The Neville-Aitken formula for rational interpolants with prescribed poles

C. Carstensen and G. Mühlbach
Institut für Angewandte Mathematik, Universität Hannover, Welfengarten 1, D-3000 Hannover 1, Germany

Abstract

Using a polynomial description of rational interpolation with prescribed poles a simple purely algebraic proof of a Neville-Aitken recurrence formula for rational interpolants with prescribed poles is presented. It is used to compute the general Cauchy-Vandermonde determinant explicitly in terms of the nodes and poles involved.

Subject classifications: AMS 41 A 05, 65 D 05.

Keywords: Interpolation; rational functions; prescribed poles; Neville-Aitken algorithm; Cauchy-Vandermonde determinants.

1. Preliminaries and notations

Let m, n be non-negative integers and let $\left(a_{i}\right)=\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ and $\left(b_{j}\right)=$ $\left(b_{1}, b_{2}, \ldots\right)$ be given sequences of (not necessarily distinct) complex numbers that are disjoint:

$$
\begin{equation*}
\left\{a_{0}, a_{1}, a_{2}, \ldots\right\} \cap\left\{b_{1}, b_{2}, \ldots\right\}=\emptyset \tag{1}
\end{equation*}
$$

Given a complex function f which is sufficiently often differentiable at the multiple points a_{i} the rational interpolant $r_{m, n}$ of f of degree m, n with prescribed poles b_{1}, \ldots, b_{n} and nodes a_{0}, \ldots, a_{m} counting multiplicities in both cases is the rational function

$$
\begin{equation*}
r_{m, n}=p_{m, n} / B_{n}, \tag{2}
\end{equation*}
$$

where $p_{m, n}$ is a polynomial of degree m at most and

$$
B_{n}(z):=\left(z-b_{1}\right) \cdot \ldots \cdot\left(z-b_{n}\right)
$$

such that

$$
\begin{equation*}
f-r_{m, n} \tag{3}
\end{equation*}
$$

has zeros a_{0}, \ldots, a_{m} counting multiplicities.

Observe that $r_{m, n}$ is uniquely determined by these properties. Depending on data function $f, r_{m, n}$ has no other poles than b_{1}, \ldots, b_{n} or ∞ counting multiplicities, where the multiplicity of ∞ is $\min \left\{0, \operatorname{deg} p_{m, n}-n\right\}$ with $\operatorname{deg} p$ denoting the exact degree of a polynomial p.

A Neville-Aitken type procedure for computing $r_{m, n}$ recursively is given in [1]. It is based upon the general Neville-Aitken algorithm [2].

In this note we will give a short direct proof of the rational Neville-Aitken recurrence relation starting from an alternative purely algebraic definition of $r_{m, n}$.

Define

$$
\begin{equation*}
A_{m}(z):=\left(z-a_{0}\right) \cdots\left(z-a_{m}\right) . \tag{4}
\end{equation*}
$$

THEOREM 1
Let ϕ be any polynomial interpolating f at the nodes a_{0}, \ldots, a_{m} counting multiplicities. If $p_{m, n}$ is the polynomial of degree m at most left when $\phi \cdot B_{n}$ is divided by A_{m}, i.e.

$$
\begin{equation*}
\phi \cdot B_{n} \equiv p_{m, n}\left(\bmod A_{m}\right), \quad \operatorname{deg} p_{m, n} \leqslant m, \tag{5}
\end{equation*}
$$

then

$$
\begin{equation*}
r_{m, n}=p_{m, n} / B_{n} . \tag{6}
\end{equation*}
$$

Proof
The proof is a slight modification of Walsh's classical existence and unicity proof for the rational interpolant with prescribed poles [6]. Clearly, $r_{m, n}$ is of the form required. Next we use that the polynomials A_{m} and B_{n} are relatively prime. By construction, there exists a polynomial Q such that

$$
\left(\phi-\frac{p_{m, n}}{B_{n}}\right) \cdot B_{n}=A_{m} \cdot Q .
$$

Therefore, $r_{m, n}=p_{m, n} / B_{n}$ agrees with ϕ and consequently also with f at a_{0}, \ldots, a_{m} counting multiplicities.
2. An algebraic proof of the Neville-Aitken recurrence formula for rational interpolants with prescribed poles

In [1] a Neville-Aitken algorithm computing

$$
\left(r_{i, j} \mid i+j \leqslant m+n, i \leqslant m\right)
$$

recursively is derived from the general Neville-Aitken algorithm [2] via explicit representations of Cauchy-Vandermonde determinants. In this section we give
a simple direct proof of the rational Neville-Aitken recurrence formula which is purely algebraic.

Subsequently, knowing its weight factors, one can easily derive the explicit formula of the Cauchy-Vandermonde determinant. This seems to be simpler than running the opposite direction.

We suppose the data function f to be fixed. Corresponding to a polynomial h let f_{h} be the Hermite interpolation polynomial of f, where the nodes are the zeros of h counting multiplicities.

If q is another polynomial such that h and q are relatively prime by $p[h ; q]$, we denote the remainder of the polynomial division of $q \cdot f_{h}$ by h :

$$
\begin{equation*}
p[h ; q] \equiv q \cdot f_{h}(\bmod h) \quad \text { and } \quad \operatorname{deg} p[h ; q]<\operatorname{deg} h \tag{7}
\end{equation*}
$$

Finally, according to theorem 1,

$$
\begin{equation*}
r[h ; q]:=p[h ; q] / q \tag{8}
\end{equation*}
$$

is the unique rational function of degree $m, n, m:=\operatorname{deg} h-1, n:=\operatorname{deg} q$, with prescribed poles the zeros of q that interpolates f at the zeros of h counting multiplicities.

THEOREM 2

Let $h, h_{1}, h_{2}, h_{3}, q, q_{1}, q_{2}, q_{3}$ be monic complex polynomials and let $\alpha_{1} \neq \alpha_{2}$, β be complex numbers. Let $p_{i}:=p\left[h_{i} ; q_{i}\right]$ and $r_{i}:=p_{i} / q_{i}$ for $i=1,2,3$.
(a) Suppose that $h_{i}(z)=\left(z-\alpha_{i}\right) \cdot h(z)$ for $i=1,2$ and $h_{3}(z)=\left(z-\alpha_{1}\right)\left(z-\alpha_{2}\right)$ $\cdot h(z)$ with $h_{3}(\beta) \neq 0$ and that $q_{i}=q$ for $i=1,2$ and $q_{3}(z)=(z-\beta) q(z)$. Then,

$$
\begin{equation*}
r_{3}(z)=\frac{r_{1}(z)\left(z-\alpha_{2}\right)\left(\beta-\alpha_{1}\right)-r_{2}(z)\left(z-\alpha_{1}\right)\left(\beta-\alpha_{2}\right)}{\left(\alpha_{2}-\alpha_{1}\right)(z-\beta)} \tag{9}
\end{equation*}
$$

(b) Suppose that $h_{i}(z)=\left(z-\alpha_{i}\right) \cdot h(z)$ for $i=1,2$ and $h_{3}(z)=\left(z-\alpha_{1}\right)\left(z-\alpha_{2}\right)$ $\cdot h(z)$ and that $q_{i}=q$ for $i=1,2,3$. Then,

$$
\begin{equation*}
r_{3}(z)=\frac{r_{2}(z)\left(z-\alpha_{1}\right)-r_{1}(z)\left(z-\alpha_{2}\right)}{\left(\alpha_{2}-\alpha_{1}\right)} \tag{10}
\end{equation*}
$$

Proof
(a) Let $\phi:=f_{h_{3}}$. Since $\phi q_{3} \equiv p_{3}\left(\bmod h_{3}\right)$ we also have

$$
\phi q_{3} \equiv p_{3}\left(\bmod \left(z-\alpha_{i}\right) \cdot h\right) \quad \text { for } i=1,2
$$

On the other hand, by definition

$$
\phi q_{i}=\phi q \equiv p_{i}\left(\bmod \left(z-\alpha_{i}\right) \cdot h\right) \quad \text { for } i=1,2
$$

This implies

$$
p_{3} \equiv \phi \cdot(z-\beta) \cdot q \equiv(z-\beta) \cdot p_{i}\left(\bmod \left(z-\alpha_{i}\right) \cdot h\right) \quad \text { for } i=1,2
$$

Thus, there exist polynomials F_{1}, F_{2} with

$$
\begin{equation*}
p_{3}(z)=\left(z-\alpha_{i}\right) h(z) F_{i}(z)+(z-\beta) p_{i}(z) \text { for } i=1,2 . \tag{11}
\end{equation*}
$$

Since by the assumptions in (a) $\operatorname{deg} p_{3} \leqslant \operatorname{deg} h+1$ and $\operatorname{deg} p_{i} \leqslant \operatorname{deg} h(i=1,2)$, it follows that both $F_{1}(z)=: F_{1}$ and $F_{2}(z)=: F_{2}$ are constants. Consequently,

$$
F_{1}=\frac{p_{3}(\beta)}{\left(\beta-\alpha_{1}\right) h(\beta)}, \quad F_{2}=\frac{p_{3}(\beta)}{\left(\beta-\alpha_{2}\right) h(\beta)} .
$$

Observe that $F_{1}=F_{2}=0$ iff $p_{3}(\beta)=0$. In this case according to (11), $p_{3}(z)=(z$ $-\beta) p_{i}(z)$ for $i=1,2$. As a consequence, $r_{3}=r_{1}=r_{2}$ and (9) holds. Otherwise

$$
F_{2}=\frac{\beta-\alpha_{1}}{\beta-\alpha_{2}} F_{1} .
$$

Multiplication of (11) for $i=1$ by $\left(z-\alpha_{2}\right) \cdot F_{2}$ and for $i=2$ by $\left(z-\alpha_{1}\right) \cdot F_{1}$, respectively, and subtraction yield

$$
\begin{aligned}
& p_{3}(z)\left[\frac{z-\alpha_{2}}{\beta-\alpha_{2}}\left(\beta-\alpha_{1}\right)-\left(z-\alpha_{1}\right)\right] \cdot F_{1} \\
& \quad=(z-\beta)\left[p_{1}(z) \frac{z-\alpha_{2}}{\beta-\alpha_{2}}\left(\beta-\alpha_{1}\right)-p_{2}(z)\left(z-\alpha_{1}\right)\right] \cdot F_{1},
\end{aligned}
$$

from which (9) is easily derived.
(b) Also under the assumptions of (b) as in the proof of (a)

$$
p_{3} \equiv p_{i}\left(\bmod \left(z-\alpha_{i}\right) h\right) \quad \text { for } i=1,2
$$

follows. Accordingly, there exist constants F_{1}, F_{2} with

$$
\begin{equation*}
p_{3}(z)=\left(z-\alpha_{i}\right) \cdot h(z) \cdot F_{i}+p_{i} \quad \text { for } i=1,2 . \tag{12}
\end{equation*}
$$

Consequently, $F_{1}=F_{2}$ is the leading coefficient of p_{3}. A similar reasoning and calculation as used in part (a) applied to (12) results in (10).

Remarks

(i) Letting $\beta \rightarrow \infty$ in (9) gives a second proof of (10).
(ii) Theorem 2 is identical with [1, theorem 9] although the notations are different. In [1] from this theorem an algorithm is derived computing the values $r_{i, j}(z)$ for $i+j \leqslant m+n, i \leqslant m$ with $O\left(l^{2}\right)$ arithmetical operations where $l=$ $\max (m+1, n\}$.

3. Computation of Cauchy-Vandermonde determinants

The rational interpolant (2) belongs to a particular Cauchy-Vandermonde space spanned by the functions basic for the partial fraction decomposition of $r_{m, n}$.

More generally, Cauchy-Vandermonde systems are constructed as follows. Let $\mathscr{B}=\left(b_{1}, b_{2}, b_{3}, \ldots\right)$ be a fixed sequence of points of the extended complex plane $\overline{\mathbb{C}}$ which will serve as "prescribed poles". Notice that repetition of points is allowed. By $\nu_{k}(x)$ we denote the multiplicity of x in $\mathscr{B}_{k-1}:=\left(b_{1}, \ldots, b_{k-1}\right)$. With \mathscr{B} we associate a system $\mathscr{U}=\left(u_{1}, u_{2}, \ldots\right)$ of basic rational functions defined by

$$
u_{k}(z)= \begin{cases}z^{\nu_{k}\left(b_{k}\right)} & \text { if } b_{k}=\infty, \tag{13}\\ \frac{1}{\left(z-b_{k}\right)^{\nu_{k}\left(b_{k}\right)+1}} & \text { if } b_{k} \in \mathbb{C},\end{cases}
$$

which will be called the Cauchy-Vandermonde system generated by \mathscr{B}. To \mathscr{B}_{k} corresponds the basis $\mathscr{U}_{k}=\left(u_{1}, \ldots, u_{k}\right)$ of the k-dimensional Cauchy-Vandermonde space span \mathscr{U}_{k}.

COROLLARY 1

\mathscr{U} is an extended complete Chebyshev system on $\mathbb{C} \backslash\left\{b_{1}, b_{2}, \ldots\right\}$.

Proof

Any element from span \mathscr{U}_{k} is a rational function with prescribed poles b_{1}, \ldots, b_{k}, that means it is of the form (6). Thus, by theorem 1 any Hermite interpolation problem with span \mathscr{U}_{k} and nodes from $\mathbb{C} \backslash\left\{b_{1}, b_{2}, \ldots\right\}$ has a unique solution.

Let $\mathscr{A}=\left(a_{1}, a_{2}, \ldots\right)$ be a fixed sequence of complex numbers which will serve as interpolation points or nodes taking into account multiplicities. By $\mu_{k}(x)$ we denote the multiplicity of x in $\mathscr{A}_{k-1}=\left(a_{1}, \ldots, a_{k-1}\right)$. Notice that

$$
\operatorname{mult}\left(\mathscr{A}_{m}\right):=\prod_{k=1}^{m} \mu_{k}\left(a_{k}\right)!
$$

measures in some sense repetition of nodes in \mathscr{A}_{m}.
From corollary 1 it follows that any Cauchy-Vandermonde determinant

$$
V\left|\mathscr{U}_{m} ; \mathscr{A}_{m}\right|:=V\left|\begin{array}{l}
u_{1}, \ldots, u_{m} \\
a_{1}, \ldots, a_{m}
\end{array}\right|:=\operatorname{det}\left(D^{\mu_{i}\left(a_{i}\right)} u_{j}\left(a_{i}\right)\right)
$$

is different from zero provided $\mathscr{A}_{m} \cap \mathscr{B}_{m}=\emptyset$.
How to compute $V\left|\mathscr{U}_{m} ; \mathscr{A}_{m}\right|$ explicitly in terms of the poles and nodes involved? We will do this starting from theorem 2 and using a little "general interpolation theory". To simplify notations we adopt the convention that finite products of extended complex numbers β_{j} have to be understood according to

$$
\prod_{j \in J}^{*} \beta_{j}:=\prod_{j \in J} \beta_{j}^{*},
$$

where

$$
\beta_{j}^{*}= \begin{cases}1 & \text { if } \beta_{j}=0 \text { or } \beta_{j}=\infty \\ \beta_{j} & \text { iff } \beta_{j} \in \mathbb{C} \backslash\{0\}\end{cases}
$$

Moreover, to get a simple sign factor we assume that both systems \mathscr{A}_{m} and \mathscr{B}_{m} are consistently ordered according to

$$
\begin{aligned}
& \mathscr{A}_{m}=\left(a_{1}, \ldots, a_{m}\right)=(\underbrace{\alpha_{1}, \ldots, \alpha_{1}}_{m_{1}}, \alpha_{2}, \ldots, \underbrace{\alpha_{p}, \ldots, \alpha_{p}}_{m_{p}}) \subset \mathbb{C} \\
& \mathscr{B}_{m}=\left(b_{1}, \ldots, b_{m}\right)=(\underbrace{\beta_{1}, \ldots, \beta_{1}}_{n_{1}}, \beta_{2}, \ldots, \underbrace{\beta_{q}, \ldots, \beta_{q}}_{n_{q}}) \subset \overline{\mathbb{C}}
\end{aligned}
$$

with $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}, \beta_{1}, \beta_{2}, \ldots, \beta_{q}$ pairwise distinct and $m_{1}+\cdots+m_{p}=m$, $n_{1}+\cdots+n_{q}=m$.

THEOREM 3

When \mathscr{U}_{m} is generated by \mathscr{B}_{m} according to (13) and when \mathscr{A}_{m} and \mathscr{B}_{m} are consistently ordered then

$$
\begin{equation*}
V\left|\mathscr{U}_{m} ; \mathscr{A}_{m}\right|=\operatorname{mult}\left(\mathscr{A}_{m}\right) \cdot \frac{\prod_{\substack{k, j=1 \\ k>j}}^{m} *\left(a_{k}-a_{j}\right) \cdot \prod_{\substack{k, j=1 \\ k>j}}^{m}\left(b_{k}-b_{j}\right)}{\prod_{\substack{k j=1 \\ k \geqslant j}}^{m}\left(a_{k}-b_{j}\right) \cdot \prod_{\substack{k, j=1 \\ k>j}}^{m}\left(b_{k}-a_{j}\right)} . \tag{14}
\end{equation*}
$$

Proof
Let f be a fixed complex function which is defined and suffiently often differentiable at the multiple points of \mathscr{A}_{m}. Suppose $r_{1} \in \mathscr{U}_{m-1}$ and $r_{2} \in \mathscr{U}_{m-1}$ are the rational interpolants of f with respect to $\mathscr{A}_{m-1}=\left(a_{1}, \ldots, a_{m-1}\right)$ and $\mathscr{A}_{m-1}^{\prime}=\left(a_{2}, \ldots, a_{m}\right)$, respectively. Let $r \in \mathscr{U}_{m}$ interpolate f at \mathscr{A}_{m} and set
$h(z):=\left(z-a_{2}\right) \cdots\left(z-a_{m-1}\right)$,
$h_{1}(z):=\left(z-a_{1}\right) \cdot h(z)$,
$h_{2}(z):=\left(z-a_{m}\right) \cdot h(z)$,
$q_{1}(z):=\prod_{j=1}^{m-1} *\left(z-b_{j}\right)=q_{2}(z)$,

$$
q_{3}(z):=\prod_{j=1}^{m}\left(z-b_{j}\right)
$$

From theorem 2 with $\alpha_{1}=a_{1}, \alpha_{2}=a_{m}$ and $\beta=b_{m}$ in case (a) and $\beta=b_{m}=\infty$ in case (b) we deduce that always

$$
\begin{align*}
r & =r_{1} \cdot \gamma_{2}+r_{2} \cdot \gamma_{1} \\
& =r_{1}+\gamma_{1} \cdot\left(r_{2}-r_{1}\right), \tag{15}
\end{align*}
$$

where

$$
\gamma_{1}(z)=\frac{\left(z-a_{1}\right) \cdot\left(a_{m}-b_{m}\right)^{*}}{\left(a_{m}-a_{1}\right) \cdot\left(z-b_{m}\right)^{*}}
$$

and

$$
\gamma_{1}+\gamma_{2}=1 .
$$

On the other hand, by Newton's interpolation formula [3]

$$
r=r_{1}+\left[a_{1}, \ldots, a_{m}\right] f \cdot r_{m-1} u_{m},
$$

where $\left[a_{1}, \ldots, a_{m}\right] f$ is the leading coefficient of r (that before u_{m}) and

$$
r_{m-1} u_{m}(z)=V\left|\begin{array}{c}
u_{1}, \ldots, u_{m-1}, u_{m} \\
a_{1}, \ldots, a_{m-1}, z
\end{array}\right| / V\left|\begin{array}{c}
u_{1}, \ldots, u_{m-1} \\
a_{1}, \ldots, a_{m-1}
\end{array}\right|
$$

is a Newton remainder. By comparison with (15)

$$
\begin{equation*}
\gamma_{1}\left(r_{2}-r_{1}\right)=\left[a_{1}, \ldots, a_{m}\right] f \cdot r_{m-1} u_{m} . \tag{16}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\gamma_{1} \cdot\left(r_{2}-r_{1}\right)=\frac{\left(z-a_{1}\right)\left(a_{m}-b_{m}\right)^{*}}{\left(a_{m}-a_{1}\right)\left(z-b_{m}\right)^{*}} \cdot \frac{\left(z-a_{2}\right) \cdots\left(z-a_{m-1}\right)}{\left(z-b_{1}\right)^{*} \cdots\left(z-b_{m-1}\right)^{*}} \cdot c, \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
c=\left[a_{1}, \ldots, a_{m}\right] f \cdot \frac{a_{m}-a_{1}}{\left(a_{m}-b_{m}\right)^{*}} \cdot \frac{\left(b_{m}-b_{1}\right)^{*} \cdots\left(b_{m}-b_{m-1}\right)^{*}}{\left(b_{m}-a_{1}\right)^{*} \cdots\left(b_{m}-a_{m-1}\right)^{*}} \tag{18}
\end{equation*}
$$

is a constant factor depending on f.
In fact,

$$
r_{2}-r_{1}=p / q_{1},
$$

with p a polynomial of degree $m-2$ depending on f with zeros a_{2}, \ldots, a_{m-1}. This proves (17). It remains to compute c. To show (18) consider the partial fraction decomposition of

$$
\frac{\left(z-a_{1}\right) \cdots\left(z-a_{m-1}\right)}{\left(z-b_{1}\right)^{*} \cdots\left(z-b_{m-1}\right)^{*}\left(z-b_{m}\right)^{*}}=\sum_{\mu=1}^{m} d_{\mu} \cdot u_{\mu}(z) .
$$

Here it is easily seen that

$$
d_{m}=\frac{\left(b_{m}-a_{1}\right)^{*} \cdots\left(b_{m}-a_{m-1}\right)^{*}}{\left(b_{m}-b_{1}\right)^{*} \cdots\left(b_{m}-b_{m-1}\right)^{*}}
$$

Comparing the leading coefficient (that before u_{m}) in (16) and (17) yields

$$
\left[a_{1}, \ldots, a_{m}\right] f=c \cdot \frac{\left(a_{m}-b_{m}\right)^{*}}{a_{m}-a_{1}} \cdot d_{m}
$$

As a consequence we get (18).
Then, according to (16), (17) and (18)

$$
r_{m-1} u_{m}(z)=\frac{1}{d_{m}} \cdot \frac{\left(z-a_{1}\right) \cdots\left(z-a_{m-1}\right)}{\left(z-b_{1}\right)^{*} \cdots\left(z-b_{m-1}\right)^{*}\left(z-b_{m}\right)^{*}} .
$$

Therefore, as a function of z

$$
\begin{aligned}
V\left|\begin{array}{c}
u_{1}, \cdots, u_{m-1}, u_{m} \\
a_{1}, \cdots, a_{m-1}, z
\end{array}\right|= & V\left|\begin{array}{l}
u_{1}, \cdots, u_{m-1} \\
a_{1}, \cdots, a_{m-1}
\end{array}\right| \frac{\left(b_{m}-b_{1}\right)^{*} \cdots\left(b_{m}-b_{m-1}\right)^{*}}{\left(b_{m}-a_{1}\right)^{*} \cdots\left(b_{m}-a_{m-1}\right)^{*}} \\
& \cdot \frac{\left(z-a_{1}\right) \cdots\left(z-a_{m-1}\right)}{\left(z-b_{1}\right)^{*} \cdots\left(z-b_{m-1}\right)^{*}\left(z-b_{m}\right)^{*}}
\end{aligned}
$$

is a rational function which is known explicitly.
Since

$$
V\left|\begin{array}{l}
u_{1}, \ldots, u_{m-1}, u_{m} \\
a_{1}, \ldots, a_{m-1}, a_{m}
\end{array}\right|=\left(\frac{\mathrm{d}}{\mathrm{~d} z}\right)^{\mu_{m}\left(a_{m}\right)} V\left|\begin{array}{c}
u_{1}, \ldots, u_{m-1}, u_{m} \\
a_{1}, \ldots, a_{m-1}, z
\end{array}\right|_{z=a_{m}}
$$

the derivative can be computed by Leibniz' rule. Observing

$$
\begin{aligned}
& \left.\left(\frac{\mathrm{d}}{\mathrm{~d} z}\right)^{\mu_{m}\left(a_{m}\right)} \frac{\left(z-a_{1}\right) \cdots\left(z-a_{m-1}\right)}{\left(z-b_{1}\right)^{*} \cdots\left(z-b_{m-1}\right)^{*}\left(z-b_{m}\right)^{*}}\right|_{z=a_{m}} \\
& \quad=\mu_{m}\left(a_{m}\right)!\frac{\prod_{j=1}^{m-1}\left(a_{m}-a_{j}\right)}{\prod_{j=1}^{m^{*}}\left(a_{m}-b_{j}\right)}
\end{aligned}
$$

and putting all things together, yields the formula

$$
V\left|\begin{array}{l}
u_{1}, \ldots, u_{m} \\
a_{1}, \ldots, a_{m}
\end{array}\right|=V\left|\begin{array}{l}
u_{1}, \ldots, u_{m-1} \tag{19}\\
a_{1}, \ldots, a_{m-1}
\end{array}\right| \cdot \mu_{m}\left(a_{m}\right)!\frac{\prod_{j=1}^{m-1}\left(b_{m}-b_{j}\right) \prod_{j=1}^{m-1}\left(a_{m}-a_{j}\right)}{\prod_{j=1}^{m-1}\left(b_{m}-a_{j}\right) \prod_{j=1}^{m}\left(a_{m}-b_{j}\right)}
$$

Since

$$
V\left|\begin{array}{l}
u_{1} \\
a_{1}
\end{array}\right|=\frac{\mu_{1}\left(a_{1}\right)!}{\left(a_{1}-b_{1}\right)^{*}}
$$

an induction argument proves (14).

Remarks
(i) We note that (14) can also be proved more directly as follows: A moment's reflection shows

$$
V\left|\begin{array}{c}
u_{1}, \ldots, u_{m-1}, u_{m} \tag{20}\\
a_{1}, \ldots, a_{m-1}, z
\end{array}\right|=e \cdot \frac{\left(z-a_{1}\right) \cdots\left(z-a_{m-1}\right)}{\left(z-b_{1}\right)^{*} \cdots\left(z-b_{m}\right)^{*}}
$$

with a constant e. Hence, using the notations of the proof of theorem 3, by comparing coefficients of u_{m} on both sides

$$
V\left|\begin{array}{l}
u_{1}, \ldots, u_{m-1} \\
a_{1}, \ldots, a_{m-1}
\end{array}\right|=e \cdot d_{m}
$$

Since d_{m} is computed above, the constant e in (20) is known and gives a representation for the left hand side of (20) from which (19) follows as above.
(ii) More general Cauchy-Vandermonde determinants and alternative representations thereof are determined in [4].
(iii) For the particular case of multiple poles but simple knots the CauchyVandermonde determinant has been computed in [5].

References

[1] M. Gasca, J.J. Martinez and G. Mühlbach, Computation of rational interpolants with prescribed poles, J. Comput. Appl. Math. 26 (1989) 297-309.
[2] G. Mühlbach, Neville-Aitken algorithms for interpolation of Čebyšev-systems in the sense of Newton and in the generalized sense of Hermite, in: Theory of Approximation with Applications, eds. A.G. Law and B.N. Sahney (Academic Press, New York, 1976) pp. 200-212.
[3] G. Mühlbach, Newton- und Hermite-Interpolation mit Čebyšev-Systemen, ZAMM 54 (1976) 200-212.
[4] G. Mühlbach, Computation of Cauchy-Vandermonde determinants, to appear in J. Number Theory.
[5] G. Mühlbach and L. Reimers, Linear extrapolation by rational functions, exponentials and logarithmic functions, J. Comput. Appl. Math. 17 (1987) 329-344.
[6] J. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, Amer. Math. Soc. Colloq. Publ. 20 (AMS, Providence, RI, 1960).

