SINGULARITY THEORY, HOMEWORK SHEET NO. 2

MARKO BERGHOFF, HU BERLIN, SUMMER 2020

Problem 1

In Def. 10 we could have added an intermediate definition of transversality of submanifolds:

Definition: Two submanifolds $X, Y \subset M$ of a manifold M intersect transversally, $X \pitchfork Y$, if
\[
\forall x \in X \cap Y : T_xX + T_xY = T_xM.
\]
Find a tupel (f, M, N, S) such that $f(M) \pitchfork S$ without $f \pitchfork S$.

Problem 2

Find the critical points and critical values of the map

$$f : \mathbb{R}^2 \to \mathbb{R}^2 : (x, y) \mapsto (x^3 + xy, y).$$

What is the corank of f at the critical points?

Problem 3

Theorem (Whitney ’55): A map of a two-dimensional manifold to a two-dimensional manifold is stable at a point if and only if the map can be described with respect to local coordinates (x_1, x_2) in the source and (y_1, y_2) in the target – with the point under consideration the origin $(x_1, x_2) = (0, 0)$ – in one of the three forms

1. $y_1 = x_1, y_2 = x_2$ - a regular point,
2. $y_1 = x_1^2, y_2 = x_2$ - a fold,
3. $y_1 = x_1^3 + x_1x_2, y_2 = x_2$ - a pleat.

Use this to classify all singularities of the maps f from Problem 2 above and p from Problem 3, sheet 1.

Problem 4

Consider the map $f(z) = z^2$, viewed as smooth map from \mathbb{R}^2 to \mathbb{R}^2. In the lecture we have seen that $\text{Crit}(f) = \{0\} = \Sigma^2(f)$, but Whitney’s theorem or Theorem 8 imply that a generic map from \mathbb{R}^2 to \mathbb{R}^2 does not have singularities of corank 2. Find a perturbation f_ϵ of f that has only generic singularities. Assuming you have found a stable perturbation, can you classify its singularities?

Problem 5

We may upgrade the notion of germs of maps to what is called a (pre-)sheaf. An example is given by the following construction. To each open set U in a manifold M associate the algebra

$$C^\infty(U) := \{ f : U \to \mathbb{R} \mid f \text{ is smooth} \},$$

together with restriction maps $\rho_{U,V} : C^\infty(V) \to C^\infty(U)$ for any pair $U \subset V$ of open sets.

i) Given such data, i.e. a collection of algebras $A(U)$, one for each $U \subset M$, and maps $\rho_{U,V}$ as above, how can one recover the notion of germs at x? (here you should think in terms of functions, but argue abstractly)

ii) Let C^∞_x denote the algebra of germs of functions at $x \in M$. The map $\rho_x : C^\infty(U) \to C^\infty_x$ defined by sending $f \in C^\infty(U)$ to its germ at x is an algebra morphism satisfying $\rho_{x,V} = \rho_x \circ \rho_{U,V}$ for all $U \subset V$. Is this map surjective, is it injective? What if we replace \mathbb{R} by \mathbb{C} and ask for holomorphicity instead of smoothness?