2)

On the left-hand side, the invariants are obtained from the unitary Graßmannian integral
formula (5.7) with some relabeling of the oscillator contractions (5.8) and the deformation
parameters in the integrands (3.13) to be in accordance with (B.1). This reads for the
invariants |�2K,KÍ and |�(t)

4,2Í, respectively,

(i •
¶ j) ‘æ (xi

•
¶ j + 2) , (vi, ci) ‘æ (vi+1, ci+1) for i = 1, . . . , K ,

j = K + 1, . . . , 2K ,
A

(1 •
¶ 3) (1 •

¶ 4)
(2 •

¶ 3) (2 •
¶ 4)

B

‘æ

A
(yt

•
¶ yt+1) (yt

•
¶ xt)

(t + 1 •
¶ yt+1) (t + 1 •

¶ xt)

B

,
(v1, c1) unchanged ,
(v2, c2) ‘æ (vt+1, ct+1)

(B.3)

with y1 © 1 and yK+1 © K +2. The right-hand side of (B.2) is given by the Graßmannian
formula (5.7) without any replacements. In what follows, we prove that both sides are
indeed proportional.

We begin by manipulating the left-hand side of (B.2). The oscillators with site indices
xi and yi appear only inside of vacuum expectation values because they are associated
with internal lines in (B.1). We eliminate them by calculating these expectation values.
What is more, we combine the integrands of the U(2) integrals and the U(K) integral.
This yields

⁄

U(2)

[dD
(1)] · · ·

⁄

U(2)

[dD
(K)]

⁄

U(K)

[dD]
--D(2)

13
--2 · · ·

--D(K)
13

--2(K≠1)
F (C)(det C)retr(I•C†+CIt

¶)
|0Í , (B.4)

where we denote the integration variables originating from |�2K,KÍ and |�(t)
4,2Í by D and
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D
(t), respectively. The integrand F (C) and the exponential with the U(K + 1) matrix

C =

Q

ccca

D
(1)
13 D

(1)
14

D
(1)
23 D

(1)
24

0

0 1K≠1

R

dddb · · ·

Q

ccca

D
(K)
13 0 D

(K)
14

0 1K≠1 0

D
(K)
23 0 D

(K)
24

R

dddb

Q

ccca

1 0

0 D

R

dddb (B.5)

are already those of |�2(K+1),K+1Í. Therefore we can focus on the Haar measures in (B.4)
next. Starting out a bit more general, we introduce the complex Stiefel manifold VL(CM )
with L Æ M which is the set of M ◊ L matrices S satisfying S

†
S = 1L. It generalizes the

unitary group manifold to non-square matrices as VM (CM ) = U(M). Its Haar measure
can be realized as

⁄

VL(CM )

[dS] Ã

⁄

CLM

dLM
S

†dLM
S

(2i)LM
”L2(S†

S ≠ 1L) , (B.6)

where the delta function of a Hermitian matrix is defined as the product of real delta
functions of its diagonal elements times complex delta functions of the upper triangular
ones. We implement the Haar measures [dD

(t)] in (B.4) as in (B.6) and eliminate degrees
of freedom using the delta functions. The factors

--D(t)
13

--2 in (B.4) cancel with factors
arising from these measures. Further degrees of freedom can be integrated out because
the matrices D

(t) appear only in one particular combination inside of C in (B.5). Yet others
can be absorbed into D using the left-invariance of [dD]. As a result, (B.4) becomes

⁄

V1(CK+1)

[dS]
⁄

U(K)

[dD] F (C)(det C)retr(I•C†+CIt
¶)

|0Í , (B.7)

where we neglected a numerical prefactor, and we have

C =

Q

aS T (S)

R

b

Q

a
1 0

0 D

R

b œ U(K + 1) . (B.8)

The first factor in C stems from multiplying the first K factors in (B.5), and the K +1◊K
matrix T (S) is completely determined in terms of S. The Stiefel manifold in (B.7) is
just a unit sphere and can also be interpreted as a coset space, V1(CK+1) ≥= S2K+3 ≥=
U(K + 1)/U(K). The first factor in (B.8) is a representative of the coset space element
S in U(K + 1). With this interpretation, the product of the two integrals in (B.7) equalss

U(K+1)[dC], see e.g. the explanation around equation (5.121) in [76]. Therefore (B.7) is
nothing but the right-hand side of (B.2). Q.E.D.
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