SINGULARITY THEORY, HOMEWORK SHEET NO. 2

MARKO BERGHOFF, HU BERLIN, SUMMER 2020

Problem 1

In Def. 10 we could have added an intermediate definition of transversality of submanifolds:

Definition: Two submanifolds $X, Y \subset M$ of a manifold M intersect transversally, $X \pitchfork Y$, if

 $\forall x \in X \cap Y : T_x X + T_x Y = T_x M.$

Find a tupel (f, M, N, S) such that $f(M) \pitchfork S$ without $f \pitchfork S$.

Problem 2

Find the critical points and critical values of the map

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2: (x, y) \longmapsto (x^3 + xy, y).$$

What is the corank of f at the critical points?

PROBLEM 3

Theorem (Whitney '55): A map of a two-dimensional manifold to a two-dimensional manifold is stable at a point if and only if the map can be described with respect to local coordinates (x_1, x_2) in the source and (y_1, y_2) in the target – with the point under consideration the origin $(x_1, x_2) = (0, 0)$ – in one of the three forms

(1) $y_1 = x_1, y_2 = x_2$ - a regular point, (2) $y_1 = x_1^2, y_2 = x_2$ - a fold, (3) $y_1 = x_1^3 + x_1x_2, y_2 = x_2$ - a pleat.

Use this to classify all singularities of the maps f from Problem 2 above and p from Problem 3, sheet 1.

Problem 4

Consider the map $f(z) = z^2$, viewed as smooth map from \mathbb{R}^2 to \mathbb{R}^2 . In the lecture we have seen that $\operatorname{Crit}(f) = \{0\} = \Sigma^2(f)$, but Whitney's theorem or Theorem 8 imply that a generic map from \mathbb{R}^2 to \mathbb{R}^2 does not have singularities of corank 2. Find a perturbation f_{ϵ} of f that has only generic singularities. Assuming you have found a stable perturbation, can you classify its singularities?

PROBLEM 5

We may upgrade the notion of germs of maps to what is called a *(pre-)sheaf*. An example is given by the following construction. To each open set U in a manifold M associate the algebra

$$\mathcal{C}^{\infty}(U) := \{ f : U \to \mathbb{R} \mid f \text{ is smooth} \},\$$

together with restriction maps $\rho_{U,V} : \mathcal{C}^{\infty}(V) \to \mathcal{C}^{\infty}(U)$ for any pair $U \subset V$ of open sets.

- i) Given such data, i.e. a collection of algebras $\mathcal{A}(U)$, one for each $U \subset M$, and maps $\rho_{U,V}$ as above, how can one recover the notion of germs at x? (here you should think in terms of functions, but argue abstractly)
- ii) Let \mathcal{C}_x^{∞} denote the algebra of germs of functions at $x \in M$. The map $\rho_{x,U} : \mathcal{C}^{\infty}(U) \to \mathcal{C}_x^{\infty}$ defined by sending $f \in \mathcal{C}^{\infty}(U)$ to its germ at x is an algebra morphism satisfying $\rho_{x,V} = \rho_{x,U} \circ \rho_{U,V}$ for all $U \subset V$. Is this map surjective, is it injective? What if we replace \mathbb{R} by \mathbb{C} and ask for holomorphicity instead of smoothness?