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1. Inaction 

In numerical analysis various lozenge algorithms are in use (see [1,3,12]). For instance, Wynn’s 
(classical) c-algorithm [13], the first and second generalisation of the &gorithm by Brezinski [I], 
the a_ and e-algorithm [l] are tools for convergence acceleration. Most of them are obtained as 
particular cases of quasi-linear extrapolation (see [3] for instance). Then the E-algorithm can also 
be used, see [9,7,3]. But the latter has a complexity G(n3) instead of 0(n2) for the lozenge 
algorithm. The question is: Why does the complexity reduce? 

This is of great interest for two reasons. The first is to get an abstract understanding of the 
algorithm which clearifies the relations between different lozenge rules and leads to a systematic 
treatment of similar particular cases. The second is to derive new algorithms-if possible. 

This topic was discussed by the author in [5] for the ~-algorithm, see 2.5. In this paper the 
same methods are applied to the p-algorithm and lead to an identity for some determinant 
quotients. It is called general p-algorithm and is stated and proved in Section 2 using the 
Schur-complement-method [lO,ll]. 

In Section 3 the common p-algorithm is obtained as a particular case of the general 
p-algorithm, while Section 4 deals with another rational particular case. 

A rigorous discussion of all particular cases of the general p-algorithm is an important but 
open question. Under further regularity assumptions any lozenge rule could be a particular case. 
This is shown in Section 5. 

2. A general p-algorithm 

2.1. Notation. Let N or N, denote the set of positive or nonnegative integers, respectively, and let 
C be the complex field. 
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t this section (s,J~EIBI,)EC~~, (cr,,InH+Jo)~CNo and (g,(n)Ii~N, n~tq,) 
are complex sequences. For each i E N and n E N, we use the abbreviations As,, := 

- a, ad Agi( n) := gi( n + 1) - gi( n). 
NandnW+&, 

(0 

Aa, 0.. Aa,,Zk 

(2) 

. . 

Ag,,_,ln) - - l Ag,,_,(n’+ 2k - 1) 

Ag,( n -I- 2k - 1) 
. . 

Ag,,(n;2k-1) * 

gM =-- gl(n + 2k - 1) 
. . . . . . 

-9 (3) 

A>k+* := 
1 &k(n) l == g,,(n+2k-1) 

As” ... A%+Zk-2 
Ag*W l =- AgI( n + 2k - 2) 

. . . . . . 

I Agzk&) - l l Ag,,_,(n + 2k - 2) 

(4) 
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In addition we initialize pz := s, and & := Aa,,/As,, and use the convention that empty determi- 
nants are equal to one. 

The main result of this note is given in the following theorem and proved in 2.4. 

2.2. Theorem. Let k E N and n E N,. 
(a) If the denominators of &:I 2, & _ 1, &? 1 and & do not vanish, then the &nominator of 

& is nonzero and 

( &k - PZJ, l ) ( P;;:. - P&-l ) = hn2k l @2::1- XnZk+l)- 

(b) If the denominators of pi:! 1, pik and p:l 1 do not vanish, then 
?I+1 

&k + P2k 

implies that the denominator of &+ 1 is nonzero and 

( &+I - &:I, . ) ( &t’ - &) = xDz+k:l. (A$;k - A;;‘). 02 

Moreover, 2.4 will show the following: 

2.3. Additional Remarks. (i) The nonvanishing of all denominators used on the left-hand side of 
(5) or (6), respectively, implies that all denominators used on the right-hand side are nonzero. 

(ii) In (a) &- r # pan!, implies that the numerator of ;h\k is nonzero. 

2.4. Proofs. Consider tke matrix A, 

A := 

% Aa, . . . AlX,+2k 

%J As,, .=. ‘%+2k 

&W &h(n) . . . 4dn + 2k) 
. . . 
. . 
. . . 

g2kb) Ag2kb) .-. &,,(;+2k) 

E q=(2k+2)x(2k+2) . (7) 

For convenience of notation A@_-_._~) or Ij:::_-k 1 is referred to as the submatrix of A consisting 
of the rows jr.. . j, and the columns i, . . . i, of A or its determinant, respectively. Therefore 

p;;:, = 
1’;‘::;?~+~;:::::1 

3...2k I I 
5 p~k 1= ~&..%kI 

2...2k ’ 

3...2k I I 2...2k 

&-I, = 
I 3...2k+ 1 l...2k+ 1 

1, 3...2k 2...2k+ 2 

3...2k+ 1 ’ 
& = 

2...2k+l ’ 
2...2k 3...2k+ 2 

I l,3...2k+2 + 2...2k+2 I I 2...2k+ 2 

n+l= 2...2k+2 2...2k+ 2 1, 3...2k+2 I 
P2k 3...2k+ 2 

9 &k+l = 2...2k+2 ’ 
3...2k+ 2 2...2k+2 
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3...2k+2 l...2k 

x @I+1 = I l...2k I 
%k+l= 

I 3...2k+2 I 
tk 

I 3...2k+2 ’ I 2...2k ’ 
3...2k+2 I I 2...2k 

l,3...2k+l + 2...2k+l 

n+l A I I 3...2k+2 I 
2k+l= 

I 3...2k+ 1 I 
9 

2...2k 

where we have occasionaUy used linearity in the first column and then replaced every other 
by its differe-ce with the preceding one. All matrices occurring in these determinants 

as a (possibly empty) submatrix. In the proof of (a) we have I:_-_-$: 1 # 0. 
Hence the Schur complement [S] A/P can be considered. It is computed by transforming A into 

a b 0 c d\ 
e f 0 8 h 
* * p + + 

i j 0 q r 

s t 0 u VI 

by block-eIimination taking P as a pivot block [4] (where * represents unimportant entries of 
B). Then 

A/P=B 1,2,2k+lJk+2 
1,2,2k+1,2k+2 

\ s t u vj 
Exploiting the quotient property of Schur complements one easily computes 

e f g egh fgh 

i j 4 i q r+j q r 
s u v 

& = 
s t u 

n+l = t u v 

jq’ I I 
P2k 4 r -9 
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We first note that the denominator of hnZk equals that of & etc. Secondly we note that 
&k_l f &! r implies !? l g - c l f f 0 and hence & # 0. This proves Remarks 2.3(i) and (ii). 

Using the above identities for the coefficients occurring in (5) then with 

one easily verifies (a). 
To prove (b) we firstly assume ] ~:::~~ ] # 0. Hence the Schur complement A/P can be 

considered and leads to the identities given above. Using these representations some simple 
computations show 

Hence pi,” # & implies that the denominator of &+ r is nonzero. Again, using the above 
identities for the coefficients occurring in (6) and (8), then with 

b c d 
j 4 r-g-J 4 
t u v t u v 

one easily obtains (b). 
Finally we drop the additional assumption that 1 z:: 12: 1 f 0 using continuity arguments. 

Indeed, let R denote the set of all matrices A E C(2k+2)x(2k+2) having regular submatrices 

and satisfying p;t’ # p&. Then, the subset 

R,:= (A ERI I;::-;;l #O) 

is dense in R (endowed with the sup-norm for instance). On the other hand, the identities of (b) 
are continuous in R and proved in R,. Hence (b) also holds in R. 0 

2.5. Connection with a general c-algorithm. In [5] the author presented a general r-algorithm 
which can be written as 

This algorithm reduces to Wynn’s 4gorithm [13] in the case of &(n) := Aksn. 



It seems quite interesting that 

E” 2k =ezk= &k and 

fork, nE ,, with EC from the 
sing the notation of 2.4 the coefficients & are given by 

the ei have the same representation as the &, indeed 

e:k+l= &k+l 

E-algorithm [ 3,( 3)]. 
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(10) 

l,3...2k 2...2k 

t&-1 = I 2...2k+ 1 . 3...2k+ 1 

I 

I I + 3...2k+ 1 I 
l...2k I 3...2k+l . 2...2k II I 

(11) 
2...2k 3...2k+ 1 

which can easily be transformed to 

where 

g;k+-11_2k= - 
I 1,3,..2k+l + 2...2k+l 

3...2k+2 I I 3...2k+ 2 I 

I 3...2k+ 1 
3...2k+ 1 I 

=- 

(12) 

and 

&k-1,2k= - 
I 3!:iz21 

=-- 

I 2...2k ’ 
I 

j 
3...2k+ 1 

are well-known coefficients of the E-algorithm [3]. 

2.6. -4 general cross rule. If one is not interested in the entries in the p-table with odd lower 
indices they can be eliminated. This was introduced by Wynn [14] for the c-algorithm and can be 
done for any lozenge rule. For the p-algorithm the result is a general cross rule 

An+1 
2k+lm Xn2k -x2y) 

&k- p;k+l 

+ n+2 
P2k 

n+l 
- P2k 

p+‘. 
2k 

An+2 
2k+l 

- An+1 
2k+l = 

p;,‘_“, - P2k” 
(13) 

,,. (For a proof use (5) and (6) to express any summand in (13) in terms of p 

with an odd lower index.) 
In [5, Theorem 4.31 the author has chosen a particular sequence (an) to obtain the E-algorithm 

born a general e-algorithm. The same sequence can be applied here and gives a similar result 
which seems less interesting and will be omitted. 
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3. The classid palgorithsn as a jmrticular cme 

3.1. Notation. Let (s, 1 n E N,) and (x, 1 n E RJ,) be fixed complex sequences, where the knots 
x0, xp==- are nonzero and pairwise distinct. For any k E N and n E M, define 

1 
fX,:=+ g,,_,(n) := $ and g,,(n) := - . 

n 4 

For nonvanishing denominators 2.1 gives the definitions of coefficients & and &+* which are 
usually written slightly different as fOll0ws: let pi : C -+ C denote the ith monomial, P,(Z) = z’, 
and define 

for any i E No. Furthermore introduce (generalised) Vandermonde determinants by writing 

for a list of functions g,,, . . . , gk and a list of knots ~0,. . l 9 + 

Then 

and 

&k+l = 
Xn+Zk+l 

fpk, ;:;;-~,..=,fPo, PO 
X n9***1 X,+Zk+l 

(To see this it is only necessary to multiply the i th row in (1) and (2) with xi”.) 

As a particuku case of Theorem 2.2 we have the following theorem. 

3.2. Theorem. Let k E R4 and n E No. If the denominators of pi::, pi, &+I do not vanish, then 

implies that the denominator of &+, is nonzero and 
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Fir&y replace k by 2k - 1, By Remark 2.3(i.i) the nominator of A& is nonzero. Since in 
arcaseof thissection 

pk, pk+l, fpk, &?k--l, Pk-Z,...,h PI 

x 
Aik= 

n,.=., %+2k 1 

( 

Pk, &k-l, Pk-l,..*,fiO, PO 

1 

CX. 
n . . . .%+2k 07) 

y 

x n,.**,xn+2k 

the daodtors of A?& and & are nonzero too. she 

V 

x?k+*= 
( 

jhk-1, Pk-I,***,bO, PO 

X n,***,Xn+2k-l 1 1 =- 
V 

( 
Pk, fik, &k-l, Pk-l,**.,fil, PI 

1 

x;... l xn+2k-l 
X n,***, xn+2k--l 

Theorem 2.2(a) implies (16) for 2k - 1 instead of k. 
Finally replace k by 2k. Then Theorem 2.2(b), (17) and (18) imply (16). 0 

(18) 

3A Rema&. Roughly speaking the general ~~algorithm specializes in the classical one because 

WnJ = &+W go := As,. 

Similar@, the general p-algorithm specializes in the c1assica.l one because 

4 

gifn) = xn l gi+2tn)* gltn) = sn7 gob) = 1. 

nuiodparti~case 

We use the notation from 3.1 except that for each n E No 

a, := f (x,) l x,. 

na &k md %k+l are given by (14) and (18), respectively. Therefore, as in the classical 
p-algorithm in the particular case of this section & can be cderstood as certain value of 
rational extrapolation. 

Instead of (15) or (17) we have 

&k-+1 = 
n,***, Xn+2k+l 

fpk, ;, fik-l,***,fio, PO 

X n,***, Xn+2k+l 

or 

(19) 

fik, fpk-1, pk-l,***,fP1~ ?h 

h;k = 
X nV”‘9 Xn+2k 

pk, &k-l, Pk-l,.**, fpoy PO 
CX . 

n . . . 
l Xn+2k*&k, w 

tively. 

X n,"', Xn+2k 
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Hence Theorem 2.2 gives 

69 

These identities facilitate the computation of the entries in the two-dimensional p-array with an 
even upper index. Since the coefficients in the p-algorithm are simpler, the algorithm based on 
(21) and (22) seems less interesting than the classical p-algorithm. 

It is remarkable that the cross rule (13)-which corresponds to (21) and (22)-can easily be 
transformed into the cross rule of the classical p-algorithm. 

5. Prescribiiglhe coefficients in a lozenge rule 

We consider a lozenge rule which is given by coefficients ($1 k E hi, n E hi,)); i.e., a sequence 
(s, 1 n E No) is mapped onto a two-dimensional array (ri 1 k, n E M,) with the initialisations 
ro” :=s,, and r2r :=Oandtherule 

(23) 

fork=l,2,3 ,... andn=0,1,2 ,.... 
We will always assume that every denominator in (23) does not vanish. Then the coefficients 

($1 k E N, n E I’&,) in the lozenge rule define a mapping (s,) * (ri). 
We are interested in whether algorithm (23) is a particular case of Theorem 2.2 or not. This 

question will be solved by construction of g,(n) and a, such that r[ = pi where the latter are 
defined by the determinant quotients of Notation 2.1. 

By Theorem 2.2 it suffices to determine gk( n) and a,, such that 

rJ;k=~~,-(XR;fk:*-~~~+f) and rl;k+l=XnZ+k:l.(XnZk-~~~‘). __ (24) 

We note that (23) directly implies Aa, = ~7. Then, we determine (gk( n)) by induction on k E l$l 
and n E RI, in three steps. 

(i) First assume that gr( n), . . . , g,,_,(n) are chosen for any n E N,. Choose some coefficients 
g&2k - 1) E c. Then [for nonvanishing denomina- 
by (4). Naturally (AT) and therefore ( gi( n)) depends 

for any n E IV, by 

fi ;‘-:I = k&+1 + p, 
2k 

x n+l= n x 6k+l 
2k 2k - - 

fi 
n+l - 
2k+l 

Therefore kzk and kzk+r satisfy (24) with ~j instead of $. 
(iii) Finally determine &_I (2k + n) and g2k(2k + n) by induction on n E hl, such that 

fiRZk = &k and k&i1 = x”2+k:r, 

(25) 

w9 
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k 01 ~%L are given by (3) or (4), respectively. Provided &+i # 0, this is always 

=a/6 and A& = c/d with a and d being the numerator or denominator 
of (4)*gi3), respectively. Expanding a and d with respect to the last column leads 

a=g,,(n+2k).a, -g,,_,(n+2k).a,-a,, (27) 

d = hg,,(n + 2k - 1) l dl - Ag,,._,~n + 2k - 1) l d, - d,, (28) 

where (using the notation of 2.4) 

a, = l,3...2k + 2...2k 
3,..2k+l I I 3...2k+l =‘+j’ I 

2...2k a*= l,3...2k 
3...2k, 2k+2 I I + 3,..2k,2k+2 =‘+” I 

d =I 2...2k 
* 13...2k+l =” d2= 3...2k,2k+2 =t= I I 2...2k I 

Then, the condition for g,,_, (n + 2k) and g,,(n + 2k) can be written as 

(29 

This is a linear system of equations for g2k_ i( n + 2k) and g2k(n + 2k) in which all other 
coefficients are known. It is uniquely soluble because 

If the computations above are possible, i.e., any denominator appearing there is nonzero, 
Theorem 2.2 states that the lozenge rule considered here is a particular case of the general 
p-algorithm presented in this paper. 

(i) The assumptions on the denominators appearing in the computation above are 
needed only for a finite subtable. It leads to a certain regularity of some submatrices of ( gi( n)). 
Since (gj( n)) depen& cu (s,,) &is is a condition for the sequence (s,) as well as for the (~7). 

(ii) The coefficients ($) may also depend on the sequence (s,,). In this case (17jfI) is regarded as 
a function defined for certain sequences (s,). 

(iii) An important application of the results in this section could be the construction of gj(n) 
for such lozenge rules in which a representation of the form (1) is actually not known-as for the 
B-algorithm for instance. Though this application may be very difficult (the dependence of gj(n) 
on (s,) and (I;) has to be discussed explicitely) it seems in principle to be possible. 
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C. Brexinski, Acc&!ration de la Convergence en Anaiyse Numhrique, Lecture Notes in Math. 5%4 (Springer, BerIin, 
1977). 
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