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Several algorithms for simultaneously approximating simple complex zeros of a polynomial are presented.
These aloorithms use Wejerstrass’ correc f ns and do not require anv nnlvnnmnal ri rivatives. It is shown that

goriihms usge weiersirass' corrections anc ¢o net requure any polynomial derivatives. 1t 18 shov

Nourein’s method is, actually, regula falsi for Weierstrass’ corrections. Convergence analysis and computa-
tional efficiency are given for the considered methods in complex and circular arithmetic. Special attention is
paid to hybrid methods that combine the efficiency of floating-point arithmetic and the inclusion property of
interval arithmetic.
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1. Introduction

One of the most popular methods for simultaneous approximation of the zeros of a
polynomiai (cf. [14]) was indicated by Weierstrass [27, p.258] in 1891 and much iater proposed
independently by Durand [8], Dochev [7], Kerner [10] and others Given n pairwise distinct

NMEATIR QN w Y= R fne tlan mtemrrion Adiotiimd s —_— N £ A PR

approximants \41, .., Z, )€ L” 10T tic n pairwise distinct zeros \51, vy g,n) € " of a monic
polynomial f of degree n > 3, one iteration step of Durand—Kerner’s methods reads

(z15.-0s2y) = (20,000, 2,) — (Wh,..., W), (1)
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where for all i €(1,..., n},
f(z)
etk i 2~ 2k) '

We always assume that f has simple zeros. Then, it is well known that Durand-Kerner’s
method has local quadratic convergence.

Another iteration formula, which also does not use any polynomial derivatives, is of the form

=Wi(zy,...,2,)= (2)

{5 \
(Z15-4252,)

where for all i €{1,...,n},

{ - -\ _{D n D\ 2\
(L15---54y) \Dyy Dys...,D,, \J)

Bi = Bi(Zl,..., Zn) = 1

W
1 \W’/(Z—Zk))‘

LN 1

+ 37

TR
K=1,k#i

x

This iteration formula was derived by BoOrsch-Supan [5], and later, by Nourein [16]. The

lI.CIdLlUll IIlULllUU \J} Ildb lULdl LUUIL convergence.

An improvement of the iteration method (3) was proposed by Nourein [17]. Again assuming
simple approximations and zeros, one iteration step reads

(z4seees 2y) = (24505 2,) = (N5, Ny,
where for all i €(1,...,n},
N;==N,(z4,...,2,) = ~ - 4
(21 ) 1+X _1kaez(Wk/(Z '—Zk)) )

In the sequel this method will be refered to as Nourein’s method. Starting from reasonably
good initial approximants z{¥, ..., z®, Nourein’s method produces the sequences of approxi-
mants {z{™}:

W
)
- ’
T Sl a7/ (= W = 27)
i=1,...,n, m=40,1,...,

which converge to the exact zeros, with the order of convergence equals four. W™ in (5) is
given by

e L1 \
({2nal Y

(m+ 1) (m
Z; =z;"

f(z™)
r(my _ t
i n (m) __ ,(m)} "~
Hk=1,k$i(zi 2k
~ o sm e mae So A amaan o am crvimm i . P —— o~ prpn.4 P crsmaziléntmaniio
The aim of Lh is p'del is to present some algorithms without d for the simultaneous

refinement of se
proving that No urei
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Usmg this fact, an interesting and simple proof concerning the convergence rate of Nourein’s
method is given in Section 3 (Theorem 3.4). In addition, suitable initial conditions providing the
safe convergence of Nourein’s method are stated (Theorem 3.5).

In Section 4 we study the so-called inclusion methods that not only provide error bounds
automatically, but also take into account rounding errors. First, a generalized interval method
with the order of convergence 2q + 1, g > 1, is established, applying a repetition procedure.

D

W T
of approximate zeros of a complex polynomial. We start h Theorem 2.1
v’s method is, actually, reg i for Weierstrass’ corrections (Section 2).

SVl s, atilially, i €1ersirass’ correct oI
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Combining iterations in complex and circular arithmetic, a new hybrid algorithm of Nourein’s
type is constructed. Its main advantages are the great computational efficiency and the ability
of inclusion of zeros. The presented hybrid algorithm suggests the construction of a new
interval method of fourth order. The corresponding single-step method and its R-order of
convergence are the subject of Theorem 4.3. Finally, in Section 5, we consider the computa-
tional efficiency of the proposed inclusion methods.

2. Derivation of Nourein’s method

In this section we will present an interesting result which shows that Nourein’s method is
actually the regula falsi for Weierstrass’ corrections.
Fix ief{l,...,n} and z,,...,2,_y, 2;,1,--., 2, € C. Note that ¢, is also a zero of

. C\{2zys+vvs2i215 Ziz1s---s 25} = C,
Nz W21, 21y 2y Zi gy ees Zp)-

Using two approximants z’ and z”, the new approximant Z obtained by the regula falsi is

R I ZI’_Z/ h ’
z=z = hi(zﬂ)_hi(zl) i(z )

Clearly, we assume that A(z") # h(z’), which is implied by convergence.

Theorem 2.1. If z' =z, and 2" =z, —~ W, then £ =z, — N,

Proof. By (2) and Lagrange’s interpolation formula applied to the polynomial
f(z) - kljl(z —z)

of degree n — 1, we have for all z € C,

n

= T1G-20+ W T1 (z-2) (6)

j=1 k=1,k+#j
Consequently,
f(z)

h(z) =Wz, s2i 15 2, Zipgseees 2,) = P CEED

=W, +(z—z)(1+

(7)

where — as in the following — W, denotes W;(zl, ...»2,), while otherwise the arguments are
specified explicitly. Using (7) we have

h(z' n W, !
n ( ) ! = - 1 + Z _—k——) 2
h(z")—-h(z") k=ikei Zi—Wi— 2,

[}

n
k=1,k#iWk
z—z, |
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and by (4),
h(z')
Z)h(Z”) h(Z) Zi_ i

A

Z=z"—(z"

3. Convergence

The convergence rate of Nourein’s method (5) can be determined in various ways, for
instance as a corollary of [24, Theorem 1] where root-finding methods with recursive correc-
tions were considered. In the beginning of this section we use the well-known results concern-
ing regula falsi and Durand-Kerner’s method as well as the relation (7) to prove the following
assertion.

Theorem 3.1. For Nourein’s method, there exist a neighbourhood V< C” of ({1,...,{), {15-+ -5 &,
being the simple zeros of f, and a constant K> 0 such that for any (z,,...,z,) €V and
i = {1 1l thovs halde
 — [1, .o ,ij [ 2EAT AN FIVI2 VN
2 2
|z, =N, =1 <Klz; =417 max lz =41 (8)

Proof. Let Z,=2z,— N,, as in Theorem 2.1. It is well known from the convergence analysis of
regula falsi that, taking the above notations, there holds for i €{(1,...,n},

max{| h!(z)|: z€co(z’, z {)}
min{| A/(z)|: z€co(z’, 2", g“,-)}
where co(z’, z7, {;) denotes the convex hulil of the three complex numbers z’, z” and {;. Using
(7) we can easily compute the derivatives of h, and obtain for any z € C\

f_ _ - 2
1219 vo9Zi qs ZiglrresZpls

-z =g,

IZ,‘_ i <

d z;—z d Z;— 2
M) =1+ ¥ Wt mn)=-2 ¥ Wk
k=1k=i (2—2g) k=tkzi  (Z2—2)
Let V.”___ V., denote nonoverlapping compact disks in C with the centers £, ..., {, such that
V=V, X >< I, is a “sufficiently small” neighbourhood f (£y,...,¢,) inC". Then define
dist(V,, V, ) =min{lz — {|: z €V}, { €V},
diam(V;, ¥V, ) =max{lz —{|: z€V,, { €V},
n 1

k.= max _

! i=l,...n g Z L dist(V, V)’

n diam(V )
i=Lon g g dist(V, Vk)
diam(V, VL)
«i dist(V], Vk)

[\%]

n
ky= max ),
=Tk
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Since 4,(£;) =0 for any i € {1,..., n}, we may assume that

“
1 1
€= k=1111’§§,n (Zl’.r?}jaz): eVIW"(Zl""’Z”)I <min{—2-;:, —2—k—2}
Then, for (z,,...,z,)€V and z€V,
|hi(2)] > 1 —€ek,> 3, | h!(2)] <2k3k=1’r.1?%§’k#i|Wk |
On the other hand, (7) implies
— = il 9)
it 1+ ZZzl,k#iWk/(gi —z;) ’ (
Zi_Wi_fiz”Wil Z=n1,kssiWk/(§i_zk) - (2, 0) i W, ’
+ X e/ (8= 2k) k=Ta#i $i %k
so that
IVVi'<(1+€k1)|2i“§i|<%|zi*§i|’ (10)
bz, = W=\ <kilz =& ,',I,‘i",i,k;e,-\wk‘ <slz;= &l

Therefore, z' =z, € V, implies z” =z, — W, €V, such that co(z’, z", {) C V.
Altogether,
|2, — ¢ | <dkylz, =&z, - W= max  [W|

k=1,..., nk#i

.....

2 2
<9k k;lz,— ;| . max lz, — & 17

0

..... n,k#i

lz;,—N,— ¢ sz max bz, — ¢ 1% i=1,...,n,

whence we obtain that the order of convergence of Nourein’s method is four in the max-norm.

Remark 3.3. In [1] it is mentioned that (9) is Newton’s method for Weierstrass’ corrections.
Indeed, using the above expression for %] there holds

_ hi(z;)
By

In view of the last remark, from the convergence analysis of Newton’s method, we obtain
max{|k}(z)|: z € co(z;, {;)}

Bl- - l,' l < .
min{| #/(z)|: z € co(z;, {;)}

Consequently, following the proof of Theorem 3.1, there holds the following assertion on
method (3).

|z, — \Z,‘—{ilz-

1
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Theorem 3.4. For method (3), there exist a neighbourhood V < C" of (¢;,...,{,), {y,..., ¢, being
the simple zeros of f, and a constant K > 0 such that for any (z,,...,z,)€Vand i€ (l,...,n}
there holds

2
lz,—B,— {; | <K|z,— (| max |z, ~{|.
k=1,..., n,k+i

Theorem 3.1 was proved under certain conditions, including a “sufficiently small” neighbour-
hood of ({,,...,¢,). Following the technique from [22] we are able to establish the convergence
rate of Nourein’s method under more precise initial conditions.

Let m=0,1,... be the iteration index and let

d=mlnl§l_§]|7 uEM)=Z§M)_§i’ i=17"-7n,
ila’#]j
2An+1 8(n—1\2
=_£772” “M)=Z(2n+1)’700=qawf”, n>3.
From (9) we find
n W(rn)
W =(z"=-g)1+ X ——k—(,,T)) (11)
k=T k=i $i — 2K
Theorem 3.5. Assume that the initial conditions
PP (12)
“ 2n+2 ¢
are satisfied for all i=1,...,n. Then Nourein’s method (5) is convergent with the order of

convergence equal to four.

Proof. For m = (0 we estimate

d 2n+1
2n+2 q
2n+1 1 2n 1

20— Gl2 16— 4 =120 - G| >d -

|20~ 20| 5|20~ 4] =20 - ¢ | > q ‘E=_q">3’
n | O _ L n 7O _ Ié
LIRE Ay (e A REA) o (R
jer! Tk ! 2k k J
1 1 n—1 e1/2
<—(1+——) < —,
q 2n q

2
|20 = WO =205 |20 20 - WO > - - == ,
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0] 0

- Z": WO - i WO |
O _wo _ 0|7t ©) _ 70 _ QO
k=1k#i %i W, Zy k=1k#i !Zi) wo Zl(c)‘

(n—1)e'?/q n(2—¢€'/?)

>1- = .
(2n—e'?)/q 2n—e'/?

From (5) and (11) we obtain

G N OB (Z,(m) — g’i)(l + Zz=l,k*i(Wk('")/(§,- — zl((m))))
l S bl DL AW/ (2 = W - )
n Wm
= Zz(m)_gi 2 Z mk
( ) k=1k+i{ Zl(c ) — {,-
W (2 = )2~ W — )
1+ i i(WE /(207 = W — 2f™))

Then for the index m=0and forall i=1,...,n we get
(W
u®| <|u® |’ kT
W<t X g

e IO/ (1202 - 41120 - WO — 271
1= 22=1,k#iiWk(O)/(Zz(O) - W - cho))l

Using the previous estimates, from the last inequality we obtain

3

2
7 q
u®P| <|u® 2( u® ) ,
<l 3 ] =
that is,
3 2
n n
lu?’|<—i)—z!u5°>|2( X |u$9>1), i=1,...n. (13)
(n—-1) k=1k=*i
By virtue of the initial conditions (12) and the inequality a(n) < 1, from (13) it follows
3 2
qg’a(n) 1
[u®| < ——(—)—27[(n—1)— <—, i=1,...,n.
(n—1)7°4q ] q

Applying mathematical induction, in a similar way as for m = 0 we prove

2 n 2 1
,u$m+1)‘<_7_(”)_§|u5m>|2( Y |ug(m>|) <—, i=1,...,n, (14)
(n—1) k=1k=i q

for each iteration index m =0, 1,... if (12) holds.
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Substituting ™ = y(n)|u{™ |, the inequalities (14) become
2

1 n
t,(m+1)<“—_t~(m)2( Z t,(c'”) , i=1,...,n. (15)

(n=1Y" ke
With regard to (12) and the inequality a(n) <1 we find

1O = y(m)|u®] = ga(n)|u®| <a(n) <1,

for each i =1,...,n. Let t = max, _; _,t{®. Then
V<<
holds for all i=1,...,n, wherefrom, taking into consideration the inequalities (15), we

conclude that the sequences {¢{™} (and, consequently, {|u{™1}), i=1,...,n, tend to 0.
Therefore, the iteration process (5) is convergent under the conditions (12). Further, putting

u™ = max |u{™
1<ign

from (14) we obtain
umD < y(n)3u(’")4,

which completes the proof of the theorem. 0O

Remark 3.6. Trigonometric and exponential polynomials have important applications in numer-
ical analysis, in the theory of approximations as well as in many physical problems. The
methods for finding the zeros of this kind of general polynomials have been considered in
[4,12,13,26]. Nourein’s method (5) can be also applied for solving trigonometric and exponential
equations using simple transformations (see [26]), which is illustrated in the following example.

Example 3.7. An exponential polynomial

E(z)=ay+ ) (a,e™ +be*?)
k=1

reduces to the algebraic polynomial
E (wW)y=w?+c,, w4+ - +ewtc,

by the substitution e =w. The coefficients c; are determined by [26]

a,-1 bj
cj= bn 3 J=071, s, cn+J=E;’ ]—1" ,h

The zeros ¢ of En can now be found by Nourein’s method; then the zeros of E, are calculated
as the principal values of ¢, =log ¢, k=1,...,2n. In particular, we have considered the
exponential polynomial

E,(x)=ay+ae *+be*+a,e * +be”
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Table 1
m=0 m=1 m=2

wﬁ’”) 1 0.36759 0.367879441171392
ng) 10 7.40101 7.389056 098929027
wgm) 20 20.08554 20.085536923 187668
W‘Em) 40 54.63882 54.598 150033 146404
from [26] (see, also [13]), where

a,=e>+e 3 +pgq, a, = —(e 7/2p+e1/2q) a,=¢e*,

b= —(e *p+e %), b,

p=2cosh3, ¢=2cosh %

The exact zeros of the polynomial E, are ¢, = —1, {,=2, {&;=23 and §, = 4. The transformed
polynomial (after normalization) is

Ez(w) =w* — 82.440 622496 43399 w* + 1678.667 985 874 348 w?
— 8709.524 030203 84 w + 2980.957987 041 728.

Using the initial approximations w{® =1, w{¥ =10, w{’ = 20 and w{? = 40, Durand-Kerner’s
method produced the approximants Wthh are exact to ten decimal places after five iterations
[26]. On the other hand, the same accuracy was achieved by only two iterations of Nourein’s

method (see Table 1 where the underlined digit indicates the first incorrect digit).
We calculated the approximants to the zeros of the original function E(x) as x® =log w{?,
k=1, 2, 3, 4, and obtained

x? = —1.000000 000000135, x$ = 1.999 999 999 999 780,
x§? = 3.000 000 000 000 001, x{? = 4.000 000 000 000 040.

4. Inclusion methods

During the last two decades many interval methods for the simuitaneous inciusion of
polynomial zeros have been established. These methods produce approximations (in the form

1 tai th + ey 1din a ~r h A * +1
of disks or rectangles) that not only contain the exact zeros providing error bounds automati-

cally, but also take into account rounding errors without altering the fundamental structure of
the interval formula. More about inclusion methods can be found in [20] and the references
cited there. For the realization of interval methods the so-called (rectangular or circular)
complex interval arithmetic can be usefully applied. We assume that this arithmetic is a
well-established subject and we refer to [3] for more details.

In this section we will use circular interval arithmetic. A disk Z with the radius r = rad(Z)
and the center ¢ = mid(Z) will be denoted by the parametric notation Z = {c; r}. One of the
most important properties of interval arithmetic is the inclusion isotonicity: if z =g(z) and

z € Z, then z € G{Z), where G(Z) is an interval extension of a function g. This property is the
base for the construction of inclusion methods.
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From (9) we obtain

1a7
V"i

L+ 8w Wi/ (2 —2,))

which is a fixed-point relation. Suppose that we have found disjoint disks Z;={z;; r;} that
contain simple real or complex zeros {; of a monic polynomial f of degree n. Since ¢, € Z,,
i=1,...,n, on the basis of the inclusion isotonicity from (16) there follows

{ il Z, i=1

iEZi_ n =4y, 1=1,...,n,

L+ Ziipi(Wi/ (2= 21))

where Z is the new circular approximant of the zero ¢;. According to the last relation, the
interval method of third order

{i=z;— (16)

W'i(m)
(m+1) _ ,(m) _
2 = T T (e — ) (17)
=hk=1,k#i\ &k ST Ky

zM=mid(Z™), i=1,...,n, m=0,1,...,

has been established in [19]. If {,€Z©®, i=1,...,n, then ;€ Z{™ for each m=1, 2,..., if
some suitable initial conditions are valid (see [19]).

Similarly as in [15,25] the interval method (17) can be generalized by applying a repetition
procedure consisting of the use of the same values of W, i=1,...,n, several times. The
generalized method is as follows:

VV,-('")

Z(m +(A+1)/q9) — Z_(m) _ - (18)
A E
' I T e (W /(20D =)

i=1,...,n, A=0,1,...,q~1, geN, m=0,1

Using Theorem 3.4, we easily obtain the following assertion which can also be proved as in [25].

Theorem 4.1. Let {Z{™}, i=1,...,n, be the sequences of disks obtained by the interval method
(18). If £, € 29 and rad(Z(?) is small enough for all i =1,...,n, then
(1 { ezm for alm=1, 2,.

£\ r

9
(2) the order of convergence o (1 is at least 2q + 1.

The main objection of interval methods is their great computational amount of work.
Following the idea of [6], a few effective methods for the simultaneous inclusion of polynomial
zeros have been proposed in [21]. These methods combine the efficiency of ordmary floating-

point iterations with the accuracy control which can be provided by interval arithmetic
iterations. Using the procedure for the construction of combined algorithms described in [21],
we can combine Nourein’s method (5) and the interval method (17) to obtain a combined
method which (i) has an improved computational efficiency and (ii) provides the enclosure of
zeros. Evidently, since computational costs of interval arithmetic are still great, it is reasonable
to apply the interval method at the end of a combined procedure, insuring in this way the

inclusion of zeros. Altogether, our combined method, which does not use any derivatives,
consists of the following steps.
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(1) Using some searching procedure, find initial disks Z(,..., Z® containing the zeros
. /’ of a given polynomial.

Sir e - v a i PR yaIlllg

2 Applymg Nourein’s method (5) (in complex arithmetic), compute the complex approxi-
mants z{*, ..., z{™ to any required accuracy (after M iterations), starting with the centers z®
of the initial disks Z©®, i=1,...,n

(3) In the final step apply the interval method (17) only once to compute the circular
approximants

WM

ZMD M) _ : , i=1,...,n. 19
; Z; ].+ZZ:l,k*i(Wk(M)/(Zi(O)_Zl(cM))) i ( )

The inclusion disks ZMD, ... ZMD are produced by M “point” iterations and one interval
iteration, which is indicated by the superscript (M, 1). Obviously, {,€ ZMY, i=1,...,n,
according to the inclusion isotonicity. The improved approximations sz ) force not only the
contraction of the disks Z*"V, but prevent division by a zero-interval in (19) if the initial disks
Z© are not small enough (because W’ becomes small enough in magnitude if z* is
sufficiently close to the zero {;). But, applying the interval method (17), the possibility of
division by a zero-intervai exists in the mentioned case, as shown in the foliowing exampie.

Example 4.2. To illustrate the advantage of the combined method (19), we consider the
polynomial

f(z2)=2"4+328-32"-92%+32°+92*+ 99z + 2972? — 100z — 300,

with the zeros —3, +1, +2i, +2 +i. As the initial inclusion approximations containing the
exact zeros we have taken the disks

ZO®={-33+03i;06), ZO={-13-02i;0.6), Z®={03+1.7i;0.6),
ZO=(-18+14i;06), ZO={-17-07i;06), ZO={24+121i;0.6},

Uis

ZO={18-06i;06}, ZO={12+02i;06}, ZO={-03-251i;0.6).

The inclusion disks Z® and Z{ obtained by the interval method (17) as well as the disks Z(1-D
and Z*Y, produced by the combined method (19) applying one and two iterations of Nourein’s
method (5), are displayed in Table 2. We observe that the radii of the disks Z"? and Z*? are
usually several orders of magnitude smaller than the corresponding radii of the disks Z® and
Z®. Besides, the computational effort of the combined method (19) is smaller compared to the
interval method (17), which is confirmed in Section 5, in which the computational efficiency is

r advantage of the combined method discussed previously, is illustrated in he
t l dic]fc 7(0) unth tha (

£ Caoama f\l\l‘lﬂ(\ml’)l f’)]flﬂﬂ
~ 130 YYiLil LiIC

OGIIIY PULYLIVILIIQL LADLLE

,...,9, and the centers

zW=-36+05i, zZV=-13-031i, zP=05+261,
zZP=-26+15i, z®P=-26-15i, zM=26+15i,
2P =26-15i, zP=14+041i, zP=-05-26i.
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Applying two iterations of Nourein’s method (5) in complex arithmetic and one iteration of the
interval method (17) in circular arithmetic, we obtain the following inclusion disks:

3.0000000040 — 3.49 - 10~°i; 6.29 - 10~ %},
1.0000000121 +2.12-107%i; 1.63 - 108},
ZED ={7.15-10"° + 2.000000004 3i; 9.71 - 107},
2.0000000169 + 0.9999999996i; 2.83 - 10~ %},
1.999999996 — 1.0000000172i; 2.02 - 1078},
Z&b = {2.0000000005 + 1.0000000005i; 8.54 - 1019},

{~
={=
{
{-
{~
{
Z$V = {2.0000000047 — 1.0000000015i; 6.29 - 10~°},

{

Z&D =1{0.9999999998 — 2.12 - 10~ '%; 7.93 - 107 %},
Z&Y ={-1.56-10"°—-2.00000000001011; 1.34 - 1078},

We cannot expect better results because the initial circular approximations are rather crude.
But, the interval method (17) (starting with the same initial disks) must be terminated in the
first iteration, since, calculating the disks Z{" and Z{", the denominator in (17) appears to be a
zero-interval (a disk containing the origin).

In connection with combined methods, we remark that we can apply some other iteration
method (in real or complex arithmetic) instead of Nourein’s method (5) (step (2) of a combined
algorithm). For example, Durand-Kerner’s method (1) is convenient for that purpose because
it possesses a comparable computational efficiency in regard to Nourein’s method. Even more,
Durand-Kerner’s method always converges in practice for almost any starting point
(z(9,..., zO) (see [9D so it belongs to the root-finding methods which are very often applied at
the present time. In this case the stages (2) and (3) of the new combined algorithm are as
follows.

(2) Starting with z® =mid(Z®™), i =1,..., n, compute the point approximations

f(z")

b
HZzl,k#i(Zz(m) - Zl(cm))

Zl(m+1) — Zl(m) _

i=1,....,n, m=0,1,... M—1,

where M is determined by some stopping criterion (for instance, when

max |f(z{")| <e,
Iign

where € is a given accuracy).
(3) Compute the inclusion disks by (17) dealing with the point improved approximations
zZM . z™ and the initial disks Z(,..., Z® (19).
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The presented hybrid algorithm suggests naturally the construction of the following interval
method (omitting the iteration index for simplicity);
" z, - Z;
D;= 11 (Zt—Zk)’ W, = f( l) ’ Zi=zz—f( 1)’
fe=1,k#i mid(D;) D,
X W (20)
Zi Zi - ‘ ~ ’
1+ ZZ=1,k#i(Wk/(Zi _Zk))
for all i=1,...,n. One iteration step of the above circular arithmetic method means
(Z:,....2,)~ ( 7 7 ). Using the properties of circular arithmetic and some estimations
from the proof of Theorem 3.1, it is easy to derive the relation
Vie(l,...,n}, rad(Z)<K rad(Z) max  rad(Z,)’, (21)
=1,...,n,k+i

where K > 0 is some real constant. Similarly as in Remark 3.2, (21) implies that the order of
convergence of the interval method (20) is four.

Tha intarval mothnd (9N roanirac ralativaly graat camniitotinnal affart Thae incrraace nf tha
A 11V 111t VAL LIV LIIUAG LUy 1\.«\.1\.111\/0 l\al(ll.lVUly sl\aal \/Ulllyulallullal VALUL L, 111V 1IvivAdv Ul LlIw
computational efficiency of this method can be attained to a certain degree if the inclusion
disks 7 are calculated serially, using the already calculated disks Z,, as soon as thev

dlb dituidiqat 1141y, 1115 __-.. LAl U4l

< oy Z,_;ass
are avallable (Weierstrass’ single-step method, se e [2]) and [20, p 47 48]) Then one iteration
step of the single-step version of (20) is as follows.

(1) for i =1,...,n calculate

S [z, S
D, = z,—2Z z;—2Zy), VViz—-—l—_7 Z;=z;— —. 22
k=1( k)k=Ii_!—1( 2 mid(D;) D; ( )

(2) for i =1,...,n calculate

iTZ;

1+ ZZ=1,k¢i(Wk/(Z~i _zk)) .

Using the concept of the R-order of convergence (introduced in [18]) we present the
following result.

Theorem 4.3. Assume that the initial disks Z°, ..., Z® are sufficiently small. Then the R-order of
convergence of the single-step method (22) is greater than p(A,) > 4, where p( A,) is the spectral
radius of the n X n matrix defined by

2 2 1
1 2 1 0
1 0 2 1
A, = 0 - , nz3
i 2 i
12 1 2 |
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The proof of Theorem 4.3 is similar to that presented in [23] (see, also [3, Chapter 8] and [20,
Chapter 2]) and will be omitted. The spectral radius p(A4,) can be easily calculated by the

well- known power method.

5. Computational efficiency

An estimation of computational efficiency of root-finding methods is of great interest from a
practical point of view. For an implementation of these methods it is convenient to know the
total number of numerical operations in calculating the zeros with the requested accuracy,
convergence rate, processor time of a computer (CPU-time), the number of processors
available to the user, etc. As an estimation of the efficiency of iterative methods for the
simultaneous determination of polynomial zeros we will use the coefficient of efficiency [21], see
also [20, Chapter 6]. This coefficient takes into account (i) the R-order of convergence and (ii)
the total number of basic arithmetic operations per iteration, taken with certain operation

welgma (leCIl(llIlg on prbebUr LlHlC I"UI more UCldllb 5CC LLL]
Actually, the computational efficiency of most numerical methods (including zero-finding

alanrithma) can he datormined nnlv an im 1 1 m
algorithms) can be determined only approximately. The reasons for a variation of the number

of operations have been discussed in [21]. Furthermore, the execution time of arithmetic
operations depends on many complex factors (for example, the stocking cost or the communica-

I A Ld ULS LIOULD CAAITIDIIC, LIIL UCRKILTL JITIrany

tion cost is, in some case, equivalent to the computation cost, the computation time strongly
depends on the precision of the employed arithmetic, etc.). Therefore, the values of the
operation weight should be regarded as approximate. For demonstration, we have considered
the computational effort for the CRAY X-MP /2 computer on the basis of data given in [11].

For comparison purposes we have calculated the computational efficiency for the interval
methods (17) and (22) and for the combined methods (1), (17) and (5), (17) (quadruple-preci-
sion arithmetic was assumed) The entries are given in Tabie 3 where the polynomial degree n

espec1ally for the polynomlals of lower degrees.

Table 3

The values of the coefficients of efficiency

Methods n=4 n=>5 n==6 n=7 n=2=§ =9 n=10 n=15
Interval method (22) 1.365 1.218 1.146 1.105 1.080 1.062 1.050 1.022
Interval method (17) 1.507 1.301 1.201 1.144 1.108 1.085 1.068 1.030
Combined method (1), (17) 1.891 1.512 1.336 1.239 1.179 1.140 1.112 1.049

Combined method (5), (17) 1.984 1.553 1.358 1.253 1.189 1.146 1.117 1.051
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