SINGULARITY THEORY, HOMEWORK SHEET NO. 4

MARKO BERGHOFF, HU BERLIN, SUMMER 2020

Problem 1

What kind of singularities does a generic smooth function $f : \mathbb{R}^2 \to \mathbb{R}$ have? Give an example, and one for the non-generic case.

Problem 2

Let M and N be smooth manifolds of dimensions m and n = m + 1. What is the smallest value m such that a generic smooth map $f: M \to N$ can have corank 2 singularities? What about corank 3?

Problem 3

Let M be a smooth manifold. A smooth function $f: M \to \mathbb{R}$ is called a *Morse function* if

- it has only non-degenerate critical points (a critical point x of f is non-degenerate if the Hessian matrix $\left(\frac{\partial^2 f}{\partial x_i \partial x_j}(x)\right)_{i,j=1,...,n}$ is invertible - with respect to some, and hence any, set of local coordinates),

- no two critical points have the same critical value.

Show that the set of Morse functions is dense in $C^{\infty}(M, \mathbb{R})$.

Problem 4

Consider two maps $f_{\pm} : \mathbb{R}^4 \to \mathbb{R}^3$, given by

$$f_+(x_1, x_2, x_3, x_4) := (x_1, x_2, x_3^2 + x_4^2 + x_1 x_3 + x_2 x_4)$$

and

$$f_{-}(x_1, x_2, x_3, x_4) := (x_1, x_2, x_3^2 - x_4^2 + x_1 x_3 + x_2 x_4).$$

Compute and classify their singularities. Try to argue why f_+ and f_- are not equivalent.

Problem 5

Discuss the singularities of $f: \mathbb{R}^2 \to \mathbb{R}^3$, $(x, y) \mapsto (xy, y, x^2)$ and sketch the image of this map.