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1 Essentials on Stochastic Processes in Continuous Time

1.1 Stochastic Processes

Let (2, F,P) be a probability space. A real-valued stochastic process X = (X;):>o is
a family of random variables taking values in R. For each sample point w € €2, the
function ¢ — X;(w) is called the sample path of the process X associated with w.

Two processes X and Y on the same probability space are called modifications of each
other if P(X; = Y;) = 1 for every ¢t > 0. They are called indistinguishable if almost all
sample paths are identical, i.e. if P(X; =Y for all ¢t > 0) = 1.

Lemma 1.1.
a) If X and Y are indistinguishable, then they are modifications of each other.

b) If X and Y are modifications of each other and if their trajectories are P-a.s. right
continuous, then X and Y are indistinguishable.

Proof. The first part is clear. For the second part, see Lemma 21.5(ii) in [Kle08]. O]
Example 1.2.

We want to show that two processes can be modifications of each other without being
indistinguishable.

Consider Z ~ N (0,1) on (2, F,P) and for t > 0 let X, = 0 and

v Jo £ 2
1, t=2
On the one hand, P(X; = VY;) = P(Z # t) = 1 forallt > 0, hence X and Y are

modifications of each other. On the other hand, the paths of X are continuous, whereas the
paths of Y are discontinuous whenever Z(w) > 0, hence X and Y are not indistinguishable.

A trajectory is called cadlag (continue a droite, limite a gauche) if it is right continuous
and if limits from the left exist in all points.

Remark 1.3.
Recall that a probability space is called complete if for each A C Q with A C B where
P(B) = 0 one has A € F. In other words: F contains all subsets of P-nullsets.

On the probability space (£2, F,P) there shall be a filtration (F;);>¢, i.e. an increasing
sequence of o-algebras
UFcrcr

s<t

which shall satisfy the usual conditions:
o Fi =)o, Fs forallt > 0,i.e. (F);>0 is right continuous,

e F, contains all P-nullsets and F is complete, i.e. the filtration is complete.



Definition 1.4.
Let X = (X;):>o be a stochastic process on the filtered probability space (2, F, (Fi)t>0, P).

(1) X is (product-)measurable if (¢,w) — X;(w) is (B([0, 00)) ® F)-measurable.

(ii) X is progressively measurable if for any t > 0, the restriction X|jo 4 is (B([0, t]) @ F)-
measurable.

(iii) X is adapted if X, is F;-measurable for every t > 0.
In particular, if X is progressively measurable, it is already adapted and measurable.

Lemma 1.5. An adapted process whose sample paths are almost surely either all right- or
all left-continuous is progressively measurable.

Usually we work with right-continuous processes, so there will be no need to distinguish
between measurability and progressive measurability. If that is not the case, we still
have the following result:

Theorem 1.6. Let X be measurable and adapted to (F;);>o. Then X has a progressively
measurable modification.

Definition 1.7. Let X = (X;);>¢ be an adapted stochastic process on the filtered probability
space (0, F, (F;)i>0, P). Furthermore assume that X is integrable, i.e. X; € L'(P).

(i) X is called a submartingale if E[X;|F,] > X, for all t > s.
(i) X is called a supermartingale if E[X;|F;,] < X, forall t > s.
(iii)) X is called a martingale if E[X;|F,]| = X, forall t > s.

Definition 1.8. An adapted process X on a filtered probability space (2, F, (F¢)i>o0, P) is
called a Markov process if for all t,s > 0 and every bounded function f: R — R we have

E[f(Xt+s)’~Fs} = E[f(XtJrs)’U(Xs)]

1.2 Brownian Motion

Definition 1.9. A stochastic process W = (W};)>o on a probability space (2, F,P) is called
a standard one-dimensional Brownian motion (BM) if the following conditions hold:

(i) Wy =0DP-a.s.;

(ii)) W has independent increments, i.e., for all t,s > 0, W, , — W, is independent of
(Wu>0§u§s;

(iii) The increments are stationary and normally distributed:

WtJrS — WS ~ N(O, t),
(iv) W has almost surely continuous sample paths.
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Theorem 1.10. A standard Brownian motion exists.

Proof. See Chapter 2 in [KS88] for the construction of a BM or see the lecture on
Stochastic Analysis. O

Lemma 1.11. If W is a standard BM, then W; ~ N(0,t) and Cov(W,;, W) = min{s, t}.
Exercise 1. Prove Lemma [[.11]

If W is a standard BM (also called standard Wiener process), then F; := (W, s <t) is
its so-called canonical filtration. Its augmented filtration satisfies the usual conditions.

Theorem 1.12. Let W be a standard BM. Then (W;);>o and (W? — t);>o are martingales
with respect to the canonical filtration.

Proof. W is clearly adapted to its canonical filtration (by construction of the latter). Let
t > s> 0. Then
E[Wi|F.] = B[W, — W, + W,|F.] = E[W, — W,|F] + W, 2 W,

where we used properties (ii) and (iii) of the BM and known properties of conditional
expectation. As W, ~ N(0,t), W is also integrable!, completing the proof that W is
indeed a martingale. O

Exercise 2. Prove the martingale property of (W7 — t);>o.

Theorem 1.13 (Lévy). A continuous real-valued process (X;);>o on a probability space
(Q, F,P) with X, = 0 is a BM if and only if both (X;);>o and (X? — t);>o are martingales
(with respect to the canonical filtration).

Remark 1.14. We call a process continuous if its trajectories are P-a.s. continuous, i.e. if
for P-almost all w € ), t — X;(w) is continuous.

Exercise 3. Show that for ¢ > 0, V; := % 2¢(t > 0) is a standard BM if W is one.

Theorem 1.15. Let W be a standard BM. Then for all t > s > 0 and every bounded
function f: R — R we have the Markov property

ELf (W)l (Wa)uss] = ELf (W) |[W4].
Proof. Recall that Mx (u) := E[e*X] is the moment-generating function of X and that the

moment-generating function of an N (u, o%)-distributed random variable X is My (u) =

(72U2 . .
et T2, We use the independent increments property of BM and the fact that W, —
W, ~ N(0,t) in order to do the following calculation:

E[e“Wt“ ]:s] — GUWSE[eU(Wt+s—W€)

T
. GUWS]E[eu(WtJrS_WS)]

u?l

= "Wegu2

o euW5 E [eu(WtJrs —Ws)

= E[e"Vee [W,].

Ws}

Hence the conditional distribution of W, , given F, is the same of that given W, which
implies the Markov property. [

'E[[WA]? < E[[Wef?] = [Wo|? + .




1.2.1 Excursion: Variation and Quadratic Variation

Definition 1.16. Let [0,7] C R be a finite interval. A set of points 7 := {tg,t1,...,tn}
with 0 = tp < t; < ... < t, = T is called a partition of [0,7] with mesh ||| :=
max {|t; —t;_1| 1 <i<n}h

Definition 1.17. Let f: [0,7] — R be a (deterministic) function. The (total) variation of
f (on [0,T)) is defined as

V(f) = sup { S If(t) = f(tis)]

tieT

T is a partition of |0, T}} .

IfV(f) < oo, then we say that f is of finite variation.

Definition 1.18. Let f: [0,7] — R and let (7,,).en be a sequence of partitions of [0, 7]
such that ||7,|| — 0 as n — oo. The quadratic variation of f on [0,t] C [0,7T] along 7, is
defined as

VA(fom) = Y (ft) = fltim))™

tiETnU{t},tiSt

if
(F)e = lim VA(f.7)

exists for all t € [0,T] and if this limit is independent of the choice of the sequence of
partitions, then the function t — (f),; is called quadratic variation of f. If t — (f); is
continuous, then we say that f admits the continuous quadratic variation (f).

Theorem 1.19. If f: [0,7] — R is continuous and of finite variation, then its quadratic
variation is zero.

Theorem 1.20. Assume that f,g: [0,7] — R are continuous functions. Assume further
that f admits a continuous quadratic variation (f) and that g has finite (total) variation.
Then f + g is of continuous quadratic variation {f + g) = (f).

Now let’s look at sample paths of Brownian motion:

Theorem 1.21.

a) Sample paths of BM are of infinite (total) variation.

b) There exists a sequence of partitions (7,,)nen Of [0, 1] with lim,_, ||7,.|| = 0 such that
almost surely V2(W.(w);7,) — t for every t € [0,T] as n — oo.

For further calculations we have to bear in mind that (W), = ¢ for any ¢ > 0.
Remark 1.22. A suitable partition for b) in Theorem is given by
T,={tl=Ti2™"| i€{0,1,...,2"}}

for n € N. For proofs for the above statements, please attend the lecture Stochastic Analysis
or consult the literature. For properties of sample paths of Brownian motion, see Section
2.9 in [KS88]. See also Chapters 3 — 5 in [SKYOI] or properties of BM.
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2 Stochastic Calculus for Brownian Motion

At the end of last semester we have seen how to calculate integrals of smooth functions
of BM with respect to BM in terms of Riemann-Stieltjes integration. When more general
integrands are involved (measurable w.r.t. the canonical filtration generated by BM), a
different kind of integral is needed, known as It6 integral.

Literature for this chapter: Chapters 3 and 4 in [@k03]; Chapter 3 in [KS8§].

For stochastic integration with respect to other processes than Brownian motion we
refer to the parallel lecture on stochastic analysis.

2.1 The It6 Integral

In the last semester, we have seen how to define fOT f(t, X;)dX, for a stochastic pro-
cess X in a pathwise sense, provided f and X are nice enough. Now we will define
fOT f(t,w)dW;(w) in a probabilistic manner by approximating f by elementary functions.
We will therefore have to introduce a suitable space of integrable functions.

From now on we always assume to work on a complete filtered probability space
(Q, F, (Fi)i>0, P), where the filtration is generated by a standard BM W (and augmented
by the null sets).

Definition 2.1. Let V= V(0,T) be the class of all functions f: [0,00) x 2 — R such that
i) the map (t,w) — f(t,w) is progressively measurable;

ii) the map f is square integrable with respect to P ® ), i.e.,
T
E {/ fQ(t,w)dt] < 00.
0

Exercise 4. Consider the following functions:

Verify that ¢, € V, whereas ¢o ¢ V.

2.1.1 Construction of the stochastic integral

As a first step consider elementary functions, i.e., functions of the form

Bt w) = ei(w) g, .0 (D), 2.1
where 0 < ¢ty < t; < ... < t, < T and ¢; is F;,-measurable such that E[e?] < oo
(i €4{0,1,...,n— 1}). For such a function we define (the random variable)

1ol [ ot )aWeim 3 e Wi, = W),
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For the construction of the It6 integral we need an important result stating that the
equality of L2-norms:

|U[¢]”L2(P) = H¢HL2(P®A)~

Lemma 2.2 (It6 isometry). Let ¢ € V be a bounded elementary function of the form (2.1]).

Then 2
(/OT ot .>th> _E UOT S(t, ')dtl |

Proof. Let AW; = W, , — W,,. Fix indices i,j € N with i < j. Recall that e; and
e; are measurable w.r.t. 7, and F;,, respectively. Therefore, e;e;AW; and AW; are
independent for i < j and e; is independent of AW;. Consequently, we have that

E

Eleie; AW;AW;] = Ele;e; AW E[AW;] =0
——

=0

and (for i = 5)
Ele; (AW;)?] = E[e]|E[(AW;)?]] = E[¢]](tiy1 — ta),

where we used that AW, = W,
have that

— W, ~ N(0,t;,1 — t;). Combining both results, we

41

E

( /0 ' o(t, .)th) 2] = Eleie; AW, AW

/l:hj

= Z Ele?](tit1 — ;)

D et — ti)]

=E

)

=E UOT P*(t, -)dt] :

Remark 2.3 (alternative method of proof). Instead of using the independent increments
property of BM, one could also insert a conditional expectation (using the tower property
thereof) and rely on the martingale property of BM. For details, see Section 4.1, the proof
of the isometry property in [KleQ7].

]

We now extend the definition of the Ito integral from elementary functions to functions
in V.

Lemma 2.4. Let g € V. Then there exist elementary functions ¢, € V (n € N) such that
T
E U (g — d)n)th] =2 0.
0

Proof. We will proceed in 3 steps.



Step 1: For g € V bounded such that ¢ — ¢(t,w) is continuous define the elementary
function ¢,,(t,w) := >, g(ti,w) L, 4,,.1)(t). Then

T
/ (g — 62t "=F 0, Vo,
0

since t — ¢(t,w) is continuous for all w € €. By bounded convergence (for this we
require g to be bounded), the assertion follows.

Step 2: Suppose that g € V (therefore progressively measurable) is bounded. For ¢ €
[0, 7], we define

F is bounded, hence so is G,,. Furthermore, GG, is continuous and progressively
measurable (property is inherited from g). To see that one really has G,, € V,

calculate
T T t 2
E [/ Gi(t,~)dt] =E / (n/ g(s,-)ds) dt
0 0 (t—L1)+
2
T t
=n’E / / g(s,-)ds | dt
o oo
T 1 2 -
§n2/ (—-M) de
0o \n

= M?T < ~.

By virtue of Step 1, there exists, for each n € N, a sequence of simple processes
(@™)men such that

" T
E [ / (G, — 92521)26115} 2. (2.2)
0
Consider the following sets:
A={(t,w) €[0.T]x Q| lim Gu(t.w) = glt,w)} € B0, 7)) F,
A, :={te€[0,T]] (t,w) € A} € B([0,T]) (by Fubini).

Observe that ¢t € A° whenever G,,(t,w) — g(t,w). For all w we have

F(taw) —F ( B l>+7w)

(¢t~
1
n

lim G, (t,w) = lim

n—oo n—o0

= g(t,w), t>0,

hence the Lebesgue measure of A, is A\(A,) = 0. By Fubini, we therefore have
(P ® M\)(A) = 0. As g is (by assumption) bounded, we can apply the dominated
convergence, which implies that

T
E [ / (G — g)th} =30, (2.3)
0

9



Combining (2.2) and (2.3)), we find that

i 2| (o) - Ry

n—oo

n—oo

< 2 lim (E UT(Gn(t, N —glt, -))th] +E UT(Gn(t, D — ¢ (e, -))2dtD
_ 0’ 0 0
where m,, := inf {m eN ‘ E [fOT(Gn(t, ) —gm(t, .>>2dt} < 5}.
Step 3: Now assume that g € V with no further restrictions — in particular, g need not
be bounded. For n € N we define

—n, if g(t,w) < —n,
hy(t,w) == < g(t,w) if —n < g(t,w) <n,
n if g(t,w) > n.

These functions are bounded and belong to V. Along the lines of Step 2, we define

A" ={(t,w) € [0,T] x Q| |g(t,w)| > n},
Al ={te[0,T]| (t,w) € A"}.

We have lim,,_,., A(A”) = 0 because ¢ is (by assumption) square-integrable. There-

fore,
T
E U (g—hn)th} <E V gzdtl -0
0 An

as n — oo. From the first two steps, we have that

e[ [ o - moral < 1

n

for a sequence (m,,),en, hence

T
B | [ o) - o] o,
0
which completes the proof.

O

Corollary 2.5. For g € V let (¢,,)nen be the sequence from Lemma Then the sequence
(S ndW ),en converges in L*(P).

Proof. We have seen that ¢,, — g in L?*(P ® )), implying that it is a Cauchy sequence in

this space. From this we infer by It6’s isometry that ( fOT ¢ndW ),y is a Cauchy sequence
in L?(P):

</OT G (£, ) ATV, — /OT oult, -)th)Q

Since L?(IP) is complete, ( fOT ¢ndW),eny must converge in that space. O

E _E [/OT(%@, ) = ot ))2dE] "0,

10



With the above results, we can define the It6 integral for any f € V as

T T
I[f] ::/0 F(t, )W, = nlgrolo/o bu(t, AW, (2.4)

where the limit is taken in L?(P) and ¢, — f in L?(P ® )\) are elementary functions
approximating f.

Remark 2.6. The above definition is independent of the approximating sequence. To see

this, let (¢,) and (1,,) be two sequences of elementary functions in V), both approximating
f € Vin L?-sense. Then by It6’s isometry

(/OT bu(t, )TV, — /OT o, -)th>2

hence both approximating sequences give the same integral in the limit.

E

—&[ [ 6t~ vate ] =50

The 1t6 isometry does not only hold for elementary functions, but also for any functions
inV:

Corollary 2.7. Let f € V. Then

(/OT f(t,-)th>2 =E [/OT fQ(t,-)dt] .

Proof. Let (¢,) be a sequence of elementary functions approximating f in L?-sense.

Then
(/OT f(t,.)th)Ql — lim E (/OT ¢n(t,-)th)2]
=gg;E{AT¢%a»a]

=E{ATP@fm@,

where the first and third equality hold by definition of the stochastic integral and the
second equality is It0’s isometry for elementary functions (Lemma [2.2)). O

E

E

An immediate consequence of the isometry is the following result:

Corollary 2.8. Let f € V and (f,,)nen C V such that

B Sl ) — £ )Pt o

Then
T T
/fn(t,-)th’H—%"/ f(t,)dW, in L*(P).
0 0

Let’s calculate a specific stochastic integral:

11



Example 2.9. We want to show that the following formula, which we have already en-
countered in pathwise It6 calculus, also holds for Itd’s stochastic integration:

/ WdW, = — —t (2.5)

Let 7 := (t;); be a partition of [0,t] and write W; := W,, for short. We approximate the
BM W with the following elementary functions:

ZW ]l[t tj+1) )(s).

With this we have indeed that
t ti+1
E [ [ tonts) - wsfds} | [T - stds]
0 . tj
’ tjt1
_ Z/ E[(W, — W,)ds
i b
tjt1
:Z/ (s —1;)ds
- t;
s=tjt1
= Z ls — i S:|
s=t;

—Z tisn —)? < St-suplti — 1
J

DO | —

=l

I7ll—0
—

0.

From Corollary 2.8 we infer (with the shorthand notation AW; = W, — W) that

t t
/ W dW, = lim [ ¢,dW, = lim > W;AW;.
0 -

n
I71—=0Jo I7(|—0

Observe that

A(W?) = W2, — W? (by definition)
= (Wip1 = W))* + 2W;(Wiys — W)
(AW;)? + 2W,; AW,

hence
S AW) +2) WAW; =Y AW]) =W - Wy =W,
J J J \:/0/
Rearrangement gives
1
> WiAW; = Wi -5 > (AW

J J



Knowing the quadratic variation of BM is (W), = t, we get the L*-convergence

D (AW)P =t as|r] =0,

J

from which follows.

Exercise 5. Show that [, sdW, = tW, — [ W,ds.
Hint: Zj A(SJVVJ) = Zj SjAVVj + Zj Wj+1ASj.

2
Exercise 6. Calculate E [ fot WdeS} and E {( fot WdeS) ]

13



2.1.2 Properties of the stochastic integral
Theorem 2.10. Let f,g eV, cec Rand T > 0.
(i) Forany 0 < S < T we have

/OdeWZ/OSde+/SdeW.

(ii) The stochastic integral is linear:
T T T
/ (cf—i—g)dW:c/ de—l—/ gdW.
0 0 0

(i) E[ fOT fdW] =0, i.e. the expected value of any Ité integral is zero.

(iv) fOT fdW is Fr-measurable.

Proof. These properties can be verified for elementary functions. By taking limits, they
hold for all functions in V. For (iv) recall that the limit of measurable functions is
measurable. O

Theorem 2.11. Let f € V. Then the stochastic process ( fot fdW)>o is an (F;)-martingale.

Proof. We will first prove the assertion for elementary function ¢,, approximating f and
then use the isometry to conclude. Suppressing the dependency on w in the notation,
we let

L(t) == /Ot b (8)AW,.

Measurability is clear and the limit of measurable functions is again measurable. For
the martingale property let s > ¢. Then

E[l,(s)| 7] Y E Uot ¢ndW|]-"t} +E [/t ngndW|]-"t]

. t S
@) / gbndWJrE[ / ¢>ndW|ft]
0 t

= / t GudW +E [Z e aw ™ |ft] :
0

where the sum is over ¢ < t§") < tyfr)l < s.
(n

Since e; )is F o -measurable and W has independent increments, we have
J

B [of AW ] = B[ BIAWY 7] 7] <0

=E[AW™]=0

hence we have the martingale property for elementary functions:
t
BIL()IF] = [ ondV = 1,(0),
0

14



Taking the L?-limit, we get

n—oo n—o0

lim E[I,(s)|F] = lim qbndW o / t Faw.
Jensen’s inequality allows us to conclude: 0
E [(E[L(s)I7:] = E[I(s)|7])*] = E [(E[L(s) — I(s)|F])?]
LB Bl () - 16)PIF)
=E [(I.(s) — I(s))?] (tower ppty)

def.
=50.

S

Finally, from the square integrability of f € V we infer (by Itd’s isometry) that of I[f],
hence I[f] is also integrable?. O

The following result will be required to show that the It6 integral f(f f(s,w)dWy(w) is (a
version of) a continuous function in time ¢.

Theorem 2.12 (Doob’s martingale L?-inequality). Let (M)~ be a martingale on (2, F, (F3),

with almost surely continuous sample paths. Then for allp > 1, T > 0 and A > 0 we have

1
P | sup [0 > A < B

0<t<T

Proof. See Section II §1 in [RY99]] or Theorem 4.2 in [[SKYO1]. The idea is to go from
the discrete-time version of the inequality to the continuous-time version via Fatou’s
lemma (passing to the limit). O]

Theorem 2.13. Let f € V. Then there exists a modification of the process ( fot fAW)o<i<r
that is continuous in t.

Proof. Let (¢,) be a sequence of elementary functions approximating f, i.e.,

E [/OT(f—gbn)zdt] Z20.
/gzﬁn )JdWy and I, := /f

We have already seen that (/,,(¢)) is an (F;)-martingale and its sample paths are contin-
uous® for all n € N. Consequently, for all n,m € N, I,, — I,,, is also an (F;)-martingale
with continuous sample paths, so Doob’s martingale inequality yields

Let

P Li% 1,(t) — Ln(t)] > 5} < éE [[1,(T) = Ln(T)[?]
- SE [ / (6 ¢m>2dt]
T

2Hplder inequality implies for any random variable X that E[|X|] = E[|X - 1]] < E[12]z - E[|X|?]2
E[|XP?)>.
3This follows from the fact that sample paths of BM are almost surely continuous.
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We can therefore choose a subsequence (n;) C N with limy_,, ny, = oo such that

P [ sup |L,,,(t) = In, ()] > 2_’“} <27,

0<t<T

The (first) lemma of Borel-Cantelli* implies that

P [ sup I, (t) — I, (t)] > 27% infinitely often} = 0.

0<t<T
Consequently, for almost all w € 2, there exists k* = k*(w) such that

sup |I,.,,(t,w) — I, (t,w)| <27% forall k > k*

0<t<T

k+1

Hence for allmost all w € €, the sequence (I, (t,w))ken is uniformly convergent for
t € [0,7T] to a limit, which we shall denote by J; = J;(w). By uniform convergence, the
limit is almost surely continuous (in t).

Since 1, (t) — I(t) in L*(P) for all ¢ € [0, T], we have a.s. convergence along a subse-
quence, implying that

I,=J, P—as. forallte|0,T].

2.1.3 Extension of the It6 integral and local martingales

Consider the following class of function:

Definition 2.14. Let W be the class of all functions f: [0,00) x Q — R such that
i) the map (t,w) — f(t,w) is progressively measurable;
i) P (fOT F2(t,w)dt < oo) — 1

Exercise 7. Show that V C W.

For f € W we define the stochastic integral as follows:

Step 1: For n € N let 7,, := inf {t >0 ‘ f(f f2(s,-)ds > n} A T. This is a stopping time
and we have lim,,_,o P(7, = T') = 1. Now define f, := f1y,,]. We have

E [/OT ff(t,w)dt} =E UOM fQ(t,w)dt} < 00,

4If a sequence of events (4,,) satisfies > - | P(4,,) < oo, then P(limsup,,_, ., 4,) = 0.

hence f, € V.

16



Step 2: Let N(w) :=inf{n € N| 7,(w) = T'}. Since

pl{w! =T} = {w /OTfZ(t,w)dt< oo}

and the latter has probability 1 by assumption, we have N < oo P-almost surely.
Let Qq := {w ‘ t— fot fndW is continuous for all n} By Theorem [2.13} P(€) =
1. Let ©; := Qo N {N < oo} Then we define the It6 integral of f as

t t
/ F(5,0)dWa(w) = 1o, / Tt (5,0)dIW, ().
0 0
The integral has almost surely continuous paths and for n — oo we have fot frdW —
fot fdW almost surely.

The price we have to pay for the extension from V to W is that the integral is not nec-
essarily a martingale any more, but only a so-called local martingale. Let us introduce
this notion and collect a few useful results. First, let’s see why the approach is known
as localization.

Definition 2.15. An increasing sequence of stopping times (v,,) is called a (V-)localizing
sequence for f (on [0,T)) provided that f,(t,w) := f(t,w)lj<,,y €V for all n and that

P (U {w] vp(w) = T}) =1
n=1
The sequence (7,,) from above is a localizing sequence for f.

Now we give two definitions of a local martingale.

Definition 2.16 (Local Martingale 1 — [SKYO1]] Def. 7.2). An (F;)-adapted process (Z;) is
called a local martingale w.r.t. (F;) if there exists an increasing sequence of (F;)-stopping
times (v,,) such that v, — oo P-almost surely as n — oo and

M = Zin,, — Zo
is an (JF;)-martingale for every n.

Definition 2.17 (Local Martingale 2 — [RY99] IV §1, (1.5)). An (F;)-adapted right-
continuous process (Z;) is called a local martingale w.r.t. (F;) if there exists an increasing
sequence of (JF;)-stopping times (v,,) such that v,, — oo P-almost surely as n — oo and

Mtn = Zt/\lznll{un>0}
is a uniformly integrable (F;)-martingale for every n.
We will work with the first definition.

Remark 2.18. With those two (different) definitions of local martingales, a few remarks
are required:

17



e By choosing v,, = T or oo, we see that every martingale is also a local martingale.

e Observe furthermore that integrability of Z is not required. (This implies, that a local
martingale is not necessarily a martingale.)

e Furthermore, by replacing v,, by v, A n, we go from integrability to uniform integra-
bility, hence the latter holds without loss of generality. (A stopped local martingale is
again a local martingale.)

Corollary 2.19. For f € W, the It integral ( fg fdW)i>¢ is a local martingale.
Let us now collect the promised results on local martingales.

Lemma 2.20. A local martingale Z = (Z;):>o that is bounded from below (by M) and
satisfies E[Z,] < oo is a supermartingale.

Proof. First observe that if (Z;) is bounded from below for every ¢ > 0, then so ist
(Ze — Z).

Let (v,) be a localizing sequence for 7, i.e. (Z;,, — Zy) is a martingale for every n.
The process Z is adapted to the filtration (F;) by definition of a local martingale.

For the supermartingale property, we apply Fatou’s lemma® and get for s < ¢

E(Z| F) = E [tminf(Z, — Z) + Z | F]

K [hm nt(Zons, — 7o) ‘ fs} + Z

n—oo
Fatou

< WminfE[Zn, — Zo| Fs| + Zo

n—00
= lim E [Zt/\yn - Z()| ]:5] + ZO
n—00
Yz,

where (x) holds because the stopped process is a martingale.
Finally, integrability holds because (by the tower property) we have

Zy 2 E[Z| Fol 2 E[M| Fo,
=E|[Z)] >E[Z] > E[M].

We see that the lower bound may be either a constant or an integrable random variable
for the result to hold. N

Alternatively one could have assumed 7, = 0 and Z; > 0 before starting with the
conditional expectations, but with this assumption, one gets E [Z;] = E[Z] for all ¢,
hence we even have a martingale. More generally, we can use dominated convergence
to show the following result:

Corollary 2.21. Let Z = (Z;):>0 be a continuous local martingale with |Z;| < M for all
t > 0 for some constant M. Then Z is a martingale.

SFatou’s lemma requires that the sequence of random variables be nonnegative. If we merely have
X, >Y for an integrable r.v. Y, then we can apply Fatou to X,, + Y.
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Lemma 2.22. Let (Z;) be a local martingale with localizing sequence (v,,). Then it is a
martingale if one of the following conditions holds:

(i) The process (Z;) satisfies
sup |Z,| € L', V¥t >0.

0<s<t

(i) The stopped sequence (Z;y,, ) is uniformly integrable, i.e.,

lim SUpE |:|Zt/\Vn‘:[|‘{|Zt/\Vn|ZK}i| =0

K—oo ¢

Proof. (i) From the local martingale property we have
E{Zrv, | Fs] = Zopo,. (2.6)
Property (i) gives

| Zipo, | < sup |Zs| € L', Vit >0.
0<s<t

Hence, by Lebesgue’s dominated convergence theorem we get

E[Z,| F,]=E [ lim Zyn,,
n—oo

Fs} = lim E[Zn, | F] = lim Zon, = 2.,

hence we have the martingale property. Adaptedness and integrability holds by
assumption.

(ii) We have Z,,,, =3 Z, P-a.s. and uniform integrability of (Z,,,, ), hence we have
(conditional) L!-convergence:

h_}m E[Zt/\yn ’ Fs] = E[Zt’ FS]

and the result follows as before.
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2.2 ItoO Processes

As before, assume that W is a 1-dimensional standard BM on (2, F, (F;):>0, P).

Definition 2.23. A stochastic process X = (X;);>0 on (2, F, (F;)i>0, P) of the form

¢ ¢
X, =X+ / asds + / b, dW, 2.7
0 0

where b € W and a is adapted and satisfies the integrability condition

¢
]P’(/ |a$|ds<oo‘v’t20)=1
0

Equation (2.7) written in differential form reads

is called an It6 process.

dXt = atdt + btth.

With this shorthand notation, equation (2.5]) can be written as

1

d(2

1
W2) = WidW, + Zdt.

Example 2.24. From Financial Mathematics I we know already the simplest possible It6
process, namely a BM with drift © € R and volatility o > 0:

If X is an It6 process, then how do we define the integral fOT ft,w)dX(w)?

Definition 2.25. Let f: [0,00) x €2 — R be progressively measurable and let X be an It6
process with drift a and volatility b as stated above. Assume that

T T
/ | fsaslds < oo, / |fsbs)?ds <00 P —as.
0 0

Then define for t € [0,T]:

t t t
/ fsd X ::/ fsasds—i—/ fsbsdWs.
0 0 0

Before we look at the famous It6 formula, let us see what the quadratic variation of an
[t6 process is.

Lemma 2.26. Let X be an It6 process with drift a and volatility b. Then (X), = [}(b,)?ds
P-a.s. Vt € [0, 7).

Exercise 8. Prove Lemma Follow the steps in [SKYOI]] (Section 8.6, Theorem 8.6).

20



It is easy to remember this Lemma’s statement in its differential form by following these
rules:

Applying them to the It6 process X we get

dXt . dXt = (atdt + btth) . (CLtdt + btth)
= (at)2(dt)2 + 2atbtdtth + (bt)Q(th)Q
- (bt)2dt

Theorem 2.27 (It6 formula). Let X be an It6 process and let Y = f(t, X) for a function
f that is continuously differntiable w.r.t. the time variable and twice continuously differen-

tiable w.r.t. the space variable. Then Y is an Ité process with
dy; = 8f(tX)dt+ af(tX)dX—i-l :

T oz’ YT 9 92

Example 2.28 (Geometric Brownian motion). For u € R and o > 0 and a standard BM

W let '
Sy = Spexp (aWt + (,u — 502> t) .

We can write this process (known from the Black-Scholes option pricing model) as an Ité
process: Let Sy = Sy - F(t,W,) with F(t,x) = exp (ocx+ (u— 30?)t). The above Itd
formula tells us that

f(t, X)d(X):. (2.8)

ds, = (u — %ﬁ) S,dt + oS, dW; + %JQStdt
= Si(pdt + odWy)
Example 2.29. We have already seen in an exercise that
/Ot sdWy = tW, — /Ot Wds. (2.9
We can also show this by applying It6’s formula to Y, = f(t,W;) with f(t,z) = tx. The

formula gives

t t
tWt:/ Wsds+/ sdW.
0 0
Rearrangement gives (2.9).

Example 2.30. We can use Ité’s formula to show that Y, = e%tsin(Wt) (t > 0)isa
martingale. To this end, we write Y; as a stochastic integral: By It6’s formula,

hence (with Y, = 0)

1 1 1 1 1
d(e2'sin(W;)) = = - e2" - sin(W;)dt + e2" cos(W;)dW,; + 5 ez’ . (—sin(W,))dt

1

2
= et cos(Wy)dW,

hence Y; = fot ezt cos(Wy)dW,. By Theorem this is an integral if the integrand belongs

to V. (This is left as an exercise.)
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Remark 2.31. It6’s formula is proven in the literature by different means:
e by applying Taylor’s formula (e.g. in [@PkO3], proof starting on page 46)

e by proving it for polynomial functions, by stopping the process and thus working on
compact sets and by then using convergence results (e.g. in [RY99]], Chapter IV, §3,
(3.3))

We can also define a multi-dimensional It6 process as follows: We firstlet W = (W', ... W™)
denote an m-dimensional BM.

..........

we previously imposed on a and b, respectively. Then an n-dimensional process X =
(X', ..., X™)is an It6 process if we have

dXt - Adt + Bth,
in other words we have

dX/! = ajdt + b dW,! + ...+ b/ dW]",

dX]" = apdt + b AW + .+ b AW

Theorem 2.32. Let X be an Ité process and let f(t,z) = (f1(t,z),..., f.(t,x)) be a C'-
function in time and a C*-function in space. Then Y,(w) := f(t, X;(w)) defines an Ité
process with representation

0

) 1
AYF = = filt, Xo)dt + > 5 felt. X)dX] + 5 > o

iy
BT 0 fr(t, Xp)dX;dX7.

for k € {1,...,r} and the sums running over i,j € {1,...,n}.

Theorem 2.33 (Integration by parts). Let X and Y be It6 processes on R. Then we have

t t t
/ X dYs = XY — XYy — / Y,dX, — / dX.dYs.
0 0 0

The last term is also written as quadratic covariation of X and Y.

Remark 2.34. The covariation of X and Y can be defined as

<X7 Y>t = nh_g}o Z (Xti+1 o Xti)(Y;‘/z‘H - Y:fz)
tieT U{t} 8 <t

It exists if and only if (X +Y), (X) and (Y) exist and we can alternatively define it via the
polarization formula

(X,Y) =S (X +Y) = {X) = (Y)).

N | =
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2.3 The Martingale Representation Theorem

We have already seen in Theorem that the stochastic integral of a function f € V
is a martingale. In this chapter we want to prove that the reverse holds, i.e., that every
martingale (minus its expected value) has a (unique) representation as a stochastic
integral of some function f € V.

Let us first state a slightly more general result:

Theorem 2.35 (It representation theorem). Assume that we have a filtered probability
space and that its filtration is generated by a standard BM, i.e., F; = oc(W,,s < t) V N.
Let F' € L?(Fr). Then there exists a unique f € V such that

T
F(w) = E[F] —i—/ f(t, w)dWi(w).
0
Before we prove this, let us formulate the martingale representation theorem, which

follows directly from the above result.

Theorem 2.36 (Martingale representation theorem (MRT)). Let M = (M;);>o be an
(F;)-martingale with M, € L*(PP). Then there exists a unique (in L*(P® \)) process g € V
such that

My(w) = E[M,] + /tg(s,w)dWs(w), P-a.s. for all t > 0.
0

Proof. By applying the It6 representation theorem to 7' = ¢ and F' = M, and by using
that E[M,] = E[My] for all ¢ > 0, we see that there exists ) € V such that

t t
M, = E[M,] + / fOAW, = E[My] + / fOaw,. (2.10)
0 0
As It0 integrals are martingales, we have that for every 0 < ¢; < ¢, the following holds:

to
M, =E[M,]| F,] ® E[My] + E U FEaw,
0

t1
fm} ==+ [, @i
0

where we used (2.10) for ¢, in equality (). Equation (2.10) also holds for ¢, instead of
t, i.e. we have

t1
M,, = E[M] + / faw,. (2.12)
0
Comparing (2.11)) and (2.12]) we get
t1
0= / (f& = 1) aw.
0

Applying the It6 isometry (and Tonelli’s theorem for interchanging integral and ex-
pected value) we get

t1 2 t1
(f v seam) | = e[ e
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hence f(1) = f2) for almost all (¢,w) € [0,%;] x Q. As 0 < t, < t, were arbitrarily chosen
points, we define f: [0,00) x 2 as

f(s,w) = fY(s,w) ifselo,t].

Then indeed we have

t t
M, = E[M,] +/ FOAW, = E[M,] +/ fdW,, forallt > 0.
0 0

0
Example 2.37 (Stochastic Exponential). For some h € L*0,T| define
Y, = S(/Ot hsdWy) := exp (/Ot hsdWg — %/Ot(hs)2d3> , 0<t<T. (2.13)
We have seen in an exercise (sheet 2) that
Y, =14 /tY;hdes, 0<t<T. (2.14)
0

This is precisely the representation of Y that is suggested in the It0 representation theorem,
provided Yh € V.

Remark 2.38.

1. We know that if the integrand in the It6 representation belongs to V, then the process
is a martingale. In the special case of the stochastic exponential there are a number of
results giving sufficient conditions on h such that &( f(f hsdWy) is a martingale — e.g.

Novikov’s condition, which requires that E [exp (% e hﬁds)} < oo. This condition
is satisfied for any deterministic function h € L*0,T].

2. Consider the stochastic exponential for hy = o. In this case Novikov’s condition is
clearly satisfied, one can check that oY € V.

If we multiply by exp (%) and replace Y by expression (2.13)), we get
exp(cW;) = exp (%%) + /taexp (# + O'WS) dWj
0
This implies that the random variable
Y = i ay exp(oWy,)
k=1

with arbitrary ay, oy, and t, can be written as an It6 integral with respect to a function
in V.

Inspired by the above results we define the following set:

Definition 2.39. Let S be the linear span of all random variables that can be written as

T T
exp (/ hedW, — %/ (hs)st) for h € L*[0,T). (2.15)
0 0

We will prove the It0 representation theorem in several steps:
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Step 1: Every random variable Y € S has an It6 representation.

We have already seen (in Equation (2.14))) that every Y € S has the representation
t
Y;:1+/ YihdW,, 0<t<T.
0
What is left to check is that for i € L?0, T, the process (¢, w) — Y;(w)h; belongs to V.

Step 2: If a sequence of random variables converging in L? has an Itd representa-
tion, then the limit has an It6 representation as well.

Proposition 2.40. Let (X,,),cn be a sequence of random variables with It6 representations
T
X, = E[X,] + / oMW, o™ e V. (2.16)
0
If X, =% X in L*(P), then there exists ¢ € V such that ¢/ =3 ¢ in L*(P® \) satisfying
T
X =E[X] +/ b dW,. (2.17)
0

Proof. From L?*(P)-convergence follows the convergence of the expected values, i.e.,
E[X,] =5 E[X]. As (X,, — E[X,]).cn is a Cauchy sequence in L?(P), we can apply Itd’s
isometry to see that (¢(™),cy is a Cauchy sequence in L*(P ® \):

(E0X, = 1+ (o o) ]

" (E[X, — X,))* +E { /0 T(cbt”) - ¢§m)>2dt}

E[(X, - X)) =E

T

= B, - X2+ [ B[l - o]

0.

As the functions ¢ belong to V for each n, which is complete®, there exists ¢ € V such
that ¢ = lim,,_,. 4.
Finally, we take L?(P)-limits on both sides of (2.16). Again by It0’s isometry and by

n—oo

using that E[X,,|] — E[X] we get that

T T
X = lim X, = lim (E[Xn] + / ¢§")th) = E[X] + / dd W,
0 0

n—o0 n—o0

O

®It is left as an exercise to verify that V is a closed linear subset of L?(P ® \) and therefore complete.
Let it suffice to remind the reader that if we have a Cauchy sequence in L?, then the sequence does not
only converge in L?, but there also exists a subsequence which converges almost surely.
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Step 3: S is dense in L?(Fp, P).

We need a few results before tackling the main one.
The following theorem follows from the 7-A-theorem. Its proof is left as an exercise; it
can be found in [[SKYO1]].

Theorem 2.41 (Monotone Class Theorem). Let A be a w-system containing ), i.e., for
any two sets A, B € A, the intersection A N B belongs to A as well. Let H be a collection
of functions from ) to R with the following properties:

(i) H is a vector space;
(i) if Ac A then 14 € H;

(iii) if f, € H for n € N such that f,, > 0 and f,, T f for some bounded function f, then
fen;

Then H contains all bounded functions that are o(.A)-measurable.

In the next result we state that such random variables that depend on finitely many
times of a standard BM are dense in L*(Q, Fr,P):

Lemma 2.42 (Lemma 12.3 in [SKYOI1]]). Let D denote the set of random variables that
can be written as

f(VVtUWtz - Wt17"'7th - thfl) or f(Wt17Wt27"'7Vth)

for n € N and some points 0 = tq < t; < ... < t, = T and a bounded Borel-mb. function
f:R" — R. Then D is dense in L*(2, Fr,P).

Before we give the proof, let us remark that the first representation has the advantage
that all arguments are independent of each other. However, any function with one
representation can also be presented in the other way.

Proof. Let A denote all subsets of 2 of the form
A= {th < ZL’l,WtQ < .I'Q,...,th < l’n} C Q.

Then A is a w-system and (2 € A.

Let H, denote the set of all bounded random variables that can be written as limit of a
monotone increasing sequence of elements in D. Let ‘H be the vector space generated
by H,. Then H has all properties required to apply the monotone class theorem. Fur-
thermore, for any A € A, we have 1, € H. The monotone class theorem tells us that
‘H contains all bounded o (.A)-measurable functions. By definition of Fr (generated by
(Wy)i<r, augmented by the P-nullsets), Fr = o(.A) V N. Hence, for any bounded ele-
mentary Fr-measurable X there exists a o(.4)-measurable Y such that P(X # Y) = 0.

H contains all bounded functions in L?(2, 5(A),P) and due to the approximation prop-
erty, it is even a dense subset thereof. Thus, D is dense in L?(Q2, Fr,P). O]

Finally, we recall one more useful result from the theory of Hilbert spaces:
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Lemma 2.43. Set D be a closed linear subspace of L*(P) and S C D. If D NS+ = {0},
then S = D.

Proof. See Lemma 12.4 in [SKYO1]]. O
Proposition 2.44. S is dense in L*(Fr,P).

Proof of Proposition 2.44} The goal is to show that S, the set S restricted to L2-step
functions h, is dense in D. As the latter is dense in L*(Fr, P), this completes the proof.

Let g € D be orthogonal to all functions from S. In particular, for any a = (aq,...,a,) €
R" and ¢4, ...,t, € [0,T],

G(a) := / exp (aiWy, +...a,W,;, ) gdP =0,
0

where we let hy = axljy, € L?[0,T] for k = 1,...,n and the corresponding stochastic
exponential
b a lfk
E( hedW) = E(arWs,) = exp | ap Wy, — T = exp(axW4,) - cx,
0

where ¢, is a deterministic factor.
As G is real analytic, it has a complex extension to C™ (by the principle of permanence),
ie.
G(z) := / exp (Wi, +...2,W;, ) gdP =0, =zeC"
Q

This holds in particular for z = ia for some a € R". Hence we have for any ¢ € C§°(R")
(dense subset of D):

/ ¢(Wt17 ey th)gdP
Q

:/9(2#)"/2{ 5 o(a) exp (a1 Wy, + .—i—anth))da} gdP

_ (27T)n/2/ (Z(a) (/ ei(a1Wt1+...+anth)gdP) da
n Q
= (2m)~"? / $(a)Glia)da = 0,

where

-~

¢la) = 2m) " | g(a)e " da

Rn
and
olx) = (2m) "2 | da)erda
R
are the Fourier transform and its inverse. Hence, g € D is orthogonal to all functions
in C§°, which is a dense subset of D C L?. This can only be true for g = 0. Thus,
DNSt = {0}. We can directly apply the previous lemma to see that S is dense in D,

which completes the proof, because if S is dense in L2, then this is certainly true for the
larger space S. O
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Step 4: The It6 representation is unique.

Let f, g € V such that

T T
FoRE[F]+ / fdW, and F—E[F]+ / IV,
0 0

2
Then fOT(ft — g;)dW,; = 0, which implies that E [(fOT(ft — gt)th) ] = 0. By It0’s isom-

E UOT(ft - gt)th} =0,

which is want we wanted to show.
This completes the proof of Theorem

etry, we therefore have

Example 2.45. Let F' = W} and consider the martingale M, := E[F| F;] with the usual
filtration (generated by W, augmented by the nullsets). We have already seen (sheet 2)
that the conditional distribution of Wy given W; (t < 1) is N (W}, 1 —t), hence

My=E[W?| Rl =W2+(1-1).
1t6’s formula (for F(t,x) = x?) tells us that
t 1 t t
Wt2:0+/ 2Wdes+§/ 2ds:t+2/ W,dW,.
0 0 0
Therefore, M, has the representation
t
Mt - 1 +/ QWSdWS
0

Exercise 9. Find the integral representations of the following random variables:
a) F= [ Wds,

b) F = exp(Wr), (Hint: What is d(exp(W; — 5t))?)

¢) F = sin(Wr). (Hint: What is d(exp(5¢) sin(W;))?)
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2.3.1 Explicit formula for the integrand in the MRT - An excursion to functional
It6 and Malliavin calculus

The MRT only states that an integrand f € ) exists such that an L?-martingale M has
the representation M; = E[M]+ fot fsdW,. If we know how to approximate M by
linear combinations of stochastic exponentials, then we even know how to construct
the integrand.

In applications, It0’s formula is often useful to find the integrand. As long as we consider
stochastic integrals w.r.t. a standard BM W, if M, = F(¢,W;), then It&’s formula tells us
that the integrand should be 0, F(¢, W;). Intuitively speaking, if we represent a random
variable as an integral, the integrand should be something like the derivative of the
random variable.

In his paper Functional It6 calculus [Dup09]], Bruno Dupire introduced vertical and hor-
izontal derivatives of a process F'(t, X;). This approach is then extended by Rama Cont
& David-Antoine Fournié in Functional It6 calculus and stochastic integral representation
of martingales [CF13] to present explicitely the integrand of the MRT.

We shall only briefly sketch the relevant objects to convey an idea of the topic.
Introduce the notations for horizontal extension and vertical perturbation of a process
zy = (z(u),0 < u < t), which we illustrate in Figure [I}

ep(u) = z(u), wel0,t); Tep(u) = z(t), we (t,t+hl;

ol (u) = 2(u), wu€(0,t); ol (t) = z(t) + h.

o1}

Figure 1: Horizontal extension z,; and vertical perturbation 2z of a path z

With this the horizontal derivative of an R?-valued process F' is defined as

. 1
'DtF(% U) = ;}E(I)L E (Ft+h(xt7ha Ut,h) - Ft(ft, ht))

and the vertical derivative is defined as

Vo F(2,0) = (0:F(z,0),i = 1,...,d) where d;F(x, v) = g%% (Rl ) — Fiv)
if the limits exist and where (e;,i = 1,...,d) is the canonical basis in R%. If Y has the
representation Y (t) = F;(X;, A;), where A is the local quadratic variation” of X, then
VxY(t) .= V. F,(X;, A;) is called the vertical derivative of Y w.r.t. X.

Besides proving a functional It6 formula with the above derivatives (Theorem 4.1), Cont
and Fournié prove the following MRT:

7(X) = [7 A(s)ds

29



Theorem 2.46 (Theorem 5.9 in [CF13]). For any square-integrable (F;* )iclo,rj-martingale
Y, we have the representation

Y(T) = Y(0) + / ' VxYdX.

The (non-pathwise) calculus of derivatives of random variables is known as Malliavin
calculus. It is concerned with the regularity random variables and gives a notion of the
derivative of a random variable or stochastic process — the Malliavin derivative. For
further information, consult e.g. [Imk08] or [Bel06].

2.3.2 Application to the Black Scholes Model

In this short section, we will see how the stochastic integral that we have introduced
and worked with appears quite naturally in the Black Scholes model and which topics
will need to be addressed next in order to have the same machinery available as we had
for discrete time financial markets.

Let the price process of a riskless asset be given by (S?);>0, where S§ = 1 and dS? =
rS2dt. In other words, S? = e™ for any ¢ > 0. Furthermore, let the price process
of a risky asset S be a geometric BM (cf. Example [2.28), i.e., dS; = Sy(udt + odW;).
A strategy ¢ = (¢1)o<t<r for trading in riskless and risky asset until maturity 7" is a
2-dimensional process, i.e., ¢ = (H°, H), such that the value of the portfolio at time
t € [0,T] is given by

Vi(¢) = H}S} + H,S,. (2.18)

The strategy ¢ will be called self-financing if
dVi(¢) = HPdSY + H,dS,. (2.19)

As both S and S° are It6 processes, we know that the above equation makes sense,
provided

T T
/ |HP|dt < oo and / Hdt < o P —a.s.
0 0
Remark 2.47. Taking Definition literally, we should require
T T T
/ |rSSH£ydt:/ re”|HE|dt§re’“T/ |HY|dt < oo,
0 0 0
T T
/ Sy H | < |y HSIIOO/ \H,|dt < o0, and
0 0
T T
/ aQSfodt§02HSHiO/ H2dt < oo,
0 0

where ||S||, = esssup{|S:|| t € [0,T}, which is finite because t — S, is continuous P-
a.s., which implies that S is bounded P-a.s. on [0,7]. We see that these conditions are
equivalent to the ones stated above. (Recall that L? C L' for finite measure spaces.)
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Proposition 2.48. Let S and S° be the price process described above and let S, = e S,
Let ¢ = (H}, Hy)iepo,r) be an adapted process with values in R? such that

T T
/ |Hf|dt+/ Hldt < oo P—as.
0 0

Let V' be defined as in (2.18) and let XN/t(gb) = e ""V,(¢). Then ¢ defines a self-financing
strategy if and only if

Vi(9) = V() + /0 H,dS,, Vtel0,T]. (2.20)

Proof. Let ¢ be a self-financing strategy. Then we have (from the product rule)
AVi(9) = d(e™Vi(9) = —re Vi(@)dt + e dAVi(9),
and similary N N
dSt = d(e_rtSt) = —TStdt + e_rtdst
hence from (2.19) and the definition of the value process V' we infer that

dVi(¢) = —re " (HS + H,Sp)dt + e "(H dS{ +H,dS,)
~—
=rertdt
— —re "M(HYe" + H,S,)dt + rHdt + Hy(dS, 4 rS,dt)
= —THtgtdt + thgt + T’Htgtdt
— thgt'

On the other hand, let (2.20) hold. Then, by the product rule,
HdS; = dVi(¢) = d(e "Vi(9)) = —re "'Vi(¢)dt + e " dVi(9),
hence by simple rearrangement we get

AVy(¢) = € H,dS, + rVi(¢)dt
= "' Hy(—rS,dt + e7"'dS,) + rV,(¢)dt
= H,dS, + r(Vy(¢) — H,S;)dt
= H,dS, + rH?S%dt
= H,dS; + H{dS},

which shows that ¢ is indeed self-financing. O

Once we have self-financing strategies, we would like to talk about equivalent mar-
tingale measures. To this end, we need to see what a measure change does to an It6
process (in its integral or differential form) and we want to gather conditions under
which a process is a martingale under the new measure.

Before we can do this, however, we should introduce formally the notion of a stochastic
differential equation (SDE) and what we consider as a solution of an SDE.
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3 Stochastic Differential Equations and Diffusions

3.1 Introduction to SDEs

Let W be a standard BM on a probability space (2, 7, P) and let (F;) denote the filtration
generated by W, augmented by the nullsets.
An equation of the form

dXt = /L(t, Xt)dt + O'(t, Xt)th (3.1)

is called a stochastic differential equation (SDE) with (measurable) coefficients x(-, -) and
o).

Example 3.1. For u(t,x) = p- x and o(t,x) = o - x we already know that the geometric

BM,
1
X; = Xpexp <0Wt + (u — 502) t) ,

satisfies the corresponding SDE
dXt = /,LXtdt + O'Xtth. (32)

Example 3.2 (Ornstein-Uhlenbeck process / Langevin equation). For constants o, > 0
and z, € R consider the SDE

dX; = —aXidt + odW;, Xy = zp. (3.3)

First observe that the drift term —aX, is positive whenever X, is negative and it is negative
whenever X, is positive. Therefore, the process can be expected to fluctuate around zero.
In order to get a first intuition, let ¢ = 0. Then the resulting ODE has the solution X7=" =
zoe~, hence X7=Y - e° is constant.

Now consider Y; = X, - e* for a solution X of (3.3). In particular, Yy = X,y -1 = zo. By
applying the product rule and plugging in (3.3)), we get

dY; = e™dX; + ae™ X, dt
= e (—aX,dt + odW;) + ae™ X,dt
= ge™dWV,,

hence Y; = z¢ + fot oe*dW; for any t € [0, T]. Consequently,

t
X, =e Y, = (mo +/ aeo‘deS) ) (3.4)
0

The process X in (3.4)) is called Ornstein-Uhlenbeck process.

In both examples we have found process that satisfy the given SDE. However, we do not
know yet whether the solution we found is unique.

The following result (in the spirit of the Picard-Lindelof theorem) gives sufficient condi-
tions such that an SDE with initial value has a solution and that said solution is unique
in a certain sense.
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Theorem 3.3. For T' > 0 and measurable functions y,0: [0,7] x R — R, consider the SDE
with initial value

dX; = p(t, Xp)dt + o(t, Xy)dWy, t€[0,T], Xo=Z. (3.5)
Make the following assumptions:
(i) Z is independent of o(W;,t > 0) and Z is square integrable, i.e., that E[|Z|*] < oc.
(i) There exists a constant C' > 0 sucht that for any x € Rand t € [0, T],

|t )] + [o(t, )] < C(1 4 [z),

(iii) There exists a constant D > 0 such that for any z,y € R and t € [0, T, the Lipschitz
condition

ju(t,z) — pt,y)| + lo(t, ) —o(t,y)| < D]z —y|

is satisfied.
Then there exists a unique continuous process X such that
(i) X is adapted to the filtration (F7) generated by Z and (W) s<s,
(ii) X satisfies
X, =7+ /tu(s,Xs)ds + /ta(s,XS)dWs,
0 0
(i) E [ s \Xt|2dt} < .
Let us make a few remarks:

Remark 3.4.

1. A solution with the above properties is called a strong solution to the SDE. For a given
BM W, it satisfies the SDE. In contrast, a weak solution is one where there exist a
filtration, a BM B (under the filtration) and a process X such that X is adapted to
the filtration an satisfies the SDE with B.

2. In [SKYO01]], quadratic conditions replace (ii) and (iii) on p and o. Consequently,
they obtain a solution X that is uniformly bounded in L*(P), i.e.,

sup { E[X}]| t € [0,T]} < oo.

3. The SDE for the geometric BM, (3.2), with u(t,z) = p-x and o(t,x) = o - z satisfies
the conditions with C = D = |u| + |o|, hence our solution is indeed unique.

4. The Langevin equation (for the Ornstein-Uhlenbeck process) (3.3) with u(t,z) =
—a-x and o(t,z) = o satisfies the conditions of the theorem as well. (Check this as a
quick exercise!) Therefore, the Ornstein-Uhlenbeck process is indeed the only process

satisfying (3.3)).
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Example 3.5 (A counterexample). Let us have a look at the Tanaka equation

+1, ifz >0,

1, ifz <0 (3.6)

dX; = sgn(X;)dW,;, where sgn(z) = {

The Lipschitz condition is not satisfied by u(t,x) = 0 and o(t,z) = sgn(z). Let B be a
standard BM and consider the process

t 1 t
Y, :/ ——dB, :/ sgn(B,)dB;.
' o sgn(B;) 0 (B.)

The process sgn(By) is adapted to the filtration generated by B, and fOT(sgn B)?2dt =T <
00, hence Y is well defined. Its quadratic variation is

vy = [Gempram). = [ =t

By Lévy’s characterization of BM®, Y is a BM satisfying (from its first definition)

dB;

dY; =
" sen(By)

<  dB; = sgn(B,)dY;,

hence B solves with BM'Y'. It is, however, only a weak (and not a strong) solution of
(3:6). To see this, let (FP) be the filtration generated by B and let (F;") be the filtration
generated by Y. Then FY C FPB; in particular, sgn(B;) is not (F} )-adapted. One way to
prove is is to apply Tanaka’s formula, which we will not discuss in this lecture. Alternatively,
consider a sequence (f,,)nen C CH(R) such that

o fulx) = sgn(x) for |z] > 1,
o |fu(z)| <land f,(—z) = —fu(x) for all x € R.

Then F,(z) := [ fu(y)dy € C*(R) and lim,_, F,(z) = |z| uniformly on compact inter-
vals. By It6’s formula,

t 1 t 1 t
FuB) = [ o =5 [ gBgas=3 [ rpas

For n — oo we therefore get

t
| Bi| = / sgn(Bs)dBs = |By| — Y; = something ]—}‘B‘-measurable,
0

hence Y, is }"t‘B‘—measurable. In other words, F} C .7-}|B| (for all t > 0), and the latter is a
strict subset of FP.

8Lévy’s characterization of the one-dimensional BM says that any continuous local martingale M with
My = 0is a BMiff (M), = t.
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3.2 Solutions to linear SDEs

So far all SDEs had a closed form solution. In this section we look at a class of SDEs for
which this is also true: linear SDEs, i.e., SDEs of the form

dXy = (ou + B Xy)dt + (72 + 6:.X)dW. (3.7)

The special case « = 0 = 0 leads to the Ornstein-Uhlenbeck process that we have just
seen in the last section; the case v = v = 0 leads to a stochastic exponential with the
special case of a geometric BM for 5, = i and §;, = o.

Let us first introduce the stochastic exponential in a more general form than (2.13).

3.2.1 Stochastic Exponential

Consider the linear SDE
dUt = BtUtdt ‘l— 6tUtth- (3.8)

If Y is an It process with
d}/;g = 5tdt + (5tth,

then (3.8) can be rewritten as
dUt - UtdY;g

Definition 3.6. A process U satisfying (3.8)) is called the stochastic exponential of Y. It is
denoted by

Ut - U()g(Y)t
Lemma 3.7. The stochastic exponential of an It6 process Y with Yy = 0 is given by

E(Y ) = exp (Yt - %<Y>t) :

Proof. Let U; = £(Y);. Without loss of generality let U, = 1. On {U; > 0} (which is
always the case for U, > 0) we have by It6’s formula

1 11 1
d(InU;) = EdUt - §U—tgd<U>t =dY; — §d<Y>t,
hence
1
lng(Y)t = }/; — §<Y>t,
which proves the statement. ]

If we replace Y by its representation as an It6 process and recall that (Y), = f(f 62ds, we
get the representation for U:

t 1 t
Uy = Uyexp (/ (65 — 55?) ds +/ 5SdWS> (3.9
0 0
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Application in Finance

If the price of a given stock is given by an It0 process S and the return is denoted by R,

then
t

dR; = % or equivalently dS; = SidR;.
t

Hence, the stock price is the stochastic exponential of the return, i.e., S; = SoE(R);.

Stochastic Logarithm

IfU =E&(Y), then Y is called the stochastic logarithm of U and is denoted by Y = L(U).
From our previous calculations we can infer the following properties of the stochastic
logarithm:

Corollary 3.8. Let U > 0. Then the stochastic logarithm, if it exists, satisfies the SDE

dUt
dY; = Yo =0.
A 0

It has the representation

Y= L) =t (2 +/t L gy
t = t =11 Uo . 202 s

Example 3.9. Let U; = " for a standard BM W. It satisfies

1
dU, = M dw, + 5eWtdt.

Its stochastic logarithm therefore satisfies

v,
dY; = dL(U), = Ut = AW, + dt
t

hence )

Let us verify the representation asserted in the lemma:

] Uy +/t ! (U), l(Wt)+/t L Wsq —W+1t
"\w,) T, 202 "  2e2w. (¢ T o

where we used that

d(U); = dU,dU; = e*Medt.
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3.2.2 General linear SDEs

We will use a trick known from ODEs, namely variation of constants. As before, let U

satisfy (3.8), i.e.,
dUt — BtUtdt + 5tUtth'

Furthermore, let V' satisfy
d‘/t = CLtdt + btth

and impose the initial condition Uy = 1 and 1, = Z. We want to find a solution to the
general linear SDE (3.7)) with initial condition X, = Z. If we consider the differential
of the product, dX; = d(UV),;, we get

dX, = V,dU, + UV, + d(U, V),
= W(ﬂtUtdt + 6tUtth) + Ut(atdt + btth) + (ﬂtUtdt + 5tUtth) . (atdt + btth)
= 6tXtdt + 5tXthVt + atUtdt + btUtth + btétUtdt

= (o + B XAt + (v + 6, X,) AW,
A comparison of coefficients tells us that
CLtUt + bt(StUt ; Qi und btUt ; Vt-

Replacing b,U; by v; in the first condition and rearrangement gives the equivalent set of
conditions ' '
atUt =qy — Vtat und btUt = VYt

Recall that in Equation (3.9) we had the explicit expression

t 1 t
U, = Uy exp (/ (58 — 553) ds +/ 65dW8)
0 0

for U;, which gives the following representation of X:

t t
Xt = Ut‘/t = Ut (Z +/ asds +/ bSdWS)
0 0

tas_785s tﬂys
U (Z = 2°qd —dW | .
( v e [ )

Example 3.10 (Langevin type SDE). Consider the linear SDE
dX; = g X, dt + dW, (3.10)
i.e, « =6 =0and v = 1. Let us first solve for the corresponding process U, which satisfies
dU; = p,Udt, Uy = 1.

The unique solution to this equation is given by U; = exp ( fg Bsds). Therefore, the solution

X to (3.10) is

X, =0, (XO + /0 t Uisdws) = exp ( /O t 55013) (Xo + /0 t exp (— /0 s 5Tdr) dWs> .
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Example 3.11 (Brownian bridge). Consider the linear SDE

b—

X
dX, = ttdt +dW,, 0<t<T, X,=a. (3.11)

The coefficients in the context of the general linear SDE are

b —1
= = =1, 6 =0.
Qi T_t7 Bt T_ta Vt ) t 0

As before, we first identify U as the solution of the SDE

-U
dUt - ﬁtUtdt —|— 5tUtth - T ttdt7

hence
U, = /t 1 4s) = exp (T — ) — (T — 0)) = =1
, = exp T s | =exp =

Consequently, X is given by

X = Ut<a+/—ds—i—/ dW)
() e
:($)'(G+Tb +/0TT )
:a<1—%)+bT+(T )/0 AW,

Observe that for any t < T, [y (7 ) ds = 7 — 7 < oo. The integrand of the stochastic
integral is therefore measurable (because determlmstlc) and square integrable, hence it
belongs to V. The process f dW is therefore a (continuous) martingale and a Gaussian
process. If one verifies that XT = b, then from the representation formula for X we can

infer that E[X,] = a (1 — %) + b% and Cov(X,, X,) = min(s, t) — 2.

Exercise 10. Do the following to complete the above example:

a) Show that limyr(T fO —dW = 0 almost surely. This implies that the Brownian
Bridge X has fixed mltlal and terminal values with Xo = a and Xt = b almost surely.

b) Verify the expected value and covariance of X.

Before we continue with the next topic, let us remark why we added the term diffusions
in this chapter’s title. The reason is that equations of the form

t t
X=Xy + / w(s, Xg)ds + / o(s, Xs)dW
0 0
are called diffusion-type SDEs and strong solutions to the corresponding SDEs are called
It6 diffusions. The name originates from the corresponding physical phenomena which

can be described in this manner, e.g. the famous motion of a particle in a fluid.
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3.3 Change of measures

In FiMa I we have seen that martingale measures, i.e. probability measures under which
a share’s price equals its discounted expected value, play an important role in asset pric-
ing. In particular, in a discrete market the fundamental theorem of asset pricing (FTAP)
tells us that the existence of an equivalent martingale measure (EMM) is equivalent to
the non-existence of arbitrage.

Before we start with risk neutral pricing, let us recall what we already know about
change of measures and extend that knowledge for models in continuous time. We will
find the stochastic exponential quite useful in this section.

Setting

Let (2, F, (F;),P) be a filtered probability space; the filtration (F;).cjo,r is assumed to
satisfy the usual conditions; w.l.o.g. F = Fr.
Recall that if a probability measure Q is absolutely continuous w.r.t. Pon F (i.e. Q < P),
then Q|r, < P|x, and there exists the Radon-Nikodym derivative Z := % such that
Z, = 2|7, satisfies

Q(A) = EP[Zr1,4], VA€ Fr.

7 is a uniformly integrable martingale with Ef[Z7] = 1. It is chosen to be cadlag.
Recall Bayes’ formula:

Lemma 3.12 (Bayes). Let 0 < s <t < T. Assume that Z; > 0 for all t (and in particular
Z > 0). Then P ~ Q and we have

EF [Y Z|F.]
E*[Z]F]

EP [Y Z,| F,]

Q =
EC V|7 7

and EC[Y|F,] = if Y is F;-mble,

provided Y > 0orYZ € L'(P).
The following result links local martingales under Q and P.
Lemma 3.13. Let R:=inf {t > 0| Z; = 0}. Then

(i) R=o Q-a.s.;

(ii) for a non-negative adapted process U or UZ € L'(P), and 0 < s < t,

1
EF[U.Z|F,] Q —a.s.;

EC[U,|F.) = Liz.0y -

(iii) if Y is an adapted process s.t. Y Z is a local martingale under P with Y,Z, € L'(P),

then Y is a local martingale under Q.

Proof. (i) The Radon-Nikodym derivative Z = i% was chosen to be right-continuous,
hence Zr = 0 on {R < oo}. Therefore, for ¢t > 0,

Q(R < t) = EF[Z,1{p<y] © E*[Zirrl{r<y] = E*[Zrl{r<n] = 0,

where (x) holds by a stopping theorem because Z is uniformly integrable.
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(i) For s < tlet A € F,. Then, as Z;, > 0 Q-a.s. by (i),

EQ [U,1,] € EO
E¥ [Z,U1 anz, 20}]
P

EF (U, Z,| F,
= {—[ tZ d ]ZSILAQ{ZS;AO}]

—

Uil angz, 20}

—

Bges E@ |:EP [UtZt|]:S] ]lA]l{Z 7é0}:|
Z ° ’

where we used E¥[Z,] = 1 in the application of Bayes’ formula.’
(iii) Let (7,,) be a localizing sequence for (Y Z) such that the stopped process (Y Z —
YyZy)™ is a P-martingale.'°

First, let us check the integrability of Y™ for n € N.

i EQ [Y?/trn} =E* [Zt/\TnY;tJ/(Tn]
b ]EQ [Y;‘/XTH} = EP [ZtATn}/;XTn]
o E¥ [Zin:, Yirs,| = EF [ZyY0] because (Y Z)™ is a martingale

From the above points we can infer that Y;,,, € L'(Q) for all ¢ > 0 and all n € N.
Now let us check the martingale property of Y;,,, w.r.t. Q. Let 0 < s < ¢t. Then

E? [Yipr [ Fs] = Lim<s) Yo + Limn s} E? [Yinr, | Fs]

(i) E* [Yinr, Zine, | Fs
= lr<at Yo, + Lo liz 20} [Yin 7 iny |

. Y Zs
mart L7 <Y, + Ly Liz.20 7

(i—) SA\Tn Q — a.s.

The martingale property of (Y;,., — Yy) follows directly, hence Y is a local martin-
gale.
O

Let us recall in a slightly modified version Lévy’s characterization of a standard BM,
which we will need for the proof of Girsanov’s theorem.

Theorem 3.14. For a continuous real-valued process X with X, = 0 the following prop-
erties are equivalent:

(i) X is a BM;
(i) X is a local martingale and (X); =t a.s. for all t;

(iii) X is a local martingale and X? — t is one as well.

?One can save the second and third line by replacing U; by E? [U;|F,] in the first line (by the tower
property) and applying Bayes directly to E? [U;| F,] with the F;-measurable random variable U,.
10We write X™ = (X, ) for the stopped process.
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Proof. (i) = (iii) If X is a BM, then (X); = ¢ for all ¢ and by It&’s formula, W? —
t =2 fot W,dW, (holds for X in place of W) and any stochastic integral (for an
integrand in W) is a local martingale.

(iii) = (ii) We have .
Xf—t:Q/ Xod X, + (X)) — t.
0

The LHS is a local martingale, the stochastic integral is one. Consequently, also
Y; := (X); — t is a local martingale. (The sum of local martingales is also a local
martingale.)

Recall that the quadratic variation of a continuous local martingale is continuous
and nondecreasing, hence it is of bounded variation. The quadratic variation
of the (continuous) quadratic variation therefore vanishes. In our setting, this
implies (Y); = 0, hence
t
V2o vy =v2 =2 [ vav,

0
is a local martingale. (Verify!) Thus, there exists a localizing sequence (7;,) such
that

E[Y3. ] =0, Vte[0,T],VneN.

Hence, Y;,,, = 0 almost surely; by passing to the limit (n — oo) we get that ¥; = 0
almost surely, which proves the claim.
fs]

(ii) = (@) LetueRand 0 < s <t <T. Then

E [6iu(Xt—XS)

g(ZUX)t _ 1.2 _
—F su ((X)e—(X)s)
7 [E(iuX)se

— eféuz(tfs)]E |:

E(uX),
E(luX),

7]

— 67%u2(tfs)’
where we used that the stochastic exponential of a local martingale is itself a local
martingale and a bounded local martingale (such as £(iuX)) is even a martingale.

Knowing the characteristic function of X; — X,, we can infer that X; — X, ~
N(0,t — s). In particular, X; — X, is independent of F, with that distribution.
Hence, X is a BM.

OJ

Theorem 3.15 (Girsanov Theorem I). Let o = («y) € W and let Y be the solution to the
SDE
dY; = qudt +dW,, t€[0,T], Yo=0.

Let M = &E([ —adW), Le.,

t 1 t
M, = exp (—/ o, dW, — 5/ agds) , tel0,T].
0 0

If M is a martingale w.r.t. (F;) and P, then Y is a standard BM w.r.t. the equivalent
measure Q ~ P defined by
dQ = MydP.
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Before we prove this theorem, let us remark that we will indeed have a second theorem
of Girsanov. The difference is that in the above theorem, the coefficient of the stochastic
integral is fixed to be 1, whereas we will later on relax this requirement.

Proof. First, let us observe that
Q(Q) = EP [My] @ EF [My) = 1,

where (x) holds because M is a P-martingale and the last equality holds because M, = 1.
This shows that Q is indeed a probability measure.

Furthermore, Q ~ P (i.e. the measures are equivalent), because M > 0 P-almost surely.
Consider the process K; := M,Y; (t € [0, T]). We know that M satisfies the SDE

th = —O[tMtth,
hence with the product rule we find that
th = MtdYt + nth ‘I— d<M7 Y>t

= Mt(Oétdt -+ th) — }/;OétMtth — OétMtdt

= Mt(l — O[t}/;)th
Taking into consideration that EF [K,] = E* [M,Y;] = 0 (because Y, = 0 P-a.s.), we can
infer that K is a local martingale under P. Consequently, by Lemma [3.13] Y is a local
martingale under Q. Similarly, one can show that (M (Y;> — t)), is a local martingale

w.r.t. P, which implies that Y,> — ¢ is Q-local martingale. Hence, by Lévy’s characteriza-
tion (Theorem(3.14), Y is a BM.!! O

Caution! Theorem (3.15| requires that the stochastic exponential M is a martingale
— not only a local martingale. We will present some useful sufficient conditions that
guarantee that the stochastic exponential is indeed a martingale.

Sufficient conditions

Recall the notation

E(L), = exp (Lt - %(L)t) .

Theorem 3.16 (Kazamaki’s condition). Let L be a local martingale with Ly = 0. Let
Tr := {7 stopping time | 7 < T}. If

NI

sup E [e L*] < 00,

TETT
then M = £(L) is a martingale on [0, T'.
Before we can prove this result, we need an auxiliary one:

Lemma 3.17. Let 1 < p < oo < and _ + ¢ = 1. Assume that L is a local martingale on
[0, T] with Ly = 0. Assume furthermore that

sup & o (5 2y )| <

Then M := E(L) is an (L?-bounded) martingale.

HAlternatively one could have calculated (Y); = (W), = t to get the other characterization of a BM

stated in Theorem
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Proof of Lemma

Let 7 € T7. Set u := Y2 and v := @. Thenu>1,%+%:1andwithq:1ﬁwe

V1
have
q\ 1 p p(yP—1)
<q_ \/g) v=alvrtl <p— L \/(p— D(VP+ 1))
_ VP Ve 1
2 (Vp+1) <p—1 \/;3+1) (3.12)
VP (p—1)- VP — (P —1))
2(/p— 1) p—1
N/
20— 1)
Recall Holder’s inequality for random variables X and Y':
E|XY]) < BIXIDT - ©[YI)P o+ =1

With the multiplicative representation

(E(L).)7 = et — v/ Tbrm

(e (- B2

we can apply Holder’s inequality to get

Holder

EE@))] < (E|exp (vauL. — L), )])

g [=

%LT . e(q_ %)LT

1
v

EI2 . ex i
= &@ * p(2(ﬁ1>LTL*>>,

-~

As £(,/qul) is a local martingale that is bounded from below (by zero), it is a super-
martingale by Lemma [2.20},

(+) <E[E(VquL)o] = 1.

Furthermore, (xx) is uniformly bounded for all stopping times 7 € 7r by assumption,
hence

sup E [(E(L),)?] < oc.

TETT
By the lemma of de la Vallée Poussin, { (L), | 7 € Tr} is uniformly integrable. As £(L)
is a local martingale, (£(L):x-, ): is @ martingale for a localizing sequence (7,,). For the
stopped process we therefore have

E [g(L)t/\Tn | Fs] = S(L)s/\m-

The RHS converges to £(L), almost surely as n — oo. The LHS convergesto E [E(L); | Fs
in L', hence a subsequence converges almost surely. Thus we have verified the martin-
gale property of £(L), which finalizes the proof. O
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Proof of Theorem [3.16]
Leta € (0,1) and set p :=

= and ¢ = ;2. Thena- \/\;{i = 1. Thus we have

\/]_) )1 |: (1 )1 assumption
sup E |[exp| —=———-alL, || =sup E |exp | =L, <  00.
et { P <2(\/ﬁ —1) e P2
We are therefore able to apply Lemma which tells us that £(al) is a uniformly

integrable martingale. In order to prove that M = £(L) is a martingale we calculate
how the two are connected:

E(al) = e“L_§<L> = €“2L—§<L> . et(l=a)L _ 5(L)a2 . eall=a)L

If we take expected values on both sides and apply Holder’s inequality for p = & and
q = > we obtain

—a2

2

Holder 2 a(l—a) 1—a
1=E[E(aL)r] < (E[E(L)])" - (E[7=517])
With Jensen’s inequality'? we have

2a .
a(l—a) a 1 T+q assumption
E [e 1-=a2 LT} =E [eHaLT] < (E [e?LTD <  o0.

Consequently, for any a € (0, 1) we have
2 1 2a(1—a)
1 < (E[E(L)7])* - (E [ezLT]) .

If welet a — 1 we get that 1 < E[E(L)r]. As (L) is a supermartingale (see previous
proof) we also have E [£(L)r] < 1, hence M = £(L) satisfies

E[My] =1=E[M,),

hence M is a martingale on [0, 7. O

. 2a
12With % < 1, T+« is concave.
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Remark 3.18 (Alternative formulation of Kazamaki’s condition in the literature). Let L
be a continuous local martingale with Ly = 0. If (e2%), is a submartingale, then £(L) is a
martingale.

For details as to how to prove the statement from the remark, see Chapter VIII, §1,
Proposition (1.14) (page 331) in [RY99]].
With Remark one also has the following result:

Corollary 3.19. Let L be a continuous martingale with Ly = 0. If
E [G%LT} < 00,
then £(L) is a martingale on [0, T'.

Proof of Corollary One can show that if X is a submartingale and ¢ a non-decreasing
convex function and if E[|g(X};)|] < oo for all ¢, then ¢(X) is a submartingale and
Elg(X,)] < Elg(X7)] for all t < T. g(z) = e2” is an increasing convex function and
with X = L the conditions are satisfied. Therefore,

E [e%ﬂ <E [e%ﬂ < oo, Vtel0,T]

and thus Remark can be applied. Alternatively, the above inequality also holds if
t is replaced by a stopping time 7 € 7. Thus, Kazamaki’s condition is satisfies and the

result follows.
O

Theorem 3.20 (Novikov’s condition). Let L be a local martingale with Ly = 0. If
E [e%mT} < 00,
then M = E(L) is a martingale on [0, T].
Remark 3.21. If L, = fot a,dW, (cf. Theorem , then Novikov’s condition can be

rewritten als
1 [T
E [exp (—/ ozf,ds)} < 00.
2 Jo

Proof of Novikov’s condition. Let 7 € Tr. We have
1
[E(L),)7 = ezt (e_%<L>T> °.

As the quadratic variation is non-decreasing, we have

sl = [£(L),]? - {€%<L>r} P < E(L),]7 - [e%<L>Ti| 2

We take expected values on both sides of the inequality. An application of the Cauchy-
Schwarz inequality gives

,_.
=

E[e%“] gE{[g(L)T]i-[e%%ﬂ " Riew)) E[e%@ﬂ . (3.13)
——) (£
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where we used again that £(L) is a non-negative (hence bounded from below) local
martingale and E [£(L)¢] = 1; consequently, by Lemma it is a supermartingale,
hence

E [5(L>T] =E [g(L)T | JT:O] < S(L)O = 1.

On the RHS of (3.13]) we have a finite upper bound for any stopping time 7 € 7, hence
Kazamaki’s condition is satisfies. The claim follows with Theorem O

Example 3.22. Let Y satisfy the following SDE for u € Rand t € [0, T]:
dY; = pdt + dW,.

Then Y is a standard BM w.r.t. the measure Q defined via
1
dQ = exp (—,uWT — éuQT) dP.
Theorem 3.23 (Girsanov Theorem II). Let Y € R" be an It6 process of the form

d}/t — ﬁtdt + Qtth

where W is an m-dimensional BM and 3, € R, 0, € R™™ are adapted stochastic processes.
Assume that there exist u € W™ and o € W" such that

Ouy = ﬂt — Oy

Let
= ! i i 1 ! 2
Mt = €xXp <_ 21/0 udes - 5/0 ||u8|| dS) , L€ [OvT]

and define Q via
dQ = MrdP.

If M is a P-martingale, then Q is a probability measure and the process
t
W, = / usds + Wy, te0,T]
0

is a Q-BM. The process Y has the representation
dY; = aydt + 6,dW,.

Proof for n = 1. We have already seen that a measure QQ defined in this manner is indeed
a probability measure. Furthermore, from Girsanov’s first theorem (Theorem [3.15)
follows that W is a Q-BM — W plays the role of Y in that theorem!

Finally,

dY; = g, dt + 6, dW; replace /3
= (Oyuy + oy)dt + 0, dW; replace u,dt by d/Wt —dW;
= 0,(dW; — dW,) + a,dt + 8,dW,
= a,dt + 6,dW.

46



For details on the multidimensional versions of Girsanov’s theorems and their proofs,
see e.g. [@k03], Section 8.6.

Remark 3.24.
(i) If 0 is invertible (which requires in particular that m = n), then u, = 0, (53, — o).

(ii) If « = 0, then Y has the representation dY; = thWt, hence Y is a local martingale
w.r.t. Q. In this case Q is called an equivalent local martingale measure.

Example 3.25. Let us once more return to the Black-Scholes model that we have last
looked at in Section Recall that the price process is assumed to be a geometric BM,
ie.,

Furthermore, S? = e" for r > 0, hence the discounted price process is given by
gt = 67”515.

Introduce an equivalent probability measure Q ~ P with density

T 1 (7 A2
My = exp <—/ a 7ndVVS — —/ (,u 7") ds) .
0 o 2 Jo o

The quotient ** is also known as market price of risk — it is the difference between the
return rates of risky and riskless asset in terms of volatility o.
For W, = fot E—ds + W, we have

dS; = e7tdS, — re "t S dt
= €7rt/,LStdt + €7rtO'Stth — TefrtStdt
= e_rt [(/.L — T)Stdt + UStth]

— oot | BT at + S,dw,
o

= Ue_TtStth
== agtd/Wt.
Thus, S = & (UW). Novikov’s condition applies, hence S is a Q-martingale. Therefore,

according to the It6 representation theorem (Theorem [2.35), for any F € L*(Q, Fr), there
exists H € V such that

T P T H .
F =E® [F]+/ H,dW,= E® [FH/ —2ds;,
0 0

which is well defined as o, S. > 0. If F is a contingent claim (in the terminology of FiMa
D), the process H is a candidate for a strategy replicating ' and E? [F] is the arbitrage-free
price of F. In the next chapter we will address the problem of arbitrage-free pricing in more
detail.
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4 NA-Theory and Risk-Neutral Pricing

Throughout this chapter let (2, F, (F;),P) be a filtered probability space where (F;) is
generated by an n-dimensional BM I/, augmented by the null-sets. The financial market
shall consist of d < n risky assets with price processes S, ..., S? and one riskless asset
with price process S°. We assume that r = 0.

Before we can work with in this setting, we have to briefly state how we define a multi-
dimensional It6 integral.

Definition 4.1. Let f: [0,00) x Q@ — R"™" such that f,; € V for k € {1,...,m} and
j €{1,...,n}. Then we define

fin o fin dW;

[raw= [

fm,l fm,n de

For f;; € W, the integral is defined analogously.
With this, suppose now that the R¢-valued price process S satisfies

dSt = ’)/tdt + O'tth

for 0 € W®™ and v € R? satisfying P (fOT [ys|ds < oo) = 1. Hence, S is an R?valued
Itd process whose k-th component (k € {1,...,d}) satisfies the 1-dim. SDE

dSf =~fdt+ ) opIdivy.
j=1

Recall that lower indices ¢ and T are used to denote the time, whereas we shall denote
by AT the transpose of a matrix A.

Definition 4.2 (self-financing strategy). A self-financing strategy (¢©°, ) is an adapted
process which satisfies

T T
/ |90tT’Vt|dt < 00, / HSO?CTtH;n dt<oo P-—as.
0 0

and its associated wealth process V,* = ol S; + ¥ satisfies dV,¥ = oI'dS,.

Remark 4.3. Recall from FiMa I that a strategy £ was self-financing if &, - S, = &, - Sy. If
we go from the difference to the differential and adopt our notation, this could be translated
as dp! - S = 0. The interpretation is still the same: the change in the value of the portfolio
originates from the change in the stock price, not from a change in the strategy.
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Remark 4.4. We have
d d t
VE = S pkst =+ Y [ phash
k=1 k=10

Hence, for any initial value V¥ we can create a self-financing portfolio from (o', ... ¢?9)

by choosing
d t
i vp 3 ([ ehast - etst).
k=1 0

From now on we will therefore restrict our focus on the R%valued strategy o and w.l.o.g. we
assume Vi = 0.

Definition 4.5 (admissible strategy). An (R%valued self-financing) strategy ¢ is called
admissible if it is progressively measurable and if

e plo e W"and fOT |oTv|dt < oo a.s. and

e the associated value process is bounded from below, i.e., there exists K < oo such
that
VP >—K P-as. foraltel0,T].

The second condition tells us that the trader has a bounded credit limit.

4.1 (No) Arbitrage and existence of ELMM

Definition 4.6. An admissible strategy o is called an arbitrage if the corresponding value
process V¥ satisfies

Vi =0, P(VF>0)=1 and P(VF >0) > 0.

Definition 4.7. A probability measure Q is called an equivalent local martingale measure
(ELMM) if Q =~ P and the (discounted) asset price process S is a local martingale under Q.

Theorem 4.8. If there exists an ELMM for S, then the model is free of arbitrage.

Proof. Let Q ~ P be an ELMM. Let ¢ be an admissible trading strategy with associated
value process V¥. As ¢ is self-financing, by Girsanov V% satisfies

dVy? = ¢} dS; = ¢} o dWy

for a Q-BM W*. Then V¥ is a local martingale w.r.t. Q. Since ¢ is admissible, V¥ is
bounded from below, hence it is a supermartingale w.r.t. Q, which implies 0 = V7 >
EQ[VE].

Assume that P(V;7 > 0) = 1. Equivalence of P and Q implies that also Q(V;’ > 0) = 1,
hence we must have E2 [Vf] = 0 and Q(V% = 0) = 1. Again by equivalence of measures
this implies that also P(V;” = 0) = 1. This proves NA. O

As in FiMa I, there exists a sufficient condition for the existence of an ELMM, which
therefore guarantees NA.
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Theorem 4.9. Assume that there exists a progressively measurable process & = (&;)icjo,1]
such that

o(w)s(w) =nw) PRA-as.,
which satisfies the Novikov condition. Then there exists an ELMM.

Proof. Under the assumption on the structure of &,
dSt = O't(étdt —+ th) = O'tdI//I-/\t

for /Wt = f(f §ds + Wi If M = E(— [ £€dWV), then (by Girsanov) dQ = MpdP defines an
equivalent probability measure under which W is a BM.

If o € W, then S is a Q-local martingale; if the stronger condition o € V holds, then S
is a Q-martingale. O

As we will shortly see, the converse of the Theorem |4.8]is not true. Before showing this
by means of an example let us look at a partial converse statement:

Proposition 4.10. Suppose that is the market model there is no arbitrage possibility. then
there exists an adapted measurable process £ such that

o=~ P® Aas.
Proof. For every t € [0,T]
Fy:={w € Q] 01(w)&(w) = 1(w) has no solution}
={w € Q| o4& # ~ for all adapted mb. ¢}
={w e Q| n(w) ¢span{o.4,...,0.,}(columns of )}
={w € Q| Fu(w) s.t. o] (Wve(w) =0 # vf (W)n(w)} € F
Let us quickly justify the last equality:

e The image of o plus the kernel of o7 equals the entire space R?. If there exists
v ¢ span{...}, v belongs to the kernel, i.e., o/ = 0. On the other hand, v # 0,
hence vT~ > 0, hence we have = for the choice v = .

e Conversely, let v be such that ofv; = 0 # vl (in w). Suppose that ¢ solves
o0& = v. Then (70T = 47, hence ¢T0"v = 0 = vTv # 0, which is a contradiction.
Hence we have <.

Let 0] := 15, sgn(v]y)v! for some v satisfying o/ v; = 0 # v}'v,. Then the value process
associated to this trading strategy is

T T
Vi = / 0T y,dt + / 0F o, dW,
0

0

T T
= / 15, sgn(v] y)v]l ydt + / 15, sgn(v] v )v] o, dW;
0 0

T
:/ Lp|vfvy|dt >0 as.
0

NA implies that V! = 0 almost surely, hence (A ® P)(F) = 0, which completes the
proof. N

Let us proceed with the announced example of an arbitrage-free market in which there
exists no ELMM.
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Example 4.11 (NA, but no ELMM, source: Delbaen & Schachermayer (1994)).
As usual, let W be a BM and (F;) its natural filtration. Let r = 0 and fix a time horizon
T =1. Fort < 1let f, := —=. With this define

N
t 1 t
Lt::exp(—/ fdes——/ ffds), 0<t<1
0 2 Jo
and set L, := lim;_,; L, = 0. To see that this is true, set M, := — fot fsdW,. Then

¢
1
<M>t:/1 ds:—ln(l—t)tl%oo
0

— S

and therefore
2

Lt g eMt7%<M>t g G%Mtiéuwh . 67%<M>t .
———— N——
supermart. —0ast—1

As a nonnegative stochastic exponential is a nonnegative supermartingale, it converges
almost surely and the limit is in L'. Hence, as the first factor converges and the second
factor converges to zero, the product converges to zero as t — 1.
Now define a stopping time 7 := inf {t > 0| L; > 2} A 1. Then

I - 2 1{f7'<1,
0 ifr=1.

With this we see that the stopped process (Lj )¢cjo1) is a bounded martingale. (Why?) Then
by the (continuous-time) optional stopping theorem,

1=E[L]=E[L,]=2-P(r<1)+0 -P(r =1),

hence P(r < 1) = 1.
Now consider the price process S; := Win, + fOt/\T fsds fort € [0, 1]. If we denote G; := Finr,
then S is adapted to (G;) with G, C F;.

There does not exist an ELMM:

If we let Q := Li,,P = L,PP, then by Girsanov I, S is a standard BM w.r.t. Q, hence in
particular it is a martingale. However, as P(L, = 0) = %, Q is not equivalent to P, but only
Q < P. From the (later) characterization of all ELMMs we see that, as o = 1 € R in this
case, there cannot be any other ELMM than the candidate Q.

There is no arbitrage in the market:
Let  be an admissible strategy and suppose that P ( fol ©rdSy > O) = 1. Then, by absolute

continuity, Q ( fol Sy > O) = 1. By construction, S is a local martingale w.r.t. Q. Lemma

tells us that the stochastic integral [, ¢;dS; is also a local martingale w.r.t. Q. By
admissibility of o it is bounded from below, hence it is a Q-supermartingale. Therefore,

EQ [ f 01 <ptd5t} <0, hence Q ( fol Sy = 0) = 1. This implies in the market equipped with
measure Q there is no arbirage.

51



We want to show that this also holds under the original measure P. To this end, let ¢ >
0 and define a stopping time v := inf {t > O‘ fot 0. dS, > 5} Al. The strategy v, :=
@il i<,y for t € [0,1] is admissible and satisfies

1 1
/ 4dS, = {O fr=1 (because f pdS, =0 Q-as.)
0 e ifrv<l.

Under Q there is no arbitrage, hence Q(v < 1) = 0. Consequently,

t
@(/ soudsuée)zl Vit < 1.
0

Since we do have P|g, ~ Qg, for t < 1, this implies

t
IP’(/ goudSuga)zl Vit < 1.
0

Finally, as t fg 0. dS, is almost surely continuous, we get fol ©.dS, < 0P-a.s., hence no
arbitrage exists under P.
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4.2 Complete Markets

In the following we consider a market model with a fixed time horizon 7" and the price
process S. We make the assumption that there exists an ELMM Q.

Definition 4.12.

(i) A (European) contingent claim is a lower bounded Fr-measurable random variable
H e L*(Q).

(i) A contingent claim H is called attainable if there exists an admissible strategy ¢ and
a number z € R such that

T
H:z+/ ol dS, as.
0

In this case ¢ is called replicating or hedging strategy (or portfolio) for H.
(iii) The market is called complete if every contingent claim is attainable.

Theorem 4.13.

Consider the market model with dS; = ~,dt + o,dW; satisfying the assumptions made
above. In particular, assume that there exists an ELMM Q.

The market is complete if and only if o has a left inverse o*, i.e., ooy = I,, almost surely.
In particular, if n = d, then the market is complete if and only if o is invertible P ® \-a.s.
In any case, there exists a unique replicating strategy for any contingent claim F € L*(Q).

Proof. Let Q be given by Q = Z;P with Z, = £(— [, €7dW,),. Then W} := [; &ds + W,
is an (n-dimensional) Q-BM. Under Q we have dS; = o,dWW;". Note that in general we
have

Fi=o(WS s<t)C F:=0(W,s<t),

which prevents us from using a representation theorem right away. Let us now proceed
to prove each of the statements of the theorem.

1. Assume that o*o = I,, and let H € L*(Q) be an Fr-measurable contingent claim. Let
Z, .= |7, hence in particular

dP|F, _ 1 / r
=—=¢ dWy)e.
AR

If we define V; := EQ[H|F], then V is a Q-martingale w.r.t. the filtration (F;). For
s < t we have

EF [Z,V;|F.] "2 BP (2, FJEC V)| ] = Z.Vi,

hence ZV is a P-martingale. From the (multidim.) MRT we infer that there exists
g € V" such that

t
&W:%+/gﬁmht€Mﬂ,
0

where we used the fact that EF [Z,V;] = EF [Z,] EQ[V;] = 1 - Vj. By Itd’s product rule
we have

53



1 1 1 .1
AV, =d(Viz,- ) = thTth +ViZ, - thTth + ng&dt
1
= 0 (§dt +dW,) + Vgl dw!
t N e’

=AWy
1 * *
= (gt vl ) aw; = ofaw;

With the left inverse o* of o let us define ¢, := (07)7 ¢;. Then
T T T T
Vi = [ etasi= [ dloawy = [ (@ o oy = [ (o) oran
0 0 0 0
T
= / (gbt)Tth* =Vr—Vy=H—-EY [H]
0
By construction, ¢ € W (check!) and V,¥ = EQ[H|F,] -E¢[H] > —2K for all t €

[0, 7] if —K is the lower bound of H, which exists by assumption for any contingent
claim. Thus, ¢ is an admissible strategy replicating H.

. Suppose there are two replicating strategies ¢ and ¢ for a contingent claim H with
associated ¢ and ¢ as before, i.e.,

T T
H =E°[H] + / ol dW; = ER [H] + / o AW},
0 0
Then, by Itd’s isometry,

(/OT@T - ¢?)dwt*)2 _ge [/OT\

hence ¢ = 5 Q ® A-a.s., which implies ¢ = ¢ P ® A-a.s.

EC 5t — ¢

2
dt] =0,

. For the other implication assume that the market is complete. (We want to show
that o, has a left inverse.) Let ¢ € V" and define F := fOT el'dWr. As ¢ is square
integrable, so is F, i.e., E? [F?] < co. F* and F~ are contingent claims (because
they are nonnegative, hence bounded from below). Therefore, by completeness of
the market, there exist admissible replicating strategies )™ and ¢/~ such that

T T
Ft=E[F*] + / (;)TdS, =E® [F*] + / (W) o dW,
0 0
T T
F-=E%[F ]+ / (Y;)"dS, =E® [F~] + / (V) o dW,
0 0
With E? [F] = 0 and ¢ := 9" — ¢~ we have
T T
F= / o AW} = / YlodWy.
0 0

From the uniqueness of the It6 representation of F follows that ¢! = ¢!0; Q® \-a.s.
As ¢ was arbitrary, we see that span o/ = R" a.s. for all ¢, hence o has P ® \-a.s. a
left inverse.

]
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4.2.1 Characterization of ELMMs

We know from FiMa I that equivalent martingale measures are not necessarily unique.
The same holds true for ELMMs (unless n = d and o, is invertible).

In this section we want to characterize ELMMs by their Radon-Nikodym densities. To
get some intuition, let Q be a fixed ELMM and let ¢ be an admissible strategy. Then
(with dS; = ~,dt + o0,dW, as before)

AVy¥ = of'dS, = plo dW; = (o] o) dW;

for the Q-BM W*. Consequently, the set of attainable payoffs depends on C; := Im(c}).
Recall from linear algebra that the direct sum of the image (range) and kernel (nullspace)
of a linear transform give the entire co-domain. For o € W%*" this tells us that

(Im(o!))* =ker(o;) and R" =Im(o}) @ ker(o,) = C, & C;-.
If we denote by Il the projection on C, then any » € R" has the decomposition'3

z =1, (2) + g (z) = ol (oy0l) roz + (d —o] (oy0l) oy)2

J/

-~ -~

EIm(U;T) €ker (o)

Remark 4.14. If we assume that det(c,0}) > 0 (i.e. o; has full rank), and if we denote
by (¢1)" := (0:0l) o, the pseudoinverse (or Moore-Penrose inverse) of ol, then with
¢y = ol p; we get the representation

dVyP = ¢ dW; and ¢ = (/)" 6.
We will now use the decomposition on the integrand defining the Radon-Nikodym

derivative.

To this end, let £ be a progressively measurable process satisfying the Novikov condition
and such that o€ = v P ® M-almost surely. Then, by Theorem EI, Zp = E(— [, & dWy)r
defines an ELMM P* and W; = W, + fot £.ds is a P*-BM.

Moreover, let Q be an arbitrary ELMM, hence

dQ
M; = —
ET AP

R / MW, t€[0,T]
0

for some A € W" and W@ .= W, — fot Asds is an n-dimensional Q-BM. Since
dS; = o, dW; = o, (&dt + dW,) = oy (&dt + (AWM dE)) = o ((E+N)dE + dW,2),
and Q is by assumption an ELMM, the driver o;(;+);) must vanish, i.e.,
o(§+2) =0P® Aas.

This implies that \; = —& + n; with 1, € ker(o;) = Ci. Suppose that o,;0! (an d x d-
matrix) is invertible. Then, as ¢ ¢ ker(o;) by assumption (namely, ¢ = ~) and as
Cy; ® C+ = R", we must have & € C; = Im(o]).

Bp .= ol'(oi0])"'oy is a projection from R™ to Im(s}'). Check that indeed P? = P and if z € Im(a}),
then Pz = 2. By construction, Pz € Im(o) for any z € R".
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Summing up, we have & € C; and 7, € C-, hence & L n,, i.e., (1, &) = 0. With this,

M,=¢ (/0.(778 - fs)TdWs)t

t 1 t
—oxp | [-efaw-g [ gl 4| g =0
0 0 S————r

:||775||2_2<775755>+||§s ||2

-o(f o) - [

Let us summarize our above findings:

Theorem 4.15. Assume that there exists a progressively measurable & satisfying the
Novikov condition such that o€ = v P ® A-a.s.

(i) Any ELMM Q has a density process of the form

20 =P = ([ xraw) =e ( [wraw.) g (- [ eraw.
dP 0 t 0 t 0 t

with A = =&+, ni=Hc1 (A) € ker(oy) and =& = ll¢,(\) P ® A-a.s. They satisfy

fOT IX]|*dt = fOT 1&N)7 dt + fOT |n:||> dt. In particular, n”¢ = 0 and n,& € W" are
unique* P @ \-a.s.

(ll) If)\ e wnr with _gt = HCt()\t)J O-tgt =Vt and let = (C:(fo Ades)tfor te [O,T] isa
martingale, then Q := Z;P is an ELMM.

Remarks concerning the interpretation:

(i) tells us not only that \; has the decomposition into the sum of the projections onto C,
and C;* — this decomposition is known from linear algebra —, but it also tells us that
for a fixed ¢ any other ELMM has a density defined for A whose orthogonal projection
is precisely —¢ and not any other element of C,.

For the interpretation of (i) recall that in general £(f, A dW,) need not define the
density of an ELMM. However, if —o,I1¢,(\;) = 7 and if the stochastic exponential
corresponding to \” is a martingale, then we do indeed get an ELMM.

14Uniqueness follows from —¢ and 7 being projections of A onto spaces whose direct sum is R".
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4.2.2 The range of option prices

Recall from FiMa I that the set of arbitrage free prices corresponds to the expected
payoffs under all existing equivalent martingale measures. A similar result holds in our
continuous time model.

Let H > 0 be a European contingent claim in the market with r = 0.

e The maximal price a buyer is willing to pay for H is

p(H) :=sup{y € R| Jp admissible with V7 = 0s.t. V;/ >y — H a.s.}.

e The minimal price a seller is willing to accept for H is the minimal superhedging
price

q(H) :=inf {z € R| 3¢ admissible with V7 =0s.t. V.Y > H — z a.s.}.

Note that if H is attainable, then p(H) = ¢(H) is the unique arbitrage-free price of H.
In general we have

Theorem 4.16. Let Q be an ELMM such that % = E(— [, &AW, for & satisfying
Novikov’s condition and o& = ~. Then

essinf H < p(H) < EC[H] < q(H) < 0.
Reminder: essinf H =sup{z € R| z < H a.s.}.

Proof. By Theorem Wt@ = fot &ds + Wy isa Q-BM and dS; = atth@.
Suppose there exists y € R and an admissible strategy ¢ with V' = 0 such that V7 >
y — H almost surely. By definition of the value function this implies that

T T
/ ordS, = / olo, dW2 >y~ H as.
0 0

By admissibility of o, the stochastic integral is a local Q-martingale bounded from below,
hence it is a supermartingale. Consequently, as the integral starts at O,

T
EC { / wfaudW;@] <0,
0

hence .
0

which implies E@ [H] > y. By taking the supremum over all such y € R we get E¢[H] >
p(H) as claimed.

Similarly, if > + fOT ¢TdS, > H, then z > E?[H], which implies ¢(H) > E2[H]. If no
such pair (z, ) exists, then ¢(H) = oo and there is nothing to show.

Finally, let ¢ = 0 and set y = essinf H. Then y < H = H + V7, which implies y =
essinf H < p(H). O
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5 Stochastic Optimal Control

In pricing theory, there are risky assets and a riskless bond and the trader’s choice is just
how much to invest for how long. His decision, however, does not have an influence on
the price processes. In contrast, in this chapter we look at problems in which someone’s
choices have in influence on the processes describing the market. Let us start by looking
at some examples of stochastic optimization problems.

For all of the examples we will specify the following details:
How does the state of the system evolve? This is usually given by a stochastic pro-

cess (giving the state of the system at each time ¢ for each scenario w) satisfying
an SDE, which describes the dynamics of the state process

What is the control and what are the constraints? The state of the system is usually
influenced by the control. If a given set of constraints are satisfied, the control will
be called admissible.

What is to be optimized? There is a performance / cost criterion, i.e., the control shall
be chosen in such a way that e.g. profits shall be maximized or costs minimized.

Useful references for this chapter are chapters 2 and 3 in [Pha09] (main source) and
chapter 11 in [@kO3].

5.1 Examples

5.1.1 Portfolio allocation

Consider a financial market with one riskless asset (a savings account) with price pro-
cess S° > 0 and n risky assets with associated (n-dimensional) price process S.

An agent can choose how much money he invests in the n + 1 assets at any given time.
If his investment strategy shall be self-financing, then this corresponds to merely decide
how much to invest in the risky assets. We will denote by «; € R" the number of shares
of the risky asset(s) at time t.

If an agent possesses «; shares of the risky assets at time ¢ and if we denote by X,

his wealth at time ¢, then the number of shares of the riskless asset must be %,
provided only self-financing strategies are admitted.
The wealth process evolves according to
ds?
dXt = (Xt — O St)@ -+ [0 dSt (51)
t

We have now fixed the state of the system (X), the control («) and the dynamics of the
state depending on the control in Equation ([5.1J).

The portfolio allocation problem is to choose the best investment in the assets, possibly
under certain constraints. What is not quite obvious is the definition of best in this
setting. We will present two different approaches.
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Expected Utility Criterion An agent compares random incomes for which he knows
only the probability distribution. (This is a big assumption!) Under some condi-
tions on the preferences, the preferences on possible outcomes can be represented
by a utility function, which associates higher numbers to preferable outcomes,
hence a random income X is preferred to X' if E[U(X)] > E[U(X’)]. The ex-
pected utility is also called von-Neumann-Morgenstern (expected) utility.

The utility function U should be nondecreasing and concave, which corresponds
to the intuition that more is better and agents are risk averse.'®> There are different
classes of utility function that are frequently used, e.g. power utility

(P —1 >0
U(l’) pp— {p('r )7 X — )
—00, r <0,
for some exponent p € (0, 1) or logarithmic utility
U(x) :=In(z),

which corresponds to p — 0 for the power utility function. They are called CRRA
utility functions (constant relative risk aversion) because the relative risk aversion

—zU" (z) _ .
) = 1 — p 1s constant.
In a setting with finite time horizon 7', the goal is to maximize E [U(X?)] over all

admissible controls « if X$ is the terminal payoff given control o was chosen:

sgplE [U(XT)]

Mean-Variance Criterion If we assume that preferences depend only on expectation
(more is better) and variance (less uncertainty is better) of the random terminal
position X7, then the optimization problem becomes

inf {Var(X§) | E[X7]=m}.

i.e., the agent minimizes the variance of the random terminal payoff for a given
expected payoff. We can rewrite this as an expected utility function by setting
U(z) = —(\ — x)? for some \ € R, since E[(\A — X2)?] = Var(X¢) + (E [X3] — \)2.

5.1.2 Optimal selling of an asset

Assume that an agent owns an asset with associated price process X = (X;). The
agent wants to sell the asset at the best possible moment, taking into account a fixed
transaction fee X' > 0 and the constant interest rate § > 0. This problem can be
formulated as an optimal stopping problem:

supE [e 7"(X, — K)],

where the admissible controls could be all stopping times on [0, oc] or just on a finite
interval [0, T (e.g. the life span of the agent).

I31f you get 100 Euro and nothing both with probability 1, then the expected income is 3 (U(100) +
U(0)). If U is concave, then this is lower than U(50). In other words, you prefer a sure payment of 50
Euro over gambling.
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5.1.3 Quadratic hedging of options

Consider again risky assets with associated (multi-dim.) price process S and a riskless
asset with price process S° > 0. Let H be a European contingent claim for a maturity
T < oo, i.e., H is in particular Fr-measurable. Hedging H means that someone tries
to find a self-financing strategy such that the wealth at maturity 7" coincides with the
payoff from H.

Assume that an agent owns «; shares of the risky assets. If the investment strategy is
self-financing, then the value of his portfolio follows the dynamics

ds?

dXta = oztdSt + (Xta — Oétst)w.
t

The goal of the agent is to hedge the claim H in such a manner that the expected value
of the quadratic hedging error is minimal, i.e.,

inf E [(H - X3)].

5.2 Controlled diffusion processes

As in the last chapter, we fix a filtered probability space ({2, F, (F;),P) satisfying the
usual assumption where (F;) is generated by an n-dimensional BM . The d-dimensional
state process X shall satisfy the SDE

dX; = (X, ap)dt + o( Xy, o) AW, (5.2)
We make the following assumptions:
Assumption 5.1.
(i) The control o = («ay) is progressively measurable with values in A C R™.

(ii) The measurable functions v: R? x A — R% and o: R? x A — R¥*" satisfy a uniform
Lipschitz condition, i.e., there exists K > 0 such that

|’7(ZE,G) - ’Y(yaa” + |O'(ZE,CI,) - U(yaa” < K|‘T - y| any7 € Rda Va € A.

As before, we fix a time horizon 7" < oo and for 0 < ¢ < 7" we denote by 7; r the set of
stopping times with values in [¢, T7.
In addition to the above assumptions we restrict the admissible controls to the set

)

in order to ensure the existence and uniqueness of a strong solution to SDE (5.2) with
initial condition X; = z for any (¢,z) € [0,T] x R%. We denote the (version of) this
solution with a.s. continuous paths by { X" | s € [t,T]}.

T
B | [ h0.a)P + jo(0.0)Par
0

A= {a control process
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Remark 5.2. In order to have all the assumptions from Theorem in particular (ii),
ie.,
3C > 0s.t. |y(z, )| +|o(z, )] < C(L+[z]) Ve, (5.3)

observe that if we let k; := |7(0, az)| + |0(0, )| for oo € A, then the above property follows
from the Lipschitz property. To be very precise, we should replace Theorem by a multi-
dimensional one where the coefficients of the SDE may not only depend on time t and the
space variable x, but also on w in order to allow us to add the control. A suitable result
can be found in Section 1.3.1 in [Pha09], see in particular Definition 1.3.12 and Theorem
1.3.15 in that book and the remarks made between these two.

In particular, the Theorem 1.3.15 in [PhaQ9]] tells us that we have

E

sup ]X§E|2] < 00 (5.4)

s€(t,T]

instead of E [ fOT ]Xt|2dt} < oo, which Theorem |3.3| provides.

Now that we have the state process and the control let us introduce the target functional.
To this end, let f: [0, T]xR?x A — R and g: R? — R be measurable functions describing
running and terminal revenues, respectively, such that the gain function can be defined
as

J(t,z,a :—EU f(s, X0, ag)ds + g(X37) | .
In order for the gain function to be well defined we make the following assumptions'®
Assumption 5.3. Assume that one of the following conditions is satisfied:
(i) g is lower-bounded or
(ii) there exists C' > 0 such that |g(z)| < C(1 + |z|?) for all z € R4

Furthermore, assume that if we denote

Alt,z) == {a € A‘ E UtTyf(s,ng,asﬂds] < oo},

then we assume that A(t,z) # 0 for all (t,z) € [0,T] x R%

The objective is to maximize J over all controls o« € A(¢,x). The associated value
function is then
v(t,x) :==sup{J(t,z,a)| a € A(t,z)}.

Definition 5.4.
(1) « € A(t,z) is called an optimal control of J (¢, z, @) = v(t, ).

(ii) A control « is called a Markovian control if it can be represented as ay = a(s, X17)
for some measurable function a: [0,T] x RY — A.

16For assumptions on f see Remark
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5.3 The dynamic programming principle (DPP)

Dynamic programming, a principle used in stochastic as well as deterministic optimiza-
tion. It was developed by Richard Bellman in the late 1950s (see [Bel03]). The idea is
that instead of solving the optimization problem on the whole interval [¢, T'], we proceed
as follows:

First, let 6 € (t,T) we search an optimal control given the state value X, allowing us
to compute v(6, X, ). Second, we maximize

0
E U f(s, X5 a)ds + v(0, X;™)
t

over controls on the subinterval [¢, §].

For a discrete time setting this would give us a recursive construction of an optimal
strategy. In our continuous time setting we will see in the next time its infinitesimal
version, the HJB equation. But first, let us state the DPP in our setting and prove why
this intuitive principle can be applied here.!”

Theorem 5.5. Let (t,z) € [0,T] x R% Then

v(t,z) = sup sup E [/ f(s, XE* ay)ds + U(H,X;’x)]

acA(t,x) 0€Ty, T

= sup inf E{/ f(s Xﬁ’“”,as)ds%—v(é’,Xg’x)].

acA(t,z) 0T, T

Before we prove the theorem, let us remark that the two equalities imply that for any
stopping time 6 € T; 1,

0
v(t,z) = sup E [/ f(s, X" ag)ds +v(6,X§’I)] : (5.5)
aEA(t,z) ¢

i.e., the theorem tells us that we can indeed split the optimization problem in two parts
(on [t,6] and on [A, T)).

Proof. We proceed in two steps:

1. First, we show that

0
v(t,z) < sup inf E / f(s, X5 a)ds + v(0, X5™)
acA(tz) 0T T t

To see this, let o € A(t, z) be any admissible control. For any ¢ € 7, we have

o
6,X0"

X0 = X on {0 < s}

7Though the DPP can be applied in many different settings, it is by no means always applicable. If,
for instance, the running revenue did not only depend on the current value of the state and control,
but on the history of either of these processes, then we would not be able to consider the optimization
problem on [#, T as a subproblem of the optimization on [¢, T'|, which allows us to formulate the Bellman
equation. For the DPP we therefore require the problem to have what is called an optimal substructure.
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by pathwise uniqueness of the solution to the SDE. Hence,

I a) [/st” dS+J(9X§xaa1<E[/fSXst’z,ozs)derv(Q,Xé’x)}.

By taking the corresponding infimum and supremum we therefore get

J(t,z,a) < inf E{/ f(s, X5 ay)ds + v(0, X“)}

0T,

< sup inf E {/ (s, X0 a ds—i—v(@,X;’x)] :
acA(t,z) 0T, T

By definition of v this directly implies the claim.

. Now we show that

v(t,x) > sup sup E {/ f(s, X" o ds+v(9,X§””)} :
acA(t,x) 0T,

Let once again a € A(t, ) be any admissible control and # € 7;r. By definition of
the value function v, for any ¢ > 0 (and any w € 2) there exists o € A(#, Xé’x) such
that

J(0,X5%,a%) > v(0, X;") —

With this we define (for each w € 2) a new control

R {as, s € (0,0,
A

ai, se (0,7

R

This process can be chosen to be progressively measurable!®, hence a € A(t, z). With
this control we get

v(t,x) > J(t,z, Q)

_E[/fsxm Jds + J(0, X7, 6)]
>E{/f X5 o ds+v(9,X§"’”)}—

As a € A(t,z) and 6 € T, r were arbitrary we can take the supremum over both sets
and thereby the asserted inequality.

]

18¢cf. the measurable selection theorem, e.g. in Chapter 7 in [BS79]
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5.4 Hamilton-Jacobi-Bellman equation

The Hamilton-Jacobi-Bellman equation (HJB) is the infinitesimal version of the DPP,
i.e., it describes the local behaviour of the value function when we send the stopping
time 6 € 7, to t. We will first derive the HJB equation and then verify that the smooth
solution to that equation is indeed the value function of the stochastic optimal control
problem.

5.4.1 Formal derivation of the HJB equation

Let us consider the (stopping) time ¢ = ¢t + h with h > 0 and a constant control'® o; = a
for some arbitrary a € A. Then, by (5.5),

t+h
v(t,x) > E {/ f(s, X5 a)ds + v(t + h, Xffh)} : (5.6)
t

By assuming that v is smooth enough, we may apply It0’s formula to get

v(t + h, Xth)
1

t+h 5y, t+h
=o(t,x) + / — (s, X")ds +/ Dyv(s, X0") - dXP* + =
¢ ¢

t+h ,
t,x
T 5 /t tr(Div(s, Xo7)d(X)s)

rHh v 1 T 2 t,x
=v(t,x) + t % +y(z,a) - Dyv + 5 tr(o(z,a)o" (x,a)Div) | (s, X7%)ds

t+h
+ / Dyv(s, X! o (X5 a)dW,
¢

t+h t+h
=v(t,x) + /t (% + [,av) (5, Xb")ds + /t Dov(s, X! o(XE" a)dW,

where 1
L =(z,a) - Dyv+ 5“(‘7(% a)o’ (z,a) Djv)

if we denote by D,v the gradient of v, by D?v its Hessian and by tr the trace of a matrix.

Remark 5.6. The operator L which we apply to v, is also known as the infinitesimal
generator of the stochastic process X.

By substituting the expression for v(t + h, X}",) into we obatin

t+h v t+h
0>E {/ (f(s,XSt’m,a) + (E + E“v) (s,Xz’x)) ds} +E [/ Dv(s, X! o (2, a)dW,
t ¢

The stochastic integral is always a local martingale and if it is bounded, then it is even
a true martingale, hence its expectation is zero. If we divide both sides by ~ and let
h — 0, then (as X" = x)

ov

0> f(t,z,a)+ a(t, x) + L(t, x)

9See Remark for assumptions on [ that guarantee that constant controls are admissible.
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Since this holds true for all « € A, we obtain
ov

—(t,x) +sup [L(t,z) + f(t,x,a)] <O. (5.7)
ot acA

If o* € A(t,x) was an optimal control, then we would have equality in (5.6]), which
suggests that the supremum in (5.7) is attained, implying that we should have
v

E(t, x) +sup [L(t,x) + f(t,z,a)] =0, V(t,z) €[0,T) x R (5.8)
acA

If we let S; denote the symmetric d x d-matrices, then we define the Hamiltonian as a
function H: [0,7] x R? x R? x S;— R via
1
H(t,2,p, M) o= sup |1(2,0) - p+ 5 tr(o (e, a)o” (2, )M o+ [(t,,0)|
a€A
Consequently, (5.8) can be reformulated as
ov

E(t,x) + H(t,x, Dyv(t, ), D?v(t,z)) = 0, V(t,z) € [0,T) x RY, (5.9

which we call the HJB equation. The terminal condition associated to this PDE is (by
definition of v(7', ) as supremum of J(7T', z, a))

o(T,z) = g(z), VrecR%

5.4.2 Verification theorem

In the following Theorem we will show that a smooth solution to the HJB equation
coincides with the value function and, as a by-product, that the control is Markovian.

Theorem 5.7. Let w € CY2([0,T) x RY) N C°([0,T] x RY) satisfy the quadratic growth
condition
lw(t,z)] < O+ |z*) V(t,z)€[0,T] x R
1. Suppose that
—%—I;(t,x) —sup [Lw(t,z) + f(t,z,a)] >0, V(t,z)€[0,T)x R? (5.10)
acA
w(T,z) > g(x), VaecR (5.11)
Then w > v on [0,T] x R%
2. Suppose in addition that w(T,-) = g and that there exists a measurable o with values
in A such that
e « satisfies the HJB equation, i.e.,
ow ow

_E(tl‘) - ilelg [‘Caﬂ)(t?‘r) + f(tv Z, a)] = _E(tv ZL‘) - [*Ca(w&)w(ta w) + f(t,I, &(t7 fﬂ))] = 0;

e the SDE dX, = (X, a(s, X;))ds+o(Xs, a(s, X))dW, with initial condition X, =
x admits a unique solution, denoted by X**;

e the process {&(s,f(;fvx) s € [t,T}} lies in A(t, ).

Then w = v on [0, T] x R? and & is an optimal Markovian control.
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Remark 5.8.

(i) Before we prove this theorem, let us remark that one can easily apply this theory to a
minimization problem, since minimizing J is equivalent to maximizing —.J. In that
case one would simply change sup into inf in the definition of the Hamiltonian and
the rest remains unchanged.

(ii) The verification theorem tells us that if the stochastic optimal control problem is
solvable and if its value function is smooth enough, then the value function can be
characterized as solution of a PDE. However, whether an optimal control exists is a
different question not answered here. For the interested reader we refer to a paper by
Kushner [Kus75]

Proof.

1. Since w € C12([0,T) x R%), we have for all (t,z) € [0,T) x R%, a € A(t,z), s € [t,T)
and any stopping time 7 with values in [t, o) that, by It6’s formula,

SAT
U)(S AT, X;’/"\ET) = w(t, ZIJ) + / %_I;(Uv Xqi,x) + La“w(u, Xf[r)du
t
SAT
+ / Dx’LU(U,XZ’I)TO'(XZ’I,au)qu. (5.12)
t

Recall from the definition of fOT frdW, for f € W in Section that

T 1= inf{tZO' /t(fs)2ds Zn} AT
0

is a localizing sequence for f such that f* := fly,, € V, implying that ([, f;dW})
is a (true) martingale.

With this in mind we define
Tp := inf {s >t ‘ / |Dyw(u, XE) o (X5* an, ) [Pdu > n} NAT.
t

It is a localizing sequence such that for 7 = 7, the stochastic integral in (5.12) is a
martingale. Its expectation being zero we get

SA\Th,
E [w(s A7, X5 )] =w(t,z) + E [/ %—I;(u, X0+ L%w(u, Xi’w)du] :
t

Recall assumption (5.10), which tells us that

dw

T (u, X2%) + L%w(u, X2) + f(u, X2* a,) <0, Ve, € Alt, z).

This implies

SA\Th,
E [w(s A7, X2 )] <w(t,z) — E {/ flu, X5 ay)du| .
¢

SA\Tn,
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In order to apply dominated convergence, observe that

SATn
/ f(u,XfL"T,ozu)du
¢

lw(s A7, XE2 )| < C(1+ sup ’X”‘

SATn
s€(t,T]

T
g/ | f(u, X", a,)| du  and

where the RHS of the first inequality is integrable by definition of A(¢, ) and the
RHS of the second inequality is integrable because of the quadratic growth condition
imposed on w and (5.4). Thus, by dominated convergence, we have the inequality

E [w(s, X5%)] < w(t, z) [/ flu, XH* o du] , Yae At x). (5.13)
By continuity of w and once again by dominated convergence we can let s — 7" and

get
E [g(X7")] < w(t,2) {/ f(u Xz’x,au)du] . Vae At x).

If we rearrange the summands and take the supremum over all admissible controls
a € A(t, ), we get that indeed v < w for all (¢, z) € [0, T] x R

2. We proceed as in the 1. with « instead of a general admissible strategy o € A(t, x).
Then instead of ((5.13]) we get

EPM&X?ﬂ—wtx Upqu”Awh@ﬂmq

Once again by letting s — 7" we obtain

[/‘f X”A/4ﬁﬁﬁu+ﬁ2fﬂ:J@xﬁD§ML@.

With the other inequality from 1. we infer that w coincides with the value function
v and that « is an optimal (Markovian) control.

]

Remark 5.9. If A is a singleton (and therefore f can be written as independent of a), then
the verification theorem is a version of the Feynman-Kac formula, stating (in its most basic
form) that the smooth solution to the PDE with terminal condition

ow
0

has the representation

; —(t,z) + Lw(t,z) + f(t,x) =0, w(T,x) = g(x)

w(t,r) = {/‘qu”ﬂu+ﬂX”)

for a stochastic process satisfying SDE (5.2)). This result is remarkable as it links parabolic
PDEs (which have deterministic solutions) and stochastic processes.
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5.4.3 Application: Optimal portfolio allocation for power utility

Let us recall and refine the model presented in Section An agent can choose how
much to invest in a riskless asset with price process S° and a risky asset (only one!) with
price process S. We assume that the constant interest rate is » > 0 and S is a geometric
BM, hence

dsY = rSYdt, dS; = puS,dt + 0.5, dW;.

Recall that if X; denotes the agent’s wealth at time ¢ and o, the amount invested in the
risky asset, then (cf. Equation (5.1)))

0

ds,
dXt = (Xt — atSt>S—0t + OétdSt
t

= (Xt — OétSt>’f’dt + ,LLOétStdt + O'OétStth.
If we replace a;S; by a; X;, then the SDE becomes
dXt = Xt(&tﬂ + (1 — &t)r)dt + Xt&to-thy

where we interpret ; as the proportion of the wealth X, at time ¢ that is invested in the
risky asset. This is the structure we assumed in (5.2)) with

Y(z,a) = z(ap+ (1 —a)r) and o(x,a) = xao.

We assume that the investor faces the constraint that at any time ¢, the control a; must
lie in a closed convex subset A of R.2°
For a given investment strategy a € A we will denote by X** the wealth process satisfy-
ing the given SDE with initial condition X; = x (for initial time ¢ > 0). The agent wants
to maximize the expected utility from the terminal wealth X%, For a given (increas-
ing and concave) utility function U, the value function of the portfolio optimization
problem is

v(t,z) = supE [U(X5)], (t,z) € [0,T] x R,. (5.14)

acA

The associated HJB equation is

ow

— — —sup[Lw(t,z)] =0 (5.15)
8t acA
with terminal condition
w(T,z) =U(z),z € R,. (5.16)
Let us calculate £¢ in this case:
" _ ow 1 o, 0*w
L w(ta ZL‘) - ’7(:1:7 a)% + Ea(xa CL) w
ow 1 9*w
=z(ap+ (1 — a)r)%(t, x) + 5:132@202@(15, x)

20With the given interpretation as a proportion, one should have &; € [0, 1] for any ¢, so the assumption
on A is not very demanding.
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Observe that

a 2

8; w(t,r) = z(pu — r)g—w(t, r) + ax202g—1§(t,x) and
a T x

2L 0w

52 w(t,z) = :1:202@(75@)

Therefore, £%(t,x) is concave in a, which would permit us to calculate its maximum
by differentiation methods, if the value function v is concave in z.

Lemma 5.10. If the utility function U is increasing and concave on R, then so is x +—
v(t,z) for any t € [0,T].

Proof. Leta € Aand 0 < x < y. Write
Zy = X — X1,
Then Z satisfies the SDE (with initial condition)
dZs = Z[(asp + (1 — ag)r)ds + asodWy, Zy=y—x>0.

7 is the stochastic exponential of the It6 process with drift a; .+ (1 — &;)r and volatility
a0, hence Z, > 0 for all s > t. By definition of Z, this implies that X¥ > X' for all
s > t and by monotonicity of U and of the expectation, we have

E[UX:)] <E[UX)] <wvlty), VaeA
By taking the supremum over all admissible strategies a on the LHS we finally get
u(t,z) < v(t,y).

For the concavity of v, let x;,2, > 0 and let a',a* € A be two admissible control
processes. Fix A € [0,1] and let ), = Az; + (1 — A\)z,. Furthermore, for i € 1,2, let
X% denote the wealth process starting from z; at time ¢ controlled by a‘. With this we
define the control

2

L AXETEL 4 (1= N XEe a2

Qg = t,x t,x
)\X‘S’ ! + (1 - )\>4)(37 2

which lies in A by convexity of A. The process X* := AX"%1 + (1 — \) X2 satisfies the
SDE with initial condition

Y

dX) = X2 (@) + (1 —ad)r)ds + X arodW,, s>t

A
Xt = T).

Hence, X* is the wealth process starting from x, at time ¢ given the control a*. As U
was assumed to be concave, we have

UAXE™ 4 (1 — \)XE™) > AU(XE™) + (1 = WU (X5™),

which implies
o(t,xy) > AE [U(XE™)] + (1 — ME [U(XE™)] .

As &', a* were arbitrarily chosen, we see that

v(t, Az + (1 — N)xg) > Mv(t,xy) + (1 — No(t,za), Vi
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Having established that the value function v is indeed concave in z, provided U is
concave, let us solve the portfolio optimization problem for power utility. For a given
pe(0,1)letU(x) = Z for z > 0.2

We make the following ansatz: Assume that w(t,z) = ¢(¢)U(x) for some positive func-
tion ¢. If we plug in such a w in the HJB equation (5.15]), we obtain

2
0 Ou + sup [x(a,u +(1- a)r)a—w(t, x) + 1x2oz202a—w(t, x)]

- E acA al' 2 &'Ez
x? |, L5,
=—¢'(t) +pp(t)sup |a(p—71)+ 71+ =a’c“(p—1)| 7.
p a€A 2
If z # 0 and if we also include the terminal condition (5.16]), we obtain the simple ODE

0=¢'(t) +no(t), o(T)=1,
where

1
n=psup |a(p—7) +r+=a*(p—1)o?|.
acA 2

Its solution is ¢(t) = exp(n(T — t)), giving us the candidate value function
w(t,z) = exp(n(T — )U(x), (t,2) € [0,T] x R;.

By construction, w is strictly increasing, concave in = and it is a smooth solution of the
HJB equation with terminal value. Furthermore, as

1
a— a(p—r) +7‘+§a2(p— 1)o?

2

is strictly concave (with second derivative (p — 1)o* < 0), we can calculate its supre-

mum/maximum as
~ p—T
(1—-p)o?’

which is simultaneously the maximizer of £%w(¢, z). The wealth process associated to a
solves the SDE

dXt = Xt(a,u —+ (1 — a)r)dt + XtaO'th,

hence, by virtue of the verification theorem, w is equal to the value process v. The
optimal proportion of wealth invested in the risky asset is constant and equals @ and
v(t,z) = w(t,x) = exp(n(T — t))%p is also known explicitly with

. 1.
n=p {a(,u —7r)+r+ éaQ(p — 1)02}

I [ TEL:

1 —p)o?  20%(1—p)

C(p=r)? p
T 1ot

21This is the form of utility used by Merton when he solved this problem in 1969 in Lifetime Portfolio
Selection under Uncertainty: the Continuous-Time Case.
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5.5 Concluding remarks

The topic of optimal control (deterministic or stochastic) could be extended to fill an
entire lecture by itself. Therefore, it was necessary to make a choice which aspects to
include in a short introduction into this topic. However, there are a few interesting
directions from the point of view of stochastic finance that justify to be mentioned. For
a broader overview, consult e.g. the survey paper [Kus14] by Harold J. Kushner.

5.5.1 Infinite horizon
The infinite horizon stochastic control problem is that of maximizing
J(z,0) =E { / B F(X7, a)ds
0

over all admissible controls a.. The following features of this problem should be noted:

e In analogy with the finite horizon setting, the HJB equation requires that the
Hamiltonian be maximized over all « € A. We derived the HJB equation by re-
stricting our focus on constant controls. Hence we should require all constant
controls « = a € A to be admissible. For that reason it is necessary to include the
discounting factor ¢! in the target functional J.

e There is no final payment g(X%") and the running revenues (given by f) are inde-
pendent of the time ¢.

e All we looked at so far were finite horizon models and in particular we only gave
an existence result (Theorem (3.3]) of a solution to an SDE on a finite time interval.
For an infinite horizon result, see e.g. Theorem 1.3.15 in [Pha09].

5.5.2 Other solution concepts
Consider the controlled process X satisfying the SDE
dXs = a,dW;
and the stochastic optimal control problem with the value function

v(t,z) = 216121[3 [9(X59)], (t,z) € [0,T] x R.

Let ¢¢ denote the concave envelope of g, i.e., the smallest concave function above g.
Then one can show that the value function should satisfy (cf. Section 3.7 in [Pha09])

v(t,x) = g°(x), V(t,x) € [0,T) x R.

However, if g¢ ¢ C?, then this is not a smooth solution to the HJB equation. There-
fore, broader solution concepts can be necessary. Besides the already mentioned weak
solution there is another type of solution, the so-called viscosity solution. For more
information on viscosity solution, see e.g. [CIL92]] or Chapter 4 in [Pha09].
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5.5.3 Game theory

In stochastic optimal control we usually consider one single agent who chooses his
strategy (=control) in a way that optimizes his outcome. If, however, there are several
agents who can all individually influence the state process by choosing their strategies,
then each one of them can only choose his best strategy given the choice of the other
agents. If agents decide their strategy without any discussion with other agents, this is
a non-cooperative game; otherwise it is a cooperative game. The most famous concept
for non-cooperative games is a Nash equilibrium, which is attained if, provided all other
agents stick to their strategies, no single agent has an incentive to deviate from his
strategy.

It is beyond the scope of this lecture to introduce the details of game theory. It should
simply be mentioned that, if one wants to solve a game, it is necessary to solve each in-
dividual’s problem given the other agents’ strategies, i.e., we have to solve a (stochastic)
optimal control problem before we can find an equilibrium for such a game.

5.5.4 Numerical aspects

If a stochastic optimal control problem cannot be solved by hand, one might still be able
to obtain a numerical solution. If we are able to numerically solve the HJB equation,
then our theory tells us that this solution coincides, under certain conditions, with the
value function. Furthermore, the literature providing numerical solutions to stochastic
problems is still growing, allowing us to spare the detour of finding a PDE and a suitable
solution concept.

5.5.5 Risk minimization

We have used the concept of utility function in our problem of optimal portfolio allo-
cation. A somewhat related concept is that of a risk measure. Once a risk measure is
fixed, the goal is then to minimize the risk of a future position (that is not known and
therefore modelled as a random variable) over all admissible controls. The optimization
itself is not different from what we have seen in this chapter, but the notion of a risk
measure is interesting enough to justify its thorough introduction. This will be the topic
of the next chapter.
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6 Risk Measures

We will first introduce static risk measures that assign a number (interpreted as risk) to
a (bounded) random variable (interpreted as future position) and then turn to dynamic
risk measures that assign to an Fr-measurable random variable a process, which can
be interpreted as the risk of the future position at any moment in time. For static risk
measures, a good reference is [FSO4]. For both static and dynamic risk measures once
can consult [[Car09].

6.1 Introduction to static risk measures

Let X be a random variable on a space (2, F) (without any explicit probability mea-
sure), describing the financial position at the end of a trading period. Let X’ denote the
linear space of bounded measurable functions from 2 to R. We want to quantify the
risk of any given X € X by a number p(X).

Definition 6.1. A mapping p: X — R is called a monetary risk measure if it satisfies the
following conditions for all X,Y € X:

Monotonicity: If X <Y, then p(X) > p(Y);
Cash invariance: If m € R, then p(X +m) = p(X) —m.

The interpretation of cash invariance is that by adding a (non-random) amount of
money to a risky position one can reduce the risk of that position by that amount.
It implies in particular that for any X € X and m € R one has

p(X +p(X))=0 and p(m)=p(0)—m.

Remark 6.2. Monotonicity and cash invariance imply that the any monetary risk measure
is Lipschitz continuous w.r.t the supremum norm, i.e.,

p(X) = p(Y)| < X~ V||, VX,V € X,

To see this, use that X < Y + || X — Y|, which implies that p(Y) — || X — Y| < p(X).
Reversing the roles of X and Y gives the desired result.

A monetary risk measure can have other desirable properties, which we define next.
Definition 6.3. A monetary risk measure p: X — R is called
e conveX if p(AX + (1 =AN)Y) < Ap(X)+(1=N)p(Y) forany X,Y € X and X € [0,1];
e normalized if p(0) = 0;
e subadditive if p(X +Y) < p(X) + p(Y) forany X,Y € X.
Moreover, a convex monetary risk measure is called coherent if it is positively homogeneous,

ie., if
p(AX) = Mp(X), VX €X,)\>0.
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The idea behind convex risk measures is that diversification does not increase the risk.

Observe that positive homogeneity implies that the risk measure is normalized and un-
der positive homogeneity the two properties of convexity and subadditivity are equiva-
lent.

As subadditivity is a (too) strong property, as it requires risks to increase at most linearly
in the size of the position, but convexity is a reasonable property for a risk measure to
have, we usually do not ask for homogeneity of the risk measures we work with, but
merely convexity.

Example 6.4 (entropic risk measure). Let P be a probability measure on (2, F). Then
entropic risk measure is given by

p(X) = %IHEP [e=7X].

The coefficient 3 > 0 represents the risk aversion of the agent. We will see later that this is
indeed a convex risk measure and we will derive where the name entropic comes from.

While the idea behind utility is the quantification of preferences, the idea behind a risk
measure is to quantify how much money should be stocked to make a risky position
acceptable (for instance from the point of view of a supervisor). This motivates the
introduction of the set

A, ={X e X| p(X) <0}

of positions which are acceptable under risk measure p. We call A, the acceptance set of
p. The following proposition collects some properties of acceptance sets.

Proposition 6.5. Let p be a monetary risk measure and A := A, the associated acceptance
set.

1. A +# 0 and it satisfies the following conditions:

(D inf{m eR| m e A} > —oc;
(i) f XeAYeXand X <Y, thenY € A

(iii)) Forany X € X andY € A, theset {\ € [0,1]| AX + (1 — \)Y € A} is closed in
[0, 1]. In that sense, A is closed in X' (w.r.t. the supremum norm).

2. p(X)=inf{m e R| m+ X € A}, i.e., p can be recovered from its acceptance set A;
3. pis a convex monetary risk measure if and only if A is convex;

4. p is positively homogeneous if and only if A is a cone;

5. pis coherent if and only if A is a convex cone.

Reminder: A set C is a cone if for all z € C and X\ > 0, one has Az € C.
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Proof.
1. A # () because p(0) € A. (By transl. invariance, p(0 + p(0)) = p(0) — p(0) = 0.)
(i) inf{m e R| m € A} > —oo because for any ¢ > 0, p(p(0) — ) = p(p(0)) + & =
e >0, hence inf {m € R| m € A} > p(0) —e > —oc.

(ii) If X € A, then p(X) < 0, hence p(Y) < p(X) < 0 (by monotonicity), hence
Y eA

(iii) Closedness of the set L := {A € [0,1]| AX + (1 — \)Y € A} follows from the
Lipschitz continuity of p: A — p(AX + (1 —\)Y") is continuous, hence the upper
contour sets are closed, i.e., in particular L is closed.

2. For any X € X we have

inf{meR| m+ X € A} =inf {m € R| p(m + X) <0}
=inf{m eR| p(X)—m <0}
=inf{m e R| p(X) <m} = p(X).

3. If p is a convex monetary risk measure and X,Y € A, then p(AX + (1 — \)Y) <
A(X)+ (1 —=X)p(Y) <0, hence AX + (1 —N\)Y € A (for any A € [0, 1]). On the other
hand, assume that A is convex. Let X, Y € A, A € [0,1] and Z := A X + (1 — \)Y. By
assumption, Z € A. Let mx, my € R such that p(X +mx) <0 and p(Y +my) <0.
By cash invariance, p(X) < mx and p(Y') < my. Furthermore, we have

p(Z) = [Amx + (1 = A)my|=p(A(X +mx) + (1 = A)(Y +my) <0
(by cash invariance and the convexity of A), hence
p(Z) < Amx + (1 = A\)my
for all such mx and my, hence
p(Z) < Ainf{meR|m+Xe At +(1—-N)inf{meR| m+Y € A}
= Mp(X) + (1= A)p(Y)
i.e., p is convex.

4. p is positively homogeneous iff p(AX) = Ap(X) for all X € X and A > 0. This is
the case iff A\ X €¢ A <— X € A (for X € X arbitrary and for any A > 0). This is
precisely the definition of a cone.

5. pis coherent iff (by definition) it is a convex monetary positively homogeneous risk
measure. By 3. and 4., this is equivalent to .A being a convex cone.

]

Conversely, for a given set of acceptable positions A C X we can define p4(X) as
the minimal capital requirement that makes X acceptable (in the spirit of 2. from the
previous proposition):

pa(X) =inf{meR| m+X € A}. (6.1)
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Proposition 6.6. Let A # () be a subset of X that satisfies (i) and (ii) from Proposition
Then p_4 defined as in is a monetary risk measure. Furthermore,

1. if Ais convex, then p4 is a convex risk measure;
2. if Ais a cone, then p4 is positively homogeneous;

3. A,, = Aifand only if Ais closed w.r:t. ||-||.
Exercise 11. Prove Proposition [6.6]

Example 6.7. Suppose that we have a fixed probability measure P on (€2, F). We can say
that a position is acceptable if the probability of a loss is bounded by a given level A € (0, 1),

ie., if
P(X < 0) < A.

The risk measure corresponding to this acceptance set is called Value at Risk at level A\ and
is defined by
VAQR)\(X) =inf{m e R| P(m+ X <0) < A}.

It is positively homogeneous, but typically not convex. The intuition behind this fact is that
the risk measure observes the probability of a loss occurring, but not the actual loss.

Example 6.8. The worst case measure is defined by
Pmax(X) = —inf { X (w) | w € Q},

i.e., it is the risk measure associated to the acceptance set of all non-negative functions in X'
It is the most conservative among all normalized risk measures as we have pp.(X) > p(X)
forany X € X.
As will be shown in the tutorial, p.... is a coherent monetary risk measure and it can be
represented as

Pmax(X) = sup{]EQ [—X] ‘ Qe /\/ll} ,

where M is the class of all probability measures on (2, F). This representation is called
robust representation of pax-

Example 6.9. Let Q be a set of probability measures on (£, F) and consider a mapping
v: @ — Rwith sup {7(Q)| Q € Q} < co. Suppose that a position X is acceptable if

E?[X] > v(Q), VYQe Q.

The acceptance set A thus described is convex, hence the corresponding risk measure p = p4
is convex as well and has the form

p(X) =sup {7(Q) ~E¥[X] | Qe Q}.
Alternatively, we can write
p(X) =sup {E?[-X] — a(Q)| Q€ M;}, (6.2)

where a: My — (—o00, 00| is defined as

{—'y(@), ifQe Q,

~+00, else.

a(Q) =
a is called a penalty function.
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6.2 Robust representation of convex risk measures

The goal of this section is to see whether we have a robust representation as in for
every convex risk measure.

Let X denote the set of bounded measurable functions from €2 to R equipped with the
supremum norm ||-||. Furthermore, we denote by M the class of probability measures
on (€2, F) and by M, ; the finitely additive set functions ): F — [0, 1] which are nor-
malized to Q(Q2) = 1. We will use the notation E¢ [X] := [, XdQ.

Remark 6.10. Let ) € M, ; and define

XO = {Zak]lAk

k=1

a, € R, Ay disjoint and mb.,n € N} Cc X.

Then for any F' € X, one has

n

E° [F] = arQ(Ar) (L [|1F]lo)-

As X is dense in X, E® [F] can be defined for any F € X as the extension of E? [-] from
XO to X = Xo.

Let a: My ; — R U {400} be a functional such that inf {a(Q) | @ € M} € R.
For each Q € M, 4, the functional X — E®[-X] — a(Q) is convex, monotone, and cash
invariant on X. These properties are preserved when the supremum is taken over all
Q € My, hence

p(X) = sup {E?[-X] - a(Q) | Q € My} (6.3)

defines a convex risk measure on X such that

p(0) = —inf{a(Q) | @ € My},

The functional o will be called penalty function for p on M, ; and p is said to be repre-
sented by o on M ;.

Theorem 6.11. Any convex risk measure p on X is of the form
p(X) = max {E? [-X] — a™™(Q) | Q € My}, XeAx, (6.4)
where the penalty function o™ is given by
a™™(Q) =sup {E?[-X] | X € 4,}, Q€ M.

Moreover, o™ is the minimal penalty function which represents p, i.e., any penalty func-

tion « for which holds, satisfies

a(@Q) = a™(Q), VQ € Myy.
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Proof. Let X € X. Then X' := p(X) + X € A,, hence
a™(Q) = EY [~ X =E°[-X] - p(X), YQ€E My
Rearrangement gives

p(X) 2 E9[-X] - a™™(Q), YQ € Muy.
Consequently,

p(X) > sup {E® [-X] — a™™(Q) | QeMy}t, VXeX. (6.5)
If we can show that

VX €X 3Qx € My : p(X) <EX [-X] - a™(Qx), (6.6)

then from and (6.6)) follows

sup (B [-X] — a™(Q)) < p(X) < E¥ [-X] — o™ (Qx)
QeEM;y ¢

for Qx € M s, which in turn implies
p(X) = max {E? [-X] — a™™(Q) | Q € My,}.

Before we prove (6.6)), let us verify the minimality of o™®:
If « is an arbitrary penalty function for p, i.e., for any X € X we have in particular

p(X) > E?[-X] —a(Q), VQ€E My,

hence
a(Q) = EY [-X] - p(X).
Taking the supremum over all X, we get

o(@Q) 2 sup { B[~ X] - p(X) | X € X)
> sup {EQ [—X] — p(X) ‘ X e A} (6.7)
>sup {E°[-X] | X € A4,} = a™™(Q).
Proof of (6.6):

(i) Fix X € X. Without loss of generality we may assume that p(X) = 0. Otherwise,
consider X := X + p(X) with p(X) = 0 and E® [-5(’} = EQ[-X] — p(X). With
this, (6.6) holds for (X, Qx) if and only it holds for (X, Qx).

(ii) Without loss of generality, p(0) = 0. Otherwise replace p by p(X) := p(X) — p(0).

(iii) Define B :={Y € X'| p(Y) < 0}. By assumption, X ¢ B and B is an open convex
(by convexity of p) subset of X.
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(iv) Recall the Separating Hyperplanes Theorem??: If E is a Banach space and B, C
are two disjoint convex sets in F, one of which has an interior point, then B and
C can be separated by a non-zero continuous linear functional ¢ on F, i.e.,

l(x) <l(y), VxeCl, YyebhB.

(v) By applying the separating hyperplanes theorem to B and C= {X} we see that
there exists a continuous linear functional /: X — R such that

X)) <inf{{(Y)| Y eB}=:b.

(vi) Let Y > 0and A > 0. Then (by monotonicity and (ii))
p(L+AY) < p(1) = p(0) =1 = -1 <0,
hence 1 + \Y € B. By (v) and by linearity of ¢,
UX) <L+ NY) =£(1) + (Y.
If we let A — oo, then we see that we must have /(Y") > 0.

(vii) As the functional / is not always zero (i.e., / # 0) then there exists Y € X such
that /(Y) > 0. With Y = Y+ — Y~ and step (vi) we see that /(YY) > 0. If
we assume (w.l.o.g.) that ||Y| < 1, then we also have ¢(1 — Y*) > 0, hence
(1) =1 —Y*) +6(Y*) > 0.

(viii) By the Riesz representation theorem?? there exists Qx € M, ; such that

oY)

EOx [Y] = o

VY e X.

(ix) By definition of B (in (iii)), all elements of 13 are acceptable, i.e., B C A,, hence

a™™(Qx) =sup {E°¥ [-Y] | Y € A,}
> sup {EQX [-Y] ‘ Y € B}

:—mf{i((—l))‘ YEB}@—%.

(x) IfY € A,, thenY + ¢ € B for all ¢ > 0, hence we have equality in (ix), i.e.,

. b
a™(Qx) = iy
With this equality and (viii) we get
. 1 (v)
EOX [-X] — o™ (Qx) = m(b — (X)) > 0= p(X),

which completes the proof of (6.6]).

22This is Theorem A.58 in the Appendix of [FS04]] or Theorem V.2.8 in Linear Operators. Part I: General
Theory (1958) by N. Dunford and J. Schwartz.
23¢f. for instance Theorem A.54 in [FS04]
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Remark 6.12.

1. If we take o = o™ in (6.7)), then all inequalities turn into identities. Thus, we obtain
an alternative formula for the minimal penalty function:

a™™(Q) =sup {E?[-X] — p(X)| X e X}.

Thus, o™™ can be identified as the convex conjugate (or Fenchel-Legendre transform) of
P

2. Suppose that p := p4 is defined via a given acceptance set A C X (c¢f. (6.1)). Then A
directly determines a™":

a™™(Q) =sup {E°[-X] | X € A}, VQ € M.
This is true because X € A, implies that X +¢ € A forall ¢ > 0.

Corollary 6.13. The minimal penalty function o™ of a coherent risk measure p takes
only values in {0, +oc}. In particular,

p(X)=max {E®[-X] | Q € 9™}, X eX, (6.8)

for the convex set

Qmax — {Q c Ml,f | amin(Q) — O}
and Q™ is the largest set for which holds.

Proof. Recall that the acceptance set of a coherent risk measure is a cone. Thus, the
minimal penalty function satisfies

CYmiH(Q) = Sup ]EQ [—X] = sup EQ [_)\X] — )\amin(Q)
XeA, AXEA,

forall @ € M; ;and A\ > 0. Hence, o™"(Q)) € {0, +o0o}. Consequently, as every coherent
risk measure is convex, from and follows that only those ) € M, ; should
be considered in the robust representation that satisfy a™"(Q) = 0. O

Remark 6.14. The converse of Corollary also holds, i.e., if Q C M, and p(X) =
sup { E? [-X] | Q € Q} for all X € X, then p is a coherent risk measure.
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As promised, we want to come back to our first example of a risk measure, the entropic
risk measure (Example [6.4). Let us first introduce the relative entropy of to probability
measures, which, broadly speaking, measures how one probability measure diverges
from another one.

Definition 6.15. The relative entropy of a probability measure Q with respect to a given
probability measure P is defined as

EF [ (R)], ¥Qe<P,
+00, else.

H(QIP) = {

Remark 6.16. If Q < P, then the relative entropy can be rewritten as

H(Q|P) =RE® {m (i%)} :

Lemma 6.17. The relative entropy has the following properties:
1. HQ|P) > 0forall Q € Mjy;
2. For any probability measure Q,
H(Q|P) =sup {E®[Z] —InE" [¢”] | Z € L™(P)}
=sup {E?[Z] —InE" [¢”] | ¥ € L'(P)}.
The second supremum is attained by Z := In ﬁ% fQ<P.
These statements can be found as Remark 3.21 and Lemma 3.29 in [FSO4].
Proof.

1. The function R>¢ 3 x +— h(x) := xInx (with ~(0) = 0) is strictly convex (with second

derivative h”(z) = L > 0 for any > 0). Hence, by Jensen’s inequality we have for

vt x dQ dQ
_ WP ae p A _
HQ|P)=E {h<dP)1 2h<E {dp}>—h(1)—0
with equality if and only if Q = PP.

2. ">": If H(Q|P) = oo, then there is nothing to show. Hence, we assume that H (Q|P) <
oo. Let Z be such that e € L'(PP) and define PZ via

dP? B e?
dP  EP [e?]

Then PZ is equivalent to P and

Z
ln@:ln@—f—lnﬁ

dP dpP# dP -

Taking Q-expectations on both sides gives

H(Q|P) = H(QP?) + E?[Z] — InE" [¢”].
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net.

Since H(Q|P?) > 0 by 1., we get that
H(Q|P) > E?[Z] — nE" [¢”], Ve? € L'(P),
which implies
H(Q[P) > sup {E®[Z] —InE" [¢”] | ¢” € L'(P)}.

If Q@ « P, then there exists A such that Q(A) > 0 and P(A) = 0. For Z,, :=nl4
we have that

E?[Z,] — mEF [e”] =n Q(A) =5 H(Q[P),

which proves the claim.

Now assume that Q < P with density ¢ := ﬁ%. Then Z := In satisfies e? =
¢ € L'(P) and we have

H(Q|P) =E®[Z] —InE" [¢7],

which proves the extra statement about where the second supremum is at-
tained, provided we have ” < ” for all other Z.

To see that we have ” < ” in the first line, consider
Z, = min{n, max{—n,Ilnp}} € L=(P).

We claim that
EF [¢%] "OF BF [¢] = 1. 6.9)

To see why this holds, split the expectation as follows:
E* [e”] =E" [e” Lipony] +E [ Lipany] .

The first converges by monotone converges, the second by dominated conver-
gence. Now observe that, since h(z) = zlnz > —1 for every z > 0, we have
¢Z, > —2 for every n € N. Hence Fatou’s lemma (for a sequence of random
variables that is uniformly bounded from below) yields

Fatou
liminf E® [Z,] = liminf E¥ [0Z,] > EF[plny] = H(Q|P). (6.10)

n—oo n—00

By combining and (6.10) we see that

liminf (E°?[Z,] — InE" [¢”"]) > H(Q|P),

n—o0

which finishes the proof of 7 < 7.
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Example 6.18. Let P be a probability measure on (2, F). For a constant > 0 define a
penalty function a: M; — R by

1
a(Q) == - H(Q[P).
g
The entropic risk measure is given by

mxwzwm{ﬁ@kxm—%ﬂmwm\@eﬂa}

for any X € X. From part 2 of the above lemma, we know that for any Z € L*(P),
H(QIP) > E®[Z] - mEF [¢7],
hence in particular for Z = —(X,
H(Q|P) > E? [-BX] — InE" [e 7¥].

Division by (5 and rearrangement gives

EQ[-X] — %H(Q\P) < %mEﬂ” [e7X].

Part 2 of the above lemma also states that we have equality for Z7 = —(5X = In %, which
holds if % = e X,
Consequently, p has the representation introduced in Example ie.,
1
p(X) = BIHEP [e?X], Xewx.

The function o = %H (Q|P) is even the minimal penalty function representing p, since

a™(Q) = sg{p (E% [-X] - p(X)) = Sl)l(p (E@ [—X] - %IDEP [G_BX]> - %H(@HP)
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6.3 Static and Dynamic Risk Measures for Processes

For this section we follow [PR15]. A good source for the link to BSDEs, which we will
also come across, is [[Car09] (Chapter 3 and in particular Section 3.6).

Let us fix the setting for this section:

Let (2, F, (Fi)teo,m, P) be a filtered probability space satisfying the usual assumptions
with time horizon 7" € [0,00]. By R>™ we shall denote the set of all adapted cadlag
processes X that are essentially bounded??, i.e.,

| X | goe := | X ™[] oo < 00, where X*:=sup{|X,| | t€]0,T]}.

Definition 6.19. A map p: R™ — R is called a monetary convex risk measure for pro-
cesses if it satisfies the following properties for all X,Y € R°°:

Cash invariance: p(X + mlypp) = p(X) —m forall m € R;
Monotonicity: p(X) > p(Y)if X <Y

Convexity: p(AX + (1 = A)Y) < Xp(X) + (1 = Np((Y) for all X € [0,1];
Normalization: p(0) = 0.

A convex monetary risk measure is called coherent, if in addition to the previous properties
it is positive homogeneous, i.e., for all A > 0,

p(AX) = Ap(X).

As we have seen in the last section, we can discard of normalization, but it makes
computations easier. It is just for convenience that we require normalization.

Remark 6.20. As before, we can define the acceptance set of a risk measure p as
A={X e R¥[ p(X) <0}.
Using the cash invariance, we get the representation
p(X)=inf{meR| X +mlpsm € A}.

In other words, p(X) is the minimal capital requirement that has to be added to X at time
0 in order to make it acceptable.

The main difference between the risk measure as we introduced it for random variables
and the (still static) risk measure for stochastic process is that the timing of the cash
flow matters. In other words, this new notion of a risk measure also captures the time
value of money.

To see this more clearly, let us introduce some other concepts of what can happen if
money is added at a certain moment in time.

24Observe that X* is defined w-wise, hence there is not essential supremum. The essential boundedness
comes from the L°°-norm!
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Definition 6.21. A convex risk measure p for processes in R> is called

e cash subadditive, if for all t > 0 and m € R,

m, ifm >0,
m, ifm <0.

p(X +mlm) > p(X)
p(X +mlym) < p(X)
e cash additive at ¢ for some t > 0, if

p(X +mlym) = p(X) —m, vm € R;

e cash additive, if it is cash additive at all times t € [0, T].
From monotonicity and cash invariance we can directly infer the following result:

Proposition 6.22. Every convex (and normalized) monetary risk measure for processes is
cash subadditive.

In contrast, a static risk measure of random variables p, if we interpret it as risk measure
of processes via p(X) := p(Xr), is cash additive.
6.3.1 Dynamic risk measures

In contrast to the static risk measure introduced above, a dynamic risk measure includes
a risk assessment at any time ¢ € [0, 7], which shall take into account the information
available up to that time.

For a fixed time horizon 7' < co and 0 < ¢t < s < T we define the projections
Tys: R = R™, with m(X), == Ly (r)Xons, r€[0,T]
We use the notations
RS =ms(R™) and R :=mr(R™).

Definition 6.23. A map p;: R — L¥(Q, F,P) for t € (0,7T)] is called a conditional
convex risk measure for processes if it satisfies the following properties for all X, Y € R:°:

conditional cash invariance: for all m € L>(Q, F;, P),
pr(X +mlpn) = pr(X) —m;
monotonicity: p,(X) > p(Y)if X <Y;
conditional convexity: for all A € L>(Q, F;,P) with A € [0, 1]
pr(AX + (1= A)Y) < Ape(X) 4+ (1 = A)pe(Y);
normalization: p,(0) = 0.

A process (p;)ico,r) 15 called dynamic convex risk measure for processes if for each t,
pr: Ry — L=(Q, Fi, P) is a conditional convex risk measure for processes.
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For X € R*>, we write

pu(X) 1= pu(m (X)),
Example 6.24 (dynamic entropic risk measure). If we take the entropic risk measure for
random variables,

- 1
p(X) = 5 mE" [e?], Xe&X,
we can easily define the corresponding static entropic risk measure for processes via

p(X) = %hlE]P [ePXT], X e R™.

The corresponding dynamic entropic risk measure for processes is obtained by replacing the
expectation by the conditional expectation:

1
pe(X) = EIHEP [ePX | F], X eR™.

This is a dynamic convex risk measure for processes.

Exercise 12. Check that the dynamic entropic risk measure p, is indeed conditional cash
invariant.

Definition 6.25. A dynamic convex risk measure for processes is called time consistent if
pe(X) = pe( X1y — ps(X)Lis1p), VX €R™, Vte[0,T],s€[t,T].
Lemma 6.26. The dynamic entropic risk measure p; is time consistent.
Proof. Lett € [0,T)]. Then for X € R,
Pt(X]l[t s) — Ps(X) L)
-3 L EP [ B(X1 11,0 (T)=ps (X)L, )|ft}

— %hlEP |: Bps X)|f:|
= %hlEP {exp ( —InE" [e ﬁXT|]:S}) |]:t}

% [EP [ BXT]]-“] ]]—"t} and as s >t

;mEP [e X7 ]

= pe(X).

O]

In order to better understand what time inconsistency means, let us look at an example
of a time inconsistent risk measure: the dynamic Value at Risk.

A natural dynamic version of Value at Risk at level « € (0,1) is
VAR (X) =essinf {m € L*(F)| P(m+ X < 0|F) < a}.

In the following example we will see that VQRY is time inconsistent and what this
entails.
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Example 6.27 (V@R is time inconsistent.?®). Fix an initial value s, > 0, a volatility
o > 0 and a constant v € R. Let Zy, Z, be i.i.d. N(0, 1)-distributed random variables and
define a stock price process (S;)icfo,1,23 by

t
So =5y and St:soexp<JZZk+l/t), te{1,2}.

k=1
Let (F¢)teq0,1,2y be the filtration generated by S and set

Sy S
2l Ry
5107 2

R, = = =
1 S,

Choose an arbitrary probability level « € (0,1). Then there exist constants a,b and B > b
such that

a<P(Ry, <b) <P(Ry; < B),

We want to determine the dynamic Value at Risk for the random payoffs

X :=—-Clg+dlg. and
Y ;= —clp+ Dlpge,

where C, ¢, D and d are constants such that C > ¢ > 0and D > d > 0 and E and F are
the events given by

E = {Rl S a,R2 S b},
F = {Rl < CL,RQ < B}

A possible choice for the numerous constants introduced above is the following:

2
so=1, o=0.1, y:0.06—%, a=005 a=1 b=095 B=1L.

With this choice,

E={R; <1,Ry <095},
F={R <1,R, <1}

Let us calculate VQRY for t € {0,1}:

VARG (X) =essinf {m| P(m+ X <0) <a}
=essinf {m | P(—Clg +dlg. < —m) < a}
=—d

and analogously
VARG (YY) = c.

2>from: Example 3.1 in Time-inconsistent VaR and time-consistent alternatives (2008) by P. Cheridito &
M. Stadje
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Fort =1 we get

VAR (X) = essinf {m € L*(F)| P(m+ X < 0|F;) < o}

o C: lle S a,
| —d, ifR >a.
and analogously
[ <
VAR (X) =14 f i <a,
—D, lfR1 > a.

Thus we can compare the risks of X and Y at each moment in time:
VQRY(X) > VQRX(Y) and VQRS(X) < VaRS(Y). (6.11)

This means that (VQRS, VQRY) is not time-consistent. Let us go a step further to see what
this entails.
Assume that a trader wants to minimize VQR{ over the two available payoffs X and Y
under the constraint that

E [payoff| Fi| > mo.

If D and d are large enough such that D > d > mg and

—O]P(RQ < b) + dP(RQ > b) > my and — C]P)(RQ < B) + DP(RQ > B) > mo,

then
_CP(Ry < b) +dP(Ry > b), if R <a
E[X‘fl]: (2—) (2 ) :fl
d lfR1>Cl
>m07
—P(Ry < B)+ DP(Ry > B), ifRi<a
]E[Y‘J,—_-l]: (2— ) (2 ) f 1
D lfR1>CL
>m0.

Consequently, E[X] > mg and E[Y] > my, hence X and Y satisfy the constraint at all

times. By (6.11)), the risk of X is smaller than the risk of Y when perceived at time t = 0,

hence the trader will prefer the future payoff X when asked at time t = 0. However; at time
= 1 he will regret his decision because at that time Y will have a lower risk than X.

A possible remedy to the problem of inconsistency in discrete time settings is by com-
posing single-period risk measures in a time-consistent way. For Value at Risk, this could
be done in the following recursive manner:

ComVQR;_, :=VQR7_,,
ComVQR} := VAR (—ComVQR{, (X)), te{0,...,T -2}

By construction ComV @QR® is time-consistent.
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7 Backward Stochastic Differential Equations

This Section follows Chapter 6 in [Pha09].

7.1 General Properties
7.1.1 Existence and Uniqueness Results

Let W = (W)t € [0, T] be a standard d-dimensional BM on a filtered probability space
(2, F, (Fi)iepo,n, P), where the filtration is the natural filtration generated by IV and
T < oo is a fixed horizon. We introduce the following spaces?®:

Po(0,T):={¢: Qx[0,T] - R"| ¢ progressively measurable process}

S*(0,7) := {gzﬁ € Pl(O,T)‘ E l sup || < oo}

H2(0,T) = {¢ e P,(0,7) ' E {(Z?ngﬁﬁdt} < oo}

We want to consider the following backward stochastic differential equation (BSDE):
- d}/t - f(t7 )/;7 Zt)dt - Zt : th7 YT - 57 (71)

where driver (or generator) f and terminal condition ¢ shall satisfy the following condi-
tions:

Assumption 7.1.
o (€ L%, Fr,P;R)

o f:0x[0,T] xR xR?— R with short notation f(t,y,z) (we suppress w) is progres-
sively measurable for all (y,z) € R x R?

o f(t,0,0) € H2(0,T)

e f satisfies a uniform Lipschitz condition, i.e., there exists a constant C; such that
dP ® dt a.e.

|f(tyr, z1) = f(t, 2, 22)] < Cf(’yl —yo| + 121 — 22]),  Vuyi,y2 € RVzy, 20 € R?

Definition 7.2. A solution to the BSDE ([7.1)) with driver f and terminal condition & is a
pair (Y, Z) € 8*(0,T) x H2(0,T) satisfying

T T
Ytzf—l—/ f(s,Ys,Zs)ds—/ Zs - dWy, te[0,7].
t t

Theorem 7.3. Given a pair (&, f) satisfying Assumption there exists a unique solution
(Y, Z) to BSDE (7-1).

26We follow the notation used in [Pha09] that is common in the BSDE literature. Observe that the
space H2(0,T) was denoted by V¢ in Section
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For the proof of this theorem we need two results from Stochastic Analysis, which can
be found e.g. as Theorem 1.1.4 and Theorem 1.1.6 in [Pha09].

Theorem 7.4 (Doob’s maximal L*-inequality). Let X = (X})ic[o4 be a nonnegative right-
continuous L?-submartingale. Then for all stopping times T with values in [0, T] we have
E { sup |Xt|2} <4E [X?Z].
0<t<r

Let us quickly remark that there are more general versions of Doob’s maximal inequality,
but the above one is sufficient for our purpose. In particular, observe that the expecta-
tion on the LHS can be taken over sup, | X;|? or (sup, | X;|)> — in both cases the result is
the same as long as we have non-negativity.

Theorem 7.5 (Burkholder-Davis-Gundy inequality). For all p > 0 there exist constants
¢p, Cp such that for all continuous local martingales M = (M;),et and all stopping times T
with values in T, we have

ol [<M>1;/2} <E { sup |Mt|r <C,E [<M>£/2}

0<t<r

In particular, if (with p = 1) a continuous local martingale M satisfies E [ (M >t] < 00
forallt € T, then M is a martingale.

Proof of Theorem The proof is based on a fixed point argument. Define a function
® from S%(0,T) x H2(0,T) to itself via (U, V) = (Y, Z) satisfying

T T
Yt=§+/ f(s,US,VS)ds—/ Z..dW.. 7.2)
t t

The solution pair (Y, Z) is constructed as follows: Let

T
M, :=E {f +/ f(s, U, Vi)ds
0

.7-}} , t 10,77 (7.3)

Under Assumption [7.1] on ¢ and f, M is a square integrable martingale. From the
MRT (a multi-dimensional version of Theorem [2.36)) we infer that there exists a unique
7 € H2(0,T) such that

t
M, = M, + / Zs - dWi. (7.4)
0
We define the process Y via
T
Y, =E |:£+/ f(saUm‘/s)dS
t

t
E v, - / f(5,Us, Vi)ds
0

7|

¢ t
=" M, — f(s, Us, Vs)ds + Zs-dWs, te [O,T],
0 0
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thus Y = ¢ and

T T
Yt—gzn—YT:/ f(S,Us,Vs)dS—/ Z,-dw,,
t t

i.e., Y satisfies (7.2)). Let us verify that

(Y, Z) € S*(0,T) x H3(0,7). (7.5)
First, by Doob’s maximal L?-inequality,

T T
/ Zs-dW,| | <4E [/ | Z,|? ds
t 0

which shows that the stochastic integral in is in $?(0, T'). The other two summands
in are in §?(0,7T) as well by Assumption (verifying this is left as an exercise),
hence Y € §%(0,T). As Z € H2(0,T) by virtue of the MRT, we see that @ is indeed a
function from S§2(0,7) x H2(0,T) into itself. Consequently, (Y, 7) is a solution to
if and only if it is a fixed point of ®. To complete the proof, it is therefore sufficient to
prove the following claim:

2

E | sup < 00

0<t<T

Claim: ¢ admits a unique fixed point.

Proof of the claim: We want to show that ¢ is a strict contraction on the Banach space
§2%(0,T) x H2(0,T) equipped with the norm

02l = (=] [ v+ 12,70 )

for a suitably chosen 3 > 0. To see this, let (U, V), (U’, V') € §*(0,T) x H2(0,T) and let
(Y, Z) = ®(U,V) and (Y', Z') = ®(U", V'). Set

1/2

(U, V):=U-U,V -V,
2)=Y =Y Z2-2,

ft = f(ta Ut;‘/;f) - f(t> Utlav;f/)

If, for an arbitrary 8 > 0, we apply Itd’s formula to 6’38?3 for the interval [0, 7], then we
obtain (with Y = 0)

T T T
66T72T =0= ?(2) + / 565575(13 + 2/ Y dY, + / P d(Y)s,,
0 0 0
hence

. T . T T .
Yy, =— / B3e?Y  ds — 2 / Y dY, — / P d(Y),
0 0 0

T . T T T —
:—/ 5655Y5d3+2/ 655Y8f8d3—2/ eﬁsyszs-dws—/ e’ |Z,|" ds
0 0 0 0

T T T
=— / e (BY = 2Y f)ds — / ¢ |Z,|" ds - 2 / e*Y  Z, - dWi. (7.6)
0 0 0
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Observe that

BT T
E < TE [ sup Y;? —I—/ \Zt\th} < 00,
0

0<t<T

T 1/2
( / e25tY;2|Zt|2dt)
0

hence, from the Burkholder-Davis-Gundy inequality, we see that ( fot ePsY 7, - dWS) is
t

a uniformly integrable martingale. By taking expectations in (and by rearranging
slightly), we get with the help of Young’s inequality?’

B[V +E [ / Lo (67 4 [2.P) ds]
0

T
= 2E |:/ 6587575d3:|
0

T
< 2C/E U eﬂS|?s!(!Us\+st\)ds] by Ass. [7.1
0

_ 1 Bs
YS|E€2(

Young T 1 s — \2
< EU 5(2\/§Cfe%|3/s|) ds} +E
0

T
_E [ | 2vaces U]+ \mds}
0

[ rmea)']
= 4C3E [/OT 6’85|Y3\2d$} + %L]E UOT ™ (|Us| + \Vs})st]

2 r Bs|1N, |2 1 r Bs (|77 2 17 |2
<4C7E / e”*|Y s|7ds +§E / e <‘Us‘ —|—|VS‘ )ds ,
0

0

where the last inequality uses that (a 4 b)* < 2(a” 4 b*). Now choose 3 := 4C7 + 1. This

yields
r gs (15712, |77 |2 1 r gs (177 12 | |77 |2
E|[ e ([ +Z])as <SE|[ e (171" + V") as| .
0 0
This inequality shows that  is a strict contraction on space suggested.

With the claim proven, the proof of Theorem is also completed. O

7.1.2 Linear BSDEs

Let us consider the particular case where the generator f is linear in y and z, i.e., the
BSDE is of the form

—dYy = (A, + Z,- B+ C)dt — Z, - dW,,  Yp =, (7.7)

where A and B are bounded progressively measurable processes with values in R and
R, respectively, and C' € H2(0,T). We can solve this BSDE explicitly.

27Young’s inequality: ab < % + % if 2 4 % = 1forp,q>0.

iS]
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Proposition 7.6. The unique solution (Y, Z) to the linear BSDE ([7.7)) is given by

T
rY,=E {rTg + / I,C,ds
t

E:| ; (7.8)

where I is the solution to the linear SDE
dFt - Ft(Atdt + Bt : th>7 FO - ].
Proof. We apply the integration-by-parts formula (Theorem [2.33) to I';Y; and obtain

=—(AYs+ Z;- By + C)lydt + I Z, - AWy + T A Y, dt + 1Y, By - AW, + 1,7, - Bdt
— —FtCtdt + Ft(Zt + }/;Bt) . th

Consequently, with 'y = 1,
t t
Y, + / I,Cids =Yy + / Ty(Z, + Y,B,) - dW,. (7.9)
0 0

As in the previous proof, we want to take expectations and for this we want to show
that the stochastic integral is a martingale. To see this, observe that

E

sup |T[?| < oo,
t€[0,T]

since A and B are bounded by assumption. If we denote by b,, the upper bound of B,
then we have (again by applying Young’s inequality)

T 3 T 3
(/ P§|ZS+Y;BS|2ds> sup | Ty (/ |ZS+Y5BS|2ds)
0 t 0

r T
s—EammF+/|4+n&&4
L ¢ 0

E <E

- T
< —E |sup |T';|? +/ 2(1Z* + |3@Bs|2)d51
| ¢ 0

- T T

< _E sup|Ft|2—l—2/ |Zs|2d8+2b(2)o/ |}/s‘2d8:|
|t 0 0

< Q.

Again with the Burkholder-Davis-Gundy inequality we can infer that the stochastic in-
tegral in ((7.9) is not only a local martingale, but a uniformly integrable martingale. By
adding Yy, the RHS of (7.9) is a martingale. Thus, the LHS has the representation

t T
I.Y, +/ I',C,ds =E {FTYT + / I',C.ds
0 0

7

T
—F [FT§+ / T,C,ds
0

}}] ; (7.10)

which proves (7.8)). Once Y has been computed this way, Z is given via the martingale
representation in (7.9) for the martingale in (7.10). O
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7.1.3 Comparison principle

The following result will prove to be essential if one wants to optimize over a family of
BSDEs. Regarding the notation, we emphasize that there are no squares in the theorem
or proof, only upper indices.

Theorem 7.7. Let (£%, f') and (&2, f?) be pairs of terminal conditions and generators
satisfying Assumption Let (Y1, Z') and (Y%, Z?) be the solutions to the corresponding
BSDEs. Suppose that

o (1< as,;
o L,V ZN < A,V Z)) dP @ dt-a.e.;
o (LY, 7)) € H0,T),
Then almost surely Y;'! < Y? for all t € [0,T]. If, additionally, one has Y? < Y, then

Y =Y? forallt € [0,T). In particular, if P(¢F < €2) > 0 or f1(t,-,-) < f2(t,-,-) on a set
of strictly positive measure dP @ dt, then Y < Y{.

Proof. To simplify the notation, we assume d = 1. We define (careful with the differ-
ences to the notation from the proof of Theorem [7.3)):

(?7 ) - (Yz - Y1722 - Zl)7
71& = fQ(tY;tlaZtl) - f1<t7Y;5172t1>7
_ fg(t7Y;527Zt2) B f2<t7Y;tl7Zt2>

AY 1 ,
t Y7 Y] {v2-vi#0}
A? — f2(t7}/tl? th) — fz(tv }/tl? Zt1> 1
t Zt2 - Ztl {ZE—Z,}#O}

Then (Y, Z) satisfies the linear BSDE
—dY, = (AYY 4+ AjZy + f)dt — ZdW,,  Yp=£ ¢\

Since f? is uniformly Lipschitz in y and z, the processes A¥ and A* are bounded. More-
over, the process f is in H?(0,T). From Proposition we know that Y is given by

T
Ft?t = E |:FT(§2 - 51) "‘/ FSTSdS

ft} ; (7.11)

where T is strictly positive. Hence, Y, > 0 for all € [0, 7] almost surely. Furthermore, if
Y, = 0, then from (7.11)) we infer that

0=E |:FT(§2 e /T Fjsds} :
0

With I being strictly positive and £? — ¢! and f_at least non-negative by assumption, this
implies that we have indeed £ = ¢! a.s. and f = 0 a.e. Again with (7.11)) we conclude
that Y, = 0 for all ¢ € [0, 7] almost surely. O
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7.1.4 BSDEs, PDEs and Feynman-Kac formulae
Recall from Remark (Feynman-Kac formula) that the solution to the linear PDE?®

01 0y + Lot ) + f(t,e) =0, (t,a) € [0,T) x R,

ot
v(T,z) =g(x), xeR"
with .
Lv =~(z) - Dyv+ 5 tr(o(z)o” (z)D2v)
has the representation

v(t,z) =E {/t flu, XE%)du + g(Xfp’x)

for a stochastic process satisfying SDE
dX, =v(X5)ds + o(Xo)dWs, se[t,T], X,==x. (7.12)

Let us now look at an extension of the Feynman-Kac formula to PDEs of the form

@(t, x) + Lo(t,x) + f(t,z,v,0" D) =0, (t,z) € [0,T) x R", (7.13)

ot
o(T,z) =g(z), xeR" (7.14)
We want to represent the solution to this PDE by means of the BSDE
—dY; = f(s,Xs, Ys, Zs)ds — Zs - dW,, s € [t,T], Yr=g(Xr) (7.15)

and the forward SDE (7.12)).

The R"-valued ~ and the R"*?-valued o satisfy a uniform Lipschitz condition; f: [0, 7] x
R” x R x R? — R satisfies a linear growth condition in (z,y, z) and a Lipschitz condition
in (v, z), uniformly in (¢, z); the continuous function ¢ satisfies a linear growth condi-
tion. Under these conditions, the terminal condition and driver of BSDE satisfy
Assumption (To verify this, one needs an estimate for the second moments of X.)
By the Markov property of the diffusion X, we also have Y; = v(¢, X;) for

v(t,z) =Y,

where v: [0,7] x R® — R is a deterministic function; X** (s € [t,T]) is a solution to
(7.12)) starting from « at time ¢ and (Y»*, Z)*),cii,7) is the solution to the BSDE (7.15)
with X, = X* (s € [t,T]). This framework is called a Markovian case for the BSDE.

The following verification result for PDE (7.13)) is analogous to the verification theorem
for HJB equations, Theorem If shows that a classical solution to the semilinear PDE
provides a solution to the BSDE.

28In order to stick with the notation from [Pha09]], we exchange the dimensions d and n compared to
our choice in Section
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Proposition 7.8. Let v € C*2([0, T)xR™")NC°([0, T]xR™) be a classical solution to (7.13))-
(7.14), satisfying a linear growth condition and such that for some constants C' > 0 and
q>0, |Dy(t,x)] < C(1+|z|?) for all x € R". Then the pair (Y, Z) defined by

Y, =v(t,X,), Z,=0"(X,)D(t,X,), te]l0,T],
is the solution to BSDE
Proof. 1f we apply It0’s formula to v(¢, X;), we get
dY; = dou(t, Xy)
v(t, Xy)dt + Dyo(t, Xy) - dX; + %Div(t,XQd(X)t

o(t, X))dt + Dyv(t, X)) - (4(X,)dt + o(X,)dIW,) + %tr(a(xt)aT(Xt)ng(t,Xt)>dt
v(t, Xy) +v(Xy) - Dyo(t, Xy) + %tr(J(XL)UT(XL)ng(t, Xt))) dt + o7 (X,)Dyv(t, X;) - dW,

T ot

0

a

( o(t, Xy) + Lo(t, Xt)) dt + o7 (X,)Dyv(t, Xy) - AW,
(AL

—f(t, Xy, v(t, Xy), UT(Xt)va(t, Xy))dt + UT(Xt)D:cU(t: X;) - dW,

delH —f(t, X, Y, Zy)dt + Z, - AW,

Furthermore, v(7T, Xr) g(Xr) = Yr. Finally, from the growth conditions on v and
D,v, we have that (Y, Z) € S(0,T) x H%(0,T), which completes the proof. O

Remark 7.9. We (almost) have the converse statement: The function v(t,z) = Y;"* is
continuous on [0, 7] x R™ and it is a viscosity solution to (7.13)-(7.14). This is stated as
Theorem 6.3.3 and proven in [Pha09].

7.2 Control and BSDEs

The comparison principle, Theorem |7.7} states that if both the driver and the terminal
condition of one BSDE lie below those of another BSDE, then the same holds true for the
Y -component of the solutions of the BSDEs. Taking this even further, we now consider
a family of BSDEs.

Theorem 7.10. Let A be a subset of all progressively measurable processes. Let (¢, f) and
(&>, fY), a € A, be a family of pairs of terminal conditions and drivers, each pair satisfying
Assumption Let (Y,Z) and (Y*,Z%), a € A, be the solutions to the corresponding
BSDEs. Suppose that there exists a € A such that
f(t,Y:, Zy) = essinfoeq fO(t, Y, Z) = fE(, Y1, Zy), dP®@dt —a.e.,
€ = essinfeq €& = €9,
Then
Y; =essinf,e4 V2 =Y, Vtel0,T],P—as.
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Proof. From the comparison principle (Theorem [7.7), since ¢ < ¢* and f(¢,V;, Z;) <
f*(t,Y:, Z;), we have Y; < Y forall t € [0, 7], P-a.s., for all & € A. Hence,

Y; <essinf,c4 Y.

Moreover, if ¢ = ¢ and f(t,Y;, Z,) = f(t,Y;, Z;), then (Y, Z) and (Y?, Z%) are both
solutions to the BSDE with driver f® and terminal condition £, hence, by uniqueness,
these solutions coincide. This implies for the Y-component that

essinfaea Vi <Y =Y, < essinfaeq Y%,

which completes the proof. O

In Section |5| we have seen how to solve a stochastic optimal control problem with the
help of the dynamic programming principle. (The latter was used to derive the HJB
equation.) Here we want to look at an alternative approach, called Pontryagin’s maxi-
mum principle.
The framework is the following: Let X be a controlled diffusion process on R" governed
by

dXt = ’V(Xt, O{t)dt + O'(Xt, O{t)th, XO =, (716)
where W is a d-dimensional standard BM and « € A, the control process, is a progres-
sively measurable process with values in A. The gain functional that is to be maximized
is given by

J(a) =E {/OT f(t, Xy, ap)dt + g(X7) |,

where f: [0,7] x R* x A — R is continuous in (¢,z) for all a« € A4; g € C'(R™;R) is
concave; and f and g satisfy a quadratic growth condition in .

Remark 7.11. Observe that, while J in Section [5|was a function of t, = and the control,
here we only have a dependency on the control. The reason is that we do not apply the
DPP, hence there is no need for such a dependency.

We define the generalized Hamiltonian H: [0, T] x R™ x A x R" x R™*¢ — R by
H(t,z,a,y,2) = y(x,a) y+tr(c? (x,a)2) + f(t,z,a). (7.17)

There is a slight difference to the previous subsection: Now y € R" and »z € R"*9,
whereas before we had Y € R and Z € R4,

Remark 7.12. So as to avoid confusion, observe the difference between the above defined
generalized Hamiltonian and the Hamiltonian as it was defined in Section

1
H(t,2,p. M) o= sup |1(x,a) - p+ 5 tr(o(r, )0 (2, )M+ f(1,7,0)|
acA

We will assume that A is differentiable in x with derivative D, . For each oo € A, we
consider the following BSDE, which is also called the adjoint equation:

—dY, = D,H(t, Xo, o, Yy, Zy)dt — Z,dW,, Yo = Dyg(X7). (7.18)

97



Theorem 7.13. Let & € A and let X be the associated controlled diffusion. Suppose that
there exists a solution (Y, Z) to the associated BSDE (7.18)) such that

H(t, X, ap, Vs, Z)) = ?eafﬁ(t,)?t,a,ﬁ, Z), tel0,T),as. (7.19)
Suppose furthermore that for all t € [0, T,
(x,a) — H(t, z,a, f/t, Z) is a concave function. (7.20)
Then &« is an optimal control, i.e.
J(@) = sup J(a).

acA

Proof. For any a € A, we have

J(@) = J(0) =E [ / ) (£t K@) = J(t, Xos0)) dt 4 (9(Kr) = g(XT>)] . (72D

Let us look at both summands inside of the expectation separately. First, by concavity
of g and by Itd’s integration-by-parts formula, we have, as X, = X,

E [9(8r) — g(X1)
>E [(Xr — Xr) - Dag(%r)]
D [(Xy - Xr) Vo]

It

I3

N T R . T N T N
E [/ (Xt — Xt) . d}/; + / }ft . (dXt dXt +/ tr Xt, Oét (Xt, Oét))TZt] dt:|
0 0 0
T . R T
= E |:/ (Xt — Xt) . (—DxH(t, Xt7 @t, }/;57 Zt dt + / Yt Xt7 O{t) (Xt; Oét))dt:|
0

+E [ /0 i [(a()?t, a,) — o(Xs, at))TZ] dt] . (7.22)

Second, by definition of H we have
T o~
E [/ (£t K@) = f(1, Xi ) dt]
0
T o~ o~ —~ o~ —~
:E |:/ <H(t7Xt7at7}/;faZt) _H(thbata}/;faZt)) dt:|
0

T T
_E V (7% @) = (X, ) -Yth/ tr | (0(X080) — o(Xi 00))" 2] dt] .
0 0
(7.23)
By adding (7.22) and (7.23) and replacing the sum in (7.21) we obtain

T
J@) — J(@) > E U (’H(t,Xt, G0, Vi, Z0) — Hit, Xy, a0, Vi, Zt)> dt}
0

T
+E [/ (X: — Xy) - (=D H(t, Xy, oy, Vs, Zt))dt} .
0

Under conditions (7.19) and (7.20), the integrands (taken together) are nonnegative,
which completes the proof. N
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As we have already compared this setting with that in Section 5, we now want to provide
the connection between the maximum principle and the DPP.

The value function of the stochastic control problem considered above is

v(t,z) =supE {/ f(s, X0 a)ds + g(X55) ], (7.24)
acA
where (X'") e 1 is the solution to (7.16) starting from z at time ¢. The associated HJB
equation is
0
A [G(t,z,a, Dyv, Div)] =0, (7.25)
ot acA

where for (t,z,a,p, M) € [0,7] x R x A x R" x Sym,, (if we denote by Sym,, the
symmetric n X n-matrices),

G(t,z,a,p, M) :=~(x,a) -p+ %tr [U(x, a)o(x, a)TM} + f(t,x,a). (7.26)

Theorem 7.14. Suppose that v € C13([0,T) x R™) N C°([0, T| x R") and that there exists
an optimal control & € A to (7.24) with associated diffusion X. Then
G(t, X, ay, Dyv(t, X,), D2u(t, X,)) = max G(t, X, a,Dyo(t, X)), D2o(t, X)) (7.27)
ac
and the pair L R R R
(1/;7 Zt) = (Dx'U(t, Xt>, Div(t, Xt)O'(Xt, (/)é\t)) (7.28)
is the solution to the adjoint BSDE (|7.18]).

Proof. Since @ is an optimal control, we have?®

o~ T o~ o~
o(t, X)) = E [ [ 565, %ei)as 4 9(%n

¢

t
= —/ f(s, X, a5)ds + M, te€]0,T], a.s., (7.29)
0

7]

where M is the martingale

T A A~
=F {/ f(s, X, as)ds + g(X7)
0

By applying It6’s formula to v (¢, )A(t) we get
dU(t, )?t)

v S s 1 -~ ~
= %v(t, Xy)dt + Dyo(t, Xy) - dX; + §D§U(t7 X,)d(X),
0 s % > S s | . _
= av(t, Xt)dt + D;{U(t, Xt) . (fy(Xh Qt>dt + O-(Xta af)th) —+ 5 tl"((JO'T)(Xt, Oét)DiU(t, Xt))dt
_ %v(t,)?t)+g(u)?t,at,va(t,)?t),Div(t,)A(t)) dt + Dyo(t, K1) - o(X,)dW,

- f(ta j(\vta at)dt

290bserve that the second argument of v is X; and not its starting value, hence the conditional expec-
tation.
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Furthermore, from (7.29), we have that dfu(t,)A(t) = —f(t,)A(t, ay)dt + dM,. From the
MRT, M has a representation as stochastic integral, hence the di-terms in the two rep-
resentations of dv(¢, X;) can be identified, giving us

%U(t, X)) + G(t, X, a,, Dyo(t, X,), D2u(t, X)) = 0. (7.30)

Since v is smooth, it satisfies (7.25]), which yields (7.27).
From ([7.25) and (7.30)), we have

o o~ o . .
0= av(t, Xt) + g(t, Xt, i, DI'U(t, Xt), Di?}(t, Xt))

> %U(ty -T) + g(t, X, @t, Dx'l}(t, 1}), Div(t’ x))’ Vo € R™.

Since v € C''3, the optimality condition for the above relation implies

0
o =0.

=Xy

(500 + (65,6 D), Do)

Recall the expressions for H (in Equation (7.17)) and G (in Equation (7.26)). With
these, the previous equality can be rewritten as

A (
- Otox
+ DxH(t, Xt, E)z\t, D$”U(t, Xt), Div(t, Xt)O'(Xt, at)) (7.31)

- o~ 1 . . -
0 t, Xi) + D3v(t, X )y(X;, &) + 2 tr(o (X, ar)o’ (X, @) Div(t, X))

By applying It6’s formula to D,v(t, )A(t) we get

—dY, = —dD,v(t, X))
= 82232 (8, X0) + D3o(t, X)v(Xe, @) + %tr(a()?t,at)aT()A(t,at)Div(t,)?t)) dt
— Dju(t, X)o (X, 6 AW,
DyH(t, Xy, @, Dyv(t, Xy), D2u(t, X, )o(Xe, @) — D2o(t, Xi)o (Xy, Gr)dW,

- DmH(t, )?t, &t, }//\%7 Z\t) - Z\thVt

Finally, since v(T,-) = ¢(+), we have
D,o(T; Xr) = D,g(Xr),

which proves that (Y, Z) is indeed the solution to BSDE (7.18). O
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7.3 BSDEs and risk measures

This subsection is based on parts of Chapter 3 in [Car09].
In Example we have introduced the dynamic entropic risk measure as

1
pt(X) = BlnE[eiﬁXT| ft] y XGROO,
where R>° denotes the adapted cadlag processes that are essentially bounded.
In the following result we want to link the dynamic entropic risk measure for a bounded
(Fr-measurable) random variable X+ to a BSDE. We assume that IV is a d-dimensional
BM and (F;), its natural (augmented) filtration.

Proposition 7.15 (Proposition 3.12 in [CarQ9]). Let X € L*°(Fr). The dynamic en-
tropic risk measure (p;)icpo,r) for parameter 5 > 0 is a solution to the BSDE with driver
f(z) = § |z||* and terminal condition — X :

— dpt(XT) = g HZtH2 dt — Zt . th, PT(XT) = _XT- (732)

Remark 7.16. The driver f is not uniformly Lipschitz continuous, but one can show that
BSDEs with a quadratic driver have a solution nonetheless, provided the terminal condition
is in L™ (instead of our usual requirement that it belongs to L?). We also require the
solution to be bounded. However, the solution to a quadratic BSDE is not necessarily
unique. If such a solution (Y*, Z*) satisfies Y* > Y (resp. Y* < Y) for all solutions
(Y, Z), then (Y*, Z*) is called a maximal (resp. minimal) solution.

Proof. Denote by M the process
M(X7) =E[exp(—8Xr)| F], te€]0,T].

By construction, M is a positive L?-martingale. From the MRT, there exists a unique
g € V such that
th = 0t - th (7.33)

Observe that if W is multidimensional, then so are Z and g and a multidimensional
version®® of the MRT applies. From the positivity of M and of 3, we can rewrite (7.33)
as

th — /BMt(Zt ° th)

by letting Z; = S7-. By applying It6’s formula to %ln(Mt) = p(X) we get

“d(p(X)) = —d (% 1n<Mt>)
— —ﬁth + Tzﬁd(]\/[)t

— —7Z,-dW, + g 12,7 dt.

30For the multi-dimensional version of the MRT, see e.g. Theorem 5.4.2 in Stochastic Calculus II by
Steven E. Shreve.
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Taking into consideration that, by construction, pr(Xr) = —Xr, this shows that p,
satsifies BSDE ([7.32). Finally, if X is bounded, then so is p;(X7) and therefore also

T
QE [/ | Z,)? ds
2 ¢

Conversely, if (7.32) has a solution (Y, Z) such that Y, and E [ ftT |Zs|2ds’ ]—"t] are
bounded, then sois Y. O

ft} — E[p(Xr) — Xr| F.

Remark 7.17. As the drivers in [[Car09|] are denoted by g, the dynamic operator )9, which
to each terminal condition &7 associates the maximal solution to the BSDE with driver g and
terminal condition &r, is called g-dynamic operator and ) is called g-expectation. If we
let (Y, Z) denote the solution to a BSDE with driver g and terminal condition Yy = &7, then
E9 [&r | Fi] ==Y, is the g-conditional expectation of {r. Contrary to the usual conditional
expectation, this one is non-linear. We will continue denoting the driver by f.

Consider a BSDE

- d}/;ﬁ = f<t7}/;‘/7 Zt>dt - Zt ' th7 YT = _57 (7'34)
whose drivers shall be such that there exists a unique (possibly maximal) solution.
Denote by )/ the operator such that yg‘ (&) =Y; is the (maximal) solution to the BSDE
with driver f and terminal condition —¢. Let us see which conditions on the driver
guarantee that )/ has the properties of a dynamic risk measure.
Proposition 7.18. Let )/ be the dynamic operator introduced above.

1. Y/ is monotonic, i.e., if ¢ > & a.s., then Y} (£) < Y/ (¢') for all t € [0,T), a.s.

2. Y/ is time-consistent, i.e. for s <t < T, Y!(&) = Y/ (=Y (¢)) as.

3. If f is independent of y, then V! is translation invariant, i.e., Y} (E+m) = V! (&) —me
a.s. fort € [0,T] and n; € F.

4. If f is convex, then so is Y/, i.e., for any t € [0,T] A € [0,1] and for any terminal
conditions &, &,

VIOE+ (1 =NE) <O+ 1 -2V ().

5. If f1 < f2 then YI" < YI°.

Let us remark that Statement 3 is actually an “iff”-statement, but for our purpose, one
direction is sufficient.

Proof. Statements 1 and 5 follow immediately from the comparison principle. For the
time consistency (Statement 2), also called flow property, observe that for s < ¢ < T, if
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we denote by Y/ (r, £) the dynamic operator with driver f, applied to terminal condition
¢ at terminal time r, then

Vi, =T, €)=Y, (t,g—/tTf(...)du+/tTZuqu)

:_§+/tTf(...)du—/tTZuquJr/Stf(...)du—/:Zuqu
T T

:_§+/S f(...)du—/s Z,dW,

:ys(Tvg)

For the translation invariance (Statement 3), observe that for any ¢ € [0,7] and 7; € F;,

T T
VIE £ )= €+ / £y — / ZudW, —
= yz:f(@ — -

Finally, for the proof of convexity (Statement 4), let us consider two BSDE with pa-
rameters (£', f) and (€2, f), respectively and their corresponding solutions (Y, Z%) for
i =1,2. Let A € [0,1] and define Y; := AY;! + (1 — \)Y;2 and Z, accordingly. Then Y
satisfies

—dY, = V(Y ZD + (L= NF(6 Y7, Z0)dE = (AZE + (1= A)Z7)d W,
Ve = A4 (1= N)Ex
Since f is convex, we can rewrite the first equation as
—dY; = (f(t,Ys, Z4) + (t, Y1, Y2, ZE 22 \))dt — Z,dW,

where « is an almost surely nonnegative process. Thus, by 5., the solution Y to the
BSDE with parameters (¢! + (1 — A\)&2, f) is for any ¢ € [0,7] a.s. smaller than the
solution Y to the above BSDE. O

7.3.1 A model with equilibrium pricing — not relevant for the exam

Let us look at the model presented in [HPDR10]] and extended in [BLDR17].

Assume that there are two sources of randomness, represented by a 2-dimensional stan-
dard BM W = (W*, W¥) on a filtered probability space (2, F, (F;)icpo,7], P), where the
filtration is generated by W and augmented by the P-nullsets. We do not observe W
directly, but we observe the temperature that evolves according to

dR, = pfidt +bdWE, Ry = rg
and a stock price process that evolves according to
dS, = pf Sydt + 02 S, dW5, Sy = s0.

We assume that b > 0 and that the processes 1%, 1°, 0°: Q x [0, T] — R are adapted and
that o° > 0. We write o; = (075, 0)7.
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Lemma 7.19 ([HMO7]). Any linear pricing scheme on the set L*(P) of square-integrable
random variables with respect to IP can be identified with a 2-dimensional predictable pro-
cess 0 = (65, 0%) such that the exponential process (£7) defined by

. t t
g ::5(—/(98,dW5>) :eXp{—/ <95,dW5>—1/ |05|2d3}, t€[0,T], (7.35)
0 t 0 2 0

is a uniformly integrable martingale.

This ensures that the measure PV defined by having density £} against P is indeed a
probability measure (the pricing measure), and the present price of a random terminal
payment X is given by E’[X], where E’ denotes the expectation with respect to P?. For
any such 6, we introduce the P’-Brownian motion

t
Wf:Wt—I—/ 0,ds,  tel0,T]. (7.36)
0

The first component §° of the vector 6 is the market price of financial risk. Under the
assumption that there is no arbitrage, S must be a martingale under P’ and, from the
exogenously given dynamics of S, §° is necessarily given by 67 = 12 /o, t € [0,T)]. The
process 6% on the other hand is unknown. It is the market price of external risk and
will be derived endogenously by the market clearing condition (or constant net supply
condition, see below).

Proof of Lemma By the Riesz representation theorem, any continuous positive lin-
ear pricing rule [: L?(P) — R can be identified with a square integrable random variable
G such that

I(F)=E[G-F], VFeL*P).

If F is a security that pays 1 Dollar in every state of the world, then we must have
E[G] =E[G-1] =I(F) =1, i.e,, G is a P-a.s. strictly positive density function. Hence,
every pricing measure can be identified with a probability measure Q that is equivalent
to P. Then, in order to have no arbitrage under that pricing measure, the discounted
asset price has to be a Q-martingale. The density j% 7 =: Z; is an almost surely strictly
positive uniformly integrable martingale and can be written as stochastic exponential,
i.e., there exists # such that

t 1 t
Z; = exp (—/ s - dW, — —/ \GS\QdS) .
0 2 Jo

The agents a € A receive at time 7' the income H® which depends on the financial
and external risk factors. While the agents are able to trade in the financial market to
hedge away some of their financial risk, a basis risk remains, originating in the agents’
exposure to the non-tradable risk process R. A derivative with payoff HP at maturity
time 7 is introduced such that, by trading in the derivative H”, the agents have now a
way to reduce their basis risk.

]

We make the following assumptions on the endowments, derivative payoff and coeffi-
cients appearing in the dynamics of S and R.
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Assumption 7.20. The processes %, 1°, o° and 6° = u/o® are bounded (belong to
8%). The random variables HP and H®, a € A, are bounded (belong to L>(Fr)).

For a probability measure Q, we denote Hpmo(Q) as the space of processes Z € HP(Q)
for any p > 2 such that for some constant K0 > 0

T
sup EY {/ | Z,2ds
TE€T0,1] T

where 7y 1) is the set of all stopping times 7 € [0,77]. For the reference measure P we
write directly Hpyo instead of Hppo(P).

f7:| < Kpyo < 00,

Assuming no arbitrage opportunities, the price process (BY).cor) of H” is given by its
expected payoff under P’; in other words B = E’ [HP|F]. Since H” is bounded,
writing the P’-martingale as a stochastic integral against the P’-Brownian motion W‘)
(with the martingale representation theorem) yields a 2-dimensional square-integrable
adapted process x’ := (x°, k%) such that for ¢ € [0, 7]

t
B! = E[HP] +/ (k0 AW = BY[HP] +/ K9 dAW,) / (k2,0,) ds. (7.37)

0
We have (B, k) € 8 x Hamo(P?). It will turn out to be useful to rewrite (7.37) as a

BSDE:
T T
BY = HgP — / (K?,0,)ds — / (K2, dW,). (7.38)
t t

We denote by 7' and 7{"* the number of units agent « € A holds in the stock and the
derivative at time ¢ € [0, T, respectively. Using a self-financing strategy 7% := (7%!, 7%2)

with values in R?, her gains from trading up to time ¢ € [0, 7], under the pricing measure
P? inducing the prices (BY) for the derivative, are given by

¢ ¢
Vi =Vy(n?) = / w;“l dsS, + / 7T272 ng
0 0

. . (7.39)
(nllos +ml?kY,0,) ds + / (r% oy + 7260 dW,).
0 0

We require that the trading strategies be integrable against the prices, i.e., for all a € A,
T € L*((S, B?),IP?), so that the gains processes are square-integrable martingales un-

der P’ (i.e., we require E? [( V.(7%) )] < 00). The (RQ)(N_I)—Valued vector of strategies
of all agents b € A \ {a} will be denoted by 7~ := (7°)pea {a}-

The agents’ measure of risk

The agents assess their risk using a dynamic convex time-consistent risk measure p®
induced by a BSDE.This means that the risk pf(£*) which agent a € A associates at time
t € [0,7] with an Fr-measurable random position £ is given by Y,*, where (Y%, Z%) is
the solution to the BSDE

—dY?® = ¢*(t, Z})dt — (Z},dW;) with terminal condition Y} = —¢£°.

The driver ¢g* encodes the risk preferences of agent a for a € A. We assume that g* has
the following properties:
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Assumption 7.21. The map ¢° : [0, T] x R?* — R is a deterministic continuous function. Its
restriction to the space variable, z — ¢°(-, z), is continuously differentiable, strictly convex
and attains its minimum.

For any fixed (¢,9) € [0,7] x R?, the map z — ¢°(¢,2) — (z,9) is also strictly convex
and attains its unique minimum at the point where its gradient vanishes. With this in
mind we can define Z° : [0, 7] x R* — R?, (¢,9) — Z°(t,9) where Z(¢,?) is the unique
solution, in the unknown Z, to the equation®!

V.q'(t, Z) = 9. (7.40)

Under Assumption [7.21] the risk measure given by the above BSDE is strongly time
consistent, convex and translation invariant (or monetary).

Agent a’s position at maturity, £%, is given by the sum of her terminal income H* and
the trading gains V* over the time period [0, 77, i.e.,

fa = H*¢ + VT(W(L).
The risk associated with the self-financing strategy n* evolves according to the BSDE
—dY,* =g (t,Z})dt — (Z},dW,), t€[0,T]

Y = —£4n%) = _(Ha n VT(’/TG)>. (7.41)

Now, we introduce a notion of admissibility for our problem.

Definition 7.22 (Admissibility). For a € A, the R2-valued strategy process 7 is called
admissible with respect to the market price of risk 0 if E° [{ V.(7®) )] < oo, where (V.(7%))
denotes the quadratic variation of (V}(w“)) reloTp and BSDE (7.41)) has a unique solution.

The set of admissible trading strategies for agent a € A is denoted by A°.

Each agent a € A wants to minimize her risk, i.e. agent a solves the risk-minimization
problem
min Yy'(7?). (7.42)

mee A9

Equilibrium market price of risk and endogenous trading

We denote by n € R the number of units of derivative present in the market. While
each unit of derivative pays H” at time T, the agents are free to buy and underwrite
contracts for any amount of H”. Within the trading period [0, T, only the agents in our
set A, with trading objectives as described above, are active in the market and the total
number n of derivatives present is constant over time.

We show that one can convert the problem for a general n € R into a problem for
n = 0 by distributing the derivative among all agents before the beginning of the trading
period. In the case n = 0 every derivative held by an agent has been underwritten by
another agent in A, entailing essentially that agents share their risks with each other.

We assume that each agent seeks to minimize her risk measure independently, without
cooperation with the other agents, so we are interested in NE.

31We write V,g%(t, Z) for the vector consisting of the partial derivatives of g® w.r.t. the (two) compo-
nents of the space variable, evaluated at Z.
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Definition 7.23 (Equilibrium and Equilibrium MPR (EMPR)). For a given Market Price
of Risk (MPR) 6 = (6°,0%), we call m* = (7*%),., an equilibrium if, for all a € A,
7 e A% and

for any admissible strategy = it holds that Y{'(7**) < Y{(7%),

i.e., individual optimality. We call § Equilibrium Market Price of Risk (EMPR) and 0%
EMP of external Risk (EMPeR) if

1. 0 = (0°,0%) makes P a true probability measure (equivalently, £° from (7.35)) is a
uniformly integrable martingale);

2. there exists a unique equilibrium =* for 0;

3. «* satisfies the market clearing condition (or fixed supply condition) for the derivative
HP (where Leb denotes the Lebesgue measure):

Z mp? = % =n P® Leb—a.e.. (7.43)

a€A a€A

Optimal response for one agent - optimizing the residual risk

In this subsection, in addition to a MPR 6 being fixed, we focus on a single agent a € A,
whose preferences are encoded by ¢“, we take the strategies 7% = (7°),ea) (o} Of the
other agents as given, and we study the investment problem of our agent in this setting.

To solve the optimization problem (7.42) for agent a, we first recall from [HPDR10]
that, at each time ¢ € [0, 7], the strategy chosen must minimize the residual risk: trans-
lation invariance implies that

v = pi (e Vi) = g (B + (Vi = V) = Vi

This suggests applying the following change of variables to (7.41)),

}/;CL — 1/;:0, _"_ ‘/I't(l’
=~ a,1 a2 0 2 (7.44)
Zt =272+ (¢, where (=m0 +m Kk €R"

If the strategies are not clear from the context, we also write (* = (%(n*). Direct
computations yield a BSDE for (Y%, Z¢) given by

AV = (ot Ze ) de = (ZE, W), e [0,T),

B (7.45)
V= —H",
where the driver g%: Q x [0,7] x R? x R? — R is defined as
grtmy ) s =gt (82" = §) — (¢ 0n) (7.46)
= ¢° (t, 2% — (Wf’lat + Wf’%f)) —(m{toy + 7KDL 6,) (7.47)

107



Each individual agent a € A seeks to minimize }70“, the solution to ([7.45)), via her choice
of investment strategy 7 € A%, in other words she aims at solving

min Y (7). (7.48)

rac A9

Before we solve the individual optimization problem, we make the assumption that the
derivative H” does indeed complete the market. This must then be verified a posteriori
(once the solution is computed) and case-by-case depending on the specific model.

Assumption 7.24. Assume that k? # 0, for any t € [0, T), P-a.s. .

The pointwise minimizer for the single agent’s residual risk

In (7.45), the strategy 7* appears only in the driver g°, not in the terminal condition.
The comparison theorem for BSDEs suggests that in order to minimize Y{'(7®) over
admissible strategies 7%, one needs only to minimize the driver function ¢g® over =7,
for each fixed w, t and 2°. We define such pointwise minimizer as the random map
I*: Q x [0,7] x R* — R?, given by

I1%(t, z) := arg min g*(¢, 7", 2).

mecR2
The pointwise minimization problem has, under Assumption|7.21} a unique minimizer,
which is characterized by the FOC for ¢“, i.e.,
Vg (t, 7, 2%) = 0.
Recall that o = (65, 0). Using (7.47), the FOC is equivalently written as
Opang®(t,m*, 2%) =0 <= <(Vzga)(t, 2% — (), —a> —(0,0) =0
= g4(t, 2" — (V) = —0°, (7.49)
Opag®(t, 7, 2%) =0 <= ((V.g")(t, 2* — (%), —/<;9> —(k%,0) =0
= 09K g% (t, 2 — () KT = —k50% — TR
= gh(t, 2" = (") = -0, (7.50)
where we used (7.49) to obtain (7.50) under Assumption [7.24
With Z* from (7.40), the FOC system (7.49)-(7.50) is equivalent to
2% = (=20 = 1T, 2%)) = Z9(t, —06,), (7.51)
which has the useful property that while the LHS depends on 2%, the RHS merely de-

pends on the MPR ¢ and the structure of the driver ¢°.

The expression for (* in (7.44) and elementary re-arrangements allow to rewrite (7.51))
as

sl Zel(t =) 20— 22, —0,) kS

% (¢, 2%) = — ,
oy S, kIt o’ S, (7.52)
[2(t, o) = 2o =2 (b =6
2(t, 2%) = .
Y I{/fi
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Plugging 2* — (' = Z°(t,—0,) into (7.46) yields an expression for the minimized (ran-
dom) driver

gu(t, (w0, 2%), 2%) = g*(t, Z°(t, —6,)) + (Z2°(t, —6,), 0,) — (2%, 6,)

~ (7.53)
=: G(t, 2%).
Observe that G is an affine driver (in z%) with stochastic coefficients.
Single-agent optimality
Since G is an affine driver, and since V.Gé= —0 € Hgemo, We have a unique solution to

the BSDE with driver G* and terminal condition —H®, provided that the process (w,t) —
G(t,0) = g*(t, Z°(t, —6,)) + (2°(t, —8,), 6;) is sufficiently integrable. Let (Y, Z*) be the
solution to BSDE with driver and define the strategy 7 := I1%(-, Z%). This
does not only solve the individual risk minimization problem, but, as we show next, it
is even unique.

Theorem 7.25 (Optimality for one agent, uniqueness®?). Fix a market price of risk 0 =

(65,0%) € Hpno and let Assumption hold. Fix an agent a € A and a set of integrable

strategies (°)pen (o) Assume further that for G* given by (7.53), |G(., O)]l/2 € Hpmo-

Then the BSDE with driver and terminal condition —H* has a_unique solution
(Y*, Z*) € 8§ x Hpmo. Moreover, if % = 11*(-, Z*) is admissible, then Y is the value of
the optimization problem (7.48) (i.e. the minimized risk) for agent a and ©** is the unique
optimal strategy.

Proof. Given the structure of G* in (7.53) and the integrability assumption made, the
existence and uniqueness of the BSDE’s solution (Y, Z%) in > x Hpyo is straightfor-
ward?3.

We first use the comparison theorem to prove the minimality of Y, and hence the
optimality of 7. Let t € [0, T]. Take any strategy 7® € A’. First, from the definition of
G* as a pointwise minimum, we naturally have that

G (t, 2%) = §* (£, T1%(t, 2%), 2%) < (¢, =%, 2) for all t € [0,7] and 2 € R?,

ie., G*--) < §*(-,7,-). Second, G“ is affine and thus Lipschitz continuous, with
Lipschitz coefficient process —¢ € Hpwo. By the comparison theorem, we therefore
have, for any ¢ € [0,7] and in particular for ¢t = 0, that Y,* = Y,*(7*%) < Y*(7%). As
this holds for any 7* € A?, this proves the minimality of Y = p¢(£%(7*)) and thus the
optimality of 7%,

We now argue the uniqueness of the optimizer 7. Let 7 be an admissible strategy
and let (Y*(n®), Z*(w®)) be the corresponding risk, i.e. solution to the BSDE ([7.45] with

32¢f. [HPDR10] *Proposition 3.6, which we extend by proving existence and uniqueness of the solution
of the BSDE instead of assuming it. Uniqueness is important to us in order to obtain a unique NE for a
given MPR 6.

33¢f. [IDR10]*Theorem 2.6, which states that Y € S> and Z x W € BMO, which implies Z € Hpwmo.
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strategy 7. We compute the difference Y;%(7%) — Y,(7*):

Y (x"

) - F(at)
/ 7 (s 220) = 6 (5. 22 [ as = [ 122 = Zetwgaw,
-

- / Z0(n) — Z0(x" ) AW?,

Y S

s, Z%(n®) ) —q° (5,H“(5,2§(W“)),Zg(ﬁ“)) }ds (7.54)

where we added G°(t, Z*(x*)), subtracted §° (t, 1 (t, Z¢ (%)), Zf(w“)) (equal to the

added term) and used the affine structure3* of G* combined with (7.36]

By construction of II* as a minimizer, the difference in (7.54) is always positive. In
particular, taking P?- expectatlon w.rt. F, implies that Y“( @)y — YA(r*e) > 0 for all
t € [0,7). Assume that 7* is an optimal strategy. Then Y?(r%) = Y&(7**) and the
LHS vanishes for t = 0. Under P’-expectation, the stochastic integral on the RHS also
vanishes and we can conclude that the integrand in (7.54) is zero P ® Leb-a.e.. Con-
sequently, we obtain Y*(7*) = Y*(n**) and hence Z%(n®) = Z%(n**). This implies
(-, Z%(r®)) = (-, Z*(r**)). Finally, by uniqueness of the minimizer I1%, we obtain
7 =11 (-, Z9(x%)) = 1°(-, Z°(x*%)) = 7. O

Remark 7.26. Theorem|[7.25|describes the optimal investment of an agent with preferences
described by g* (equivalently, p®) who trades in the assets S and B, which have the given
MPR 6. Following the same methods, the result could be generalized to a higher number of
assets, with price processes given exogenously. This applies similarly to an agent trading in
fewer assets, by setting the respective components to zero.

We now state a characterization of the optimal strategy via the FOC.

Lemma 7.27. Under the assumptions of Theorem [7.25} let 7 be an admissible strategy
and (Y*,Z “) be the associated risk process, solution to the BSDE with driver g*(t, 7, 7, , )
and terminal condition —H®. Assume that they satisfy the FOC (7.49)-(7.50) in the sense
that

V.gi(t, 28 — () = —6;  where (= (RPlo, + 7R — A (77 oy + 7 2D,

Then (Y, Z%) = (Y, Z%) and 7@ = 7*°

Proof. By the assumptions on g%, V.g°(t, Z&—() = —0; means that Za—(o = Z9(t, —6,),
or equivalently 7, = I1°(¢, Z¢). Therefore, §°(t, 7%, Z2) = G°(t, Z*) - recall (7.46). By
uniqueness of the solution to the BSDE with driver G“( -) and terminal condition —H*,
we have (Y7, 2% = (Y, Z%). Consequently, by the uniqueness of the FOC’s solution
(Theorem , 7o = T1%(t, Z0) = I1°(t, Z¢) = ="°. O

The final step is to calculate the EMPeR 6 from the market clearing condition. As the
optimal strategies 7 are very abstract, let us look at this step in the special setting of
the entropic risk measure.

34(7.53) implies G*(t, 2%) — G*(t,2%) = (3* — 2%, 0,) for any ¢ € [0,T] and 2*,2" € R2.
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Example 7.28 (Entropic risk measure). Each agent a € A is assessing her risk®® using the
entropic risk measure p§ for which the driver g* : R* — R is given by

1 . .
g“(2) = —|2|*, where ~,>0 isagenta’srisk tolerance, (7.55)

a

and 1/, is agent a’s risk aversion. Since ¢%(z) = z'/,, it is easily found that Z°(t, —6,) =
(=702, —7.0F) = —~.0, foralla € Aandi € {1,2} (¢f (7.40)). Injecting this in (7.53)
yields the minimized driver G°,

Ga(t, 2%) = —% 16, — (2°,8,), telo,T]. (7.56)

The minimized (individual) risk is then given by Y2 = Y& where (Y, Z) is the solution
to the BSDE with terminal condition —H® and driver G®, while the optimal strategies

7 = (%) 4ea are given by (cf. (7.52))

B Za,l_i_,.yaes 2’a,2+%91% kS

*,a,1
T 53 pr 55 (7.57)
Za,? a@R
T2 = % (7.58)

If one assumes n = 0, then the market clearing condition (7.43) reads >, 7** = 0. With
this, the market price of external risk 0¥ can be computed from adding (7.58)) over a € A,

giving 0% = =", 7%/ 3 ch Y-

350ur problem is that of minimizing a static risk measure. The corresponding dynamic risk measure is
be given by pf (¢) := v, InE[e=¢/7|F,] for t € [0, T).
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A Collection of results for the stochastic exponential

The stochastic exponential of an It6 process L with Ly = 0 is

E(L); = exp (Lt - %(L)t) .

U = &(L) satisfies the SDE
dU; = U,dL;, with initial condition U, =1,

hence it has the integral representation
t
U =1 +/ UsdLs.
0

Lemma A.1. If L is a local martingale and H locally bounded, then [, H,dL, is a local
martingale as well.

Proof. This is an object of Stochastic Analysis. The result and its proof can be found,
e.g., as Theorem 29 in Chapter IV in Stochastic Integration and Differential Equations by
P. E. Protter (2005). O

Lemma A.2. If L is a local martingale, then U = £(L) is a local martingale as well.

Proof. Due to its integral representation, all we need to show is that f(f U,dLy is a local
martingale. This follows directly from Lemma O

Corollary A.3. The expected value of a stochastic exponential is bounded by 1. In other
words, if L is a local martingale with Ly = 0, then E [£(L),] < 1 for any finite stopping
time .

Proof. The above lemma tells us that £(L) is a local martingale. It is bounded from
below (by zero), hence it is a supermartingale by Lemma with E[E(L)o] = 1.
Consequently,

E [E(L)T] =E [g(L)T | JT:O] < E(L)O =L

]

Lemma A.4. Let S be an Ito process satisfying dS; = u,dt + o,dW,. Assume that in
the market there exists an ELMM. Then Q = Z;P for Z, = £(— fo ¢.dWy), and with

Wy = [} €ds + W, we have dS; = o, dW}.

Proof. Assume that P =~ Q. Therefore, a strictly positive Radon-Nikodym derivative Z
exists such that 7, := %% 7 > 0is a uniformly integrable P-martingale. From the MRT

we know that there exists € V such that 7, = E¥ [Z;] + fot nsdWs. As Z, > 0 we can
introduce &; := —% and write

t t
Z, = EF [Zo] + / %stws = EF [Zy) + / —&,Z, AW,
0 0

s
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As (Z,) satisfies the SDE dZ, = —¢,Z,dW,, we have Z, = £(— [, &dW,),. If we let
W; = fot &,ds + W;, then Girsanov’s first theorem tells us that W* is a BM w.r.t. Q and

dSt = /Ltdt + Utth = /Ltdt + Ut(th* - gtdt) = (,Ut — O'tgt)dt + Utth*.

Now S is a continuous local martingale (by assumption on Q being an ELMM) and
f(f o,dW is also a local martingale for o € /. Consequently, fJ (us — 0s€s)ds must be
a local martingale as well. It is a local martingale with bounded variation on [0, 7.
This implies that it is constant and from its initial value being zero we can infer that
fot (s — 0s€5)ds = 0 almost surely. O

Exercise 13. Let X be a continuous local martingale with (X) = 0. Show that X is almost
surely constant.

B Addendum to Section [5

In Section [5|on stochastic optimal control we have considered the restriction to constant
controls, i.e., instead of optimizing over a € A, we only maximized over a € A. For this
to make sense, we have to ensure that constant controls are admissible.

While we have made assumptions on g (Assumption [5.3)), we have neglected f. The
following remark shall fill this gap:

Remark B.1. Assume that f satisfies a quadratic growth condition, i.e., that there exists a
constant C' > 0 and a positive function x: A — R, such that

|f(t,z,a)| < C(1+ |z|*) + r(a), Yt z,a)€[0,T] xR x A,

Then, from (5.4)) follows that for all (t,z) € [0,T] x R? and all constant controls a € A,

T
E l/ | (s, X%, a)|ds| < oo,
t
which entails that a € A(t,x), i.e., all constant controls are admissible.
If, moreover, there exists a constant C' > 0 such that
K(a) < C'(1+7(0,0) + |o(0,)"), Va € A,

then from the above and the definition of A follows that for all (t,z) € [0, T] x R? and for
all o« € A,

T
E {/t | f(s, X0, )| ds| < o0.

Hence, in this case we have A(t,z) = A.
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C Multidimensional It6 processes and the multidimen-
sional It6 formula

This is a collection of multidimensional results, among others, from Section

let W = (W?*, ..., W™) denote an m-dimensional BM.

Let each component of A = (a');—;,_, and B = (bY);-1,_n.j=1...m satisfy the conditions
we previously imposed on a and b, respectively. Then an n-dimensional process X =
(X1, ..., X™)is an It6 process if we have

.....

dXt - Atdt + Btth7
in other words we have

dX} = ajdt + b dW} + ...+ b AW,

AX? = aldt + b dW) + ..+ 5rmAW

Theorem. (¢f Thm. Let X be an Ité process and let f(t,x) = (f, ( z),..., [(t,x))
be a C'-function in time and a C*-function in space. Then Y;(w) := f(t, (w)) deﬁnes an
It6 process with representation

ay} 0 fult, X, dt+z

=1 (t, X,)dX + = Z

fk(t X)dxidx/.  (C.1)

ox;

for k € {1,...,r} and the sums running over i,j € {1,...,n}.

If we plug in the expressions for dX* in (C.I)), then we obtain

dy} = <atfktXt+Z (t, X;)a >dt+z
+12—8 folt, X0) [ ol ) at (C.2)
2 i 8$Z8$j M ] Lot '

Now we have ", b b' = (BBT),;. Furthermore, recall from linear algebra that the trace
of the product of two matrices A and B can be written as

(t, X, )b AW}

tr(ATB) = tr(BTA) = ZA”BU
Hence, by letting A = D2 f,(t, X;) and B = (BB”),, we can rewrite (C.2)) as

Ay} = (% fu(t, X0) + Do filt, X)) - Ay + %tr ((BB"):D; fult, Xt>>) dt

+ Dy fi(t, X,) - BudW,.
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