SINGULARITY THEORY, HOMEWORK SHEET NO. 6

MARKO BERGHOFF, HU BERLIN, SUMMER 2020

Problem 1

Show that the Whitney fold and pleat maps $f, p : \mathbb{R}^2 \to \mathbb{R}^2$, given by

$$f: (x_1, x_2) \mapsto (x_1^2, x_2) \text{ and } p: (x_1, x_2) \mapsto (x_1^3 + x_1 x_2, x_2),$$

are locally infinitesimally stable at the origin.

Problem 2

Consider the map-germ $[f]_0$ of $f : \mathbb{R} \to \mathbb{R}$, $f(x) := \exp(-x^{-2})$. Is it stable?

Problem 3

Let $f \in C^{\infty}(\mathbb{R}, \mathbb{R}^2)$ be given by $x \mapsto (x^2, x^3)$. Sketch the image of the deformation $F : \mathbb{R} \times I_{\epsilon} \to \mathbb{R}^2 \times I_{\epsilon}$, $(x, t) \mapsto (x^2, x^3 + tx, t)$ for t < 0, t = 0 and t > 0. What geometric operation is described? Can you realise the "other" operations of this type also by deformations?

Problem 4

Let M be compact and $f \in C^{\infty}(M, N)$. Given a deformation $F: M \times I \to N \times I$ (with $I = I_{\epsilon}$) of f we define a vector field ν_F along F by

$$\nu_F := dF(\frac{\partial}{\partial t}) - F^*(\frac{\partial}{\partial t}),$$

where $\frac{\partial}{\partial t}$ is viewed as a vector field on $M \times I$ or $N \times I$, respectively. Using the two projections $\pi_M : M \times I \to M$ and $\pi_I : M \times I \to I$ and that $T(M \times I) = \pi_M^*(TM) \oplus \pi_I^*(TI)$ we can decompose any element ξ in $T(M \times I)$ as

$$\xi = \xi_M + \xi_I,$$

where $\xi_M \in \pi^*_M(TM)$ and $\xi_I \in \pi^*_I(TI)$.

- (1) Show that $F = f \times id_I$ if and only if ν_F is the zero-section, $\nu_F \equiv 0$.
- (2) Use the following theorem by Thom and Levine to show that submersions and embeddings are stable under deformations.

Theorem: Let M be compact, $f \in C^{\infty}(M, N)$ and F a deformation of f. Then F is trivial if and only if there exists $\delta \leq \epsilon$ and vector fields σ on $M \times I_{\delta}$ and τ on $N \times I_{\delta}$ such that

$$\sigma_{I_{\delta}} = 0 = \tau_{I_{\delta}}$$
 and $\nu_F = dF(\sigma) + F^*(\tau)$ on $M \times I_{\delta}$.

(For a proof of this theorem see the book by Golubitsky and Guillemin, pp. 124)