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Abstract We consider an h-adaptive algorithm for the boundary element method applied to two integral 
equations of the first kind on polygons, namely Symm's integral equation and the hypersingular equation 
with the normal derivative of the double layer potential. Our reliable and operative algorithm is based 
on new a posteriori estimates for the boundary element Galerkin solution. Numerical experiments 
show the effectivity of the algorithm. 

1 
Introduction 
In this paper an adaptive h-version algorithm is presented and analyzed for a boundary element method 
for linear strongly elliptic problems. The algorithm is proven to be (i) reliable in the sense that the 
error in the energy norm is guaranteed to be below a given tolerance and (ii) operative in the sense 
that the error indicator (an a posteriori bounding quantity) can be made less than any given tolerance 
by suitable mesh refinement. The adaptive algorithm is based on a posteriori error estimates Carstensen 
and Stephan (1993a, 1994a,b) which yield (i). 

The problem of constructing an adaptive boundary element method is of very high practical importance. 
For FEM we refer to the pionnering work of Babu~ka and Miller (1981) and Eriksson and Johnson (1988, 
1991). 

Whereas an almost complete approach to adaptive algorithms for FEM is available (see e.g. Babu~ka 
and Miller 1981; Eriksson and Johnsson 1988, 1991; Johnsson and Hansbo 1992), comparably little is 
known for BEM (see e.g. Postell and Stephan 199o; Rank 1987; Wendland and Yu 1988), for the h-adaptive 
coupling of FEM and BEM see Carstensen and Stephan (1993b). An adaptive h - p  version for the Dirichlet 
problem of the Laplacian based on Symm's integral equation is implemented in Ervin, Hener and Stephan 
(1993). In this paper, we show that the a posteriori error analysis Eriksson and Johnson (1988, 
1991) made for the finite element method of the Dirichlet problem for the Laplacian carries over to the 
adaptive h-version for two boundary integral equations, namely Symm's integral equation and 
a hypersingular integral equation which handle the Dirichlet and Neumann problems of the Laplacian, 
respectively. This analysis leads directly to a rigorous global error control algorithm. 

We let 12 denote a bounded two dimensional domain with polygonal boundary F. 
As it is well known, we can convert the Dirichlet problem 

A u = 0  inO,  u = g  o n / "  
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by use of the single layer potential into Symm's integral equation 

V~(x) :=--~S~(y) ln lx- -y lds=(I+K}g(x) ,  xeF, (1) 

for the unknown density 6. On the other hand making use of a double layer ansatz for the solution we 
can convert the Neumann problem 

~U 
A u = 0  inI2, - : - - = f  o n / "  

6 1 l -  

into a hypersingular integral equation 

Dr(x): -  1~3 fv(y) f lnlx-yidsy=(S-SC*)f(x), x~V, 
7tOn x ~ ~ny 

(2) 

for the unknown density v. The operators V and D are strongly elliptic pseudodifferential operators of 
orders minus one and plus one, respectively (see Costabel 1988; Costabel and Stephan 1983, 1985), and 
the Galerkin schemes for (1) and (2), respectively, are: 

Find 6heSS(F) such that for all OheS~ 

( v G , G )  = (g, Oh). (3) 

Find vh~S~(I') such that for all Wh~S~(I" ) 

(DVh,Wh) ~- ( L  Wh). (4) 

Here ( - , . )  denotes the L 2-duality of F given by yrf(x)g(x)dx for smooth functions f,g. S~(F) consists 
of piecewise constant functions and S~ (F) consists of continuous, piecewise linear functions. 

The operators D and V define continuous, positive definite (provided cap (F) < 1, sufficient for that 
is, e.g., that the domain is included in a circle with radius < 1 which can always be arranged by scaling) 
and symmetric bilinear forms a(v, w) = ( Dv, w) and a( G q~ ) = ( V 6, ~ ) for v, we/gxa ( F ) : =  { v~H~a( IP): 
yrvds = 0} and 6, qS~H t/2(F) (see Costabel 1988; Costabel and Stephan 1983, 1985). (For the definition 
of the Sobolev spaces see Lions and Magenes 1972.) Therefore, the Galerkin solutions of (3) and (4) 
converge quasioptimally in the energy norm towards the exact solutions of the integral Eqs. (1) and (z). 
Form Costabel (1988), Costabel and Stephan (1983, 1985) we know that, if cap (F)  # 1, there exists exactly 
one solution 6~HU2(F ) of (1) for g~HII2(AW), and that there exists exactly one solution w/71/2(F) of 
(z) for f~H ~/2(F) with ~r f ds = O. 

Furthermore, for smoother given data g and f we known from Costabel and Stephan (1983,1985) 
that 6 and v allow decompositions into so-called corner singularities plus "smooth" remainders where 
the lack of regularity of 6 and v near the corner stems from the geometry of the polygonal domain 12. 
Those corner singularities lead to poor solutions of the numerical schemes unless they are incorporated 
directly into the scheme or a suitable mesho refinement is used. 

In practical problems such information is missing, and this is why one would like to have an adaptive 
feedback algorithm where the algorithm itself decides when and where to refine the mesh in order to 
improve the computed Galerkin solution. 

2 
Adaptive algorithms 
First consider (1). There holds the following a posteriori error estimate. 

Theorem i (Carstensen and Stephan 1994a,b) 
There exists a constant C > 0 independent of h such that if geHl(F) and 6 and 6h are the solutions of 

dR 
(1) and (3), respectively, then for R = g -- V 6h, R = 0-7' 
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[l~-~h[l~_,,~(r) <C. ll ~'~'~'~ IIh.R'l] ~'~ = ~, II L~(r)" L~Ir) (5) 
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and 

N 

II ~ - G II n ~,~(~) ~ C" E h) ̀2" II R'II L~(z 5) 
j = ]  

(6) 

Next consider (2). There holds the following a posteriori error estimate. 

Theorem 2 (Carstensen and Stephan 1994a,b) 
There exists a constant C > 0 independent of h such that if fEL 2(F) and v and v h are the solutions 
of (2) and (4), respectively, then for r = f -  D G 

1/2 1/2 II v - V h II H~,~(, ~) < c .  II r II ~(,-)" II h .r II ~ (r )  (7) 

N 

I/v - Vh II ~'~<~-I C, ~ E h) ~" II r [[ L~(rj). 
j = l  

(8) 

The integral equations (1) and (2) and the corresponding a posteriori estimates (Theorems 1 and 2) can 
be looked at in a general frame work. 

Let A:J~f--, W* with H _~ H ~ (F),  me N, 24 ~* the dual of ._~, be some pseudodifferential operator 
which is bounded, linear and positive definite on the closed subspace ~ ofH ~ (F), i.e. we have a constant 

> 0 with 

(Au, u) >_ ocHull2n~r fo ra l l  u e ~  ~Hm(F).  

Here, ( , )  extends the L2(F) scalar product to the duality between the Sobolev spaces H and ~'4 ~*. Due 
to the Lax-Milgram lemma we then have a unique solution ue.Ji ~ ~_ H'~(F) of 

Au = f  (9) 

for any given right hand side f e l l  m(lr') ~ ~* .  

For the numerical approximation of u let F = w~=lF j be partitioned into N pairwise disjoint elements 
F 1 . . . . .  F N and let S~ denote a finite dimensional suhspace of J~' c H'~(F) of piecewise polynomials, 
i.e. vhl ~ is a polynomial of degree k at most for any vhES ~ and j  = 1 . . . . .  N. Then, the Galerkin equations 

(AUh, Vh) = ( f ,  Vh) f o r  all VheS k (lo) 

have a unique solution uheS ~. Due to Cea's lemma we have 

Ilu - Uhll~m{i~ ~ C, inf [[u --  Vh[[~{c ) (11) 
vh~S k 

where C denotes a generic positive constant which is independent of the data f and Sh k. 
In Carstensen and Stephan (1994a) we derive a posteriori error estimates of the form 

[[U--l'~h[[Hm(C) ~ C~ j~la~) ~ ]'`;~ (12) 

where r is some real some real number (dependin on A), hj := IFjl is the length of the element Fj, and 
aj is the local contribution of the residual R := g -- A% assuming REH 1-k(F), i.e. 

1 -k R 
(13) 

where prime or (818s) denotes differentiation with respect to the are length. Inspections show that (12) 
corresponds to (5) and (7) with r = 1/2. In (12) any element contributes two terms to the right hand 



side, namely aj and ajhj. Usually, an adaptive steering has the aim to equidistribute all members of the 
sum (which bounds the error) in order to yield some optimal mesh. Since we have two sums in (12) it is not 
obvious which of them and how should be equidistributed (cf. Remark 3 below). 

In Carstensen and Stephan (1994b) we prove improved a posteriori error estimates of the form 

N 

j=t  
(14) 

via "local interpolation"�9 The estimate (14) correspondents to (6) and (8) with r =  1/2. The new upper 
bound in (14) is more convenient for an adaptive feedback algorithm steering the mesh-refinements 
than (12) since any element ~ contributes only to one summand. 

From (14), an adaptive algorithm for automatic mesh refinement is easily derived following Eriksson 
and Johnson. In this way, we consider five adaptive algorithms, four of them based on (12) and (14), 
and compare the resulting convergence behavior in numerical examples�9 Following the works of Eriksson 
and Johnson (1988, 1991) and Johnson and Hansbo (1992) (and the literature quoted therein) we use 
the above a posteriori estimates to steer the mesh refinement within a successively refining h-version 
of a Galerkin procedure�9 

Given a tolerance TOL > 0 we cannot decide whether or not the norm of the error is smaller than 
TOL as far as the constants in (12) and (14) are unknown. Without computing upper bounds for these 
constants we have only some relative error control. Hence, neglecting the constants we can compute 
aj := ][R' [tt2(~) for Symm's integral equation or aj := I] r[tL~r ) for the hypersingular integral equation 
(at least by numerical approximations-see Carstensen and Stephan 0994b) for details). We consider 
the right hand sides 

�9 , 2 

B I : = B , ( a  1 . . . .  as ,  h 1 . . . . .  hN).= ~ • a ) )  �9 h)".a~ 
k j = l  / j = l  

and 

N 

B 2 : = B 2 ( a  1 . . . . .  aN, h, . . . . .  h N ) : = ~ . ~  -~ 
j=] 
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related to (12) and (14), respectively, where 0 _< r < 1 is fixed. Then, the problem of finding opt imal  

meshes wi th  respect to the above bound  Bt(E = 1, 2) reads as follows (see Carstensen and Stephan 1994b): 
Problem of optimal meshes. Given a threshold TOL > 0, find a polygon with the sides ~ . . . . .  /-N 

which covers / -and  which minimizes the computational costs needed for assembling and solving the 
related Galerkin equations under the side condition that the corresponding terms a s . . . . .  a n, 
h 1 . . . . .  hN) G T O L .  

Remark i The computational costs for assembling and solving the related Galerkin equations can be 
estimated approximately by the number of degrees of freedom that is the number of elements N, i.e. 
we have to minimize N under the side condition B e <_ T O L .  

Our adaptive algorithms have the following general structure and differ just by the refinement rule (Ak) 
in step (iii). 

2.1 
Adaptive algorithm (Ak) 
Given a coarse initial mesh and then take the acutal partition F~ . . . . .  F n and do (i)- (iii) until termination�9 

(i) Solve the Galerkin equations with a trial space S k a space of piecewise polynomials with respect h' 
to the actual partition/-1 . . . . .  /-N. 

(ii) Compute a I . . . . .  a N, hl . . . . .  h N and the related B~. If B: < TOL stop, else continue with (iii). 
(iii) Forj  = 1 . . . . .  N refine ~ by the rule (Ak) and continue with the new mesh in (i). 

Remark 2 The Algorithm (Ak) requires in step (iii) to create a new mesh which satisfies Br < TOL and 
leads to the minimal number of new elements. This means that we have to choose natural numbers 
k s . . . . .  k N such that the new mesh is determined by dividing ~. in kj new elements (e.g. of the same size) 
and k s + . . .  + k N = / g  is minimal under the side condition that for the new mesh ~ . . . . .  / ~  with related 
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coefficients a~ . . . . .  a ,  and element lengths/~ . . . . .  h9 we have 

B~(al . . . . .  a~,hl . . . . .  h~r) <- T OL. (15) 

Note that 

[hi h lh2 hi h~ hff~ 
( hi . . . . .  ]~N) = k k~ . . . . .  k 1 ' k 2 . . . . .  k-~ . . . . .  k--N . . . . .  k-N J" (16) 

kl k N 
The first idea here is that the new element sizes can be controlled directlybut the corresponding coefficients 
~ . . . . .  ~ are more involved. If we assume that the residual does not change during this iteration step 
or, at least, will not become very large, we may assume in this step that ~ . . . .  , ~t~ can be replaced 
by a 1 . . . . .  a s - -more  precisely, we regard the meshsize h i as a (piecewise constant) weight function of 
the fixed residual. Therefore, the side condition (15) is replaced by the side condition 

Bl(a 1 . . . . .  a w h l /k  1 . . . . .  hs/kN) <_ TOL.  (17) 

Note that, e.g., B2(a ~ . . . . .  aN, h J k  1 . . . . .  hn/kN) = Ef= l  aj. (hj/kj) 1-r. 
The minimization of kl + "-" + k,  under the side condition (17) leads to our refinement rules below. 
We use the following refinement rules (Ak), k = 1, 2, 3, 4, 5 (for Sobolev spaces in the energy norm, 

i.e. for r = 1/2) in the numerical examples where 0~ [0, 1] is some fixed parameter, and TOL > 0 is 
a given tolerance. 

2.2 
Refinement rules (Ak) 
(A1) Halve ~ if and only if aj. hj >_ O. max k 1,,..,Nak �9 h k. 
(A2) Halve Fj if and only if aj. h) ~ >_ O.maxk=~,,.,~a k. h~-L 
(A3) Divide Fj in kj pieces of the same length where kj is the smallest integer _> 1 with 

hj/kj ~ TOLU(1-r) x/- ~ 
ll r , ,  a : =  

(A4) Divide Fj in kj pieces of the same length where kj is the smallest integer > I with 

< ( T O L ~  ml-r) 

(As) Divide/~ in kj pieces of the same length where kj is the smallest integer >_ 1 with 

I / T OL'~ u(1 - r) 

We conclude this section with some remarks on the motivation and some simple properties of the adaptive 
algorithm. 

Remark 3 (i) The last three rules are related to (B~) for d -- 1, 2 and the notion to reach (17) in one step 
(i.e. k I . . . . .  k~r 2 . . . .  }) under the side condition that the contributions of the new elements to the 
sum on the left hand side in (17) are nearly equal to TOL/N, i.e. they are nearly equal to each other and 
nearly equality in (17). 

(ii) Note that (A1) does not depend on the parameter r. Hence the mesh created will be the same 
and independent of the norm chosen for minimizing the error. 

(iii) For each step we have some guaranteed error estimate. In this sense, the adaptive algorithms 
are reliable (up to the constant factor C). 

(iv) If the terms a := x/~Y=, a32 and bj blow up, we may modify the algorithm and include steps of 
uniform refinements so that this term a becomes small enough. If we perform this additional control we 
achieve operability in the sense that the side condition (15) is satisfied within a finite number of steps. 

(v) If we modify the algorithm as in (iv) and, in addition,reduce the tolerance TOL once (15) is reached 
(by a factor 1/2, say) we get a sequence of Galerkin solutions which converges to the exact solution, i.e. 
we have convergence. 



(vi) The quest ion of efficiency is tackled here  just  by  numer ica l  examples and  a compar i son  of 

convergence rates and  a l ist ing of the respective effectivity indices. 

3 
Numerical results 
We presen t  one example for Symm's integral equation and  a second example for the hypersingular integral 
equation using the h-vers ion of the Galerkin method.  We take piecewise cons tan t  and  cont inuous,  

piecewise l inear  trial funct ions  in S o and  S~, respectively, t2 is the L-shaped domain  with vertices (0, 0), 

Uniform mesh 
N e n a N y~ 

8 0.18803612 0.21747 
16 0.11259966 0.740 0.21228 
32 0.070981643 0.666 0.20157 
64 0.044727288 0.666 0.19155 

128 0.028239541 0.663 0.17982 
256 0.017926080 0.656 0.16596 

(Ax) for 0 = 0.5 
N e N a n ~ 

8 0.18803612 0.41398 
10 0.11480572 2.211 0.40524 
12 0.07613727 2.253 0.39361 
16 0.04892621 1.537 0.36506 
20 0.03011395 2.175 0.36228 
26 0.01789988 1.983 0.29450 
38 0.01112847 1.277 0.29535 
50 0.00433037 3.406 0.16346 
68 0.00111284 4.419 0.06516 

N 
(Ax) for TOL = 3.0 

e n an ~ 

8 0.18803612 0.32442 
12 0.08942822 1.833 0.20543 
18 0,04253587 1.833 0.12141 
26 0.02802225 1.135 0.09706 
36 0.01683484 1.566 0.06351 

(A2)for 0=0 .5  
N e n a n ~ 

8 0.188036093887699 0.21747 
10 0.114805720083032 2.211 0.19245 
12 0.076137268453540 2.253 0.16520 
14 0.052517624082683 2.409 0.14085 
16 0.039464335297708 2.140 0.12547 
22 0.020652945322717 2.033 0.11332 
24 0.015357936931417 3.404 0.09595 
30 0.007360172681442 3.296 0.05919 
36 0.005549105541033 1.549 0.05874 
46 0,001934266012570 4.300 0.02694 

N 
(A3) for TOL = 0.6 

en aN 7n 

8 0.188036093887699 0.41398 
14 0.074973926354012 1.643 0.39016 
18 0.042167583016977 2.290 0.30699 
22 0.029806401983176 1.729 0.24435 
24 0.026973506611762 1.148 0.23345 
26 0.025751660097479 0.579 0.23442 
28 0.025251145343351 0.265 0.24132 
30 0.025049590424076 0.116 0.25082 

Table x. Adaptive h-version for Symm's integral 
equation. 377 



N 
(A4) for TOL = 3.0 
e N c~ N 72 

8 0.18803612 0.21747 
10 0.11480572 2.211 0.19245 
14 0.060639315 1.897 0.14958 
20 0.034973051 1.543 0.12146 
26 0.028897927 0.727 0.11970 
36 0.019924578 1.143 0.10965 

Table 1. (Continued) 
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0 .1754 - - . _~  
0.1504-~\\ 
0.1254/ / ._  I , ~  . ~  a 
0.1004./,._ t ~,~ -.,%. v 
0,0754" ~ ~, \  ~ .  0 ~ \ \ 

o 

0.0004 

theta = 0.0 
theta = 0.5, half r j 
theta = 0.5, quarter F; 

4000 ' J 11984 
7992 

Number of unknowns 

0 .1754 . .~  
0 . 1 5 0 4 ~  
0 . 1 2 5 4 - -  
0 . 1 0 0 4 f  
0.0754 ~ P  
0 . 0 5 0 4 - -  

E 
0.0254-  

e'- 

O 
c- 
O 

._.q 

o 
O 
2 

O tw 

0.0004 

Number of unknowns 

a A1, the ta=  0.5 
v A1, theta =0 .9  
<> A5, TOL = 3.0 

d i i 
4 00 11984 

7992 

N 

(A2) for 0 = 0.5 
quater Fj 
eN ~N 

Table 2. Modified adaptive h-version 
for Symm's integral equation. 

8 
14 
20 
32 
50 

0.1880360938 
0.0749739260 1.643 
0.0375267700 1.940 
0.0190906560 1.438 
0.0044439687 3.266 

Fig. 1. Errors in the Galerkin 
method obtained in Algorithm 
(Az) for Symm's integral equation 

Fig. 2. Errors in the Galerkin 
method obtained in Algorithm 
(A1) and (A5) for Symm's integral 
equation 



Uniform mesh 
N e N ~N 

8 0.47030 
16 0.42849 0.134 
24 0.40787 0.122 
32 0.39335 0.126 
40 0.38247 0.126 
48 0.37381 0.126 
56 0.36664 0.126 
64 0.36054 0.126 
72 0.35525 0.126 
80 0.35058 0.125 

N 

(A2) for 0 = 0.9 
e N an 

8 0.47030 
9 0.45175 0.342 

10 0.43337 0.394 
11 0.41063 0.566 
12 0.38574 0.850 
14 0.33837 0.850 
16 0.29402 1.052 
18 0.25285 1.281 
20 0.21437 1.567 
22 0.17805 1.948 
24 0.13911 2.837 
26 0.10289 3.768 
28 0.062753 6.672 
30 0.031020 10.212 

N 

(A2) for 0 = 0.5 
en aN 

8 0.47030 
10 0.42756 0.427 
12 0.39221 0.473 
14 0.35913 0.572 
16 0.32900 0.656 
18 0.30155 0.740 
20 0.27053 1.030 
22 0.24832 0.899 
24 0.22625 1.070 
26 0.20693 1.116 
28 0.18854 1.256 
30 0.17129 1.391 
32 0.15624 1.425 
34 0.14243 1.526 
36 0.13009 1.585 
38 0.11913 1.628 
40 0.10951 1.641 
42 0.10078 1.703 
44 0.092817 1.770 
46 0.085515 1.843 
48 0.078794 1.923 
52 0.071366 1.237 
55 0.068790 0.655 

Table 3. Numerical results for 
hypersingular integral equation. 
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(1, 0), (1, 1), ( --  1, 1), ( --  1, -- 1), (0, -- 1). For the imp lemen ta t ion  of our  adaptive h-vers ion of the b o u n d a r y  

e lement  m e t h o d  see Cars tensen and  Stephan 0994a,  b). Symm's  integral  equat ion  (1) is considered with 
given g = I m  z 2/3 on the b o u n d a r y / "  of the L-shaped domain  I2. 

For the hypers ingular  integral  equa t ion  (2) on the b o u n d a r y / ~  of the L-shaped domain  the given 

data  f =  ( (3u/Sn)  o n / ~  is compu ted  f rom u ( z )  = Irn z 1". 
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0.8942- 
0.7692- 
0.6442- 
0,5192- 

0.3942- 

~ 0.2692- 

~'0,1442-  
._= 

0.0192. 
8 144 280 

Number of unknowns 

theta = 0.0 
theta = 0.25 
theta = 0.5 
theta = 0.75 
theta = 0.9 

Fig. 3. Errors in the Galerkin 
, , method obtained in Algorithm 

416 688 960 (A2) for the hypersingular integral 
552 824 

equation 

Meshes for A1 where 0 = 0.5 

4 

Fig. 4. 

1 I 

- I  I 1 

Meshes for A1, where 0 = 0.5 
L 

_ , ,  , 

i 
, ,  , 

4a 

In Table 1 we list the error eN: = II~ - ~NII~ in the energy norm [l~ll~ = ( v ~ ,  ~ )  for the h-adaptive 
Galerkin solution fin of (3), aN and 7N. N denotes the number  of degrees of freedom (chosen by the 
algorithm; a new row corresponds to a new refinement step in the adaptive algorithm), a N is the 
experimental convergence rate computed as 

log(eN/e~r) 

~N--  log(N ' /N)  

where N' and e N, are the corresponding values of the previous row. Define the "effectivity index" 

~, ~/<v(o.- ~), ~ , . -  O> 
n ~ . . . . . . . . . . . . . .  

Bl( al . . . . .  a N, hi . . . . .  hN) 



Meshes for A1, where 0 = 0.9 Meshes for A1, where 0 = 0.9 
[ ] [ I 

5 

Fig. 5. 

1 I A l l  [" 
5 a  _ 
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Meshes for A2, where 0 = 0.5 Meshes for A2, where 0 = 0.5 
I I 

- ' I  I I 

6 v 

Fig. 6. 

6a 

with B~ yielding the adaptive algorithm considered. For the algorithm (As) we set aj: = HR ][n~(r.r We 
present the respective results for the adaptive algorithms (A1)-(AS) and for the uniform mes~. 

In our example the solution has typical corner signularity. Hence the convergence rate of an h-version 
boundary element scheme (3) with uniform mesh is reduced to 2/3 while the adaptive versions (compare 
Table i and Fig. 1 and 2) show improved convergence rates, the optimal is 3/2. Whereas (A1) and (A2) 
in Table i are performed via interval halving, the results of Table 2 are obtained with (A2) via 
dividing the intervals into 4 pieces (of equal length). Comparisons show that "quartering" is superior 
to interval "halving", since the error is already after a few steps drastically reduced. The effectivity index 
listed in Table i shows clearly the effectivity of our algorithms (A1)- (A5). 

Table 3 we show the error e,: = ][ v - w [JE in the energy norm 2 _ [[ v]r~ - ( D G  6 )  for the h-adaptive Galerkin 
solution v, of (4). We give the respective results for the algorithm (A2). In Fig. 3. we plot the Galerkin 
error due to algorithm (A4). 

Figures 4-8  show various meshes which are created via the algorithms (A1), (A2) and (As) when 
solving Symm's integral equation. 



Meshes for A2 (quarter r j )  where 0 = 0.5 
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Meshes for A5, where TOL = 3.0 

i 
,"; I I  

Meshes for A5, where TOL = 3.0 

E 

...... I I 

i ..... 
8a 

References 
Asadzadch, M.; Eriksson, K. 1994: An adaptive finite dement method for the potential problem. SIAM 1. Numer. 
Anal 31:831-855 
Babu~ka, I; Miller, A. 1981: A posteriori error estimates and adaptive techniques for the finite element method. Univ. 
of Maryland, Institute for Physical Science and Technology, Tech. Note BN-968, College Park, MD 
Carstensen, C.; Stephan, E. P. 1993a: Adaptive boundary element method for transmission problems. Preprint Institute 
ftir Angewandte Mathematik, Universitiit Hannover 
Carstensen, C.; Stephan, E. P. 1993b: Adaptive coupling of boundary and finite elements. Preprint Institut ffir 
Angewandte Mathematik, Universitiit Hannover 
Caxstensen, C.; Stephan, E. P. x994a: A posteriori error estimates for boundary element methods. Math. Comp. (accepted 
for publication) 
Carstensen, C.; Stephan, E. P. 1994b: Adaptive boundary dement methods for some first kind integral equations. 
SIAM 1- Numer. Anal. (accepted for publication) 
Costabel, M. 1988: Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal 19: 
613-626 
Costabel, M.; Stephan, E. P. 1963: The normal derivative of the double layer potential on polygons and Galerkin 
approximation. AppL Anal. 16:2o5-228 



Costabel, M.; Stephan, E. P. 1985: Boundary integral equations for mixed boundary value problems in polygonal 
domains and Galerkin approximation. Banach Center Publ. 15:175-251 
Eriksson, K.; Johnson, C. 1988: An adaptive finite element method for linear elliptic problems. Math. Comp. 50: 361-383 
Eriksson, K.; Johnson, C. 1991: Adaptive finite element methods for parabolic problems I. A linear model problem 
SIAM J. Numer. Anal. 28:43-77 
Ervin, V.; Heuer N.; Stephan, E. P. 1983: On the h-p version of the boundary element method for Symm's integral 
equation on polygons. Comput. Meth. Appl. Mech. Engin. 11o: 25-38 
Johnson, C.; Hansbo, P. 199z: Adaptive finite element method in computational mechanics. Comput. Meth. Appl. 
Mech. Engin. lo1:143-181 
Lions, J. L.; Magenes, E. 1972: Non-Homogeneous Boundary Values Problems and Applications I, Berlin, Heidelberg: 
Springer-Verlag 
Postell, F. V.; Stephan, E. P. 199o: On the h-- ,  p - -  and h--  p versions of the boundary element method--numerical 
results. Computer Meth. in Appl. Mechanics and Egin. 83:69-89 
Rank, E. 1987: Adaptive boundary element methods. In: Brebbia, C. A.; Wendland, W. L.; Kuhn, G. (eds.): Boundary 
Elements 9, Vol. 1, 259-z73. Heidelberg: Springer-Verlag 
Wendland, W. L; Yu, De-hao 1988: Adaptive botmdary element methods for strongly elliptic integral equations. 
Numer. Math. 53:539-558 

383 


