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Abstract 

One of the most important recursive schemes in CAGD is De Casteljau's algorithm for the 
evaluation of Btzier curves and surfaces. Within the theory of triangular recursive schemes we 
discuss the De Casteljau's algorithm as a particular case, i.e. we prove that it is identical to the 
E-algorithm (or GNA-algorithm) in a particular frame. This result is of theoretical interest since it 
leads to some classification of recurrence relations in CAGD. Furthermore, it may be regarded as 
a model example how to obtain known and possibly new recursive schemes in CAGD as examples 
of the theory of general extrapolation algorithms. 

Keywords: CAGD; Recurrence scheme; De Casteljau's algorithm; Bernstein polynomials; Extrapolation 
algorithms; E-algorithm; GNA-algorithm 

1. Introduction 

In computer  aided geometric design (CAGD)  one is interested in representations 
of  curves and surfaces which allow a fast evaluation in order to obtain a fast plot of  
the object under consideration. This motivated the development of  triangular recursion 
schemes in the past decades, such as De Casteljau's  algorithm, De Boor ' s  algorithm, 
and Goldman ' s  algorithm, among others (Farin, 1990). The general structure of  such 
triangular recursions was studied in (Brezinski,  1980; Mtihlbach, 1978) generalizing the 

classical Nevi l l e -Ai tken  algorithm. 
It is of  some theoretical interest to classify the above schemes in CAGD within the 

general frame of  extrapolation algorithms. Thus, known algorithms can be characterized 
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and possibly new algorithms can be found. In this work, we treat De Casteljau's algo- 
rithm as a model example and prove that it is indeed a particular case of the E-algorithm 
(Brezinski, 1980) or GNA-algorithm (Miihlbach, 1978). There a point of a B6zier curve 
is characterized as a solution of an interpolation problem and the Bernstein polynomials 
are characterized as solutions of a certain system of linear equations. 

For convenient reading we recall the notations and the general scheme of the E- 
algorithm in Section 2. Then, we state and prove in Section 3 that the E-algorithm 
reduces to De Casteljau's algorithm in a certain setting. In (Brezinski and Walz, 1991 ) 
a general frame was given for such triangular recursions and De Casteljau's algorithm 
was considered as one particular case. In order to show that our result does not contradict 
(Brezinski and Walz, 1991), we recall the definitions of the representation functional 
and the characteristic space in Section 4. Then we prove in Section 5 that De Casteljau's 
algorithm can be treated in the context of (Brezinski and Walz, 1991). 

2 .  G e n e r a l  e x t r a p o l a t i o n  a l g o r i t h m s  

In the context of linear or quasi-linear extrapolation one is concerned with a system of 
linear equations (yielded by the interpolation conditions) such that a certain approximant 
En k is given as a quotient of determinants (see (Brezinski, 1980; Miihlbach, 1978)). 
Using the notations of the so-called E-algorithm we have the data 

and 

gk( j )  G K ( k , j = 0 , 1 , 2  . . . . .  n) (1) 

E~jCE (j  =0 ,  1,2 . . . . .  n) 

where E is a vector space over K, K being the real or complex field. We always assume 
that the data satisfy 

g=j,...,j+k 
0 v~ Igo(J) . . . . .  gk(J)l :=det(gi(g))i_-o,...,k (2) 

for a l l k = 0  . . . . .  n a n d j = 0  . . . . .  n - k .  Then, f o r a n y k = l  . . . . .  n a n d j = 0  . . . . .  n - k ,  

: =  

where the numerator determinant is defined in (2) and the denominator determinant 

iE~j,gl(j) . . . .  gk(J)[ :=det g l ( j )  . . .  g l ( j  + k )  • . . E E  

\ g k ( j )  . . .  g ~ ( j + k ) /  

is defined by formal expansion of the determinant with respect to the first row. 

R e m a r k  1. In view of g0(f) ~ 0 (cf. (2)) with no loss of generality we may and 
we do assume, for convenience, that go(f) = 1 for all g = 0 . . . . .  n (Brezinski, 1980). 
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Indeed, by dividing the corresponding rows of the numerator and denominator in (3) by 
go(g) this may be assumed simply by changing the input data ~ to E~e/go(g). Under 
this assumption (3) holds also for k = 0 and j = 0 . . . . .  n - k. 

Remark  2. Assuming E~0 . . . . .  E~ linearly independent define linear functionals Di (i = 
0 . . . . .  n) on span{E~0 . . . . .  E~} by 

Di(E~j) : = g i ( j )  ( i , j = O  . . . . .  n). 

Then tor any k = 0 . . . . .  n and j = 0 . . . . .  n -- k E~ as defined in (3) is the unique linear 

combination of ~ . . . . .  E~j+k satisfying the interpolation conditions 

Di (E~)  :=~i,0 ( i = 0  . . . . .  k). (4) 

This is obvious from (3). Hence, once we have shown that the entries in De Casteljau's 
algorithm are given in terms like (3) we have proved that De Casteljau's algorithm is 
an extrapolation method and the B6zier curves are interpolants in a certain extrapolation 
scheme. 

This is a different point of view than the usual one. Usually, given control points 
E°00 . . . . . .  ~ and a parameter t C (0, 1 ) De Casteljau's algorithm computes the point 

j=0 

of the B6zier curve by repeated linear interpolation with weights 1 - t and t, respectively. 
Knowing that the entries E~ of De Casteljau's algorithm are of the form (3) then from 
the general frame of linear extrapolation theory we know that they are uniquely defined 
by the interpolation conditions (4). Then, moreover, as a consequence De Casteljau's 
algorithm follows as will be shown below. 

Remark  3. From the general extrapolation theory (Brezinski, 1980; Mtihlbach, 1978, 
1981 ) it is known that under the assumptions (2) all elements (3) can be computed by 
the recursive triangle 

= ( l  - • E ? '  + 1 ( 5 )  

for all k = 0 . . . . .  n and j = 0 . . . . .  n - k where the coefficients y~ E IK are determined 
by 

g k - l , k ( j )  (6) 
Y~ = g k - l , k ( j )  -- g k - l , ~ ( j  + l )  

provided they all are well defined, i.e. their denominators are nonzero. It is important 
that the entries gk,j ( v )  themselves can be computed recursively according to (5) 

gk . j (u)  = ( 1 -- y~)  • g k - l . j ( v )  + yk,, " gk-l . j (~ '  + 1 ) (7) 

starting from go4 (p )  = g j ( u ) / g o ( z , ) .  We refer to (Mtihlbach, 1978, 1981; Brezinski, 
1980) for proofs, examples, applications, and further properties of such general extrap- 
olation schemes. 
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Remark 4. Note that the computational costs are of  third order in n while the compu- 
tation of  E~ for all k = 0 . . . . .  n and j = 0 . . . . .  n - k via Gaussian elimination is of  
fourth order. But the crucial point compared with the fast algorithms used in CAGD 
is that there the coefficients yjk are known explicitly. Then, the computer effort for the 

computation of  E~ (for all k = 0 . . . . .  n and j = 0 . . . . .  n - k) is only of  quadratic order 
in n. We are going to show that De Casteljau's algorithm can be derived as a special 
case from this general recursive scheme. 

From the general framework of  extrapolation methods we recall that gk,j(~') is again 
a quotient of  determinants, 

gk , j (V )  = ] g j ( v ) , g l ( ~ ' )  . . . . .  gk(~')l 

Ig0(v) . . . . .  gk(~')l ' 
(8) 

(compare with (3 ) ) .  
The classical example yielding an algorithm of  quadratic order is the Neville-Aitken 

algorithm where g k ( j )  = ( x j )  k is the kth power of  the node xj .  Then, the determinants 
in (8) are known explicitly. 

3. De Casteljau's algorithm is an extrapolation algorithm 

In this section we consider De Casteljau's algorithm which computes the value 

n 

Tff := ~-~ B n ( t )  • Pi 

i---o 
(9) 

of  a B6zier curve for the parameter t C (0, 1 ) and the control points P0 . . . . .  Pn E E via 

T/k = t .  T/h-' + ( 1 - t ) .  T/~ 1 (lO) 

where ~ := Pi and B n ( t )  := (7)ti(1 - t)  n- i  is a Bernstein polynomial. 
Since (10) has a structure similar to (5) one should expect that the general extrapo- 

lation algorithm (5) includes De Casteljau's algorithm (10) as a particular case. 
In order to prove this we have to find data as in (1) satisfying 

(a) (2) ,  
(b) E~ = T," where E~) is defined by (3) and Tn n is defined by (9) with Eyj = Pj,  and 

(c) y~ = t for all k = 0 . . . . .  n and j = 0 . . . . .  n - k where y~ is defined by (6) and 
(8) .  

Starting with g o ( j )  = 1 one constructs gl ( j )  such that y~. = t. Then, via mathematical 

induction on k = 2, 3 . . . . .  n one tries to find g k ( j )  satisfying y~ = t. Inspecting the 
determinants one observes that once g o ( j )  . . . . .  g k - l ( j )  are known one has k free 
values to chose g k ( j ) .  Choosing 0 = gk(0) . . . . .  g k ( k  - 2) and 1 = g t ( k  - 1) one 
obtains the following result. 
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T h e o r e m  1. Let  go(J)  = 1 f o r  any j = 0 . . . . .  n and let, f o r  k = 1 . . . . .  n and j = 

0 ,  . . . , n ,  

g~:(J) = J ( l  -- 1 / t )  j -k+l  
k 1 

i f j < . k - 2 ,  

i f j ~ k - l .  
(11) 

In the proof  of  the theorem we need the following rule where we use the convention 
(~) : = O f o r j < k .  

L e m m a  1. For r E K \ {0} and n, k = 0, 1,2 . . . .  the po lynomia l  

1 

(0): 

in x ,is equal  to 

X (no1):+, 

,r k("+l) . ( 1 - X / T )  k. (13) 

x k 

k - l ]  

Proof  of  the  l emma .  Let us denote a generalized Vandermonde determinant with pos- 
sibly repeated nodes by 

fo,...,f, fi(TJ)) j--O ...,n" VI 7o ........ I = det k.k,~xx} - ,  

Here bt.j (T) is the mult ipl ici ty of  ~" in (~'0 . . . . .  ~ ' j-1),  and we are going to take f i  ( x )  = 

pi (x"  := x i. Observe that the polynomial  (12)  equals 

1 1 
- -  I Pn ,Pn+ 1, . . ' ,Pn ~ k 

x ,  l! . 2 ! . . . ( k _  l ) !  " V, x ....... I. 

1 Being a linear combinat ion of  x n . . . . .  x n+k and having the k-fold zero ~-, 1!.2!...¢k-1)! 

V p,,,p,,+l,...,p,,,k[ m u s t  equal a,.k(~') • x" • (T -- X) k where the coefficient of  x n is 
X T , . . T  

(12) 

R e m a r k  5. Although we consider only a finite part of  the extrapolation table, i.e. n is 
a fixed bound for all indices, note that the theorem holds for all n simultaneously, i.e. 
for the full (infinite) extrapolation table. 

Then, the general extrapolation algori thm (5)  is De Castel jau 's  algorithm, i.e. we have 

(a) ,  (b) ,  and (c)  such that, f o rE~j  = P j ,  j = 0  . . . . .  n, (5)  is (10). 
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a , , k ( r ) - z  k= 

n ~ 1)Tn+ 1 

1 

1 ! . 2 ! . . . ( k - 1 ) !  
Pn+l,...,pn+k • V l  , , . . , ,  I. 

By multiplying the j th  row by 74-1 it is possible to take out of  the ith column the factor 
z n+i, i.e. we have an,k(r) • 7 k = 7 "k(n+l) • bn,k where 

( n ~ l )  . . .  

bn,k = 

From Pascal's triangle (,~+1) kk+l] 
is independent of  n and k. 

(7) - k+l = one infers that bn,k = bn,k-1 . . . . .  bn,l = 1 
[] 

P r o o f  of  the theorem. Let r := 1 - l i t  so that gk(j)  = (kJ,)~ "j-~+l for all k , j  >~ 0 

(using the convention (J) := 0 for j < k). Then, from Lemma 1 we obtain 

]g0(n) . . . . .  g~(n)] = T k ' " . ( r  -- 1) k (14) 

which is nonzero and proves (a).  
The coefficient of  E~j in the numerator determinant of  E~ (as defined in (3) )  equals 

the coefficient o f  x j in (12) written for n = 0 and k = n. Hence, by Lemma 1 and (14) 
also written for n = 0 and k = n, we obtain that the coefficient of  E~j in E~ equals 

T"-J ( -1)N(~)  
( ~ - 1 ) .  -By(t) 

which proves E~ = 7"n ~ (cf. (9 ) ) ,  i.e. (b) .  
Consider the coefficient of  x k in (12) and (13) to verify 

Igl ( v )  . . . . .  g~(z,) I = r ~~. 

Using this and (14) in (8) shows 

gk_l,k(P) - 
7.t' 

(1 - ~-)k-l" 

Hence (6) leads to y~ = 1/(1 - ~-) = t which is (c).  [] 

R e m a r k  6. According to remark 2 from the general extrapolation theory we get the 
following interpretation of  the point 
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'l'~ = E~ = ~-~ B j ( t )  . Pj 
j--O 

of  a B6zier curve corresponding to the parameter t E (0, 1). Defining linear functionals 

Di (i = 0  . . . . .  n) on E.  := span{P0 . . . . .  Pn} C E b y  Do(p i )  =go(J )  = 1 ( j  = 0  . . . . .  n) 
and tbr i = 1 . . . . .  n 

J - 1 -  ( j = 0 ,  . n) Di (P / )  = gi(J)  = i -  1 "" ' 

where we assume dim E, = n + 1 then T." is the unique element of  En satisfying 

Di(T f f )  = ~i.O (i = 0 . . . . .  n) .  

This means that the Bernstein polynomials  B.~(t) are uniquely determined as solution 
of  the system of  linear equations 

n 

: l ,  

j=0 

, 

Z • 1 -  = 0  ( i = l ,  . , n ) .  B j ( t ) .  i -  1 "" 
j--o 

Inserting B'](t)  = (~) tJ( l  - t ) " -J  in the last equations yields the identities 

~ ( ~ ) ' (  J ) f o r i = l , . . . , n  
j--O 

which, we suppose, are familiar in combinatorics. 

4. Triangular recursions, reference functionals and characteristic spaces 

In this section we recall the definitions of  a reference functional and of  a characteristic 
space (Brezinski  and Walz, 1991) of  a linear sequence transformation. 

In the previous sections we considered a finite number of  coefficients (cf. e.g. 
where n is an upper bound of  all indices).  Following (Brezinski and Walz, 1991 
now consider sequence transformations of  the type 

J 

~=j- k 

10) 
w e  

15) 

where (T~), ,ez is a sequence in E, E is a vector space over K, and /3jk~ E K for all 
j,~, ~? Z, k = 0, 1,2 . . . . .  
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Defini t ion 1. Let F be a vector space over K with algebraic dual F*. Let (f~)~=0,1,2 .... 
be a sequence in F and ( L ~ ) ~ z  be a (bi-infinite) sequence in F*. Then, for j C Z and 
k = 0 , 1 , 2  . . . . .  

J 
k F* Rj  := Z flJ,~" L~ C (16 )  

u = j - k  

is the reference f unc t iona l  of  (15)  with respect to ( L j - k  . . . . .  L j  ) if  L j - k  . . . . .  Lj  are 
l inearly independent.  A (k  + 1 )-dimensional  subspace Ek = span{f0 . . . . .  fk} of  E is a 
characteris t ic  space of  the reference functional (16)  if  

m m w ~ ' : = R  e f0 ~s 0 =  = Re f l  . . . .  R~ n fm (17) 

for all m = 0  . . . . .  k and g = j -  k + m  . . . . .  j .  

A sufficient condit ion for the transformation (15) to result from a triangular recurrence 

T#' = / z  t g + - (18)  

for all m = 0 . . . . .  k and g = j - k + m . . . . .  j can be expressed as follows• 

T h e o r e m  2 (Brezinski  and Walz, 1991). Let  (16) be the reference func t iona l  (wi th  

respect to ( L j - k  . . . . .  L j )  ) o f  the transformation (15)  having a characterist ic  space 

Ek = span{f0 . . . . .  f k } .  I f  

0 4= V[ To ........ f , , l : = d e t ( L ~ f ~ , ) ~ , _ m " , , ~  (19)  
Le # . . . . ,L t  

f o r  al l  m = 0 . . . . .  k and g = j - k +  m . . . . .  j and, i f  k >1 2, 

0 4= v[ ¢,  ........ < ° ' - '  I (20) 
Lf  -m+ l ,... ,Lg-1 

f o r  al l  m = 2 . . . . .  k and  g = j -  k + m . . . . .  j ,  then (15) results f r o m  a tr iangular  
recurrence (18)  where 

• Re fm 0.)~ m - 1  

h~ '=  w~,__ll. Rntr_l fm  _ w,~_l . Rnfl__ll f m 

and 

-w"~' . R~_-II A ,  
#~. = 

m-- I i~m-- I # m-- I . R~_-ll f m COg_ I " "~g J m  -- 03#. 

f o r  al l  m = 1 . . . . .  k and g = j - k + m . . . . .  j .  In particular, when to~ = 1 f o r  all  m, g 
then 

R m -  1 # 
g J m 

m = ].£m = 1 -- A~. [] (21)  
Ag R ~ t -  1 f m  m - 1 ' g - Rg_l fm  
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5. De Casteljau's algorithm and its characteristic space 

In this section we prove that Theorem 2 is applicable to De Casteljau's algorithm, 
i.e. we present a reference functional and a characteristic space of  (9) such that (18) 
is ( I0 )  thus completing some considerations of  (Brezinski and Walz, 1991) devoted to 
this example. 

Assuming that (T~),,~z is a sequence of given control points, we rewrite (9) as a 
sequence transformation (15) by 

t3ik,~,= ~ ( t)  i f v = j - k ,  j (22) B y _ j +  k . . . .  

and/3yv = 0 if not where k = 1,2, 3 . . . .  and j, v E Z. 

Theorem 3. Let F := K z be the space of  all bi-infinite sequences in IE and let L,  ~ F* 
be defined by 

L , f  := f ( v )  f o r  all f E K z,  v E Z. 

Let f i  E F be defined by f o ( v )  = 1 and f j ( v )  = v j - l  • (1 - l / t ) ~  f o r  j >~ 1, v ~ Z, 
where 0 < t < 1 is a parameter. 

Then, (16) is a reference functional of  (15) (with respect to (Lj_k . . . . .  L j)  ) with a 
characteristic space Ek = span{f0 . . . . .  f k} .  From Theorem 2 we obtain A~' = 1 - t, i.e. 
(18) is De Casteljau's algorithm (10). 

Proof. Assume that F and ( L , )  are defined as in the theorem. Then, (16) is a reference 
functional for (15) which for k = j = n is (9) (due to (22)) .  In order to motivate the 
definitions of  f l  . . . . .  fk given in the theorem, we derive them from the condition 

R~, f /=O for a l l v c Z .  

Explicitly, this is a homogeneous linear difference equation of  order k 

B~o(t) • f j ( u  - k) + . . .  + B~(t )  • f j ( t , )  = O. 

Its characteristic polynomial (written in A) is 

k 

Z / l C "  B~( t )  = (1 - t + A. t) ~ 
{--0 

having the root A := 1 - l i t  of multiplicity k. Taking the k linearly independent solutions 
f l  . . . . .  f~ leads to the definitions given in the theorem and assumed in the sequel. 

The vectors fo,  f l  . . . . .  f k  and the functionals ( L , )  are linearly independent and 
define the characteristic functional (16) (with coefficients from (22))  of  (9) as well 
as a characteristic space E~ = span{f0 . . . . .  fk}. Hence, it remains to show that the 
assumptions of  Theorem 2 hold. 

Note that by exploiting J i Rm+jfi = ~i,o . w,,+; for i = 0 . . . . .  j we have recursively 

vl So,...,:., i =  l V l  So ........ :., ,,:., ( - 1 ) J  v So ........ : . , - , I  # o 
L j  . . . . . . .  L j _~ ,R " /  I - -  t i m  L j  . . . . . .  l.: , Lj ....... Lj [j~,j J,J 
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starting with vI f0 Lj_,, I = 1. This proves (19) .  

Div id ing  each row by a suitable power  of  A in vI f' ........ f,,-1 I one gets a (classical)  Lj-m+l ,...,Lj-I 
Vandermonde  determinant .  F rom this one concludes that also (20)  holds. 

Final ly,  some direct calculat ions (s tar t ing from (16)  and (22)  and the defini t ions 
given in the theorem) prove w~' = 1 and 

n l - -  1 

:., : (, - ' Z (m-1)(-l:-'-"(e-'+ l + ": 
#---0 

= ( m -  1 ) ! ( t -  1 ) : t  - : + m - l  

where we observed that the sum is a forward difference of  order m - 1 with step size 1 
of  ( g - m +  1 + .),,,-1 and hence equal to ( m -  1)!. Us ing  this in (21)  and o9~'= 1 we 

find A ~ ' = l - t .  [] 
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