SINGULAR INTEGRALS. EXERCISE SHEET NO. 4

Homework: Solutions to be handed in on Friday 11.01.19.

1

The dilogarithm is defined by

$$\operatorname{Li}_{2}(t) = \int_{0 \le z_{1} \le z_{2} \le 1} \frac{t dz_{1} dz_{2}}{(1 - tz_{1}) z_{2}} = \int_{0}^{1} \frac{dz_{2}}{z_{2}} \int_{0}^{z_{2}} \frac{t dz_{1}}{1 - tz_{1}}.$$

- (1) Find the branch points and cuts of Li_2 and determine the corresponding discontinuities. **Hint:** One is only present on non-principal sheets.
- (2) Show that $\text{Li}_2(1) = \zeta(2)$ for ζ the Riemann zeta function.
 - 2

For

$$S=\{z_1^2+z_2^2=1\}\subset \mathbb{C}^2$$

let σ denote the real part of S, $\sigma = S \cap \mathbb{R}^2$.

- (1) Show that σ is a cycle (what topological object is it homeomorphic to?) and therefore defines a homology class $[\sigma] \in H_*(S)$.
- (2) Compute the Leray coboundary $\delta_*[\sigma] \in H_*(X \setminus S)$. What object is $\delta \sigma$ homeomorphic to?

3

- (1) Show that $f(t) = \int_{\gamma} \frac{dz}{z^2 t}$ where γ is a circle of radius $\frac{1}{2}$ around z = 1 is holomorphic in a neighborhood of t = 1. Find the maximal domain $\Omega \subset \mathbb{C}$ to which f can be analytically continued by deforming γ continuously.
- (2) Discuss the analytic structure of the function $f(t) = \int_{\sigma_t} dz$ where $\sigma_t = [-\sqrt{t}, \sqrt{t}] \subset \mathbb{C}$ without solving the Integral.