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Abstract - -  Zusammenfassnog 

On Some Interval Methods for Algebraic, Exponential and Trigonometric Polynomials. New inclusion 
methods for the simultaneous determination of the zeros of algebraic, exponential and trigonometric 
polynomials are presented. These methods are realized in real interval arithmetic and do not use any 
derivatives. Using Weierstrass' correction some modified methods with the increased convergence rate 
are constructed. Convergence analysis and numerical example are included. 
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Uber Intervallmethoden for algebraische, exponentielle und trigonometrische Polynome. Die Arbeit 
behandelt neue Einschliessungsmethoden zur simultanen Berechnung aller Nullstellen von algebrai- 
schen, exponentiellen und trigonometrischen Polynomen. Die Verfahren sind ffir reelle Intervallarith- 
metik formuliert und benrtigen keine Auswertungen yon Ableitungen des gegebenen verallgemeinerten 
Polynomes. Unter Verwendung der sog. Weierstrass-Korrektoren werden verbesserte modifizierte Ver- 
fahren konstruiert. Hierzu enthNt die Arbeit Konvergenzuntersuchungen und numerische Beispiele. 

1. Introduction 

In the last two decades a lot of methods for finding a posteriori error bounds of an 
approximation z,,, say, to a zero ~ of a given function f were developed. One of the 
often applied methods for finding, from the data provided by the algorithm, a bound 
% for the error [Zm -- ~[ of the last approximation is based on the combination of 
an iterative method implemented in ordinary floating-point arithmetic and a suit- 
ably chosen disk of the form [z - Zm] < % which includes at least one zero o f f .  A 
quite different approach to error estimate is based on the use of interval arithmetic 
(see I-2] and references cited there). In this manner, not only very close zero 
approximations (given by the midpoints of intervals) but also upper error bounds 
for the zeros (expressed by the semi-width of intervals) are obtained which means 
the automatic verification of results and a control of errors in each iteration. For  a 
long time the computational cost of interval methods was rather great, until the 
development of very efficient programming languages for scientific computation 
(SC) as PASCAL-SC and ACRITH-SC, and very recently PASCAL-XSC [11] and 
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ACRITH-XSC [103. These languages possess the maximum accuracy (there is no 
other floating-point number between the rounded result and the exact result) 
including the directed roundings which enable the implementation of a maximum 
accurate interval arithmetic. Besides, the CPU time of basic interval operations is 
considerably decreased which caused a reasonably higher computational efficiency 
of interval methods. This improvement, together with the possibility of rounding 
an production of self-verifying results, made these methods to be competitive and 
so often applied in practice. 

Many problems of applied mathematics and mathematical models in various scien- 
tific disciplines reduce to the problem of finding real zeros of algebraic, exponential 
and trigonometric polynomials (generalized polynomials, for brevity). In the last 
decade several algorithms for the determination of zeros of this type of polynomials 
were proposed (see, e.g. [3], [6], [8], [9], [12], [19]). In the recent paper [6] 
Carstensen presented a new approach for the simultaneous computation of all zeros 
of generalized polynomials. Using some results derived in [6] we propose in this 
paper some new methods for the simultaneous inclusion of all real zeros of algebraic, 
exponential and trigonometric polynomials. The employed real interval arithmetic 
provides the resulting intervals that contain the wanted zeros. As far as we know, 
interval methods for exponential and trigonometric polynomials appear for the first 
time in this paper. 

We note that the determination of zeros of trigonometric and exponential polyno- 
mials can also be done using suitable transformations as it was proposed by Weidner 
in [19]. In this way the considered problem reduces to solving complex algebraic 
polynomial. Because of roundoff errors the transformations lead to falsified coeffi- 
cients and hence to perturbed approximations (even if they are computed as the 
exact zeros of the transformed polynomial). Hence a direct method is of principal 
interest; cf. also the comparison of interval methods based on Weidner's transforma- 
tion and the presented direct interval methods given in Section 4. 

2. Real Interval Arithmetic 

Before deriving new interval algorithms we give the basic real interval operations, 
introduced by R. E. Moore [14]. 

A subset of the set of real numbers IR of the form 

A : =  [ a l ,  a z ]  = {x:  a 1 ~< x ~ a2 ,  a l ,  a 2 E ~ }  

is called a closed real interval. The set of all closed real intervals is denoted by I(~). 
If* is one of the symbols + ,  - , ' ,  :, the arithmetic operations on I(~) are defined by 

A * B = { x = a * b : a e A ,  beB} (A, BeI(~)). 

The basic operations on intervals A = [a l ,az]  and B = [bl,b2] are calculated 
explicitly as 
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A + B = [a I + bl, a 2 + b2] 

A - B = [a I - b2,a 2 - bl]  

A .  B = [min (a lb l , a lb2 ,a2b l , a2b2 ) ,max (a lb l , a lb2 ,a2b l , a2b2 )  ] 

B- 1 FL,% ~ (1) 
= [ b 2  bl j ( 0 r  

A: B = [a, ,a2] Lb2 blJ  (O (! B). 

To control  rounding  errors, we can apply the rounding real arithmetic (see e.g. [1], 
[10] and [11]). 

To simplify our  analysis it is preferable to deal with a modified form of a real interval 
A = [a l ,az]  which reads in a parametr ic  nota t ion as A := {a, ra}, where a := 
mid(A) = �89 + a2) is the midpoint of A and r a :=  rad(A) is the semi-width or radius 
of A. If A = {a,r,} and B = {b, rb} then the basic interval operat ions may  be 
expressed as 

A +_ B - -  {a + b,r~ + rb} 

B_l = { 2 _ r 2' b 2 rb 2 (O q~ B, lbl > rb). (2) 

We will also use the centered form of the inverse of a real non-zero interval 
B = [ b l , b 2 ]  given by 

B e := {[mid(B)]- l ,max(1/b l  - [mid(B)] -1, [mid(B)] -~ - l/b2) } 

with 

bl + b2 'bl (b  1 + b2)J bl + b2 b 1' 

B* ~ B -1 = [ 1 / b 2 , 1 / b l ] .  

The inverse interval B e is wider than B -1 but  in the case of small intervals appearing 
(for example) in iterative interval processes the difference in size is negligible. This 
simply follows from the fact that  

a 6 
rad(B ~) - rad(B-1) - 

bl(bl  + b2)'  2bib  2 

for reasonably small 6. 

In addition, if ~o: E --+ R is a strictly mono ton ic  function on a real interval D ___ E, 
then the interval function 

�9 ( x )  = {y = ~o(x): x ~ x  = D l , x 2 ]  --- D} 

is defined as 

q~(X) = [min(q~(xt) , ~o(x2)), max((p(Xl), q~(x2))]. (3) 
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3. lterative Inclusion Method 

Let f :  G + N be a real function having n simple real zeros ~ . . . .  , 4 ,  in the open set 
G _ [ - n , n ]  in the case of  t r igonometric  polynomials.  Let q: ~ --+ ~ be the real 
function 

q(t) = t, q(t) = sinh(t/2), q(t) = sin(t/Z) (4) 

if and only i f f  is an algebraic, exponential  or t r igonometric  polynomial  with (exact) 
degree n, n/2 or n/2 respectively. 

Assume that we have found disjoint real intervals X1, . . . ,  X,  belonging G with 
{~ e Xj c G (j  = 1 . . . .  , n). Let xj = min(X~) and rj = ran(Xj )  be the midpoint  and the 
semi-width (radius) of the real interval Xj, that  is, X~ = {xj,  rj}. Let x0 
G \ ( X  1 vo . . . vo X , )  be  f ixed bu t  chosen  so that  q(xj  - Xg) ~ 0if j  :~ k,j ,  k = O, 1 . . . . .  n. 

Lemma 1. For  ( x l , . . . , x . )  ~ X = X1  x . . .  x X ,  and Xo ~ G \ ( X I  w " ' w  X , )  de f ine  

and 

f ( x j )  ( j  = O, 1 . . . .  , n) (5) 

cj .-- ~I  q ( x j -  Xk) 
k=O 
k C j  

c* := f ( x ~  r O. (6) 

~I  q(xo -- Ck) 
k=l  

Then  fo r  all t ~ G 

f ( t )  : c* FI q ( t -  ~ k ) :  ~, cs I-I q ( t -  Xk). (7) 
k =1 j=O k =0 

k :/:j 

The proof  of Lemma 1 is simple and can be found in [6]. Namely,  by simple 
calculation it is easy to see that all expressions in (7) are polynomials  of  degree n. 
In view of  (5) and (6) the identity (7) is valid for t = Xo, ~1 . . . .  , ~, and t = x o . . . . .  
x,  and therefore for all t. 

Remark  1. The choice x o = o0 in the algebraic case yields the constant  c o = c* 
which becomes the leading coefficient o f f .  Then the terms q(x  o - Xk) (k = 1 . . . . .  n) 
can be substituted by c o in (5) and (7). In  this case (7) reduces to the Lagrangean  
interpolation o f f  at the points Xx, . . . ,  x,, oo (see Braess, Hadeler  [5]). 

Lemma 1 is the base for the derivation of  a suitable fixed-point relation neces- 
sary for the construct ion of new inclusion methods. Let ~j r Xk ( j  ~ {1 . . . . .  n}, k = 
0, 1 . . . . .  n) be a zero o f f .  Substituting t = ~j in (7) we find 

cj _ ~, ck 

q(~j -- xj) ,=o/-" q(~j -- Xk) '  
k r  
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whence 

q(~j -- xj) - --cj ( j  = 1 . . . . .  n). (8) 

k=O q(~j -- xk) kr 

The functions q defined by (4) are strictly monotonic  on G so that  they have their 
inverse functions. This implies the fixed-point relation 

~ j =  xj + q_a(  - --cj ) ( j = l  . . . . .  n) (9) 

k:O q(~j -- Xk) k#j 
from (8). Replacing the zero ~j by its inclusion interval Xj on the right hand side of 
(9), according to the inclusion property we get 

~j ~ Xj + q-l(i~O --Cj ) q-l (--@f.') C~k = Xj + = )(j (j = 1 . . . . .  n), (10) 

q(Xjj Z- Xk) 
k#j 

where we put 

C k 

k~j 

If 0 ~ Aj then - cJAj is a closed real interval so that  we have the implication 

Cj~ X j ~ r  Xj  = xj + q - l ( - c j A j )  

in the case of algebraic and exponential polynomials. For  trigonometric polyno- 
mials one requires the additional condition 

- q~  [-1,1] 

since the interval function arcsin(X) is defined for X _~ [ -  1, 1]. 

The relation (10) suggests the following iterative method for the simultaneous 
inclusion of all zeros of generalized polynomials defined in the beginning of this 
section. 

Let x~O)= t~lYY(~176 . . . ,  --,Y(~ = t~,~'(~176 be the initial disjoint real intervals 
containing the real zeros ~1, ., ~, o f f ,  and let XJ m) (m) (m) .. = {x) ,r) } f o r m = O ,  1 . . . . .  
Then the successive interval approximations to these zeros are calculated by 

C~km ) ( j =  1 . . . . .  n ; m = 0 , 1  . . . .  ), (11) 

k=O q(X) ~ = X~k m') 
k~j 
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where x~o m) = x o and 

C~rn) = f(xJ")) ( j  = O, 1 . . . . .  n). (12) 

[ I  q(xJ m , -  x~ m,) 
k=O 
k #j 

Remark 2. If the initial intervals X~ ~ . . . .  , X~ ~ are small enough, then the conditions 
0~AJ. m~ (j  1 . . . . .  n) and r r = - c )  /Aj c [ - 1 ,  1] (for trigonometric polynomials), 
mentioned above, will be satisfied and the iterative method (11) is defined in each 
iteration. Besides, such choice of initial intervals provides the convergence of the 
interval sequences (X) ")) ( j  = 1 . . . .  , n) in the sense that the sequences of radii (r) ")) 
tend to 0 when m ~ oo. 

Remark 3. If we choose x o = oo in the case of an algebraic polynomial, then formula 
(1 l) becomes 

x m, - 4  = - -  ( j =  1 . . . . .  n ; m  = 0 ,  1 , . . . ) ,  ( 1 3 )  
c(["~ 

1 +  k:0i S},,7~x~m) 
k c j  

which is the third order method proposed by Petkovi6 in [ 17], We note that complex 
intervals can be used in (13). 

Now we will derive some estimations which are necessary for the convergence 
analysis of the presented methods. The real functions given by (4) and their inverse 
functions are strictly monotonic increasing (q(t) = sin(t/2) on [ -  ~, n] and its inverse 
q-l(t) = 2 arcsint on [ - 1 , 1 ] ) .  Therefore, for an interval X = [ x l , x z J  which 
belongs to the domain of monotonicity, we have (according to (3)) 

q(X) = [q(xl) ,q(x2)],  q - l (X)  = [q- l (x l ) ,q - l (x2)] .  

According to Theorem 5 from [2, Ch. 3] we obtain 

rad(q(X)) = O(rad(X)) 

and 

rad(q-t(X)) = O(rad(X)), 

where "O" is Landau's symbol. Besides, from (2) we observe that 

rad B = O(rad(B)) (O ~ B). 

(14) 

(15) 

(16) 

The determination of the convergence speed of the interval methods presented in 
this paper reduces to the convergence analysis of positive null-sequences where the 
corresponding asymptotic error constants are positive and finite. As it is known (see 
[16, Exercise 9.3-4]), in this case the Q-, R- and C-orders are identical and we will 
use the unified notion "order of convergence". 
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Theorem 1. Let  X]  ~ . . . .  , X_~, ~ be initial real intervals containin9 the simple real zeros 
32, . . . ,  ~, of  a 9eneralized polynomial f and let q satisfy (4). Then for the interval 
method (11) we have for eaeh j = 1 . . . . .  n and m = O, 1 . . . .  

1 ~ 

2 ~ d . , + * )  = O(r5,.)~). 

Proof. The choice x o = oe in the case of the algebraic polynomials, that provides 
a cubic convergence of the method (11), is already discussed in Remark 3 and will 
be omitted in the proof. 

Assume that ~ ~ XJ ~ Then, using (13) and the mathematical induction, the proof 
of 1 ~ follows with (10). 

In the sequel, we will neglect iteration indices for simplicity and write Xj, Xj, xj, rj, 
r1 instead of X} "), X} "+1), x} =), r} m), r} re+l). 

Since the intervals XI . . . . .  X, are disjoint we have 0 r Xj  - x k forj  ~ k. This implies 
0 r q(Xj - Xk) due to the monotonicity of q and (3). Therefore, the inverse of the 
interval q(Xj - Xk) exists. According to (14) and (16) we estimate using Landau's 
symbol 

rad ( 1 ) = O ( r a d ( q ( X ~ - X k ) ) ) = O ( r a d ( X ~ ) ) . q ( X ~  - Xk) (17) 

Assuming that the interval Xj is reasonably small, the midpoint xj will be close to 
the zero ~j so that 

If(xj)l = O(Ixj - ~jl) = o(1@.  

Hence, in regard to the definition of cj, there follows 

Icjl = O(lejI)  (j  = 1 . . . . .  n), (18) 

but only 

I%1 = Oil). (19) 

By (t7), (18) and (19) we find 

rad(A~) = O(Icolrj  + k=~L ,cklrj) = O(rj). (20) 
k#j  

Finally, by (15), (16), (18) and (20) we get 

rad q - 1 - c i  = \ \ //(rad(~']'] ' ( (,))o " 

that is 

~j-= [ c j ] O ( r a d ( ~ ) )  = O([ejlr~). (21) 
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Hence 

e, = o(r ) 

because of [ej[ -< rj, which completes the proof. [] 

Remark 4. The estimation (19) yields the explanation for the quadratic convergence. 
Namely, 09)  does not provide a better estimation for rad(Aj)  in (20). In the previ- 
ously commented case x 0 = ~ the term I col rj does not appear in (20) so that a cubic 
convergence is feasible. 

4. Improved Methods 

Let 

cjq(xj  -- Xo) 
( j  = 1 . . . . .  n), (22) 

wj . -  coq,(O ) 

where cj is defined by (5). The iterative method 

~j = xj -- wj ( j  = 1 . . . . .  n) (23) 

of the second order was considered in the papers [3],  [6] ,  [9],  [12].  If x0 = ~ in 
the algebraic case, then (23) is the Durand-Kerner method 

f ( x j )  ( j  = 1 . . . . .  n), 

"~j= xj FI (xj- xO 
k=l,k~j 

known also as Weierstrass' method. Therefore, wj is often called the Weierstrass 
correction. 

Using Nourein's approach [15] Petkovi6 and Carstensen modified formula (13) in 
the recent paper [18] for algebraic polynomials incorporating the Weierstrass 
correction wj = cj = f ( x j ) / I  ] (xj - Xk). It was proved that the new interval method 

kv~j 

X j  = xj - cj ( j  = 1 . . . . .  n) 

1"-[- ~, ( X j - -  Wj-- Xk) -1 
k=l,kC-j 

3 + x / ~  ~ 3.562. The further improvements has the order of convergence equals to 2 

were achieved applying the centered form of inversion of intervals introduced in 
Section 2. The presented procedure with correction will be applied in this section 
to generalized polynomials starting from the iterative formula (11). 

Before constructing new interval formulas we will present the iterative method with 
Weierstrass' correction in floating-point arithmetic. Taking Weierstrass' approxi- 
mation x* := xj - wj instead of ~j in the fixed-point relation (9) we get the iterative 
formula 
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/ 'x 
2 j = x j +  q-1 / -c~ -) ( j = l  . . . . .  n) (24) 

~k c~ 
k= ~j  q ( x j  - -  Wj - -  x k )  

for the simultaneous approximation of zeros of generalized polynomials defined 
above. 

For  the convergence analysis of interval methods developed in this section the 
following assertion concerning convergence rate of the algorithm (24) is necessary: 

Theorem 2. I f  the initial approximations are sufficiently close to the zeros ~ ~ . . . .  , ~ 
then the order of convergence of  the iterative method (24) is three. 

Proof. Let us introduce the errors 

~j:=xj-~j, ~;,:=x.-r162 ~:=~j-~j 
and let co{a, b} := [rain(a, b), max(a, b)] denote a convex hull of two real numbers 
a and b. We will assume that all errors are of the same order, that is I~1 -- O([~il) -- 
O(1~1) (i,j = 1 . . . . .  n), where I~1 :-- max(lek[: k E {1 . . . . .  n}). Using the identity (8) and 
q ( -  2j + xj) = q(ej - ~j) we obtain from (24) 

{ } c{1 , } c 1 1 = ~ -- (25) 
J q%) q(~ ~ k=o,k~jk q(~j--Xk} q ( ~ j - - x ~ + g )  " 

Applying the mean value theorem to the both sides of (25) we obtain 

~j , 2.* 
c j ~ q  (~j) = - ~ - - ~ -  ' (26) k=O.kej ck q2(Ok) q (Ok)' 

where tlj ~ co{ej, ej - gj} and O k ~ co{{j - Xk, {j -- X k + e*}. 

For the iterative method (23) we have e* = O(eej) (see [6]), and hence, e* = O(e 2) 
because of the above assumption. Furthermore, Co = O(1), c~ = O(~fl ( j  = 1 . . . . .  n), 
q(rlj) = O(e~), while Iq(Ok) ] is lower bounded. According to these facts from (26) there 
follows 

O(Ig*l[q:(rlj)l'~ I~1 = \ ~ / - -  o([glr~jl)-- O(le13),  

which proves the theorem. [] 

We will consider the interval method (1 i) in a general form. As in the case of the 
iterative method (24), the basic point in the construction of improved interval 
methods consists of the substitution of the inclusion interval X~ by the interval 
Xj - w i. Conditions under which this substitution saves the inclusion property are 
considered in Lemma 2. As it can see the underlying idea consists of the improvement 
of  the midpoint to improve the radii. Applying the inverse (.)-1 and (.)i and 
Weierstrass' correction (22) in (11) we can construct the following interval methods: 
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j ~ = x j + q  ~(  - c j  ) 
ck[q(X j -- wj -- Xk)] -~ (j = 1 . . . . .  n), (27) 

k=O,k#j 

Ck[q(X i -- wj -- Xk)] '/ 
k=O,k#j 

= - - ( 1 = 1  . . . .  n). (29) 
k=O,k~j 

Let OR(IM ) denote the order of convergence of an interval iterative method (IM) 
defined as in [2]. The order of convergence of the interval methods (27), (28) and 
(29) is given in the following theorem. 

Theorem 3. Let  X]~ . . . ,  X~, ~ be initial intervals containing the zeros ~1 . . . . .  ~, o f  
the 9eneralized polynomial f .  I f  these intervals are sufficiently small then the iterative 
methods (27)-(29) converye and there holds 

OR(27), OR(28 ) >_ 1 + X/2 ~ 2.414, OR(29) --> 3. 

The proof of Theorem 3 will be divided into several lemmas. As it was noted the 
improved method is constructed using the substitution of the inclusion interval Xj 
by the interval Xj - w i. The following lemma yields the conditions under which this 
substitution is fruitful in the sense that provides the enclosure of zeros. 

Lemma 2. There exists a sufficiently small real number ~ > 0 such that for  any real 
intervals X 1 . . . . .  X .  with a length smaller than ~ there holds for  any j = 1 . . . . .  n 

~j~ x j ~ j ~  x j  - wj. (30) 

Proof. The implication (30) is equivalent to 

Ixj  - ~jl - rj ~ Ixj  - wj - ~jl --- r~, 

where )9 := mid(Xj) and rj := rad(Xj). For the Weierstrass method (23) we have 
Ixj - Wj - ~jl = O ( 1 ~ @  (see [6]), which is smaller than rj provided when I~1 : =  
maxj=l ...... I~jl < 8 is sufficiently small. [] 

Lemma 3. Let  X be a real interval, y ~ N and let 4:  G -+ ~ be analytic and monotone 
on the interval y + X c G. Then 

mid(~(y  + X))  = ~(mid(X))  + O(lYl + (rad(X))2). 

The proof of Lemma 3 is very simple: it merely uses Taylor series and the mean 
value theorem. 

Lemma 4. Let  rj = rad(X~) and f~ = rad(X~). Then we have the estimation 

I~ j l - -  O( [~ j l ry )  (31) 

for  the interval methods (27) and (28), and 
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I~1 = 0(1~31) (32) 

for (29). The radii of  the new intervals X j  produced by all three methods (27)-(29) are 
given by 

~j = O(l~jlrj). (33) 

Proof. We use a similar procedure as in [7] and [18] so that only the sketch of the 
proof will be given. Since 

rad(q(Xj - Xk)) = O(rad(q(Xj - wj - Xk))) 

the proof of (33) is quite analogous to that of Theorem 1 (see the estimation (21)). 
The estimation (32) immediately follows from Theorem 2; namely, applying twice 
the centered form of the inverse of real intervals in (29) we obtain that the center of 
the interval )(i produced by (29) coincides with the "point" approximation xi given 
by (24). 

To prove (31) we estimate mid(Xj) - 2j by elementary calculations using Lemma 3 
and the relation 

c + [a,b] - + O(Icl + (b - a)2), mid([a,b]) 

where Xj is given by (27) or (28) and 2j by (24). Then the assertion follows with the 
triangle inequality and Theorem 2, 

[gjr -= Ixj - ~jl + Ixj - mid(Xj)l = O(eef) + O(earf). [] 

To determine the order of convergence of the interval methods (27), (28) and (29) 
we use the following lemma which can be easily proved in the similar way as in [4]. 
We will say that C,, is a convergence factor if the sequence (C,,) of positive numbers 
C,, is bounded. 

h Lemma 5. Let  (sin) be a positive null-sequence satisfying s m +2 <- C,,Sm +1SP~ �9 Then the 
order of  convergence of  (Sin) is at least (h + x / @  + 4p)/2. 

Proof  of  Theorem3. First of all, by the mathematical induction we see that r e XJ") 
for eachj = 1,. . . ,  n and m = 0, 1 . . . . .  Assuming that the initial intervals are narrow 
enough so that the interval methods (27)-(29) are convergent, that is, rJ "+1) < r} m) 
for each j = 1, . . . ,  n and m = 0, 1 . . . .  , we get from Lemma 2 the implications 

C j E x ) m ' ~ r  m, ( j = l  . . . .  ,n;m = 0,1. . . ) .  

Therefore, the improved methods (27)-(29) are feasible. We note that conditions 
which enable the safe convergence of the applied interval method are most fre- 
quently sufficient for the fulfillment of the last implications (see, e.g., [7], [18]). 

In regard to (31) and (33) we have le}"+l)l/r}m+l) = O(r} ")) so that 

r} -+2 )  = O(l }m+'lr}m+l) ) = 
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According to Lemma 5 and the last relation we conclude that 0R(27), OR(28) > 
1 + . ,~ .  Similarly, by (32) and (33) we have the order 3 for the midpoints and hence 
for the radii as well. []  

The accelerated interval methods presented in this section use the already calculated 
values incorporated in (22). Thus, the increase of the convergence rate of the iterative 
methods (27), (28) and (29) is attained without additional calculations which enables 
a high computational efficiency of these methods. 

The presented algorithms (11), (27), (28) and (29) can also be applied in the case 
when the coefficients o f f  are intervals. This fact is of interest in practice since these 
coefficients can appear naturally as uncertain quantities (for example, i f f  is involved 
in mathematical models of some engineering disciplines or in simulation of pro- 
cesses). In this case the use of Weidner's transformation and suitable complex 
rectangular arithmetic method is not convenient. For  illustration, let us consider 
the trigonometric polynomial 

Tv(x ) = A o + ~ (A k cos k x  + B k sin kx) ,  
k = l  

where A o, A~ . . . . .  A,, B~, . . . ,  B~ are real intervals. In order to reduce this trigono- 
metric polynomial to an algebraic polynomial it is necessary to introduce the 
substitution e i~ = w and construct the resulting algebraic polynomial 

T*(w)  = w 2~ + O2v_l W2v-1 + ""  + D l w  + D O 

by the transformation 

Dj - A ,  ~ + iB,_ j  2A o 
A~ - iB~ ( j  = 0 . . . .  , v - 1), D~ - A~ - iBm' 

Aj  + iBj ( j  = 1 , . . . ,  v). 
Dv+j - A ,  - iB~ 

Since the coefficients of Tv(x) are real intervals, the coefficients Do, D 1 . . . . .  Dz~_ 1 
must be calculated in rectangular interval arithmetic ([2, Ch. 5]). But, the operations 
of inversion and multiplicaton (and, therefore, division) in rectangular arithmetic 
are not exac t  ones which can produce reasonable large rectangles (coefficients of 
T*(w)).  Consequently, the resulting inclusion intervals will be larger compared with 
those obtained directly by the interval methods proposed in this paper. This is an 
important advantage of the presented methods. 

Example. The interval methods (27), (28) and (29) have been tested on the example 
of the exponential polynomial 

Ez(x  ) = a o + a l e  -x  + b l e  x + a2 e-2x + b2 e2~, 

where 

a o = e 3 + e -3 + ps,  al  = -(e7/2p + eros),  ba = - ( e - 7 / 2 p  + e - m s )  

a 2  = e 4, b2 = e -g, p = 2 cosh-~, s = 2 cosh �89 
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(example taken from [13]). The exact zeros of this exponential polynomial are 
~1--~"--1, ~2 = 2, ~3 "----3 and ~4 = 4. As the initial interval containing these 
zeros we have taken (using a grafic presentation in the programming package 
Mathematica) 

X]~ [ - 1 . 5 , - 0 . 6 ] ,  X~~ [1.75,2.2], X~~ [2.8,3.25], X]~  [3.7,4.4] 

and Xo = [1, 1]. The corresponding routines have been realized in the program- 
ming language PASCAL-XSC. 

After the third iterative step the interval method (11) produced the following 
inclusion intervals. 

X~  ) = [-1.000000000112175,-0.9999999998313206],  

X~  ) =[1.999999999999167,2.000000000000719], 

X ~  ) = [2.999999999998647,3.000000000000898], 

X~  ) = [3.999999999959944,4.000000000025437], 

r~ ) = 1.4 x 10 -1~ 

r ~ ) = 7 . 8  x 10 -13, 

r~ ) = 1.1 x 10 -12, 

r~ ) = 3.3 x 10 -11 . 

For  the simultaneous inclusion of all zeros of the above polynomial the modified 
interval methods (27), (28) and (29) with Weierstrass's corrections were applied with 
the same initial inclusion intervals. Let r (" )=  maxl<_i<_4 rl ") (m = 0, 1 . . . .  ) be the 
maximal semi-width (radius) in the m-th iterative step. These values are given in 
Table 1 for all three modified methods and for the Weierstrass method (11) too. The 
improvements by the methods (27), (28) and (29) can be seen in the later iterations 
when we are interested in more than 15 accurate digits. 

Table 1. The maximal semi-widths 

r(1) F(2) ?,(3) 

Method (11) 3.12 x 10 -2 6.25 x 10 -s 2.81 x 10 -1~ 
Method (27) 3.05 x 10 -2 2.89 x 10 -s 7.74 X 10 -13 

Method (28) 3.01 x 10 -2 8.23 x 10 -s 2.20 x 10 -11 

Method (29) 3.84 x 10 -2 1.55 x 10 -s 2.82 x 10 -13 

For  comparison, we have applied the method based on Weidner's transformation 
and the interval Durand-Kerner  method [2, Ch. 8]. The obtained inclusion intervals 
were of the same size as in the case of the inerval method (11), while the C P U  time 
of (11) was slightly greater compared with the interval Weidner-Durand-Kerner  
method. Other tested examples have shown the similar results. 

We finish our consideration with some remarks concerning exponential and trigo- 
nometric polynomials particularly. Makrelov and Semerdziev [13] and Frommer  
[9] have always given several practical observations about the domain of conver- 
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gence of m e t h o d s  of the same  type  in  o r d i n a r y  f l oa t i ng -po in t  a r i thmet ic ,  their  
conve rgence  proper t ies ,  a n d  a n  i m p l e m e n t a t i o n  o n  a vec tor  o r  para l le l  compu te r .  

In  the case of mu l t i p l e  zeros all  these m e t o d s  converge  on ly  l inear .  The  s i t ua t i on  is 
even  worse  for the  p resen ted  in te rva l  m e t h o d s  (and,  m o r e  general ly,  for the m o s t  of 
in te rva l  m e t h o d s  w h e n  the orders  of  mul t ip l ic i t ies  are n o t  k n o w n )  since the  d iv i s ion  
by  ze ro- in te rva l s  of the  form q(X j  - Xk) appears .  F ina l ly ,  we no t e  tha t  i nc lu s ion  
m e t h o d s  for the  complex  zeros of  t r i g o n o m e t r i c  a n d  e x p o n e n t i a l  p o l y n o m i a l s  are 

genera l ly  r a the r  co mp l i c a t ed  since they deal  wi th  c i rcu la r  o r  r e c t a n g u l a r  complex  
func t ions  and ,  thus,  the  s ame  is val id  for the  cons ide red  methods ,  
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