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The Neville-Aitken formula for rational interpolants 
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Using a polynomial description of rational interpolation with prescribed poles a simple 
purely algebraic proof of a Neville-Aitken recurrence formula for rational interpolants with 
prescribed poles is presented. It is used to compute the general Cauchy-Vandermonde 
determinant explicitly in terms of the nodes and poles involved. 
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I. P r e l i m i n a r i e s  a n d  n o t a t i o n s  

Let  m, n be non-negative integers and let (a i) = (a o, a 1, a2, . . .  ) and (bj.)= 
(b t, b 2 . . . .  ) be given sequences of  (not necessarily distinct) complex numbers  
that are disjoint: 

{a 0 , a  1, a 2 . . . .  } N ( b l ,  b2, . . . } = 0 .  (1) 

Given a complex function f which is sufficiently often differentiable at the 
multiple points a i the rational interpolant rm, . o f f  o f  degree m,  n with prescribed 
poles b l , . . . ,  b, and nodes ao , . . . ,  a m counting multiplicities in both cases is the 
rational function 

rm.  = p m , . / B . ,  (2) 

where Pro.. is a polynomial of degree m at most and 

B . ( z ) : = ( Z - b l ) "  . . .  " ( z - b . )  

such that 

f - r m ,  . (3) 

has zeros ao , . . . ,  a m counting multiplicities. 
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Observe that r,,., is uniquely determined by these properties. Depending on 
data function f, r,,,.,, has no other poles than b l , . . . ,  b, or ~ counting multiplici- 
ties, where the multiplicity of ~ is min{0, deg p,,,.,, - n} with deg p denoting the 
exact degree of a polynomial p. 

A Neville-Aitken type procedure for computing r,,,,, recursively is given in 
[1]. It is based upon the general Neville-Aitken algorithm [2]. 

In this note we will give a short direct proof of the rational Neville-Aitken 
recurrence relation starting from an alternative purely algebraic definition of 

r111,71 �9 

Define 

A m ( Z ) : = ( Z - a o ) ' " ( Z - a m ) .  (4) 

T H E O R E M  1 

Let ~b be any polynomial interpolating f at the nodes ao , . . . ,  a m counting 
multiplicities. If Pro,, is the polynomial of degree m at most left when ~b.B~ is 
divided by A m, i.e. 

qb "B,, =--Pro.,, (mod A,,,), degpm.,, <~m, (5) 

then 

rm, . =pm, , , /B, .  (6) 

Proof 
The proof is a slight modification of Walsh's classical existence and unicity 

proof for the rational interpolant with prescribed poles [6]. Clearly, r,,.n is of the 
form required. Next we use that the polynomials A, ,  and B n are relatively 
prime. By construction, there exists a polynomial Q such that 

Bn 

Therefore, r,,,,,, =pm,, , /B,  agrees with 4~ and consequently also with f at 
a o , . . . , a  m counting multiplicities. [] 

2. An algebraic proof of the Neville-Aitken recurrence formula for rational 
interpolants with prescribed poles 

In [1] a Neville-Aitken algorithm computing 

(ri . j l i  + j  <~m + n ,  i <~m) 

recursively is derived from the general Neville-Aitken algorithm [2] via explicit 
representations of Cauchy-Vandermonde determinants. In this section we give 
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a simple direct proof  of the rational Nevi l l e -Ai tken  recurrence  formula  which is 
purely algebraic. 

Subsequently,  knowing its weight factors, one can easily derive the explicit 
formula of the C a u c h y - V a n d e r m o n d e  determinant .  This seems to be simpler 
than running the opposi te  direction. 

We suppose  the data funct ion f to be fixed. Corresponding  to a polynomial  h 
let fh be the Hermi te  interpolat ion polynomial  of f ,  where  the nodes  are the 
zeros of h count ing multiplicities. 

If q is ano ther  polynomial  such that  h and q are relatively pr ime by p[h; q], 
we deno te  the r emainder  of the polynomial  division of q "fh by h: 

p[h; q] = q . f h  (mod h) and degp[h;  q] < d e g h .  (7) 

Finally, according to theo rem 1, 

r[h; q] : = p [ h ;  q ] / q  (8) 

is the unique  rational function of degree  m, n, m "= deg h - 1, n .'= deg q, with 
prescribed poles the zeros of q that  interpolates  f at the zeros of h count ing 
multiplicities. 

THEOREM 2 
Let  h, h 1, h 2, h3,  q, ql, q2, q3 be monic  complex polynomials and let a I 4: a 2, 

/3 be complex numbers .  Let Pi :=P[hi; qi] and r i :=Pi/qi for i = 1, 2, 3. 
(a) Suppose  that  hi(z) = (z  - ai)" h(z)  for i = 1, 2 and h3(z) = (z - Crl)(Z - a 2) 

�9 h(z)  with h3(fl) 4:0 and that  q i = q  for i =  1, 2 and q 3 ( z ) = ( z - / 3 ) q ( z ) .  
Then,  

rl( z ) ( z  - a2)(/3 - ITI) - -  r2 (z ) (z  - al)( /3 - a2) 
r3(z)  =- (or 2 - -  O~1) ( g - - / 3 )  (9) 

(b) Suppose  that  hi(z) = (z  - ai)" h(z)  for i = 1, 2 and h 3 ( z )  = ( z  - t~l)(Z - o~ 2) 
�9 h(z)  and that  qi = q  for i = 1, 2, 3. Then,  

r 2 ( z ) ( z - -  a l )  -- r l ( z ) ( z  -- a2) 
r3(z ) = (10) 

Proof 
(a) Let  ~b :=fh3" Since q~q3 -~P3 (mod h 3) w e  also have 

q b q 3 = P 3 ( m ~  f o r i = l , 2 .  

On the o ther  hand,  by definit ion 

flPqi = qSq =- Pi (mod(z  - o/i)" h) for i = 1, 2. 

This implies 

p 3 - r  ( m o d ( z - a i ) . h  ) f o r i = l , 2 .  
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Thus, there exist polynomials F 1, F 2 with 

p 3 ( z ) = ( z - o t i ) h ( z ) F i ( z ) W ( z - f l ) p i ( z )  for i = 1, 2. (11) 

Since by the assumptions in (a) deg P3 <~ deg h + 1 and deg Pi <~ deg h (i = 1, 2), 
it follows that both Fl(z) = :  F 1 and Fz(z) --: F 2 are constants. Consequently,  

p3(/3) p3(/3) 
F,= ( f l -a~)h ( /3 ) '  F 2 =  ( /3 -a2)h( f l ) "  

Observe that F 1 = F 2 = 0 iff P3(/3) = 0. In this case according to (11), p3(z) = (z 
- f l )p i (z )  for i =  1, 2. As a consequence,  r 3 = r 1 = r 2 and (9) holds. Otherwise 

/3 - - ~ 1  
F2 - - - F l .  

/3 - - a  2 

Multiplication of (11) for i =  1 by ( z - a 2 ) . F  2 and for i = 2  by ( z - a l ) ' F  1, 
respectively, and subtraction yield 

(/3 (z .F, 

I = (Z-- /3)  pl(Z)~-"Zoz2(/3--0Zl)--p2(z)(z " , 

from which (9) is easily derived. 
(b) Also under  the assumptions of (b) as in the proof of (a) 

P3=Pi ( m o d ( z - a i ) h )  for i = 1 , 2  

follows. Accordingly, there exist constants F1, F 2 with 

p 3 ( z ) = ( z - a i ) ' h ( z ) ' F i q - P i  for i =  1, 2. (12) 

Consequently, F 1 = F 2 is the leading coefficient of  P3. A similar reasoning and 
calculation as used in part  (a) applied to (12) results in (10). [] 

Remarks 
(i) Letting /3 ~ oo in (9) gives a second proof of (10). 
(ii) Theorem 2 is identical with [1, theorem 9] although the notations are 

different. In [1] from this theorem an algorithm is derived computing the values 
ri,/(z) for i+j<~m + n ,  i<~m with O(1 z) arithmetical operations where  l= 
max{m + 1, n}. 

3. Computation of Cauchy-Vandermonde determinants 

The rational interpolant (2) belongs to a particular Cauchy-Vandermonde 
space spanned by the functions basic for the partial fraction decomposition of 
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More  generally, C a u c h y - V a n d e r m o n d e  systems are constructed as follows. 
Let  ~ = (bl,  b2, b 3 . . . .  ) be a fixed sequence  of points of the extended complex 
plane C which will serve as "prescr ibed poles".  Notice that  repet i t ion of points 
is allowed. By Vk(X)we denote  the multiplicity of x in Bk_  l .'= ( b l , . . . , b k _ l ) .  
With ~ we associate a system @ =  (u~, u 2 , . . . )  of basic rational functions 
def ined by 

I z "k(bk) if b k = 0% 

Uk(Z)= _ _ _ _  _1 i f b  k ~ C ,  (13) 
( ( z - - b k )  "~(bk,+l 

which will be called the Cauchy-Vandermonde system genera ted  by B .  To ~ k  
corresponds  the basis ~ k = ( u l , . . . ,  u k) of the k-dimensional  Cauchy-Vander- 
monde space span ~ k. 

COROLLARY 1 
@ is an extended comple te  Chebyshev system on C \ { b  1, b 2, . . .  }. 

Proof 
Any e lement  f rom span ~ k is a rational function with prescribed poles 

b l , . . . ,  bk, that  means  it is of the form (6). Thus,  by t heo rem 1 any Hermi te  
interpolat ion prob lem with span ~k  and nodes  f rom C\{ba ,  b2, . . .} has a 
unique  solution. [] 

Let  ~ =  (a 1, a 2, . . . )  be a fixed sequence  of complex numbers  which will 
serve as interpolation points or nodes taking into account  multiplicities. By/Zk(X) 
we denote  the multiplicity of x in ~e'k_ 1 ----(al, . . . ,  ak_l). Notice that  

m 

mul t (dm)  := 1--I I~k(ak)! 
k = l  

measures  in some sense repet i t ion of nodes  in d m. 
F rom corollary 1 it follows that  any Cauchy-Vandermonde determinant 

 u"'"'Umi ( '1 V l@m; d,~ I := a l , . . , a m  := det D~'(al)uj(ai 

is different  f rom zero provided ~'m n B, ,  = r 
HOW tO compute  V l@m; ~r I explicitly in terms of the poles and nodes  

involved? We will do this starting f rom theorem 2 and using a little "general  
interpolat ion theory".  To simplify notat ions we adopt  the convent ion that  finite 
products  of extended complex numbers  fli have to be unders tood  according to 

:= F I t V ,  
j e J  j e J  
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where 

1 if /3j  = 0 o r / 3 j  = ~,  

/ 3 " =  flJ i f f / 3 j ~ C \ { O } .  

Moreover ,  to get a simple sign factor we assume that  both systems d m and ~'m 
are consistently ordered according to 

~,,, = ( a , , . . . , a m )  = ( a  , . . . .  , a ; ,  a 2 , . . . ,  a p , . . . , a p )  c C ,  

ml mp 

n I Hq 

with a l ,  a 2 , . . .  , ap, ill, BE, '",  flq pairwise distinct and m 1 + �9 �9 �9 +rap = m, 
n I .q- �9 �9 �9 - ~ F l q  = m .  

THEOREM 3 
When  ~ is genera ted  by ~,,, according to (13) and when  ~,,, 

consistently o rdered  then  

V l @m; ~r I = mult('~/m) " 

in ~ m :r 

1-I (ak--aj)"  l--I ( b k - b j )  
k , j  = I k , j  = 1 

k > j  k > j  

?// m 

1-I (a l , -b j )"  l--I (bk--ai)  
k , j  = 1 k , j  = 1 

k >~j k > j  

and ~m are 

(14) 

Proof 
Let f be a fixed complex funct ion which is def ined and suffiently of ten 

differentiable at the mult iple points of .~,,. Suppose  r 1 e ~ l and r e e ~ 1 
are the rational interpolants  of f with respect  to a~'m_ ~ = ( a  1 . . . .  , am_ l) and 
~r = ( a 2 , . . . ,  a,,), respectively. Let  r ~ @,, in terpolate  f at J~e" m and set 

h ( z ) : = ( z - a 2 ) " ' ( Z - a m _ x ) ,  
h l ( z ) : = ( z - a x ) ' h ( z  ), 

h 2 ( z ) : = ( Z - a m ) ' h ( z  ), 
m - l *  

q , ( z )  := YI  ( z - b i ) = q 2 ( z ) ,  
j = l  

m $ 

q3(z) := 1-[ ( z - b j ) .  
j=l  
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From theorem 2 with a~ = al, ot 2 = a m and/3  = b m 

case (b) we deduce  that always 

r = r 1 �9 3/2 + r2 "3/x 

= rl  + Ya" ( r 2  - -  r l ) ,  

where 

( z - a l ) ' ( a m - b m ) *  
3/,( z )  = 

( a m - a , ) ' ( z - b m ) *  

and 

3/1" ( r 2 - - r l )  = 

where 

in case (a) and /3  = b m = m in 

Yl + Yz = 1. 

On the other  hand, by Newton 's  interpolation formula [3] 

r = r l  + [a l , . . . , a , , ] f ' rm_ lUm,  

where  [ a l , . . . ,  am] f is the leading coefficient of r (that before  u m) and 

rm_lb lm(Z  ) = [ U l ' ' ' ' ' U m - I '  U m [ U l , . . . , U m _  1 
V al . . . .  ,am_l,  Z / V  al  ' , a m _  1 

is a Newton remainder.  By comparison with (15) 

3 / 1 ( r 2 -  r l )  = [ a l , . . . , a m ]  f " r ,n_lU m. 

We claim that 

( z - a l ) ( a m - b m ) *  ( z - a 2 )  " " ( Z - a m _ l )  
"C~ 

( a m - a l ) ( z - b m ) *  ( z - b l ) * " ' ( z - b , n _ l ) *  

( b m - b l ) * . " ( b m - b m _ l ) *  

(bm-a,)*"'(b,.-a,._,)* 
a m -- a 1 

c = [ a l , . . . , a m ] f "  
(a m -bin)* 

is a constant  factor depending on f .  
In fact, 

r2 -- rl = P / q l ,  

(15) 

(16) 

(17) 

(18) 

with p a polynomial of degree m - 2 depending on f with zeros a 2 , . . . ,  a m_ 1. 
This proves (17). It remains to compute  c. To show (18) consider the partial 
fraction decomposi t ion of  

( z _ a l ) . . . ( z _ a , , _ l )  m 

= E d 'uAz). 
( z - b , ) * " ' ( z - b m _ , ) * ( z - b m ) *  ~,=, 

Here  it is easily seen that 

( b , , , - a l ) * ' " ( b m - a m _ l ) *  
d m = 

( b m - b l ) * . . . ( b , n - b m _ l ) *  " 
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Comparing the leading coefficient (that before /,/m ) in (16) and (17) yields 

(am -bin)* 
[a, . . . .  , a m ] f = c "  "dr.. 

a m -- a 1 

As a consequence we get (18)�9 
Then, according to (16), (17) and (18) 

1 ( z - a l ) ' " ( z - a m _ l )  
rm_lUm(Z) = d m  ( Z - b l ) * ' " ( z - b m _ a ) * ( z - b m ) *  

Therefore, as a function of z 

V bll ~" " " ~ um-l~um 
a l , . . . , a m _ l , Z  t = V  

u~,'",Um_ , (bm-b~)* "" (b m-bm_l)* 
al , '" ,a , , , - I  (bm al)* (bin am-,)* 

( z - a l ) . . . ( Z - a m _ l )  
( z - b a ) * . . . ( z - b m _ , ) * ( z - b , , ) *  

is a rational function which is known explicitly. 
Since 

[ U l , . . . , U m _ l ,  U m d 
V al ' , a m _ l ,  am = ~ V "''Um-l'.,am_l ' umZ 

the derivative can be computed by Leibniz' rule. Observing 

d ~,,,,(a.,) ( z - a l ) ' " ( Z - a m - 1 )  z=a,,, 
( z _ bl)--'~ : - - i Z--- gmT- )--7-(7 -bin), 

m - l *  

I-I (a,n-a~) 
=iZm(am) ! j=l  

m 

VI (am-bj)  
j=l  

and putting all things together, yields the formula 
m - l *  

1-I 
V ul . . . .  'urn = V  ul . . . .  ,Um--l l . l j ,  m(am) I j=l  

I 
�9 , 

a l '  "'am a l ' ' ' " a m - 1  m-1 

[] 

Z = a  m ) 

Since 

V ul = ~1(al)! 
al (a I - b l ) *  

an induction argument proves (14). 

m--l* 

(bm-bj-) F I  (am-al )  
j=l  

m 

1--[ (bin-aj) l-I (am-bj)  
j=l  j=l  

(19) 
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R e m a r k s  

(i) We note that (14) can also be proved more directly as follows: A moment's 
reflection shows 

V UI'''''Um-a' Urn I (Z--al)'''(Z--ara-l) (20) 
a l , . . . , a m _ l ,  z = e .  ( Z _ b l ) ,  . . .  ( z _ b m ) ,  , 

with a constant e. Hence, using the notations of the proof of theorem 3, by 
comparing coefficients of u m on both sides 

~Ul'""Um-l l=e.dm" 
al ,  ,am-1 

Since d m is computed above, the constant e in (20) is known and gives a 
representation for the left hand side of (20) from which (19) follows as above. 

(ii) More general Cauchy-Vandermonde determinants and alternative repre- 
sentations thereof are determined in [4]. 

(iii) For the particular case of multiple poles but simple knots the Cauchy- 
Vandermonde determinant has been computed in [5]. 
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