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1. Introduction

In numerical analysis various lozenge algorithms are in use (see [1,3,12]). For instance, Wynn’s
(classical) e-algorithm [13), the first and second generalisation of the e-algorithm by Brezinski [1],
the p- and ﬁ-aigorithm [1] are toois for convergence acceleration. Most of them are obtained as
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algorithm. The qumnon is: Why does the complexity reduce?

This is of great interest for two reasons. The first is to get an abstract understanding of the
algorithm which clearifies the relations between different lozenge rules and leads to a systematic
treatment of similar particular cases. The second is to derive new algorithms—if possible.

This toplc was discussed by the author in [5] for the e-algorithm, see 2.5. In this paper the

Py . PPN - — e albee Lo menn Tedmanema e

same methods are applied to the p-algorithm and lead to an identity for some determinart
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Schur-complement-method [10,11].

In Section 3 the common p-algorithm is obtained as a particular case of the general
p-algorithm, while Section 4 deals with another rational particular case.

A rigorous discussion of all particular cases of the general p-algorithm is an important but
open question. Under further regularity assumptions any lozenge rule could be a particular case.
This is shown in Section 5.
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2. A general p-algorithm

2.1, Natation_ I et Rl or N denote the set of
C be the complex field.
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62 C. Carstensen / General p-algorithn

Throughout this section (s, |7 €Ng) €CNe, (a,|nE€N,)€C™ and (g;(n)|i€N, nEN,)
€ CNV*No are complex sequences. For each i €N and n =N, we use the abbreviations As, =
Sp+1 — S A, =@, ., —a, and Ag,(n) =g, (n+1) - g,(n).

For nonvanishing denominators we define for any k€N and n€N,

Sp Sn+2k
gi(n) -+ g(n+2k)

. ng.(n) 8zk(".+2k)
pzk_lAgl(n) o Ag(n+2k-1) |’ @

Agy(n)  --- Agy(n+2k-1)

Aa'l Tt Aan-l-Zk
Ag](") Agl("+2k)

Agy(n) --- Ang(n + 2k)

92k+1 = Asn . As"+2k ) (2)
Agy(n) ---  Ag(n+2k)
Agz&(") e Agy(n+2k)
Aa, T Aa, iz
As, Tt As,y2k-1
Agi(n) -+ Agy(n+2k-1)
A= Ang—Z(n) T Ang_z(n +2k - 1)
* Agy(n) -+ Ag(n+2k-1)] ° (3)
i :
g(n) - g(n+2k-1)
v o |guln) - u(n+2k-1) “
2k+17
¥ AS" tec Asn+2k—2
Ag(n) -+ Agi(n+2k-2)

|A82k—z(") e Agy o(n+2k-2)
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In addition we initialize pg == s, and p} = Aa,/As, and use the convention that emptv determi-
nants are equal to one.

The main result of this note is given in the following theorem and proved in 2.4.

2.2. Theorem. Let k€N and n €N,

(a) If the denominators of p3;!,, P31, P33, and X3, do not vanish, then the denominator of
P53 is nonzero and

(03— #5822) - (P52 = B3ea) = M- (NEh 1 = Ny (5)
(b) If the denominators of p3;',, p3, and p3i' do not vanish, then
Pok * P!
implies that the denominator of p3, ., is nonzero and
(P;kn - P'zllﬁl) : (p'i?I‘ - P'z'k) =Nokr1” (X'Zk - "221) (6)

Moreover, 2.4 will show the following;:

2.3. Additional Remarks. (i) The nonvanishing of all denominators used on the left-hand side of
(5) or (6), respectively, implies that all denominators used on the right-hand side are nonzero.
(ii) In (a) p%;_, * P3¢}, implies that the numerator of A%, is nonzero.

2.4. Proofs. Consider the matrix A4,

Aa,
s As

n n

81(.”) Agl.(")

a Aa, 5

Asn+2k
Agl(n + 2k) e C(2k+2)x(2k+2).

™

g (n) Agy(n) Agy(n +2k)

For convenience of notation 4(% ') or || is referred to as the submatrix of 4 consisting
of the rows j; ... j, and the columns i, ..., of A4 or its determinant, respectively. Therefore

|1,3...2k +|2...2k I 2.2k
. 2.2k |7 |2...2k N P WY
2k-2 " 3.2k » P T TR TR
|3...2k 2...2k
|3...2k+1 [1...2k+1
11,32k o 2.2k +2
Pu-1=T13 211’ P19 9 +11’
3. 2k+1 |2...2k+1
2...2k 3...2k+2
1,3...2k+2 +|2...2k+2 2...2k+2
o1 | 2.26+2 |72, 2642 . _11,3..2k+2
Par = 3...2k+2 » Prun |2...2k+2| ’
3..2k+2 2...2k+2
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IZ...2k+l |3...2k+2

N S PO a1 | 1...2k

k19 2k+1) %k 13 2k+2|°
3---2k+2 3...2k+2
|1,3...2k+1|+|2...2k+1

st 1 3.2k +2 3...2k+2

2k+1 7 3..2k+1 ’

2...2k

l 1...2k

n 3...2k+2

2k+1 7 2. 2%k >
2...2k

where we have occasionally used lLinearity in the first column and then replaced every other
column by its differe~ce with the preceding one. All matrices occurring in these determinants

contain P:= A(3:2%) as a (possibly empty) submatrix. In the proof of (a) we have |32

3...2k

| #0.

Hence the Schur complement [8] 4 /P can be considered. It is computed by transforming A into

by block-elimination taking P as a pivot block [4] (where * represents unimportant entries of

B). Then

a b 0 ¢ d
e f 0 g h
B=]* = P = =
i j 0 q r
s t 0 u v
a b-c d
_p{1,2,2k+1,2k+2)_|e f & h
A/P‘B(1,2,2k+1,2k+2)“ i j oq r
s t u v

|

Exploiting the quotient property of Schur complements one easily computes

Pl =e+f, Po-1=b/f, Pl =c/g,
e f 8 e g h| |f g hj
I j g i ¢ ri*lj q r
n _ s 1t u n+l _ u v t u v
P |-’ al P2y lq rl s
t u u 1]
b ¢ d
J g r lb c c d|
. t u v f g . g h
P2k+1 = f g h ’ o= i q s A2\1:1=-q ,.l,
j q r lt ul u v
t u v
;) Paef
n u
A2k+l= f ’ )\nz;:.l= g
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We first note that the denominator of X3, equals that of pj, etc. Secondly we note that
P3x—1 * P37, implies b-g— c- f+ 0 and hence X%, # 0. This proves Remarks 2.3(i) and (ii).
Using the above identities for the coefficients occurring in (5) then with

0 et el o o o)

one easily verifies (a).

To prove (b) we firstly assume |3:-2| # 0. Hence the Schur complement A/P can be
considered and leads to the identities given above. Using these representations some simple
computations show

i ql.lV ¢

n+1 n _f-. & h § u +lt u (8)
P Py =] ¢4 q rl-j q
t u v u o'l 4

Hence p3;! + p3, implies that the denominator of p3,,, is nonzero. Again, using the above
identities for the coefficients occurring in (6) and (8), then with

I{ ¢ d f g _lqg r||b ¢ c dl|j q
J q r .g-.l q r .c_lu vI. f g - g h ) u
t u v t u v

one easily obtains (b).
Finally we drop the additional assumption that 13--2%| £0 using continuity arguments.
Indeed, let R denote the set of all matrices A4 € C@<*+2X@k+2) having regular submatrices

A(3"'2k+1), A(2"‘2k+1), A(B...2k+2)

2.2k 3...2k+2 3...2k+2
and satisfying p3;! # p3,. Then, the subset
_ 3...2k
Ry {AER 3...2k 4=0}

is dense in R (endowed with the sup-norm for instance). On the other hand, the identities of (b)
are continuous in R and proved in R,. Hence (b) also holds in R. O

2.5. Connection with a general e-algorithm. In [5] the author presented a general e-algorithm
which can be written as

n+1+ p’;‘c n — pn+1 M";( — (9)

€ = €32 ntl " €2k+1 = €2k-1 n 1l on "
€31~ €21 € — €3

This algorithm reduces to Wynn’s e-algorithm [13] in the case of g,(n) = As,..
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It seems quite interesting that the e; have the same representation as the p}, indeed
Ej=eg =0y and €4,y =P+ (10)

for k, n €N, with E; from the E-algorithm [3,(3)].
Using the notation of 2.4 the coefficients p} are given by

|1,3...2k +| 2...2k
n =|2...2k+1|. 3...2k+1} [3...2k+1 1)
B 7| g2k |3...2k+lH 2.2k
2...2k 3...2k+1
which can easily be transformed to
Jt Z-(i+j)/j 82012k = 8ok—12k
”Zk-l=x§!k’x:2:il' ; ; =’\"zk"\"z‘;<11' k—l'z,lfﬂ —12 > (12)
ll q|+1 q 82k—12k
s u t u
where
l1,3...2k+1|+|2...2k+1 i ql+|j q
a1 | 3..2k+2 3...2k+2{ _ Is ul |t u
Bak-12¢ |3...2k+1 q
3...2k+1
and
I 1...2k i jl
. 3...2k+2 s ¢
Ben= 1 ok 1T
3...2k+1

are well-known coefficients of the E-algorithm [3].

2.6. A general cross rule. If one is not interested in the entries in the p-table with odd lower
indices they can be eliminated. This was introduced by Wynn [14] for the e-algorithm and can be
done for any lozenge rule. For the p-algorithm the result is a general cross rule

n+1 n n+1 n+2 n+1 n+2
A2k+l'(A2k_ 2k + }\2k+1'(>‘2k '—)\Zk

n __ n+l n+2 __ _n+1
P2r — Py P2~ — Py
n+l fyn+2 _ yn+1 n . n+l __yn
_ A2k (AZIH-I A21c+l) A2k+2 (A2k+3 A2k+3)
- n+2 n+1 + (13)
- n — an+1
Parx—2 7~ P2y Por+2 ~ Py

for k€N, ne€N,. (For a proof use (5) and (6) to express any summand in (13) in terms of p
with an odd lower index.)

In [5, Theorem 4.3] the author has chosen a particular sequence (a,,) to obtain the E-algorithm
from a general e-algorithm. The same sequence can be applied here and gives a similar result
which seems less interesting and will be omitted.
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3. The classical p-algorithm as a particular case

3.1. Notation. Let (s,|n€N,) and (x,|n €N,) be fixed complex sequences, where the knots
Xg, Xy,... are nonzero and pairwise distinct. For any k € N and n € N, define

Sy, 1
a,, ==xn, gzk_l(n) ==F and ng(n) = ;E.
n n

For nonvanishing denominators 2.1 gives the definitions of coefficients p3, and p3,., which are
usually written slightly different as follows: let p,:C — C denote the ith monomial, p,(z) = z',
and define

f:{xlieNg}->C, X; S,
for any / € N,,. Furthermore introduce (generalised) Vandermonde determinants by writing

8os--> 8k _
V(xo,...,xk)"

80(.3‘0) .o gk('xo)

go(.xk) gk(-xk)

for a list of functions g,,..., g, and a list of knots x,,..., x,.
Then

v Irs Pr-1> P15 fPr—2s---5 fPo> Po)

Xpseons xn+2k

0= (14)
[P x5 Prors Sox—5--+5 fP0s Po)
Xpseors Xnyok
and
v Pi+1s P> fPr—15-+-5> /P> Po)
Xnpseoos Xps2p+1 (15)

n =
P41 =
| 4
Xpsoeos Xpp2k+1

fpk’ P> ka—l’---’fPo’ Po) )
(To see this it is only necessary to multiply the ith row in (1) and (2) with x}.)
As a particular case of Theorem 2.2 we have the following theorem.

3.2. Theorem. Let k€™ and n€N,. If the denominators of g}, o}, pL*" do not vanish, then

1
LA
implies that the denominator of ¢}, , is nonzero and

x - X
= 14 Zntktl —n
Pra1 =01+ 0 _ =, (16)
Px Px
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Proof. Firstly replace k by 2k — 1. By Remark 2.3(ii) the nominator of X%, is nonzero. Since in
the particular case of this section
V(Pk» Pi+1> P> Pi—1> Pi—1>---> 1> Pl)
o=

Xnseov> Xpi2k

V(Pk’ JPr-1s Pk—15---> [Po> Po

T Xp® et Xpaog (17)
xn""’xn-o-Zk )

the denominators of A%, and p3, are nonzero too. Since

v r-15 Pr=15---> [Po> Po)
n xn""’xn+2k—l - — (18)

2%+1 - . .
Vi Pis x> fPr—15 Pr—1s---> fPr> 21 Xp®eer*Xpyop—1
xn""’ n+2k—~1

Theorem 2.2(a) implies (16) for 2k — 1 instead of k.
Finally replace k by 2k. Then Theorem 2.2(b), (17) and (18) imply (16). O

3.3. Remark. Roughly speaking the general e-algorithm specializes in the classical one because
Agi(n) =gi11(n),  g=As,.

Similarly, the general p-algorithm specializes in the classical one because
&(n)=x,-g.2(n), g&(n)=s,,  go(n)=1.

4. Another rational particular case

We use the notation from 3.1 except that for each n€ N,
an ==f('xn) ° xn‘

Then pj, and X%, ,, are given by (14) and (18), respectively. Therefore, as in the classical
p-algorithm in the particular case of this section p3, can be understood as certain value of
rational extrapolation.

Instead of (15) or (17) we have

v rsrs Prs Pr-15---> [Po> Po)

Xpseoes Xn+2k+1

e = V(kas Pic> JPr—15---> fPos Po) (19)

Xnsees Xna2k41
or

Xnseoos Xnaok
V(Pk, Pr-15 Pr=15---> fPo> Po

Xpseoes Xpyop

V(Pks rsrs fors i1 Pi—15--+5 IP1> Pl)
A% ) =Xyt oo " Xprok Poks (20)
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Hence Theorem 2.2 gives

(P'z'k = P'z'lﬁz) : (P'z'lfll - P'z'k-l) = (Xps26 = %a) * Pt (21)
(P;kn - P’z’ﬂl) (P'zllfl - P'z'k) = Xpizk+1” O3 = Xy P (22)
These identities facilitate the computation of the entries in the two-dimensional p-array with an
even upper index. Since the coefficients in the p-algorithm are simpler, the algorithm based on
(21) and (22) seems less interesting than the classical p-algorithm.
It is remarkable that the cross rule (13)—which corresponds to (21) and (22)—can easily be
transformed into the cross rule of the classical p-algorithm.

S. Prescribing the coefficients in a lozenge rule

We consider a lozenge rule which is given by coefficients (0} | k € N, n € N,); i.e., a sequence
(s,|n€N,) is mapped onto a two-dimensional array (r |k, n €N,) with the initialisations
ry =s, and rZ, =0 and the rule

=t e (23)

n+l -
k— i1

fork=1,2,3,...and n=0,1, 2,....

We will always assume that every denominator in (23) does not vanish. Then the coefficients
(n; |k €N, n € N,) in the lozenge rule define a mapping (s,) — (7).

We are interested in whether algorithm (23) is a particular case of Theorem 2.2 or not. This
question will be solved by construction of g,(n) and e, such that r{ = p; where the latter are
defined by the determinant quotients of Notation 2.1.

By Theorem 2.2 it suffices to determine g, (n) and a, such that

Mok =Nz - (;\"2:11 x'z.(-n) and Ny = }‘"2:11 (}‘"21: -\ (24)
We note that (23) directly implies Ax, = 7]. Then, we determine (g, (n)) by induction on k€N
and n €N, in three steps. ,

(i) First assume that g;(n),..., g,._,(n) are chosen fot any n € N,. Choose some coefficients
825-1(0)s ..., ng l(.?k 1) and g,,(0),..., 8,,(2k — 1) € C. Then {for nonvanishing denomina-
tor) }\2,‘ R , is uniquely determined by (4). Naturally (X7}) and therefore (g;(n)) depends
en (s,). Choose % € C\ {0).

(ii) Compute "“ and A3;1, for any n €N, by

1
b1 = Noar + xfk’ (25)
n+1 _ 4n "72k+1 (26)
2k 2k~ Sn+1

2k+1

Therefore A%, and X3, , satisfy (24) with X" instead of XJ.
(iii) Finally determine g,,_,(2k + n) and ng(Zk +n) by induction on n € N such that

n+1
x21:""2/: and x2k+1 2k+1°
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where A%, or A3il, are given by (3) or (4), respectively. Provided Xy, +0, this is always
possible.

Proof. We write A3;1, = a/b and X, = c¢/d with a and d being the numerator or denominator
determinant of (4) or (3), respectively. Expanding a and d with respect to the last column leads
to

a=8zk("+2k)'a1"821:-1("‘*‘2")'“2‘”3’ (27
d= Ang(n + 2k - 1) - dl - Ag:k_l(n + 2k - 1) . dz - d3, (28)
where (using the notation of 2.4)
11,3...2k 2.2k |_:i,;
= 3...2k+1|+|3...2k+1 147
| 1,3...2k 2.2k |_
a= 3...2k,2k+2‘+l3...2k,2k+2 s+t
] 2.2k |_, | 2.2 |_
h=i3 ok+1|7F  %=|3. 2k 2k+2|T"

Ther. the condition for g,, _,(n + 2k) and g,,(22 + 2k) can be written as

= (4 ’ . 29
d, -—d, 8ai—1(n+2k) 5 td; (29)

I
n
Nk

An+l |
(al "az) ( 8ar(n + 2k) ) Nav1-b+as

This is a linear system of equations for g,,_,(n+2k) and g,,(n+ 2k) in which all otber
coefficients are known. It is uniquely soluble because

__| s=__l 1...2k
Jt 3..

2k+2
since X%, ., #0 (see (4)). O

aG —a,

d, -d, #0

If the computations above are possible, i.e., any denominator appearing there is nonzero,
Theorem 2.2 states that the lozenge rule considered here is a particular case of the general
p-algorithm presented in this paper.

Remarks. (i) The assumptions on the denominators appearing in the computation above are
needed only for a finite subtable. It leads to a certain regularity of some submatrices of (g;(n)).
Since (g;(n)) deperds ou (s,) this is a condition for the sequence (s,) as well as for the (7).

(i) The coefficients (7}) may also depend on the sequence (s,). In this case (77) is regarded as
a function defined for certain sequences (s,,).

(iii) An important application of the results in this section could be the construction of g,(n)
for such lozenge rules in which a representation of the form (1) is actually not known—as for the
6-algorithm for instance. Though this application may be very difficult (the dependence of g;(n)
on (s,) and (7(s,)}) has to be discussed explicitely) it seems in principle to be possibie.
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