Übersicht

- Konfidenzintervalle bei Monte Carlo
- 2 Antithetic Variates
- 3 Control Variates
- 4 Importance Sampling
- 5 Conditional Monte Carlo
 - 6 Stratified Sampling

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

E

• 日 • • 日 • • 日 •

Conditional Monte Carlo

- Main Idea: Instead of computing θ = E[h(Y)] = E[X], choose a r.v. Z and:
 - Set V := E[X|Z] = g(Z) for some function g.
 - Estimate $\theta := E[V]$.
- Conditions required:
 - Z can be easily simulated.
 - V=g(Z) can be easily computed. For example: available in a closed form.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

イロト (部) (国) (国) - 国

Variance reduction

• Assume $X \in L^2(\Omega)$, then $X - E[X] - (E[X|Z] - E[X]) \perp E[X|Z] - E[X]$, we have the classical decomposition of the variance

$$Var(X) = E[Var(X|Z)] + Var(E[X|Z]),$$

where
$$Var(X|Z) := E\left[(X - E[X|Z])^2 | Z\right]$$
 is a non-negative r.v.

Thus

$$Var(X) \geq Var(E[X|Z]).$$

Note that the r.v. X and Z should be dependent in order to achieve a variance reduction.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

(中)

Example

• Aim: Estimate $\theta := P(U + Z > 4)$, $U \sim Exp(1)$ and $Z \sim Exp(1/2)$. Setting $X := 1_{\{U+Z>4\}}$, then $\theta := \mathbb{P}(U + Z > 4) = E[X]$.

Classical Monte Carlo method:

- Generate U_1, \ldots, U_n and Z_1, \ldots, Z_n independently.
- Set for all i, $X_k := \mathbf{1}_{\{U_k + Z_k > 4\}}$

•
$$\hat{\theta}_n := \frac{1}{n} \sum_{k=1}^n X_k.$$

• Confidence intervals are computed as usual.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ∧ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ } < □ ∧ < □ } < □ ∧

Example

• Set V := E[X|Z] = g(Z). Then by direct computation,

 $E[X|Z = z] = 1 - F_U(4 - z) = \exp{-(4 - z)} \mathbf{1}_{\{0 \le z \le 4\}} + \mathbf{1}_{\{z > 4\}},$

where *F_U* is the cumulative distributin function (CDF) of U.
Conditional Monte Carlo method for *E*[*V*]:

- Generate Z_1, \ldots, Z_n independently.
- Set for all i, $V_k := E[X|Z_k] = g(Z_k)$.
- $\hat{\theta}_{n,CMC} := \frac{1}{n} \sum_{k=1}^{n} V_k$.
- Confidence intervals are computed as usual, but using $(V_k)_k$ instead of $(X_k)_k$.

▲□▶▲□▶▲□▶▲□▶ ■ めのの

Comments

- Conditional Monte Carlo works well when we can compute exactly the function g(.). This is not always possible.
- An alternative could be to combine some other variance reduction methods with Conditional Monte Carlo to estimate $\hat{\theta}_{n,CMC}$. For example, antithetic variables when g(.) is monotonic. Etc...

 $\mathcal{A} \mathcal{A} \mathcal{A}$

(口)

Übersicht

- Konfidenzintervalle bei Monte Carlo
- 2 Antithetic Variates
- 3 Control Variates
- 4 Importance Sampling
 - Conditional Monte Carlo
- 6 Stratified Sampling

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

王

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Main Idea: use conditioning to reduce the variance.
- Tools: Law of total expectation, Conditional sampling.
- Estimation for E[h(Y)], using conditional sampling w.r.t. a second r.v. W.
 Without loss of generality, we will treat the estimation of E[Y].

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

(口)

- Consider the following 2-step random experience in : We have an urn with four different colored balls: red, green, blue and orange (the colors will be referred to as r, g, b and o):
- Step 1) Pick at random a colored ball from the urn. The picked color will be referred to by c. We denote by *I* the r.v. describing this Step.
- Step 2) Conditional on the color I = c having been drawn in Step 1), we receive a payoff Y which is drawn from the pdf $f_c(.)$.
- How much would we win on average?

 $\mathcal{A} \mathcal{A} \mathcal{A}$

(口)

Before Answering this question, let's describe the law μ of the payoff *Y*.

We denote by *ν* the discrete law of *I* and *µ_i* the law with pdf
 f_i. Then for all *A* ∈ B(ℝ),

$$\mu(A) = \sum_{i \in \mathcal{I}} \nu(\{i\}) \mu_i(A)$$
$$= \sum_{i \in \mathcal{I}} \nu(\{i\}) \int_{\mathbb{R}} \mathbf{1}_{\{A\}} f_i(y) dy.$$

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Estimation for the gain:
 2-Step Algorithm for n simulations of Y:

- Step (1) Draw n .i.i.d. r.v. $(I_k)_{1 \le k \le n}$ according to the discrete law ν . These r.v. are valued in $\mathcal{I} := \{r,g,b,o\}$.
- Step (2) For each k = 1, ..., n, given $I_k = i$, simulate independently the r.v. Y_k from $f_i(.)$.

•
$$\hat{\theta}_n := \frac{1}{n} \sum_{k=1}^n Y_k.$$

• Assume that taking each one of the four colors has probability $\frac{1}{4}$. Assume in addition that n = 1000 and that the color r has been choosen 246 times, g 270 times, b 226 times and o 258 times. Finally, assume that f_g leads to high payoffs and f_b to low ones. Would this influence the confidence in $\hat{\theta}_n$?

 $\mathcal{A} \mathcal{A} \mathcal{A}$

$$E[Y] = E[E[Y|I]]$$

= $\frac{1}{4}E[Y|I=r] + \frac{1}{4}E[Y|I=g]$
+ $\frac{1}{4}E[Y|I=b] + \frac{1}{4}E[Y|I=o]$
= $\frac{1}{4}\theta_r + \frac{1}{4}\theta_g + \frac{1}{4}\theta_b + \frac{1}{4}\theta_o.$

We can define the estimator

$$\hat{\theta}_{st,n} = \frac{1}{4}\hat{\theta}_{st,n_r} + \frac{1}{4}\hat{\theta}_{st,n_g} + \frac{1}{4}\hat{\theta}_{st,n_b} + \frac{1}{4}\hat{\theta}_{st,n_o},$$

whith $n_r + ng + n_b + n_o = n$. Recall that Var(Y) = E[Var(Y|I)] + Var(E[Y|I]). Thus $Var(Y) \ge E[Var(Y|I)]$

$$E[Var(Y|I)] = \frac{1}{4}Var(Y|I=r) + \frac{1}{4}Var(Y|I=g) + \frac{1}{4}Var(Y|I=g) + \frac{1}{4}Var(Y|I=b) + \frac{1}{4}Var(Y|I=o) = \frac{1}{4}Var(Y_r + Y_g + Y_b + Y_o).$$

A fair comparison of $Var(\hat{\theta}_n)$ and $Var(\hat{\theta}_{st,n})$ should compare $Var(Y^1 + Y^2 + Y^3 + Y^4)$ and $Var(Y_r + Y_g + Y_b + Y_o)$, where Y^1 , Y^2 , Y^3 and Y^4 are four i.i.d. random variables drawn independently from the 2-Step algorithm. We get

$$Var(Y^{1} + Y^{2} + Y^{3} + Y^{4}) = 4Var(Y) \ge Var(Y_{r} + Y_{g} + Y_{b} + Y_{o}).$$

 $\checkmark Q (\land$

<ロト < 部 > < き > < き > … き …

• *Y* is a random variable. The aim is to estimate $\theta = E[Y]$. Let *W* be a real r.v. and $(\Delta_i)_{1 \le i \le m}$ be a finite partition of \mathbb{R} . Now, setting $I := \sum_{i=1}^{m} i \mathbf{1}_{\{W \in \Delta_i\}}$, we get

$$E[Y] = E[E[Y|I]] = \sum_{i=1}^{m} P(I=i)E[Y|I=i]$$
$$= \sum_{i=1}^{m} P(W \in \Delta_i)E[Y|W \in \Delta_i]$$
$$= \sum_{i=1}^{m} p_i E_i.$$

where $p_i := P(W \in \Delta_i)$ and $E_i := E[Y|W \in \Delta_i]$.

▲□▶▲□▶▲□▶▲□▶ = のQ@

- The random variable *W* is called "the stratifying variable" and the subsets $(\Delta_i)_{1 \le i \le m}$ are called "the strata".
- In our example, the event $\{W \in \Delta_i\}$ equals $\{I = i\}$ and $m = |\mathcal{I}|$.
- Conditions required:
 - p_i can be easily computed.
 - It is easy to generate Y given $\{W \in \Delta_i\}$.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ∧ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ } < □ ∧ < □ } < □ ∧

• Consider *m* independent random variables $Y^{(i)} \sim \mathcal{L}(Y|W \in \Delta_i)$ the conditional law of *Y* given $\{W \in \Delta_i\}$ and $\theta_i := E[Y^{(i)}]$. Then

$$\theta = E[Y] = E[E[Y|I]] = \sum_{i=1}^{m} p_i E_i,$$
$$= \sum_{i=1}^{m} p_i \theta_i.$$

 \rightarrow In order to estimate θ , we need to estimate θ_i , using n_i independent samples of $Y^{(i)}$. The estimate of θ is given by:

$$\hat{\theta}_{st,n} = \sum_{i=1}^{m} p_i \hat{\theta}_{i,n_i}.$$

 $\overline{i=1}$

Variance reduction: Sub-optimal allocation approach

- Determine $(n_i)_i$, to achieve some variance reduction.
- Optimal approach: Take $(n_i)_i$ minimizing the variance $Var(\hat{\theta}_{st,n})$ subject to constraint $\sum_{i=1}^{m} n_i = n$, for given number n of overall samples.
- Sub-optimal allocation: take for all i, $n_i = np_i$. This last choice gives

$$Var(\hat{\theta}_{st,n}) \leq \frac{\sigma^2}{n} =: Var(\hat{\theta}_n),$$

where $\sigma := Var(Y)$ and $\hat{\theta}_n$ is the classical simulation estimator of θ .

 $\mathcal{A} \mathcal{A} \mathcal{A}$

(日)

Variance reduction: Optimal variance reduction

$$Var(\hat{\theta}_{st,n}) = \sum_{i=1}^{m} \frac{p_i^2 \sigma_i^2}{n_i}$$
, where $\sigma_i := Var(Y^{(i)})$.

 \rightarrow Constrained optimization problem:

$$\min_{n_i} \left\{ \sum_{i=1}^m \frac{p_i^2 \sigma_i^2}{n_i} \right\} \text{ subject to } \sum_{i=1}^m n_i = n$$

• The solution is given by:

$$n_i^* := \frac{p_i \sigma_i}{\sum_{i=1}^m p_i \sigma_i} n$$

The minimal variance is

$$Var(\hat{\theta}_{st,n^*}) = \frac{(\sum_{i=1}^m p_i \sigma_i)^2}{n}$$

3

< □ > < □ > < □ > < □ > < □ > .

Example 1: Simulation in the conditional laws

- Want to estimate $\theta := E[\sqrt{1 U^2}]$, where $U \sim U(0, 1)$.
- Take W = U as a stratification variable. This is a possible since
 - $P(W \in \Delta_i)$ can be easily computed.
 - The conditional law $\mathcal{L}(Y|W \in \Delta_i)$ can be easily generated.
- $\mathcal{L}(U|U \in [a, b]) = U(a, b).$ \rightarrow By choosing N_{st} equiprobable strates, so that $\Delta_i = [\frac{i-1}{N_{st}}, \frac{i}{N_{st}}],$ for i = 1, ..., Nst:

•
$$P(W \in \Delta_i) = \frac{1}{N_{st}}$$
.

•
$$U^{(i)} \sim \mathcal{L}(U|U \in \Delta_i)$$
. Then $U^{(i)} \sim U(\frac{i-1}{N_{st}}, \frac{i}{N_{st}})$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example 1: Matlab code and experiments

```
Matlab code
   function[theta, var] = strat(Mtot, Nst)
   p = 1/(Nst);
   Mst = Mtot/Nst;
   theta = 0; var = 0;
   for_i = 1: Nst
     U = (j-1)/Nst + rand(Mst, 1)/Nst;
     X = sqrt(1 - U.^2);
     theta = theta + p * mean(X);
     Sum = sum(X);
     Sum_{squares} = sum(X2);
     Sig_{squares,j} = (Sum_{squares} - (Sum^2)/Mst)/(Mst - 1);
     var = var + (Sig_{squares,i} * p)^2 / Mst;
   end;
   CI = [theta - 1.96 * sqrt(var), theta + 1.96 * sqrt(var)];
   end
```

Numerical experiments: For a sample of size 10⁴
 10 strates: $\hat{\theta}_{st} = 0,784(1.2 \times 10^{-9}).$ Without stratification: $\hat{\theta} = 0,7883(0.049).$

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

(日)

Example 2: Stratifying a standard normal distribution

- For $X \sim N(0, 1)$, how to simulate the conditional law $\mathcal{L}(X|X \in [a, b])$? \rightarrow Let Φ be the CDF of X. If $\widetilde{U} \sim U(\Phi(a), \Phi(b))$, then $\widetilde{X} := \Phi^{-1}(\widetilde{U}) \sim \mathcal{L}(X|X \in [a, b])$.
- Exercise: Write a Matlab script giving the histogram for a stratified sample of *X*, using 100 equiprobable strates.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example 2: Stratifying a standard normal distribution

Non stratified sample.

Simulation stoch. Prozesse

Dirk Becherer

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

E

< ≣ ▶

<ロト < 回 > < 三 >

Example 2: Stratifying a standard normal distribution

Stratified sample using 100 equiprobable strates.

Simulation stoch. Prozesse

Dirk Becherer

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

3

< ≣ ▶

<ロト < 回 > < 三 >

Stratification of the terminal value of a BM

- Motivated by variance reduction in Option pricing.
- Based on the Levy construction of the Brownian Motion, after stratifying W_T .

Stratification of the terminal value of the Brownian motion.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

3

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Stratified sampling: Some comments

- Typically, $(\sigma_k)_k$ are unknown. Their numerical estimation has additional computational cost.
- In many cases, it is more convenient to use the sub-optimal variance reduction.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Literatur

- Sheldon Ross, Simulation, Academic Press, 2006
- Paul Glasserman, Monte Carlo Methods in Financial Engineering, Springer, 2004
- Higham+Higham, Matlab Guide

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

E

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >