SINGULARITY THEORY, HOMEWORK SHEET NO. 1

MARKO BERGHOFF, HU BERLIN, SUMMER 2020

Problem 1

What is your favourite singularity? Think about examples of singularities that you have encountered before.

Problem 2

Find a smooth parametrisation $t \mapsto (x(t), y(t))$ of a curve in the plane with a double point that has no critical points.

Can you find a way to fit the "double point singularity" into our framework, i.e. is there a map $f: M \to N$ that has a critical point at a double point? Use *Wolfram Alpha* (or your favourite software) to experiment by plotting some small perturbations of f.

Problem 3

Calculate the rank of the differential of $p: S^2 \to \mathbb{R}^2$, the vertical projection from the sphere to the plane, to find the set of critical points of p.

Problem 4

Proof the following two preparation theorems.

Let $f: M \to N$ with $m := \dim M$, $n := \dim N$ and let $x \in M$ be a regular point of f. If

- m > n, then there are local coordinates (x_1, \ldots, x_m) around x and (y_1, \ldots, y_n) around f(x), such that f takes the form $f(x_1, \ldots, x_m) = (x_1, \ldots, x_n)$.
- m < n, then there are local coordinates (x_1, \ldots, x_m) around x and (y_1, \ldots, y_n) around f(x), such that f takes the form $f(x_1, \ldots, x_m) = (x_1, \ldots, x_m, 0, \ldots, 0)$.

What about the case m = n?