Recap

- $\Sigma^i(f)$, corank of $\nabla f + x = \min(m,n) - \text{rank } df_x$

- corank product formula (Thm 8)

For a generic f

$\Sigma^i(f)$ is a subaf of M with

codim $\Sigma^i(f) = i \cdot (|n-m|+i)$

corank at target

\[\text{Proof:} \quad 1. \text{ linear case} \]

\[2. \text{ smooth case: transversality} \]

\[X, Y \subset V \text{ transverse if } \begin{cases} X \cap Y = \emptyset, \\ X+Y = V \end{cases} \]

\[\mathbb{R}^3, \quad \begin{array}{c} \downarrow \text{ but} \end{array} \]

\[\begin{array}{c} \times \\ \times \end{array} \]

\[\text{WTThm (Thm 12)} \]

M closed (comp. & 0), SCN submfd closed, then $\exists f : S\subset C^0(M,N)$ open & dense.
How do we Thm 12 to prove Thm R?

Sketch: \(f: \mathbb{R}^m \to \mathbb{R}^n \)
\[df: M \to \text{Hom} (\mathbb{R}^m, \mathbb{R}^n) \times \to df_x \]

Lemma 9: \(\text{Hom}^r (\mathbb{R}^m, \mathbb{R}^n) = \{ \text{rank } r \text{ lin. maps } \in \text{Hom}(\mathbb{R}^m, \mathbb{R}^n) \} \)

is a **submanifold of** codim. \((m-r)(n-r)\)

WT Thm: Generically, \(df \times \text{Hom}^r (\mathbb{R}^m, \mathbb{R}^n) \)

Prop 11: \(\text{df}^{-1} (\text{Hom}^r (\mathbb{R}^m, \mathbb{R}^n)) \) is a **submanifold of** codim. \((m-r)(n-r)\) -

Q: What's the problem?

- openness of submanifold

- Thm 8: For a **generic** map \(f \),

 We can't translate an arbitrary perturbation \(df \) into the differential of a map \(fe: M \to N \)!

We need another way of looking at differentials of maps:
III. Jet bundles

1. Def: For M, N manifolds, $f, g : M \to N$ smooth, $x \in M$, $y = f(x) = g(x)$, we say

1. f has first order contact with g at x
 if $df_x = dg_x : T_x M \to T_y N$

2. f has k-th order contact with g at x
 if $df : TM \to TN$ has $(k-1)$st order contact with dg at every point in $T_x M$.
 This defines an equivalence relation, denoted by $f \sim_k g$ at x. (Exercise)

3. $J^k(M, N)_{x,y} :=$ set of equivalence classes under \sim_k at x
 on $\{ f \in C^k(M, N) | f(x) = y \}$
4. \(J^k(M,N) := \bigcup_{x,y} J^k(M,N)_{x,y} \) for \((x,y) \in M \times N \)

An element \(\sigma \) in \(J^k(M,N) \) is called a \textit{k-jet} (of maps) from \(M \) to \(N \).

5. Let \(\sigma \in J^k(M,N) \). Then there is a pair \((x,y)\) with \(\sigma \in J^k(M,N)_{x,y} \).

\(x \) is the source of \(\sigma \), \(y \) the target, \(s : J^k(M,N) \to M \) the source map and \(t : J^k(M,N) \to N \) the target map.

6. The canonically defined \((k) \) map \(\text{(for f:} M \to N \text{ smooth)} \)

\(j^k f : M \to J^k(M,N) \), \(x \to \{ f \} \in J^k(M,N)_{x,f(x)} \)

is called the \textit{k-jet} (extension) of \(f \).

Q: - Germ vs k-jet of maps? What's the relation?
- Why the recursive definition? Covariance...
- What's a 0-jet? \(f \circ g \) at \(x \iff f(x) = g(x) \)
- \(J^0(M,N) \)? \(J^0(M,N) = M \times N \)
A 1-jet from \(\mathbb{R} \) to \(\mathbb{R} \) is given by
\[
(x, y, l) \quad \text{so} \quad J'(\mathbb{R}, \mathbb{R}) = \bigcup_{x \in \mathbb{R}} J'(\mathbb{R}, \mathbb{R})_{x, y} \quad (x, y) \in \mathbb{R}^2
\]
\[\subseteq \mathbb{R}^3\]

more generally in local coordinates a bi-jet may be represented by the Taylor polynomial of degree \(k \), i.e.
\[
 f, g : M \subset \mathbb{R}^m \to \mathbb{R}^n \text{ smooth , then}
\]
\[
 f_{\text{near } x} \iff \frac{\partial|f|}{\partial x^i}(x) = \frac{\partial|g|}{\partial x^i}(x)
\]
Induction
for all \(0 \leq |x| \leq k \)
and \(i = 1, \ldots, n \).

\[
 J'(M, N) \cong \text{Hom}(TM, TN) \quad \text{as vector bundles over } M \times N. \text{ The fiber over } (x, y) \text{ is}
\]
\{ \sigma \in \mathcal{J}(M,N) \mid s(c) = x, t(c) = y \}\). If \(f \) represents \(\sigma \), then \(df_x \in \text{Hom}(T_xM, T_{f(x)}N) \).

This defines a diffeomorphism \(\Phi : \mathcal{J}(M,N) \to \text{Hom}(TM,\pi^*TN) \)

with \(\pi \times \ell = \pi \circ \Phi \) where \(\pi : \text{Hom}(TM,\pi^*TN) \to M \times N \).

- For \(k > 1 \), \(\mathcal{J}^k(M,N) \to \mathcal{J}^{k-1}(M,N) \), \(M \), \(N \), \(M \times N \)

are smooth fibrations, but not vector bundles (unless \(N = \mathbb{R}^n \)).

Two natural operations (push forwards & pullbacks):

- \(h : N_1 \to N_2 \) smooth induces a map

\[h_* : \mathcal{J}^k(M,N_1) \to \mathcal{J}^k(M,N_2) \]

\[J^k(M,N_1) \ni \sigma \mapsto \left[\text{holo} J \in J^k(M,N_2) x, h(y) \right] \]

\(f : M \to N_1 \), repr. \(\sigma \) \(/ f_* \sigma \)

- \(g : M \to M_2 \) diffeom. induces a map

\[g_* : \mathcal{J}^k(M_2,N) \to \mathcal{J}^k(M_1,N) \]

\[J^k(M_2,N) \ni \tau \mapsto \left[\text{holo} \ g \ J \in \mathcal{J}^k(M_1,N) g_*^\dagger(\tau), \gamma \right] \]

\(f \) repr. \(\tau \) \(/ f_* \tau \)
Exercise: both well-defined!

We'll establish some more properties in the exercises. For us most important is

2. Theorem: For M, N mfs

1. $\forall k \in \mathbb{N}: J^k(M,N)$ is a (smooth) mfs.

(Q: What's the dimension?)

2. $J^0(M,N) \xrightarrow{\phi \times \phi} M \times N$ are submersions.

3. If $f: M \to N$ smooth, then $j^k f: M \to J^k(M,N)$ is smooth.

Proof:

1. We sketch the construction of charts:

Let P_m^k be the vector space of polynomials

$$p(t_1, \ldots, t_m) = \sum_{|\alpha| = k} a_{\alpha} t_1^{\alpha_1} \cdots t_m^{\alpha_m}$$

and set $P_{m,n}^k = \bigoplus_{i=1}^n P_m^k$.

\[\]
Both are real fin. dim. vector spaces, hence smooth mfs. (w. coordinates)

For \(U \subset \mathbb{R}^n \) open and \(f: U \to \mathbb{R} \) define
\[
T_k f: U \to P^k_m \quad \text{by} \quad x_0 \mapsto T_k f(x_0), \quad \text{the degree } k \text{ Taylor polynomial of } f \text{ at } x_0
\]
minus constant term.

If \(V \subset \mathbb{R}^n \) open, then there is a canonical bijection
\[
T_{U,V}: J^k(U,V) \to U \times V \times P^k_{m,n}
\]
\[
\sigma \mapsto (x_0, y_0, T_k f(x_0), \ldots, T_k f(x_0))
\]
where \(x_0 = \sigma(x) \), \(y_0 = \epsilon(x) \) (i.e. \(\sigma \in J^k(U,V)_{x_0,y_0} \)).

\(f: U \to V \) representing \(\sigma \), \(f = (f_1, \ldots, f_n) \).

This is well-def. & bijective.

Now for \(U \subset M, V \subset N \) with charts \(\phi: U \to U' \subset \mathbb{R}^m \)
and \(\psi: V \to V' \subset \mathbb{R}^n \) define
\[
T_{U,V} := T_{U',V'} \circ (\phi')^* \psi^* : J^k(U,V) \to U' \times V' \times P^k_{m,n}
\]
Declare these $T_{u,v}$ to be charts, a tedious but straightforward calculation establishes the smoothness of coord. changes ...

2. Follow by a tedious but straightforward calculation...

3. Locally $f: U \rightarrow \mathbb{R}^n$. Then $j^k f: U \rightarrow J^k(U, \mathbb{R}^n) \ni U \times \mathbb{R}^n \times P_{m,n}^k$ is given by

\[j^k f(x_0) = (x_0, y_0, \overline{T}_k f_1(x_0), \ldots, \overline{T}_k f_n(x_0)) \]

all smooth in x_0 (partial derivatives...)

now use charts...

Locally, $C^\infty(M,N)$ looks like $U \times V \times \text{Map}(\mathbb{R})$ and $S^r := U \times V \times \text{Map}^r(\mathbb{R})$ is a submanifold. Given f smooth, we have

\[\Sigma^i(f) = (j^i f)^{-1}(S^{m-i}) \quad \text{if} \quad m \geq n \]

or \(S^{n-i} \) if \(m \leq n \).