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SUMMARY 
The static bifurcation criterion, i.e. singularity of the tangential stiffness matrix, is discussed in the sense 
of non-linear dynamics since it is sometimes used in the engineering literature. In this paper the connection 
between static stability, i.e. that the tangential stiffness matrix is positive-definite, and insensitivity, i.e. 
local damping of small perturbations, is proved. Since, in general, there is no connection between 
insensitivity and asymptotic stability, the concept of sensitivity cannot replace the classical stability theory 
of motion 

1. INTRODUCTION 

Many engineering structures exhibit loss of stability under static and dynamic loading. 
Contrary to the static case, where the determinant of the tangent stiffness matrix indicates loss 
of stability, we have to consider different cases in dynamic problems which are treated in detail 
in the literature. 

Within the autonomous case we can use the so-called Ljapunov first approximation, where 
still the tangent stiffness matrix determines the stability behaviour; this is well known. For cases 
of periodic and non-periodic excitement Ljaponov’s general criterion is valid, which leads to 
very complicated and time-consuming investigations to ‘detect instability’; this is also well 
known; see, for example, Kreuzer,’ and Parker and Chua.’ 

These considerations yield information about the asymptotic behaviour (i.e. the situation for 
t + m; see Figure 1). However, up to continuity and flow-box diffeomorphy, the local 
behaviour is not investigated-see the situation depicted in the frame in Figure 1. 

Engineering structures are in general very complicated, and simulations are time-consuming. 
Thus it is of interest to have an indicator for dynamical instability phenomena which is 
computationally efficient. This may be reason why many engineering stability problems which 
exhibit dynamical effects like buckling or snap-through of shells are treated as static cases; see 
Burmeister and Ramm, and K r a t ~ i g . ~  In Kleiber et al. ’ the loss of ‘stability’ (detected by the 
singularity of the stiffness matrix) is called ‘quasibifurcation’ (see Figure 1). There we consider 
the situation within the box, where small perturbations have global consequences. Clearly the 
behaviour of a perturbed and unperturbed solution in the box of Figure 1 says nothing about 
the global stability behaviour. 
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However, as explained in this paper, static stability has a consequence regarding the stability 
behaviour in non-linear dynamics. Indeed, we prove an insensitivity interpretation of static 
stability, i.e. we prove that small perturbations are damped during a small period of time. 

The paper is organized as follows. In Section 2 we discuss the question, ‘What is the 
information obtained by the static stability criterion in non-linear dynamics?’ for a simple 
model problem and motivate the use of the complicated definition of insensitivity introduced 
in Section 3. It is proved that the loss of regularity of the local linearization gives exactly the 
change from insensitivity to sensitivity. In Section 4 we specify the results to the particular case 
of the equations of motion. We conclude with a discussion of the static stability criterion 
applied to non-linear dynamics. 

2. A MODEL EXAMPLE 

In this Section we analyse a simple mechanical example to study the implication of the static 
stability criterion in dynamics. This will lead us to the concept of sensitivity which is formally 
treated in Section 3. To explain the notion of sensitivity and to motivate the investigation in 
Section 3 we consider a non-linear one-dimensional model problem. 

The mechanical system is shown in Figure 2. 4 denotes the angle of the rotation which yields 
the moment of the spring: ( c M ~ ) ,  of the constant load F: ( -  FIsin4) and of the 
time-dependent force f(t): (-f(t)I cos (6). The moment of inertia is given by e M 8  and viscous 
damping by Dd. We obtain from equilibrium 

e M 8  + D$ + C M ~  = FI sin 4 + f(t)I cos 4 
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Figure 2. 

This leads to the formulation of a model equation 

4 + qcj + w2+ - x sin + = f ( t )  cos + (1) 

with 7 ,  w 2 ,  X > 0 for which we want to investigate the effect of small perturbations in the initial 
data 60 = 0 and $0 = 0 at time to = 0. 

Note that for f ( 0 )  # 0 there is no equilibrium. fcan be an arbitrary function (non-vanishing, 
non-periodic) and is possibly unknown at later times. For instance, f may represent external 
forces resulting from an cwthquake. When we consider the response of the system in a fixed 
time period the asymptotic behaviour is not of interest. Instead we discuss whether the system’s 
response depends heavily on small perturbations or not. Moreover we ask whether the response 
of the perturbed system differs significantly from the unperturbed one in the next time period. 

Mathematically the situation is clear. Since we have no equilibrium the response of the 
perturbed and unperturbed system can be viewed withing the notion of the flow box theorem. 
In this paper we derive a quantitative measure which yields information about possible 
divergence of the streamlines or not. 

The static version of (1) reduces to 

w2+ - x sin 9 = f ( t )  cos + 

w 2 - X = O  

thus a linearization in r#~ = 0 yields the stability condition 

The question is, in what sense are the two situations w 2  > X and w 2  < X ‘stable’ and ‘unstable’, 
respectively? 

In the following we discuss the effects of a perturbation (a, 6 )  of ( + o , ~ o )  = (0,O) in the model 
problem (1). 

Let @(a,~) = $(a,@))f denote the solution of (1) related to the initial conditions 

% , D ) ( t O )  = (0196)‘ 

Furthermore we define the matrix 

B = (  a b  ) c I R ” ~  
b c  
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and assume that B is positive-definite, i.e. a,c,  uc- b2 > 0. Matrix B provides a distance 
measure for *(a,& - a(0.0). 

The distance CP(,,5) - @(o;o) in the so-called B-norm eB,(a.B) is defined as 
2 eB,(a.B)(t) := (@(a,@) - *(O.O))'B(*(a,B) - *(O,O)) 

Note that it is necessary and fundamental to employ different B-norms for different distance 
measures-see below. 

Now we examine the change of ee,(a,o). Recall that solutions of ordinary differential 
equations are related to the initial conditions by continuity 

( a . B ) + O  
vt > 0 VB positive-definite lim eB,(a,D)(t) = 0 

while (asymptotic) stability is described by 

3B positive-definite lim lim eB.(,.&) = 0 
( U , B ) + O  f-wa 

When we consider the local perturbation behaviour of the system, then we ask whether 

For this purpose, we investigate the time derivative 
eB,(a,p) is monotonously increasing or decreasing in a neighbourhood of to = 0. 

and obtain by (1) and the initial conditions 

Standard computations yield 

2B1= 

Clearly, if a = 0 then sin a/a or 1 - cos a/a has to be replaced by 1 or 0, respectively. If a and 
P are small we have to consider lirn(,,p)-oBl= B2 with 

1 2b( X - w2)  a - bq + c[X - 0') 
2(b - cq) B2=f(, - b?l+ c(X - 0 2 )  

Then ee,(,,5) is monotonically decreasing (increasing) at to = 0 for small perturbations in the 
direction of (a,P) if 

R2(a, P )  := (a, P)Bz(B) 

is negative (positive). Hence we have to inspect the sign of Rz(a,@). Obviously, the sign of ' 

R2(a, p )  depends on (a, P )  and B. For example, if (a, P )  = (0, l), then Rz(0,l) = b - cq is 
negative for b < 0 and we must choose, for example, a = c = 1, b = 0 such that B is 
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positive-definite. Rz(0,l)  is positive for b > cq and we have to choose, for example 
c = 1/q, b = 2 and a = 57 such that B is positive-definite. 

We conclude that the monotonic behaviour of a,(u,fi) depends heavily heavily on the distance 
measure used, i.e. on By which is the reason for introducing B. 

The example shows that we cannot hope to obtain 

VB positive-definite v(a, P )  # 0, &(a, 6) < 0 

Thus we can only expect to reach 

3B positive-definite v(a, 0) # 0, &(a+, 0) < 0 

It is easy to see that this is equivalent to constructing B positive-definite such that Bz is 
negative-definite, i.e. the diagonal entries of BZ are negative while det B2 is positive. 

If this construction is possible, then we will say that (1) is insensitive in to  = 0, $0 = 0, i0 = 0 
while otherwise it is sensitive. Again, insensitivity means that there exists a certain measure such 
that any error obtained by a sufficient small perturbation will be damped in a neighbourhood 
of to .  Sensitivity means that perturbations (which can be chosen arbitrarily small) exist for any 
measure such that the obtained errors increase in a neighbourhood of to  = 0. 

Suppose B is positive- and B2 is negative-definite. Then it is not hard to see that X 2 u2 
contradicts det B2 and det B positive. Thus insensitivity implies static stability in this case. 

Suppose X < u2 and define 

a := q2/2 + uz - A, b := q/2, c := 1 (3) 
Then B is positive- and BI is negative-definite. Here the static stability condition implies 
insensitivity. 

Summing up, we are led to the conjecture that the static stability condition just determines 
sensitivity within this example. In a general context this will be proved in Section 3 and in a 
more interesting particular case in Section 4. 

In Section 5 the significance of insensitivity is discussed critically. In the course of this we 
will return to the model example of this Section. 

3. SENSITIVITY 

In this Section we generalize the observations made in Section 2 to ordinary differential 
equations and introduce sensitivity and insensitivity. Moreover we prove equivalence of 
insensitivity and static stability. For this purpose we need further notation. 

Let f: R x IR" + R" be a C' map and consider the unique solution x: ( -  a, + a )  + R", a > 0, 
of the differential equation x ( t )  = f ( t ,  x(t)), t E ( -  a, + a), satisfying the initial condition 
x(0) = XO. It is well known that x depends continuously on xo (cf. Hirsch and Smale and 
Willems7), but we are less interested in this qualititative result than in a quantitative one. 

If a = + OQ (i.e. x exists for any time), then asymptotic stability of x in the sense of Liapunov 
is well known. The following example from Willems7, pp. 49, 113, gives a sufficient condition 
for asymptotic stability. 

Theorem I 

If f(t,x) = (A + B(t))x, where A E  R R X "  and B: IR -, RnX" is a C' map satisfying 
limt-., B(t)=O, then the trivial solution x = O  (for x0=0) is asymptotically stable if all 

0 eigenvalues of A have negative real parts. 
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Remark. Note that, if A depends on t (as B does), then the stability result above is false even 
if all eigenvalues of A(t )  have real parts smaller than a h e d  negative real number 6 < 0 (see 
Willems' p. 120) for the counterexample of Vinogradov). Indeed it is necessary to observe the 
(real) eigenvalues of the symmetric part H:= (A + A')/2 of A (see Willems p. 117). 

We will modify the theorem for f being a non-linear function and t - to being smdi (in 
contrast to t -, m). Then the non-linearity has only a minor influence (see below). 

Let to E IR, xo E IR" and f: IR x IR" + IR" be a C' map (where f can be only piece-wise C' in 
the first variable). Let x: (to - a,  to + a )  + IR" denote the solution of the initial-value problem 
x = f( - , x), x ( t 0 )  = XO, which exists on ( to  - a, to + a). Since f is C' the theorem of Picard and 
Lindelof yields the (unique) existence of a solution x and gives a lower estimate for a > 0. 
Moreover it implies the existence of an universal a > 0 and a neighbourhood U of xo in R" such 
that for all [ E U the initial-value problem 

(4) 

has a unique solution denoted by &: (to - a, to + a )  + IR", which exists on (to - a, to + a). 
Clearly x = &,. 

Furthermore, let B be a positive-definite matrix which yields an inner product. The related 
norm, called, the B-norm, is given by 11 y I ~ B  := ,/m, y E IR", and denoted by 11 - I I B .  For 
B E I?"'" positive-definite and [ € U let 

( 5 )  

be the B-norm of the difference of the solutions of (4) for the initial value xo and the perturbed 
one E .  

Vt € ( to  - a, to + a )  X( t )  = f ( t ,  x ( t ) ) ,  x ( t 0 )  = 5 

eB,(: ( t o  - a, t0 + a )  -b R, t I+ Ilx( t )  - 4E(t) I(B 

We are now in the position to define sensitivity and insensitivity formally. 

Definition 

x is called insensitive in t o  iff 

36 > 0 3B € B positive-definite 301 E (0, a)VE € IR", 11 xo - 5 I ~ B  < 6 
eB,t is monotone decreasing on (0, a) (6) 

On the other hand x is called sensitive in to iff 

v6 > 0 vB E IRnX",B positive-definite 3a € (0, a )  3[ E IR", ( 1  xo - [ I I B  < 6 
eB,E is monotone increasing on (0, a) (7) 

If x is sensitive (insensitive) in to  for any to € J E IR, then x is said to be sensitive (insensitive) 
on J. 

Note that x sensitive is not equivalent to x not insensitive (even though x sensitive implies 
x insensitive), but in view of the next theorem we find the difference less interesting. 

Theorem I1 

Let D&o, x ( t 0 ) )  denote the Jacobian of a C z  map f with respect to the second variable. If 
all eigenvalues of Dzf(t0, x ( t 0 ) )  have negative real parts, then x is insensitive in to .  If conversely 
at least one eigenvalue of Drf( to ,x( to) )  has a positive real part, then x is sensitive in to. 

Remark. Theorem I1 states the equivalence of insensitivity and the static stability criterion. 
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Proof. Let A := Df(to,x(to)). First we assume the existence of /3 > 0 such that all 
eigenvalues of A have real parts smaller than - 0. By the Lemma from Hirsch and Smale, 
p. 145f, we found a positive-definite matrix B such that, for all Z E  IR",z'BAz 6 -@z'Bz. By 
continuity of Df and a €  (a,O) exists such that z'BDf(t,x(t))z 6 -/3/2z'Bz for all 
t 6 (to - a, to + a) and z E IR". Since f is a C2 map we may write 

11 f(t ,  x(t) + z) - f ( t ,  x(t)) - D2f(f, x(f))Z llB 6 M 11 2 11 & 
for all t E (to - a, to + a), z E R", 11 z I ~ B  < 1 and a constant M > 0. Since C#J€ depends 
continuously on E and (to - a, to + a) is bounded, we can choose 6 > 0 such that for all 4 E IR" 
with 11 4 - xo I ~ B  < 6 and all t 6 (to -a, to + a)eB.E(t) < min(1,0-25/3/M) holds. 

Let t E ( to - a, to + a), E E R", 11x0 - 4 I I B  < 6 and z := t#q(t) - x(t), e B , t  = I( z 1113. Then we 
obtain the result 

1/2(ei,€)' (t) = z'BZ = ztBD2f(t, x ( t ) ) z  

+ z'B(f(t, x(t) + Z) - f ( t ,  x(t)) - Dzf(t, x(t))z) 
6 - P/2 1) z 1 1  B + z ( 1  B < - 1/4/3ei,~(t) Q 0 

This implies the assertion in the first part. In the second one we assume the existence of an 
eigenvalue X of A with positive real part. Let B be positive-definite and 6 '  > 0. Consider 
an eigenvector x + iy of A related to X = /3 + iy, x, y 6 R", 0, y E R, ReX = /3 > 0. Since 
A(x + iy) = (/3 + iy)(x + iy) implies 

x'BAx = 11 x 11 i - yx'By and y'BAy = 6 11 y 11 B + yy'Bx 

Here a real vector z exists which satisfies z'BAz 2 0 11 z 11 'B > 0. Next we choose M and 6 < 6 '  
as above and f' := xo + 72, where 7 E IR and 0 < 11 72 I ~ B  < 6. Then, as above, 

1/2(e&,t)'(to) 2 B II 72 II B - TZ I) i 2 3/4~eB,t(t0) > o 
By continuity of x and +€ an a > 0 exists such that (ei.€)' 2 Be;,€ holds on (to - a, to + a). This 
completes the proof. 0 

Remarks. 

(i) Looking at the proof of the theorem, insensitivity and sensitivity can be described. For 
this purpose we will distinguish between two cases. In the first case there exists a certain 
B-norm such that any small perturbation of displacement and velocity at that time to will 
be reduced exponentially (with respect to the B-norm) during a following small period 
of time. This situation seems 'stable' and to  is called insensitive-see Figure 3. In the 
second case (using any B-norm) there exists a certain direction (possibly depending on 
the used B-norm) such that any small perturbation in this direction will increase 
exponentially during a following small period of time. This situation seems 'unstable' 
and to is called sensitive-see Figure 4. In the second case we look at a real (and hence 
positive) eigenvalue. Then any real eigenvector z determines the direction which yields 
an exponential increase of perturbation (independently of any B-norm)-see Figure 4. 
Both cases are discussed also within the model example in Section 2. 

(ii) Mathematically, sensitivity as well as static stability is described only by a linearization 
off in time and space. Hence sensitivity can state only a local behaviour and is in general 
unsuited for a 'global stability message'. 

(iii) Clearly, all B-norms are equivalent in IR" and hence the topological statements 'z grows 
to infinity' or 'z decreases to zero' in ( to ,  00) are independent of these norms in contrast 
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Figure 3.  Figure 4. 

to 'z increases' or 'z decreases' in ( t o ,  to + a). For example, let 6 > 0 be a parameter and 
let B E R 2  be given in (2) with diagonal (b = 0) and the entries a = 6 and c = 1. Consider 
the mapping h: (0,742) R, t - (sin t, cos t ) t .  Then (1 h 1 1 ~  is constant for 6 = 1, strictly 
increasing for 6 > 1 and strictly decreasing for 6 < 1. Therefore sensitivity has essentially 
to respect the norms used in IR" in contrast to asymptotic stability which is independent 
of norms. 

(iv) In the theorem the non-linearity of f is ignored by considering only Dlf( t0 ,  m). On the 
other hand the critical case in which all eigenvalues of Dd(f0 ,  xg) have negative real parts 
but at least one eigenvalue with zero real part depends essentially on the non-linear 
behaviour off.  

To explain this we return to the model example in Section 2 in the critical case 
X = u2 > 0. Then B1 becomes 

sin a with [:= u2 -- 
[ a  

a-bq+cE 
B I =  ( " 2 

a - b + c E  
2 b-crl 

1 - cos a 
1 1  -f@) a 

It is not hard to see that 

B positive-definite, B1 negative-definite * f < 0 

Therefore the negative definiteness of BI depends on f (0 )  too (since f = -f(O)a/2 if 
a = 0) and further considerations are needed. 

Indeed, if f ( 0 )  # 0 and 1 a 1 is sufficiently small, then f < 0 implies k f ( 0 )  1 a I > 0, a 
contradiction; to  = 0 is sensitive. If, conversely, f(0) = 0 and I a I is sufficiently small, 
then f < 0. Moreover, by (3) we find that BI is negative-definite, and thus to = 0 is 
insensitive. 
The time to in which x changes the sensitivity might be interpreted as a critical point like 
a bifurcation point in quasistatic considerations (see Kleiber et af.'). But this 
comparison seems not to be allowed for several reasons. First, the influence of 
perturbations acts only in a period of time and not at that time to .  Secondly, we should 
stress that we are (in general) not dealing with equilibria since X ( t 0 )  # 0. Hence the 
flow-box theorem (see Hirsch and Smale6) shows that the neighbourhood of ( t o ,  X O )  

looks qualitatively identical to neighbouring points, which is in contrast to static 
bifurcation. Thirdly, there is no bifurcation-all initial-value problems under 
consideration have unique solutions. 

On the other hand, numerical computations as well as imperfections yield small 
perturbations which will be reduced during sensitivity and can increase exponentially 

(v) 
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just after the insensitivity has changed to sensitivity. Hence time to indicates a qualitative 
change of the solutions. In general, however, perturbation occurring in sensitive 
situations could yield large quantitative changes-see Kleiber et al. ' 

4. PARTICULAR CASE 

In the following we discuss insensitivity in the particular situation of the equations of motion. 
This yields the main theorem on insensitivity in applications. 

The non-linear initial-value problem 

MU + C i  + R(u) = P(t), ~(0) = UO, i(0) = i o  (8) 

with My C E I R n X " ,  M positive-definite, and the C2 maps R: IR" -+ IR" and P: IR" + IR" will be 
transformed via 

x =  (a) E iRZ" 

into the initial-value problem x = f ( t ,  x ( t ) ) ,  

u x =  ( 
-M-' [R(u) + Cir - P ( t ) ]  (9) 

Problems (8) and (9) are equivalent. The definition of sensitivity and the theorem is applicable 
for (9). Let x: (- a, + a )  + IRZn be the solution of (9), a > 0, and let f: IR x IT?" + IR" be defined 
by the first right-hand side of (9). 

Lemma. 
(i) For all t E (- a, + a )  we have 

where K(t) := DzR(u(t)) is the Jacobian of R at u(t) ,  i.e. the tangent stiffness matrix. 
(ii) The eigenvalues of Df are just the eigenvalues of the X-matrix, 

PM+ X C + K  (10) 

(iii) Let C := d1M for a fixed positive number dl. Then, any eigenvalue X of (10) is given by 

with an eigenvalue p of ( p M  + K). 

Proof. 

(i) is obvious. Little calculation shows that X is an eigenvalue with a related eigenvector 
(4, q)' E RZ"  iff X is an eigenvalue of (10) with a related eigenvector 4, q = Ad. This implies 

0 

Summing up, we conclude this Section with the following main result which is directly implied 
by the Lemma and Theorem 11. 

(ii) and leads to (iii). 
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Theorem III 

Let the solution u of (8) exist on [0, a)  and let t o e  (0, a). In addition, let K:= DR(u) be 
symmetric and C := dl M with M positive-definite and dl > 0. If K(to)  := DR(u(t0)) is 
positive-definite, then the solution u is insensitive in to. If K ( t o )  has some negative eigenvalue 
then u is sensitive in to. 0 

Remark. It seems interesting that, in the situation of the theorem, sensitivity behaviour is 
independent of dl > 0. 

In practical applications the damping matrix C is small and can be neglected in the numerical 
computation of short processes like the beginning of vibrations etc. Then the theorem can be 
applied only if the computation is assumed to be an approximation for the true solution of (8) 
with C = dlM, dl > 0 but dl small. It is notable that the static stability criterion is independent 
of the damping constant d , ,  while for dl = 0 equation (1 1) gives imaginary eigenvalues of Dzf 
so that Theorem I1 cannot be applied. 

5 .  DISCUSSION 

We recall that the static stability is equivalent to insensitivity. But there are several reasons 
below showing that the static stability criterion is of minor significance in classical non-linear 
dynamics. Conversely, insensitivity is important if the perturbation behaviour of a mechanical 
system is assessed at time to .  

Insensitivity does not imply asymptotic stability (see the counter-example of Vinodradov in 
Reference 7, p. 120). On the other hand, asymptotic stability does not imply global 
insensitivity. 

A connection is only given in the linear case of Theorem I. In general, sensitivity is local in 
time and space and therefore (in general) of no relevance for (global) stability. 

Whereas classical asymptotic stability is important (if it can be proved), we stress insensitivity 
as an indication of a safe engineering construction. Conversely, sensitivity characterizes the 
possiblity that small perturbations of the current situation can increase and thus can lead to 
a change of the asymptotic behaviour (see Figure 1). Consequently, sensitive situations should 
be considered with great attention in both the engineering design and numerical simulations. 

This holds true even if we have a non-autonomous and non-equilibrium problem and no 
other criterion can be used. 

As explained in remark (v) in Section 3, this paper confirms the observations in Burmeister 
and Ramm,3 Kratzig4 and Kleiber et a1.,5 that the static stability criterion is of significance 
in non-linear dynamics. 
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