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Abstract 

Carstensen, C. and M.S. PetkoviC, On iteration methods without derivatives for the simultaneous determina- 
tion of polynomial zeros, Journal of Computational and Applied Mathematics 45 (1993) 251-266. 

Several algorithms for simultaneously approximating simple complex zeros of a polynomial are presented. 
These algorithms use Weierstrass’ corrections and do not require any polynomial derivatives. It is shown that 
Nourein’s method is, actually, regula falsi for Weierstrass’ corrections. Convergence analysis and computa- 
tional efficiency are given for the considered methods in complex and circular arithmetic. Special attention is 
paid to hybrid methods that combine the efficiency of floating-point arithmetic and the inclusion property of 
interval arithmetic. 

Keywords: Polynomial zeros; simultaneous methods; interval arithmetic; computational efficiency. 

1. Introduction 

One of the most popular methods for simultaneous approximation of the zeros of a 
polynomial (cf. [14]) was indicated by Weierstrass [27, p.2581 in 1891 and much later proposed 
independently by Durand [8], Dochev [7], Kerner [lo] and others. Given TZ pairwise distinct 
approximants ( zl,. . . , z,) E C3” for the n pairwise distinct zeros (cl,. . . , (J E C” of a manic 
polynomial f of degree IZ 2 3, one iteration step of Durand-Kerner’s methods reads 

(q,..., ,?I> ++ 6% * ..JJ-(%...,Wn), (1) 
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where for all i E (1,. . . , n}, 

w;: := I4g Zl,. . . , ZJ := 
.f(‘i> 

ni=l,k+i(Zi-Zk) ’ (2) 

We always assume that f has simple zeros. Then, it is well known that Durand-Kerner’s 
method has local quadratic convergence. 

Another iteration formula, which also does not use any polynomial derivatives, is of the form 

(Z1,...,Z,)‘-,(Z1,...,Z,)-_(B1, &...,B,), (3) 

where for all i E 11,. . . , n}, 

This iteration formula was derived by Borsch-Supan [5], and later, by Nourein [16]. The 
iteration method (3) has local cubic convergence. 

An improvement of the iteration method (3) was proposed by Nourein [17]. Again assuming 
simple approximations and zeros, one iteration step reads 

(z1,...,z,)H(zl,...,Z,)-_(N~,...,N,), 

where for all i E (1,. . . , n}, 

(4) 

In the sequel this method will be refered to as Nourein’s method. Starting from reasonably 
good initial approximants zi’), . . . , n , z(O) Nourein’s method produces the sequences of approxi- 
mants {z!“)}- 1 . 

i=l ,**-, n, m =o, l,..., 

which converge to the exact zeros, with the order of convergence equals four. Wicm) in (5) is 
given by 

w(m) = 
f(P) 

1 rI~=l,,+i(Zi(~)-z~~)) ’ 

The aim of this paper is to present some algorithms without derivatives for the simultaneous 
refinement of sets of approximate zeros of a complex polynomial. We start with Theorem 2.1 
proving that Nourein’s method is, actually, regula falsi for Weierstrass’ corrections (Section 2). 
Using this fact, an interesting and simple proof concerning the convergence rate of Nourein’s 
method is given in Section 3 (Theorem 3.4). In addition, suitable initial conditions providing the 
safe convergence of Nourein’s method are stated (Theorem 3.5). 

In Section 4 we study the so-called inclusion methods that not only provide error bounds 
automatically, but also take into account rounding errors. First, a generalized interval method 
with the order of convergence 2q + 1, q > 1, is established, applying a repetition procedure. 
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Combining iterations in complex and circular arithmetic, a new hybrid algorithm of Nourein’s 
type is constructed. Its main advantages are the great computational efficiency and the ability 
of inclusion of zeros. The presented hybrid algorithm suggests the construction of a new 
interval method of fourth order. The corresponding single-step method and its R-order of 
convergence are the subject of Theorem 4.3. Finally, in Section 5, we consider the computa- 
tional efficiency of the proposed inclusion methods. 

2. Derivation of Nourein’s method 

In this section we will present an interesting result which shows that Nourein’s method is 
actually the regula falsi for Weierstrass’ corrections. 

Fix i E (1,. . . , n> and zl,_. . , ,z_~, zi+,, . . . , z, E C. Note that &. is also a zero of 

C\(z~~*~~~z~-~~ ti+l,***,Z,} +C9 

z++ qi(zl,...,zi_l, 2, zj+1,...,&J. 

Using two approximants z’ and z”, the new approximant z^ obtained by the regula falsi is 
I, I 

2 := 2’ - jqzz) 1 zhi(z’) h,(z’>. 

Clearly, we assume that h(z”) f h(z’), which is implied by convergence. 

Theorem 2.1. If z ’ = zi and z N = zi - I+$ then 2 = zi - Ni. 

Proof. By (2) and Lagrange’s interpolation formula applied to the polynomial 

f(z) - kfilcz -4 

of degree IZ - 1, we have for all z E C, 

f~4=k~lc~-r,)+ kw; IY-I ~~-z/c)~ 
j=l k=l,k#j 

Consequently, 

= y+ (Z_Zi) 

(6) 

(7) 

where - as in the following - V$ denotes J$$z,, . . . , z,), while otherwise the arguments are 
specified explicitly. Using (7) we have 
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and by (4), 

2 = z’ - (Zpr -Z’) h,(z;;y;j(z,) =zj-Nj. q 

3. Convergence 

The convergence rate of Nourein’s method (5) can be determined in various ways, for 
instance as a corollary of [24, Theorem l] where root-finding methods with recursive correc- 
tions were considered. In the beginning of this section we use the well-known results concern- 
ing regula falsi and Durand-Kerner’s method as well as the relation (7) to prove the following 
assertion. 

Theorem 3.1. For Nourein’s method, there exist a neighbourhood V/5: @” of (cl,. . . , l,), ll,. . . , [,, 

being the simple zeros of f, and a constant K > 0 such that for any (zl,. . . , z,,> E V and 
i E 11 , . . . ,n} there holds 

Proof. Let ii = zi - Ni, as in Theorem 2.1. It is well known from the convergence analysis of 
regula falsi that, taking the above notations, there holds for i E 11,. . . , n), 

max{ I hy( z) I: z E CO( z’, z”, &)} 
“i-‘j’ ~ min(lhl(z)(: z E co(z’, Z”, &)] 

lz’-&I lz”-&l, 

where co(z’, z”, 6,) denotes the convex hull of the three complex numbers z’, z” and li. Using 
(7) we can easily compute the derivatives of hi and obtain for any z E @ \ 
Iz 1,. * * 9 zi-1, zi+1,. *. 9 ZJ, 

h;(z)=l+ 5 W, “-” 
(z _Zk12’ 

&‘(z)= -2 2 w, “--” 
k=l,k#i k=l,k#i (z -zk)3 ’ 

Let V,, . . . , V, denote nonoverlapping compact disks in @ with the centers ll,. . . ,5;, such that 
V:=V,X -* . x V, is a “sufficiently small” neighbourhood of (cl,. . . , (,J in C”. Then, define 

dist(l/i, V,):=min{Iz-cl: zEV, sEVk}, 

diam(V, Vk)‘=max(]z-6]: zEV, cEVk}, 
n 1 

k, := max C 
I 

i=l,..., n k=l,kti dist(V, Vk) ’ 

k, := max 2 
diam( V , Vk) 

i=l,...,n k=l,k#i dist(V, Vk)2 ’ 

k, := max 2 
diam( 5, vk) 

i=l>...>n k=l,k+i dist(V, Vk)3 * 
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Since h,(l,) = 0 for any i E { 1,. . . , n), we may assume that ‘u 

E= 

Then, for (z~,..., z,) E V and z E Vi, 

1 h;(z) I a 1 - Ek2 > +, I K’(z) I G %k=lyy kfi 1 J% 1. 
, >> 

On the other hand, (7) implies 

zi - & = 
wi 

1 f cLl,kZi w,/(f; - Zk) ’ 

zi- wi-&= -y 
Cnk=l,k+i Wk/(& - Zk) 

I+ Z=l,k+i wk/(Ji -‘k) 
= ~(zi~~i)k~~+i~~ 

so that 

]%I <(l+Ekl)IZi-~iI (iIZi-liI> 

Izi-Wi-Si\ <k,Izi-5iIk=,~~ktiIW~I <iIZi-<iI* , 1, 
Therefore, z ’ = zi E v. implies z ” =ti - Wi E q such that co(z’, z”, cj) E V;.. 

Altogether, 

l;i-SiI <4k,Izi_5iI lzi-~-d’~lk=l~~kfilW~ I > >1 
< 4k,k, 1 Zi - Ji I * max 

k=l,...,n,k#i 
IW, I2 

<9k,k,Iz~-~i12k=1~,~k~iI’k-~kJZ. 0 > 1, 

(9) 

(10) 

Remark 3.2. Theorem 3.1 implies 

Iz~--~--~~\ 9K max ]z~-<~]~, i=l,...,n, 
k=l,...,n 

whence we obtain that the order of convergence of Nourein’s method is four in the max-norm. 

Remark 3.3. In [l] it is mentioned that (9) is Newton’s method for Weierstrass’ corrections. 
Indeed, using the above expression for h[ there holds 

hi(zi) 

Bi= h’(Zi) * 

In view of the last remark, from the convergence analysis of Newton’s method, we obtain 

max{l&(z>I: zEco(q, Y,)} \*,_ Y 12 
‘zi-Bi-‘iI G min{lh:(*)): zEco(zi, li)} ’ “’ * 

Consequently, following the proof of Theorem 3.1, there holds the following assertion on 
method (3). 
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Theorem 3.4. For method (3), there exist a neighbourhood V c C” of (c,, . . . ,5,>, [1,. . . , (,, being 
the simple zeros off, and a constant K > 0 such that for any (z,, . . . , zJ E V and i E 11, . . . , n) 
there holds 

IZi-Bi--&I <KIzi-&12 max 
k=l,...,n,k#i 

1 zk - 6k 1. 

Theorem 3.1 was proved under certain conditions, including a “sufficiently small” neighbour- 
hood of ((r,. . . , 5,). Following the technique from [22] we are able to establish the convergence 
rate of Nourein’s method under more precise initial conditions. 

Let m = 0, 1,. . . be the iteration index and let 

d=min](i-~j], ulm)=zi”)-&, i=l 7 * * * 7 n, 
i,j 

i#j 

2(n + 1) 
4= 

d ’ 
, y(n)=4+)1’3, n 23. 

From (9) we find 

Theorem 3.5. Assume that the initial conditions 

(11) 

Iuy < d = 1 
2n+2 q 

(12) 

are satisfied for all i = 1, . . . , n. Then Nourein’s method (5) is convergent with the order of 
convergeke equal to four. 

Proof. For m = 0 we estimate 

[ Zi”’ - li 1 > ( & - Sk 1 - 1 Zi”’ - ck 1 > d - & = 2n , 
4 

( zi’o’ _ J,$p _ zp’ 1 > (z;“’ _ zp ( - 1 @O) ( > p - !$ = 2n 4e’/’ ) 
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From (5) and (11) we obtain 

(n - 1) el/*/q n(2 - e112) 

’ ’ - (2n _ e112)/q = 2n _ e1/2 * 

(z!m)-5,)(1+~~=l,k~i(w~m)/(ir-Z~~)))) 
Z;m+l)-&=p--i- 1+-c”_ 

k_*,l;ci(w~m)/(Zj”)- bp)-@)) 

= (zjm) - &)’ i Jy,, 
k=l,k#i k I 

x c;= I,k + J W,‘“‘/( (.Q”’ - y,)( 2;“) - wyrn) - zp))) 
1+ E;=l,k+i(wjm)/(Zj”)- H+m)-z$@)) - 

Then for the index m = 0 and for all i = 1,. . . , II we get 

/~!1~l+!“‘12k~~+i ,;7:;., 

X 
C;t-=l,kti(l wk’“’ I/(; 

zp - f; I( zi(O) - K(O) - @’ I)) 

1 - G=l,k+i ( W,(“)/( $’ - q(O) - Q’) 1 * 

Using the previous estimates, from the last inequality we obtain 

that is, 

(l# < 

By virtue of the initial conditions (12) and the inequality a(n) < 1, from (13) it follows 

[ zp( < q3a(n) l +-l)t’<;, i=l,..., II. 
(n - 1)2 42 [ I 

Applying mathematical induction, in a similar way as for m = 0 we prove 

(13) 

(14) 

for each iteration index m = 0, 1,. . . if (12) holds. 
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Substituting ti cm) = r(n) I uirn) ( , the inequalities (14) become 

t(m+l) < 
I (n~l)2t1-);i,-~~~t~m)~, i=l,..., n. (15) 

With regard to (12) and the inequality a(n) < 1 we find 

t~“~=y(.)J.~o)~ =qa(n)1’3~ujoq <+zy3 < 1, 

for each i = 1, . . . , n. Let t = max l  4 i G n ti’). Then 

t(O) f t < 1 1 

holds for all i = 1,. . . , II, wherefrom, taking into consideration the inequalities (15), we 
conclude that the sequences It:“)} (and, consequently, { I u$“) I}>, i = 1,. . . , n, tend to 0. 
Therefore, the iteration process (5) is convergent under the conditions (12). Further, putting 

u(m) = max I@)[, 
l<ign 

from (14) we obtain 

u(m + 1) < y( +JmP, 

which completes the proof of the theorem. 0 

Remark 3.6. Trigonometric and exponential polynomials have important applications in numer- 
ical analysis, in the theory of approximations as well as in many physical problems. The 
methods for finding the zeros of this kind of general polynomials have been considered in 
[4,12,13,26]. Nourein’s method (5) can be also applied for solving trigonometric and exponential 
equations using simple transformations (see [26]), which is illustrated in the following example. 

Example 3.7. An exponential polynomial 

En(z)=ao+ 5 (ukedk”+bkekz) 
k=l 

reduces to the algebraic polynomial 

&v) = W2n + C2n_1W2n-1 + . *. +c,w + co 

by the substitution eZ = w. The coefficients cj are determined by [26] 

an-1 

‘.i = - 42 ’ 
j=O, 1 ,***, n, c~+~=:, ,..., n. j=l 

n 

The zeros ,Jk of I?, can now be found by Nourein’s method; then the zeros of E, are calculated 
as the principal values of &k = log ck, k = 1,. . . , 2n. In particular, we have considered the 
exponential polynomial 

E2( x) = a, + ulepr + bleX + a2e-2x + b2e2x 
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m=O m=l m=2 

Wp 1 0.36739 0.367879441171392 
Wp 10 7.go101 7.389056 098 929 027 
Wp 20 20.085 54 20.085 536 923 187 668 
Wp 40 54&38 82 54.598 150 033 146 404 

from [26] (see, also [13]), where 

a, = e3 + eP3 +pq, a, = - (e7/‘p + e’/‘q), a2 = e4, 

b, = - (ed712p + e-‘12q), b, = e-4, 

p=2cosh $, q = 2 cash L 2’ 

The exact zeros of the polynomial E, are [i = - 1, l2 = 2, t3 = 3 and e4 = 4. The transformed 
polynomial (after normalization) is 

i?2(w) = w4 - 82.44062249643399 w3 + 1678.667985874348 w2 

- 8709.524 030 203 84 w + 2980.957 987 041728. 

Using the initial approximations wi @) = 1, ~8’) = 10, ~5’) = 20 and wi”) = 40, Durand-Kerner’s 
method produced the approximants which are exact to ten decimal places after five iterations 
[26]. On the other hand, the same accuracy was achieved by only two iterations of Nourein’s 
method (see Table 1 where the underlined digit indicates the first incorrect digit). 

We calculated the approximants to the zeros of the original function E,(x) as x:2) = log wp’, 
k = 1, 2, 3, 4, and obtained 

Xi2’ = - 1 .ooo 000 000 000 135, xi2’ = 1.999 999 999 999 780, 

X$2’ = 3 .ooo 000 000 000 001) x$2’ = 4.000 000 000 000 040. 

4. Inclusion methods 

During the last two decades many interval methods for the simultaneous 
polynomial zeros have been established. These methods produce approximations 

inclusion of 
(in the form 

of disks or rectangles) that not only contain the exact zeros providing error bounds automati- 
cally, but also take into account rounding errors without altering the fundamental structure of 
the interval formula. More about inclusion methods can be found in [20] and the references 
cited there. For the realization of interval methods the so-called (rectangular or circular) 
complex interval arithmetic can be usefully applied. We assume that this arithmetic is a 
well-established subject and we refer to [3] for more details. 

In this section we will use circular interval arithmetic. A disk 2 with the radius r = rad(Z) 
and the center c = mid(Z) will be denoted by the parametric notation Z = {c; r). One of the 
most important properties of interval arithmetic is the inclusion isotonicity: if z = g(z) and 
z E Z, then z E G(Z), where G(Z) is an interval extension of a function g. This property is the 
base for the construction of inclusion methods. 
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From (9) we obtain 

!L=zi- 1+C”_ 
k-l,k+i>/Gi -‘kl) ’ 

which is a fixed-point relation. Suppose that we have found disjoint disks 
contain simple real or complex zeros ci of a manic polynomial f of degree 
i=l ,***, it, on the basis of the inclusion isotonic& from (16) there follows 

(16) 

Zi = {z,; ri} that 
II. Since ci EZi, 

where ii is the new circular approximant of the zero ci. According to the last relation, the 
interval method of third order 

Z(” + 1) = zi(w _ 
Jq(m) 

l 

l+ Z=l,k+i (wp’/( zp - .fy) ’ (17) 

z!m)=mid(Z$“)), i=l,..., a, m=O,l,..., 

has been established in [19]. If lj E Zi(‘), i = 1,. . . , n, then & E Zjrn) for each m = 1, 2,. . . , if 
some suitable initial conditions are valid (see [19]>. 

Similarly as in [l&25] the interval method (17) can be generalized by applying a repetition 
procedure consisting of the use of the same values of wCrn), i = 1,. . . , n, several times. The 
generalized method is as follows: 

i=l ,***, n, A=O,l,..., q-l, qEN(, m=O,l,... . 

Using Theorem 3.4, we easily obtain the following assertion which can also be proved as in [25]. 

Theorem 4.1. Let {Z!m)} i = 1 , . . . , n, be the sequences of disks obtained by the interval method 
(18). If & E z$ and ’ rad(Z!')) is small enough for all i = 1, . . . , n, then 

(1) 5;. E Zicrn) for all m = 1, 2,. . . ; 

(2) the order of convergence of (18) is at least 2q + 1. 

The main objection of interval methods is their great computational amount of work. 
Following the idea of [6], a few effective methods for the simultaneous inclusion of polynomial 
zeros have been proposed in [21]. These methods combine the efficiency of ordinary floating- 
point iterations with the accuracy control which can be provided by interval arithmetic 
iterations. Using the procedure for the construction of combined algorithms described in [21], 
we can combine Nourein’s method (5) and the interval method (17) to obtain a combined 
method which (i) has an improved computational efficiency and (ii) provides the enclosure of 
zeros. Evidently, since computational costs of interval arithmetic are still great, it is reasonable 
to apply the interval method at the end of a combined procedure, insuring in this way the 
inclusion of zeros. Altogether, our combined method, which does not use any derivatives, 
consists of the following steps. 
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(1) Using some searching procedure, find initial disks Z,(O), . . . ,ZA”) containing the zeros 

5 r, . . . , ln of a given polynomial. 
(2) Applying Nourein’s method (5) (in complex arithmetic), compute the complex approxi- 

mants zi”), . . . , ,z?) to any required accuracy (after M iterations), starting with the centers .$‘) 
of the initial disk: Z”), i = 1 

(3) In the final s;ep app&‘;hE interval method (17) only once to compute the circular 
approximants 

(19) 

The inclusion disks Z1(“,l), . . . , ZII”,l) are produced by M “point” iterations and one interval 
iteration, which is indicated by the superscript (M, 1). Obviously, & E Z!“*‘), i = 1,. . . , n, 

according to the inclusion isotonic&. The improved approximations 2:“’ force not only the 
contraction of the disks (“~l) Zi but prevent division by a zero-interval in (19) if the initial disks 
Z!‘) are not small enough (because (M) W, becomes small enough in magnitude if zI”) is 
sufficiently close to the zero li>. But, applying the interval method (171, the possibility of 
division by a zero-interval exists in the mentioned case, as shown in the following example. 

Example 4.2. To illustrate the advantage of the combined method (19), we consider the 
polynomial 

f(z) = z9 + 32’ - 3z7 - 9z6 + 3z5 + 9z4 + 99z3 + 297~~ - 100~ - 300, 

with the zeros -3, + 1, + 2i, k2 + i. As the initial inclusion approximations containing the 
exact zeros we have taken the disks 

Zl(‘)= { -3.3 + 0.3 i; 0.6), Z$‘)= { - 1.3 - 0.2 i; 0.6}, Zi’)= IO.3 + 1.7 i; 0.6), 

ZJ’)={-1.8+1.4i;O.6}, Zi’)=(-1.7-0.7i;O.6}, Z$‘)=(2.4+1.2i;O.6}, 

Z$‘) = (1.8 - 0.6 i; 0.6}, Zh”) = (1.2 + 0.2 i; 0.6}, Z$‘) = { -0.3 - 2.5 i; 0.61. 

The inclusion disks Zj2) and Z!3) obtained by the interval method (17) as well as the disks Zj’,‘) 
and Zf231), produced by the combined method (19) applying one and two iterations of Nourein’s 
method (5), are displayed in Table 2. We observe that the radii of the disks Zi(‘?‘) and Z!2,‘) are 
usually several orders of magnitude smaller than the corresponding radii of the disks Zi 1(2) and 
Zi3). Besides, the computational effort of the combined method (19) is smaller compared to the 
interval method (171, which is confirmed in Section 5, in which the computational efficiency is 
calculated. 

A further advantage of the combined method, discussed previously, is illustrated in the 
example of the same polynomial taking the initial disks Z!‘) with the (slightly larger) radius 
r!‘) = 0.8, i = 1,. . . ,9, and the centers 

2;‘) = -3.6 + 0.5 i, z$“’ = - 1.3 - 0.3 i, z$‘) = 0.5 + 2.6 i, 

z$‘)= -2.6 + 1.5 i, z$‘) = -2.6 - 1.5 i, zi”) = 2.6 + 1.5 i, 

z$ = 2.6 - 1.5 i, 26’) = 1.4 + 0.4 i, ~6’) = -0.5 - 2.6 i. 
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Applying two iterations of Nourein’s method (5) in complex arithmetic and one iteration of the 
interval method (17) in circular arithmetic, we obtain the following inclusion disks: 

ZI’,‘) = { -3.0000000040 - 3.49 * 10P9i; 6.29. 10P9}, 

Z.$‘,l) = { - 1 .OOO 000 012 1 + 2.12 * 10P9i; 1.63 . lo-‘}, 

Zi2,1)= I7.15. lop9 + 2.0000000043i; 9.71. 10P9}, 

Zj’j’) = { - 2.000000 016 9 + 0.999 999 999 6 i; 2.83 . lO_‘}, 

Zi2p1) = { - 1.999 999 996 - 1 .OOO 000 017 2 i; 2.02 * 10-8}, 

Zd2,‘) = {2.0000000005 + 1.0000000005i; 8.54. 10-lo), 

Zy,l) = {2.0000000047 - 1.0000000015i; 6.29 * 10h9}, 

Zg,‘) = IO.999 999 999 8 - 2.12 * 10P1’i; 7.93 . 10-lo}, 

Zggl)= (- 1.56 * lop9 - 2.000000000010 1 i; 1.34. lo-‘). 

We cannot expect better results because the initial circular approximations are rather crude. 
But, the interval method (17) (starting with the same initial disks) must be terminated in the 
first iteration, since, calculating the disks Z$‘) and Z$l), the denominator in (17) appears to be a 
zero-interval (a disk containing the origin). 

In connection with combined methods, we remark that we can apply some other iteration 
method (in real or complex arithmetic) instead of Nourein’s method (5) (step (2) of a combined 
algorithm). For example, Durand-Kerner’s method (1) is convenient for that purpose because 
it possesses a comparable computational efficiency in regard to Nourein’s method. Even more, 
Durand-Kerner’s method always converges in practice for almost any starting point 
(z’,O’, . . . ) zL”)) (see [9]> so it belongs to the root-finding methods which are very often applied at 
the present time. In this case the stages (2) and (3) of the new combined algorithm are as 
follows. 

(2) Starting with zi”’ = mid(Z!‘)), i = 1,. . . , ~1, compute the point approximations 

zy + 1) = z;“’ - f(z?)) 
~;:=l,,,i(Zyn)_zp)~ i=l,*.*>n, ~=o,l~..*, M-1, 

where M is determined by some stopping criterion (for instance, when 

where E is a given accuracy). 
(3) Compute the inclusion disks by (17) dealing with the point improved approximations 

(M) 21 ,...,z, (*) and the initial disks Z{“), . . . , ZA”) (19). 
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The presented hybrid algorithm suggests naturally the construction of the following interval 
method (omitting the iteration index for simplicity); 

I&= fJ (Zi-Zk), 
w= fc4 

k=l,k#i ’ mid(Di) ’ 

gi =zi - 

for all i= l,.. 
(Z,, . . . , 

.c! ~1. One iteration step of the above circular arithmetic method means 
z,> - (Z,, . . . , &). Using the properties of circular arithmetic and some estimations 

from the proof of Theorem 3.1, it is easy to derive the relation 

ViE (l,...,n}, rad(Zi) <K rad(Z$=rm.a; k+irad(Z,)z, 
7 ,, 

(21) 

where K > 0 is some real constant. Similarly as in Remark 3.2, (21) implies that the order of 
convergence of the interval method (20) is four. 

The interval method (20) requires relatively great computational effort. The increase of the 
comput_ational efficiency of this method can be attained to a certain degree if the inclusion 
disks Zi are calculated serially, using the already calculated disks Z,, . . . , gi_1 as soon as they 
are available (Weierstrass’ single-step method, see [2] and [20, pp. 47, 481). Then one iteration 
step of the single-step version of (20) is as follows. 

(1) for i = 1,. . . , n calculate 

i-l 
~ = f(‘i) 

’ mid(D,) ’ 

(2) for i = 1,. . . , n calculate 

Using the concept of the R-order of convergence (introduced in [18]) we present the 
following result. 

Theorem 4.3. Assume that the initial disks Z$‘), . . . , Zi”) are sufficiently small. Then the R-order of 
convergence of the single-step method (22) is greater than p(A,) > 4, where p(A,) is the spectral 
radius of the n x n matrix defined by 

2 2 
1 2 1 
102 1 

A,,= . 
0 -. 

i 
-2 1 

0 

2 

7 n>,3. 

1 
2_ 
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The proof of Theorem 4.3 is similar to that presented in [23] (see, also [3, Chapter 81 and [20, 
Chapter 21) and will be omitted. The spectral radius p(A,) can be easily calculated by the 
well-known power method. 

5. Computational efficiency 

An estimation of computational efficiency of root-finding methods is of great interest from a 
practical point of view. For an implementation of these methods it is convenient to know the 
total number of numerical operations in calculating the zeros with the requested accuracy, 
convergence rate, processor time of a computer (CPU-time), the number of processors 
available to the user, etc. As an estimation of the efficiency of iterative methods for the 
simultaneous determination of polynomial zeros we will use the coefficient of efficiency [21], see 
also [20, Chapter 61. This coefficient takes into account (i) the R-order of convergence and (ii) 
the total number of basic arithmetic operations per iteration, taken with certain operation 
weights depending on processor time. For more details see [21]. 

Actually, the computational efficiency of most numerical methods (including zero-finding 
algorithms) can be determined only approximately. The reasons for a variation of the number 
of operations have been discussed in [21]. Furthermore, the execution time of arithmetic 
operations depends on many complex factors (for example, the stocking cost or the communica- 
tion cost is, in some case, equivalent to the computation cost, the computation time strongly 
depends on the precision of the employed arithmetic, etc.). Therefore, the values of the 
operation weight should be regarded as approximate. For demonstration, we have considered 
the computational effort for the CRAY X-MP/2 computer on the basis of data given in [ll]. 

For comparison purposes we have calculated the computational efficiency for the interval 
methods (17) and (22) and for the combined methods (l), (17) and (5), (17) (quadruple-preci- 
sion arithmetic was assumed). The entries are given in Table 3 where the polynomial degree n 
is a parameter. From this table we observe that the proposed combined methods have 
considerably greater computational efficiency compared to the interval methods (22) and (17), 
especially for the polynomials of lower degrees. 

Table 3 
The values of the coefficients of efficiency 

Methods n=4 n=5 n=6 n=7 n=8 n=9 n = 10 n = 15 

Interval method (22) 1.365 1.218 1.146 1.105 1.080 1.062 1.050 1.022 
Interval method (17) 1.507 1.301 1.201 1.144 1.108 1.085 1.068 1.030 
Combined method (11, (17) 1.891 1.512 1.336 1.239 1.179 1.140 1.112 1.049 
Combined method (5), (17) 1.984 1.553 1.358 1.253 1.189 1.146 1.117 1.051 
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