Humboldt-Universität zu Berlin
Department of Mathematics
Numerical Analysis



Photo of me in 2015

Dr. Philipp Bringmann
Postdoctoral Researcher

Postal address

Institut für Mathematik
Humboldt-Universität zu Berlin
Unter den Linden 6
10099 Berlin


Room 2.418 (house 2, 4th floor)
Rudower Chaussee 25
12489 Berlin


Tel. +49 30 2093 45372

E-mail. bringman [usual symbol here] math.hu-berlin.de

OpenPGP key. keys.openpgp.org

ResearchGate. Philipp-Bringmann

Research interests

least-squares finite element methods, discontinuous Petrov-Galerkin finite element methods, adaptive mesh refinement, Stokes equations, elasticity, nonlinear problems

Bibliometric data

ORCID. 0000-0002-4546-5165

Scopus. 57189076661

Semantic Scholar. Philipp-Bringmann/39021032


  1. P. Bringmann. How to prove optimal convergence rates for adaptive least-squares finite element methods. J. Numer. Math., 2022. Published online. DOI: 10.1515/jnma-2021-0116.
  2. P. Bringmann, C. Carstensen, and N. T. Tran. Adaptive Least-Squares, Discontinuous Petrov-Galerkin, and Hybrid High-Order Methods. In: J. Schröder and P. Wriggers (eds.). Non-standard Discretisation Methods in Solid Mechanics. Lecture Notes in Applied and Computational Mechanics 98. Springer, Cham 2022.
  3. P. Bringmann. Adaptive least-squares finite element method with optimal convergence rates. PhD thesis, Humboldt-Universität zu Berlin, 2021. DOI: 10.18452/22350
  4. C. Carstensen, P. Bringmann, F. Hellwig, and P. Wriggers. Nonlinear discontinuous Petrov-Galerkin methods. Numer. Math. 139(3): 529-561, 2018. DOI: 10.1007/s00211-018-0947-5.
    Preprint available at arXiv.org: 1710.00529 [math.NA].
  5. P. Bringmann, C. Carstensen, and G. Starke. An adaptive least-squares FEM for linear elasticity with optimal convergence rates. SIAM J. Numer. Anal. 56(1): 428-447, 2018. DOI: 10.1137/16M1083797.
  6. P. Bringmann and C. Carstensen. h-adaptive least-squares finite element methods for the 2D Stokes equations of any order with optimal convergence rates. Comput. Math. Appl. 74(8): 1923-1939, 2017. DOI: 10.1016/j.camwa.2017.02.019.
  7. C. Carstensen, E.-J. Park, and P. Bringmann. Convergence of natural adaptive least squares finite element methods. Numer. Math. 136(4): 1097-1115, 2017. DOI: 10.1007/s00211-017-0866-x.
  8. P. Bringmann and C. Carstensen. An adaptive least-squares FEM for the Stokes equations with optimal convergence rates. Numer. Math. 135(2): 459-492, 2017. DOI: 10.1007/s00211-016-0806-1.
  9. P. Bringmann, C. Carstensen, D. Gallistl, F. Hellwig, D. Peterseim, S. Puttkammer, H. Rabus, and J. Storn. Towards adaptive discontinuous Petrov-Galerkin methods. PAMM. Proc. Appl. Math. Mech. 16(1): 741-742, 2016. DOI: 10.1002/pamm.201610359.
  10. P. Bringmann, C. Carstensen, and C. Merdon. Guaranteed velocity error control for the pseudostress approximation of the Stokes equations. Numer. Methods Partial Differential Equations 32(5): 1411-1432, 2016. DOI: 10.1002/num.22056.

Valid XHTML 1.0 Strict Valid CSS!